OBDDs, SDDs, and circuits of bounded width:
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Abstract

Ordered Binary Decision Diagrams (OBDDs) are dynamic data structures with many appli-
cation areas. The literature suggested that OBDDs of bounded width equate to Boolean circuits
of bounded pathwidth. In this paper, we show that this relationship holds only for complete
OBDDs. Additionally, we demonstrate that similar limitations affect the claimed equivalence be-
tween Sentential Decision Diagrams (SDDs) of bounded width and Boolean circuits of bounded
treewidth.

1 Introduction

Ordered Binary Decision Diagrams (OBDDs) are a fundamental data structure used for efficiently
representing and manipulating Boolean functions [I0]. OBDDs have found widespread application in
many areas of computer science, including hardware verification [I1] and design [24], feature models
representation [25] [30, 20], model checking [35, [14], optimization [4, B, Bl B1], and proof complex-
ity |2, 12 2T]. By providing a canonical representation for Boolean functions, OBDDs enable efficient
equality testing and Boolean operations, making them a key tool in formal methods and verification.
Sentential Decision Diagrams (SDDs) are a more recently proposed data structure that can be seen as
a generalization of OBDDs [1I7]. SDDs provide a canonical representation for Boolean functions that
can be exponentially more compact than OBDDs in certain cases [7]. Like OBDDs, SDDs support
efficient Boolean operations and have been used in knowledge compilation [15, 26 [18§].

One of the most important aspects of OBDDs and languages for knowledge representation, in
general, is the trade-off between succinctness (the encoding should be small) and tractability (the
language should support efficient reasoning algorithms). Because of this, the expressive power of
OBDDs has been extensively studied. Entire book chapters have been dedicated to studying the
OBDD-size of specific functions [34]. Generally, the OBDD-size of a function is large with respect to
the number n of variables. Simple functions whose OBDD-size is exponential in n were found early [10].
Almost all Boolean functions have the same OBDD-size (up to an 1+0(1) factor) as the hardest Boolean
function for OBDD, so exponential in n, something known as the Shannon effect [23] B3]. Therefore,
functions with small OBDD-size are rare, and even rarer are function whose OBDD-size is linear in n.
These functions can be described in terms of OBDD-width: the maximum number of nodes labeled
with the same variable in an OBDD representation of the function. Linear OBDD-size essentially
coincides with constant OBDD-width. It was claimed that OBDDs of bounded width have the same
expressive power as Boolean circuits of bounded pathwidth [22] Theorem 2.15]. This article aims to
show that this result does not hold for general OBDDs but merely for
textcolorblacksmooth or complete OBDDs.
textcolorblackSmoothness and completeness for an OBDD refers to the property that every variable
of the function is read along every computation path. General OBDDs need not have this property



as they can represent functions with irrelevant variables. Typically, reduced OBDDs (ROBDD) are
generally not

textcolorblacksmooth. Smoothness and completeness are mostly convenient for proofs. Indeed it is
well-known that every OBDD can be made complete at the cost of increasing its size by a factor of n,
so completeness is usually just assumed without loss of generality in scenarios where it only matters
whether the OBDD-size is polynomial in n or not. However, this is not the case for the claim that
bounded circuit pathwidth coincides with bounded OBDD-width. Here, completeness matters. Jha
and Suciu prove that bounded complete-OBDD-width coincides with bounded circuit pathwidth but
stated their result for general OBDD-width. On the other hand, we show that there are OBDDs of
bounded width that cannot be translated to complete OBDDs of bounded width. Thus, we show
that there are OBDDs of bounded width that cannot be translated to Boolean circuits of bounded
pathwidth.

We also show that a similar caveat applies to the alleged equivalence between Sentential Decision
Diagrams (SDDs) of bounded width and bounded treewidth Boolean circuits [9]. Namely, the functions
computable by complete,
textcolorblackor smooth, SDDs of bounded width coincide with the functions computable by circuits
of bounded treewidth, and again completeness, or
textcolorblacksmoothness, is a necessary property. However, there is the technical issue that width
and
textcolorblacksmoothness are not defined for SDDs, or rather, the current the definition of SDDs does
not allow for satisfactory definitions of these notions. This is an issue worth addressing as
textcolorblacksmoothness is a property of circuits that is often convenient and sometimes required for
solving certain problems.
textcolorblackSmoothness has been introduced by Darwiche [I6] as a useful property for doing model
counting on Boolean circuits called d-DNNF circuits but the notion extends applicable to various kind
of circuits, it has for instance been shown to be a crucial property for computing marginals on sum-
product networks [28| 27].
textcolorblackSmoothness is important enough to motivate some work on efficient ways to make a
circuit complete (or smooth) [29]. Thus, it is a problem that we cannot define
textcolorblacksmoothness on SDDs. In this paper, we tweak definition of SDDs in a way that is
inconsequential for all significant properties of SDDs proved so far, and yet allows us to define
textcolorblacksmooth SDDs naturally.

We hope that this paper will help dissipate any confusion about the expressive power of bounded-
width OBDDs and SDDs. The takeaway is that functions computable by circuits of bounded pathwidth
(resp. treewidth) do not coincide with functions computable by OBDDs (resp. SDD) of bounded width,
which are already quite rare, but with
textcolorblacksmooth or complete OBDDs (resp. SDDs) of bounded width, which are strictly rarer.
This is informally summarized as

CPWD(O(1)) complete-OBDD(O(1)) # OBDD(O(1)) and

CTWD(O(1)) = complete-SDD(O(1)) # SDD(O(1)),
where (complete-)OBDD(O(1)) refers to the class of Boolean functions computable by bounded-width
(complete) OBDDs, (complete-)SDD(O(1)) refers to the class of Boolean functions computable by

bounded-width (complete) SDDs, and CPWD(O(1)) and CTWD(O(1)) refer the classes of Boolean
functions computable by circuits of bounded pathwidth and treewidth, respectively.

2 Preliminaries

Boolean variables take their values in {0,1} where 0 is interpreted as false and 1 is interpreted as
true. A literal for a Boolean variable x is either x, or the negation of z, denoted by —z. We write
lit(X) =X U{-z |z € X}. Let X be a set of Boolean variables. An assignment to X is a mapping



a: X — {0,1}. A Boolean function f over X associates a value from {0,1} to every assignment to
X. An assignment o € f~1(1) is said to satisfy f. An assignment o € f~1(0) is said to falsify f. The
set of variables of a function f (resp. an assignment «), when not explicit, is denoted by var(f) (resp.
var(a)).

textcolorblackA variable x € var(f) is relevant for f when there exists two assignments o and S to
var(f) that differ only on z such that f(a) # f(8). A variable that is not relevant for f is said
irrelevant for f. For two assignments oy : X7 — {0,1} and ay : Xo — {0,1} with X; N Xy = 0, we
denote by a1 Uz the assignment o : X7 U Xo — {0,1} with a(z) = «;(2) if € X; for every variable
r € X7 UXs.

2.1 Graph and Width Parameters

The root node of a tree T is denoted by root(t). For t a node in T, T'|; denotes the subtree of T rooted
at t (so root(T|;) = t).

A tree decomposition of an undirected graph G is a pair (T, \), where T is a tree and A\ : V(T') —
2V(&) such that for every edge uv € E(G), there is a node t € V(T) with u,v € A(t) and, for every
vertex v € V(G), the set {t € V(T)|v € A(t)} forms a non-empty connected subtree of T. To
distinguish between the vertices of G and the vertices of T', we refer to the latter ones as nodes or
bags. The width of (T, \) is equal to the maximum of |[A(¢)| — 1 over all nodes of T. We say that a
tree decomposition (T, \) is a path decomposition if T is a path. The treewidth (pathwidth) of a graph
G is the minimum width of any tree decomposition (path decomposition) of G.

A binary decomposition tree of a graph G is a pair (T, 1) where T is binary tree and p is a bijection
from T’s leaves to V(G) [32) Definition 3.1.3]. Removing any edge e from T splits T into two trees
and thus induces a bipartition (L., R.) of V(G). The maximum matching width of (T, u), denoted
by mmw(T, ) is the size of the largest matching between G[L.] and G[R,] in G when e ranges over
all edges of T. The maximum matching width of G, denoted by mmw(G) is defined as the minimum
min(z, ) mmw(T, ) over all possible binary decomposition tree of . The maximum matching width
of G is known to equal the treewidth of G up to a constant factor.

Lemma 1 ([32, Theorem 4.2.5]). Let G be a graph, then % (tw(G) +1) < mmw(G) < tw(G) + 1.

We say that a binary tree is right-linear if every internal node of T" has two children and the left one
is a leaf. We say that a binary tree decomposition (7', A) is right-linear if so is T'. Given a total ordering
7 of V(G), D, denotes the rooted and right-linear binary decomposition tree of G where 7 coincides
with the ordering of the variables obtained by reading them on the leaves of the decomposition from
left to right.

A (¢, d)-expander graph G is a d-regular graph such that for any S C V(G) of size |S| < [V(G)|/2,
it holds that |N(S)| > ¢|S], where N(S) :={v € V(G)\ S | (u,v) € E(G),u € S}. It is known that
there are infinitely many 3-regular expander graphs.

Lemma 2 ([I Section 9.2]). There is, for some ¢ > 0, an infinite sequence of (c,3)-expander graphs
(Gi)ien-

It is also known that expander graphs have large treewidth so, by Lemma [I} they also have large
maximum matching width.

Lemma 3 ([I9, Proposition 1]). Let ¢ > 0 and d € N be fized. There is a constant v > 0 such that
every (¢, d)-expander graph on n vertices has treewidth and mazimum matching width at least yn.

2.2 DNNPF circuits

A circuit (or expression DAG) is a directed acyclic graph D with a unique sink vertex o (output gate)
such that every vertex v € V(D) \ {o} is either:

e an input gate (IN-gate) with no incoming arcs,



e an AND-gate with at least one incoming arc,
e an OR-gate with at least one incoming arc,
e a NOT-gate with exactly one incoming arc.

Every input gate corresponds to a Boolean variable and no two input gates correspond to the same
variable. We denote by var(D) the set of variables for the input gates of D. More generally, for
g a gate of D, var(g) is the set of variables for the input gets appearing below g. If g is an input
gate for the variable = then var(g) = {x}. A circuit is in negation normal form (NNF) when the
incoming neighbor of every NOT-gate is an input gate. A circuit is in decomposable negation normal
form (DNNF) when for every AND-gate g, no two distinct incoming neighbor of g share a variable.
Formally, if ¢ and ¢’ are two incoming neighbors of g, ¢ # ¢, then var(c) Nwvar(¢’) = 0. A circuit in
DNNF is

textcolorblacksmooth when, for every OR-gate g, its incoming neighbors have identical variable sets.
Formally, if ¢ and ¢’ are two incoming neighbors of g, then var(c) = var(c).

For an assignment o : var(D) — {0,1} and a vertex v € V(D), we denote by val(v, D, a) the value
of the gate v after assigning all input gates according to a.. That is, val(v, D, «) is recursively defined
as follows: If v is an input gate for the variable x, then val(v, D, a) = a(z), if v is an AND-gate (OR-
gate), then val(v, D, «) = /\HENB(v) val(n, D, a) (val(v,D,a) = vneNg(v) val(n, D, a)). Here and in
the following N (v) denotes the set of all incoming neighbors of v in D. We set O(D, o) = wval(o, D, «)
and we say that a Boolean function f over a set of variables X is represented by a circuit D if
var(D) = X and O(D, a) = f(«a) for every assignment « of the variables in X. The pathwidth pw(D)
of a Boolean circuit D is equal to the pathwidth of the underlying undirected graph of D. Similarly,
the treewidth tw(D) of D is equal to the treewidth of the underlying undirected graph of D.

2.3 OBDDs

A binary decision diagram (BDD) is a directed acyclic graph (DAG) with a single source, two sinks
labeled 0 and 1, and internal nodes labeled with Boolean variables. Each internal node has two distinct
successors called its 0-child and its 1-child. Let B be a BDD. Its set of variables is denoted by var(B).
A BDD represents a Boolean function over var(B). A BDD made of a single sink 0 (resp. 1) represents
the constant 0-function (resp. 1-function). If however the source node of a BDD B is a decision node
labeled with x whose 0-child is the BDD By and whose 1-child is the BDD By, then B represents the
function recursively defined by ite(x, B1, By) = (zAB1)V(—zABy) (if x then By else By). Graphically,
every complete assignment « to var(B) corresponds to a unique path in B: starting from the source,
if the path reaches a node v labeled with z, then the path continues to the 0-child of v if a(z) = 0,
and to the 1-child of v otherwise, and so on until reaching a sink. The value B(a) computed by B’s
function on « is the value of the sink reached by the path for a.. An ordered BDD B (OBDD) is a BDD
such that, on every path from the source to a sink, every variable labels at most one node and such
that the order of appearance of the variables along any path is consistent with a single total ordering
m of var(B). We also say that B is a m-OBDD.

Definition 1 (Width of an OBDD). The width of an OBDD is the maximum number of its nodes
labeled with the same variable.

For B a m-OBDD over n variables and i € [n], we denote by L;(B) the i-th layer of B, that is, the
set of its decision nodes labeled with the i-th variable in the ordering 7. We also denote by L., +1(B)
the set of B’s sinks. The width of B is then max;c(, |Li(B)|.

A complete OBDD is an OBDD where, on every path from the source to a sink, each variable
appears ezactly once [34, Definition 3.2.1]. When B is complete, we have that for every i € [n],
the children of every node in L;(B) are in L;11(B). An OBDD is smooth when, for every decision
node ite(x, By, By), we have var(B;) = var(By). There is a subtle difference between smoothness and
completeness. Complete OBDDs are smooth but the converse does not hold. If an OBDD B represents



f, then completeness forces every source-to-sink path in B to contain one decision node per variable in
var(f), even those irrelevant for f. In contrast, B may be smooth while not having a single decision
node for irrelevant variables.

Proposition 1. Let f be a Boolean function over X. Suppose that every variable x € X 1is relevant
in f. Then every smooth OBDD representing f is also complete.

Proof. Write X = {z1,...,z,}. Suppose toward a contradiction that B represents f and is smooth
but not complete. Suppose, without loss of generality, that the variable ordering for B is (z1,...,z,).
Since x; is relevant in f, the source node of B is labeled with z;. By assumption there is a source-to-
sink path (v1,ve,...) and an integer ¢ > 1 such that for all j < 4, v; is a decision node labeled with
x; but v; is not a decision node labeled with x;. Thus, z; & var(v;). For every 2 < j < i let u; be
the node such that v;_, = ite(x;_1,v;,u;) or vj_1 = ite(x;j_1,u;j,v;). By smoothness we have that
var(uj) = var(v;). Therefore var(vj_1) = var(v;) U{z;_1} contains z; if and only if z; € var(v;).
We thus conclude that, z; &€ var(v;) implies x; & var(vy) = var(B). This means that z; is irrelevant
in the function represented by B, a contradiction. O

Every OBDD can be made complete and thus smooth without changing its variable ordering and
without increasing its width by more than a factor n. The trick is to add “dummy nodes” whose
0-child and 1-child are the same. Proposition |1|implies that, given a function f, the minimal width of
a complete OBDD representing f equals the minimal width of a smooth OBDD representing f (plus 1
when f is a constant function). Indeed a smooth OBDD can be made complete by removing all nodes
labeled with irrelevant variables and by adding a chain of dummy nodes for those irrelevant variables
at the source. Given this equivalence and given that the term complete OBDD is more widely used
than smooth OBDD, we use the notion of complete OBDD in the remainder of the paper.

Proposition 2 ([34, Theorem 3.2.3]). Let B be an OBDD over n variables, one can construct in time
O(n-|BJ) a complete OBDD B’ with the same variable ordering, whose width is at most n - width(B),
and that represents the same function.

Every m-OBDD B can be transformed in linear time into an equivalent minimal-size 7-OBDD that
is unique and called reduced. There is also a unique complete 7-OBDD whose size is minimal among
all complete m-OBDD representing the same function. This complete 7-OBDD is called quasi-reduced.

3 Complete OBDDs and Circuits of Bounded Pathwidth

Earlier work from Jha and Suciu tried to draw a connection between small-width OBDD and circuits
of bounded pathwidth [22]. One of their results was that, for a class F of functions, there exists a
constant ¢ such that all functions f € F admit OBDD representations of width at most ¢, if and
only if there exists a constant ¢ such that all f € F admit circuit of pathwidthT] at most ¢. This
correspondence is summarized in [22] as

[1] CcPWD(O(1)) = OBDD(O(1)). (1)

In this section, we argue that this result is not correct, and we give the corrected variant. We use the
symbol m to warn the reader of false claims.

3.1 OBDD and Circuits of Bounded Pathwidth: a Correction

Let OBDD(w) be the set of of Boolean functions that admit OBDD representations of width at most
w and let CPWD(w) be the set of Boolean functions that admit circuits of pathwidth at most w. The
erroneous claim was derived from the following two results:

1Jha and Suciu actually refer to circuit pathwidth as expression pathwidth.



E Claim 1. [22] Theorem 2.15] If there exists an OBDD for f with width w, then there exists a
circuit of pathwidth at most 5w representing f. This implies OBDD(w) C CPWD(5w + 1).

Claim 2. [22| Corollary 2.13] If there exists a circuit for [ with pathwidth w, then there exists an
OBDD of width at most 20+D2""" representing f. This implies CPWD(w) C OBDD(2(“’+1)2w+1).

Unfortunately, Claim [I] does not hold unless the OBDD is complete,
textcolorblackor at least smooth. Since OBDDs can be
textcolorblacksmoothed in polynomial-time, one may deem this subtlety inconsequential. But
textcolorblacksmoothing OBDDs can multiply the width by a factor Q(n), where n is the number of
variables.

[22] is rather ambiguous about the properties of the OBDD. Whereas the introduction mentions
that OBDD may not be complete,

on any path from the root to a sink every variable appears at most once and in the order I1
(variables may be skipped)

the proof of Theorem 2.15, though Lemma 4.1, implicitly uses complete OBDD. The lemma’s statement
is that, if f = f1, fo, ..., fu are formulae with a shared OBDD of width w, then there exists a shared
expression (or circuit) for them having pathwidth 5w s.t. all root nodes f occur on a leaf of the path
decomposition. The proof given is by induction and reads as follows.

Let the first variable in the variable order of OBDD be X1 and denote the formulae at the first
level by 91,92, ..., 9w. Then every f; can be written as (X1 A g;) V (X1 A gx) for some j, k.
Denote the nodes corresponding to new A, — operators by op. Now, by induction hypothesis, g
have a path-decomposition with width 5w one of whose leaves contains g. We connect that leaf
to a new node which contains g, f, X1, op. The resulting path-decomposition of f has width 5w.

The implicit assumption that the OBDD is complete occurs when saying that the g;s are in the first
level of the OBDD. An OBDD level is a set of decision nodes that reads the same variable. In a
non-complete OBDD, f; can be (=X1 A gj)V (X1Agy;) for g; and g; in the first layer or in layers below.
If instead the level g1, ..., g, is defined as the immediate successors of the nodes for fi,..., f,,, then
nodes from one level need not all read the same variable and thus we cannot assume that there are at
most w nodes per level.

We insist that the proofs of [22] are all correct under the assumption of complete, or quasi-reduced,
OBDD. Thus, let us then rewrite Claim [l with quasi-reduced OBDD. Let qROBDD(w) denote the
set of Boolean functions that can be represented by a quasi-reduced OBDD, that is, a minimal-size
complete OBDD, of width w. The proof of Claim [2] needs no correction and can even be strengthened
to quasi-reduced OBDD.

Lemma 4. If there exists a complete OBDD for f with width w, then there exists a circuit D repre-
senting f s.t. pw(D) < bw. This implies qROBDD(w) C CPWD(5w + 1).

Lemma 5. If there ewifts a circuit for f with pathwidth w, then there exists a compleice OBDD of
width at most 20FD2"" pepresenting f. This implies CPWD(w) € qROBDD(2(w+1)2" ™),

At that point one may think that Claim [I|may still hold but requires a different proof. But we will
refute both Claim |1 and with the following theorem.

Theorem 1. There is an infinite set F of Boolean functions and two constants ¢ € N and v € (0, 1]
such that, for every f € F over n variables, the OBDD-width of f is at most ¢ and the
textcolorblacksmooth-OBDD-width of f is at least yn.

The combination of Lemmas [f] and [5] implies that

CPWD(O(1)) = qROBDD(O(1)) 2)
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Figure 1: Three OBDD representing the same function.

while Theorem [1I| essentially says that
qROBDD(0O(1)) € OBDD(0O(1)) (3)

The next section is dedicated to the proof of Theorem

3.2 Width Difference between OBDD and Complete OBDD
3.2.1 Related work

In Proposition [2] the bound on the width of B’ is tight. It is not hard to find OBDDs whose widths
are bounded by a constant but such that the width of the complete OBDD with the same variable
ordering is linear in the number of variable. See for instance the first two OBDDs in Figure [l} They
represent the same function. The first one has width 2 but is not complete, the second is complete,
respects the same variable ordering x1,xa, ..., x,, and has width ©(n). In this example, if we are
allowed to change the variable ordering, then we can find an equivalent complete OBDD of width 2 as
shown in Figure [I] on the right. For other functions, changing the ordering does not help. This was
shown by Bollig and Wegener.

Proposition 3 ([6, Theorem 3]). There exists functions over n variables represented by an OBDD of
width O(n) for some variable ordering, and whose representations by complete OBDDs all have width
at least Q(n?) for all variable orderings.

Proposition [3] in itself already shows that, if Claim [l was true, then we could not prove it by first
making the OBDD complete and next using the proof of Jha and Suciu [22] on complete OBDDs.
However, Proposition [3| is not sufficient in itself to refute Claim [I| because one can envision that
the claim holds true with a more complex proof that does not use complete OBDDs at all. Since
Proposition [3| does not apply to OBDDs of constant width, it cannot be used to prove (3)). Theorem
is the equivalent to Proposition [3| for OBDDs of constant width.



Capelli and Mengel [I3] have shown a result similar to Theorem We can prove a statement in the
vein of Theorem [1| using two lemmas from [13]. In [I3] Lemma 13|, they show that for every n there
is an O(1)-width OBDD B over the set of variables X U Z with n = |X U Z| such that the function
3Z.B(X, Z) (that is, V,,¢(0,132 B(X,az)) does not have an OBDD of size 20" Crucially, B is not
complete. In [I3] Lemma 1], they show that if B was equivalent to a complete OBDD B’ of width
O(1), then there would be an OBDD of width O(1), and thus of size O(n), computing 3Z.B(X, Z).
Hence, the function represented by B does not admit a complete OBDD representations of width O(1):
the width must depend on n. Thus, one can already prove from their results. However, Capelli
and Mengel do not precisely quantify the dependence on n of the complete OBDD (it could be that
the non-complete OBDD has constant width while the complete OBDD has width o(n)). Theorem
gives a more precise statement. We use the same construction for Theorem [I] as used by Capelli and
Mengel for [I3] Lemma 13].

3.2.2 Proof Strategy

The proof relies on properties of expander graphs. We consider a collection of constraints ¢y, ..., ¢y
and its primal graph, that is, the graph whose vertices are the variables and where two variables are
connected by an edge if and only if they belong to the scope of a common constraint. From cy, ..., ¢y,

one constructs a function f that uses m additional variables to select one and only one constraint to
evaluate. The additional variables form a unary encoding of the index ¢ of the constraint ¢; to evaluate.
Let us call wy,...,w,, the additionnal variables, then f looks something like that

m
\/((wlwg . .wi_lﬂwi) A Ci).
=1

Assuming each constraint ¢; is individually representable by a constant-width OBDD B,, for some
common variable ordering, the function f has polynomial-size OBDDs of constant width, as shown in

the next figure.
v y y
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But such OBDDs are not complete. For well-chosen ¢y, ..., ¢, the width of a complete OBDD for
the function is not constant. Recall that the width of an n-variable complete OBDD is the maximum
number of different functions obtainable from assigning the first k variables of its ordering, with &
varying from 1 to n. The partition of the variables that splits the first k variables on one side and
the n — k last variables on the other is seen as a bipartition of the primal graph of ¢i,...,¢p,. We
choose ¢y, ..., ¢y so that, the bigger the matching between the two sides of the bipartition, the more
functions can be obtained by assigning the variables from one side. Since the result must hold for
all possible variable orderings, making the primal graph an expander graph is a sound choice because
expanders have the properties that any balanced bipartition of the vertices have many edges crossing
from one side to the other. By ensuring that the primal graph is an expander and has bounded degree,
we guarantee that every balanced bipartition has a large matching between its two sides.

3.2.3 Proof of Theorem [I]
We need the following standard result on the width of complete OBDDs.

Lemma 6 (|34, Theorem 3.2.2]). Let B be a complete m-OBDD over n wvariables representing the
function f. Let Xo =0 and, for every j € [n], let X; be the set of the first j variables in the ordering
7. The number of nodes of B labeled with the j-th variable in the ordering 7 is at least the number of



different functions fla for o a full assignment to X;_1, where the function flo : var(f)\X,;-1 — {0,1}
is given by (fla)(B) = flaUp).

Let W = (w1,...,wm), U = (u1,...,uy) and V = (v1,...,0,) be three sequences of Boolean
variables such that |set(W)| = m, and set(W) N (set(U) U set(V)) = 0 and such that, for all i € [m],
u; # v;. Note that we can have v; = v; or u; = u; or u; = v; for some ¢ # j. Let

FO VW) =\ (wiwy . wiy—w;) A (u; > ;).
i=1
Definition 2. Let X be a set and 7 be a total ordering of X, a cut of 7 is a bipartition (X7, X3) of X
such that, for some integer i, X is exactly the set of the first i elements in 7. Then, (X1, X3) is called
the i-th cut of . A pair of elements {z,y} C X is split by the cut (X1, X2) if x € X and y € X, or if
y € X1 and x € Xs.

Lemma 7. Let B be a complete m7-OBDD representing f(U,V,W), with W = (w1,...,wp), U =
(U1, . um) and V = (v1,...,vm). Suppose there exists a cut of  and a set J C [m] such that, for
all j € J, m splits {uj,v;} and such that, for all i,j € J, i # j, we have {u;,v;} N{uj,v;} =0. Then
the width of B is at least |J|.

Proof. Let (X7, X2) be the cut of 7 described in the statement and suppose it is the i-th cut of 7. For
every j € J, let @; be the element in {u;,v;} N X7 and let 9; be the element in {u;,v;} N X,. We have
{az, 05} = {uj,v5}

For every j € J, let a; be the assignment to U UV U W that sets w;, ©; and 9; to 0 and all other
variables to 1. Let a} be the restriction of a; to X; and let af be the restriction of a; to Xa. Since a;
is a model of f, a3 is a model of f|a}. In addition, since all @; for j € J belong to X; and are pairwise
distinct, the assignments a; are pairwise distinct.

We claim that no assignment o := aj Ua?, is a model of f for any j* € J\ {j}. On the one hand,
a(iy) = aj(i;) = 0 and ad;) = a3,(9;) = 1, so a falsifies the term (wiwsy ... wj—1—w;) A (u;
v;). On the other hand, a(i;) = aj(i;) = 1 and a(0;) = a3,(9;) = 0, so « falsifies the term
(wws ... wj 17wy ) A (uj <> vy). Finally, among w1, ..., wn, o only assigns w; and/or w; to 0, so
it falsifies all terms wyws ... w;—1—w; for all ¢ € {j, j'}. Therefore « is not a model of f.

Thus, for every j' € J\ {j}, a?, is not a model of f|a;. It follows that the functions f|aj1 for j e J
are pairwise distinct. Hence, by Lemma [6] there are at least |J| nodes at the (i + 1)-th level of the

OBDD. O

The sequences U and V are filled with the vertices of an expander graph in the following way. Let
G be a graph over n vertices without self loop. Write the edges of G in an arbitrary order in the
sequence: (e1,...,em,). Let u(e;) and v(e;) be the two endpoints of e;. For each i, put u(e;) to U
and v(e;) to V. Note that it is fine for the same vertex two be placed in U or in V and possibly in
both U and V' (the definition of f(U,V, W) allows it). Observe also that the constraint of no element
appearing in U and V' at the same index is satisfied since, G having no self loop, we have u(e;) # v(e;)
for all j € [m]. We rename U as Ug and V as Vi to render the dependence on G explicit. The function
used in Theorem [l|is f(Ug, Vg, W), where G is a (¢, 3)-expander graph for some ¢ > 0 and W is a set
of |E(G)| fresh Boolean variables.

Lemma 8. For every 3-reqular graph G, there is an OBDD of width at most 6 representing f(Ug, Vo, W).

Proof. For the OBDD, consider a variable ordering m where the variables W comes before the vari-
ables/vertices V(G). Let E(G) = {e1,...,en}. Forevery i, let u(e;) (resp. v(e;)) be the endpoint of e;
in Ug (resp. V(@G)). There is an OBDD B,, representing u(e;) <> v(e;) with var(Be,) = {u(e;),v(e;)},
of width 2, and whose variable ordering is consistent with w. Therefore, the OBDD shown in Figure
is a m-OBDD that represents f(Ug, Vg, W). Each variable w; has exactly one decision node and the
number of nodes for each variable/vertex v; is at most twice the number of edges containing it. Since
G is 3-regular the width of the OBDD is at most 6. O
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Figure 2: An OBDD representation of f(Ug, Vi, W), where B., = u(e;) <> v(e;)

It may look like the straightforward rewriting of the OBDD for f(Ug, Vg, W) shown in Figure [2| as
a circuit would give a circuit of small pathwidth. But keep in mind that all input variables are merged
in the circuit, so in fact the pathwidth would not be small at all. Now we show that every complete
OBDD for f(Ug, Vg, W) has a non-constant width when G is a 3-regular expander graph.

Lemma 9. Let ¢ > 0. There is a constant « > 0 such that, for every (c,3)-expander n-vertex graph
G, all complete OBDDs representing f(Ug, Vg, W) have width at least o - n.

Proof. Let B be a complete m-OBDD representing f(Ug, Ve, W). Let mg be the restriction of 7
to the variables Vg U Ug. Recall the definition of the rooted right-linear binary decomposition tree
D, = (T, \) corresponding to m¢ and recall that removing an edge from T breaks T into two trees and
thus induces a partition (L, R) of V. By definition of D, one sees that removing an edge between two
internal nodes of T yields the same bipartition as a cut of m¢. Hence, by Lemma [3] on the maximum
matching width of G, there must be a cut of m¢ that splits at least yn pairs {u(e;),v(e;)}. We say in
this case that the edge e; is split (by the cut). Let E be these split edges. Since G is 3-regular, a fifth
of these edges are pairwise disjoint. To see this, initialize two sets £’ and E” to ) and visit the edges
of E one by one, if e € E share not endpoint with any edge in E’ then add it to E’, otherwise add it
to E”. By 3-regularity of G we have |E"| < 4|F’| so, since |E’| 4+ |E"”| = |E| we have that E’ is a set
of at least |E|/5 > yn/5 pairwise disjoint edges split by a cut of 7. Since 7 is the restriction of 7 to
Ve U Ug, there is a cut of 7 that splits the same edges E’. Invoking Lemmam finishes the proof. [

Theorem [1] follows directly from Lemmas and [9]

4 Complete SDDs and Circuits of Bounded Treewidth

Inspired by the work relating circuit pathwidth to OBDDs, Bova and Szeider have proved an analogous
relationship between circuit treewidth and SDDs (Sentential Decision Diagrams) [9]. SDDs were intro-
duced by Darwiche as Boolean functions representations that extend OBDDs while preserving many
of its advantages [I7]. A notion of SDD-width can be defined similarly to that of OBDD-width and re-
lated to circuit treewidth. In this section, we show that if completeness is essential in proving that the
class of functions with constant circuit pathwidth coincides with the class of functions with constant
complete OBDD width, the same subtlety applies to SDD-width and circuit treewidth. Namely, the
class of functions with constant circuit treewidth (denoted by CTWD(O(1))) coincides with the class
of functions with constant complete SDD width (denoted by complete-SDD(O(1))), and completeness
is not optional.

textcolorblackIn fact, what we really need is the smoothness property, which is almost equivalent. The
purpose of this section is to explain that

CTWD(O(1)) = complete-SDD(O(1)) € SDD(O(1)).

where SDD(O(1)) refers to the class of functions with constant SDD width. One issue here is that
completeness is not defined for SDD, or rather, that the usual definition of SDD does not let us define
completeness

textcolorblackor smoothness in a natural way. We thus use a slightly modified definition of SDD that
is equivalent to Darwiche’s original definition and enables us to define complete

textcolorblackand smooth SDD in a satisfactory manner.
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This section is organized as follows. In Subsection |4.1] we present the definition of SDD that we
use and explain in what sense it differs from the original definition. In Subsection we recall the
translations between OBDDs, SDDs and DNNF circuits, which we use in Subsection to motivate
our definition of SDDs. In Subsection we introduce completeness
textcolorblackand smoothness for SDDs and explain how to make an SDD
textcolorblacksmooth. We then show the separation between CTWD(O(1)) and SDD(O(1)) in Sub-
section (4.4

4.1 SDD Definition(s)

Vitrees. A vtree (variable tree) over a set X of Boolean variables is a pair T = (T, ¢) where T is
a binary tree and ¢ is a bijection from 7’s leaves to X. The children of a vertex ¢ in T are ordered:
we distinguish the left child ¢; from the right child ¢,.. We write var(T) when X is not explicit. For
every t € T define var(t) = {¢(l) |l a leaf descendant of ¢ } when ¢ is an internal node of T, and
var(t) = {#(t)} when ¢ is a leaf. In the degenerate case where X = (), we use the empty tree (no
vertex, no edge) and the vacuous bijection from () to () to define a vtree over (). For t € T, we write
Tle = (T|t, ¢|+). Note that T|; is a vtree over ¢(t).

SDD. Our definition of SDDs is slightly different from Darwiche’s original definition [I7]. An SDD S
respects a vtree T = (T, ¢), or is structured by T. An SDD contains two kinds of nodes: constant nodes
and decomposition nodes. Each node 7 is interpreted as a function (n) over var(n). A constant c-node
n with ¢ € {0,1} is interpreted as () = ¢ with var(n) = 0. A decomposition node n is represented by

a set {(p1,51),.--, (Pr, k) } where
e cach p; is either a literal or a decomposition node, and
e cach s; is either a constant node or a decomposition node, and

o (pi) A\ (p;) = 0 for every i # j, and
o ViLi(pi) =1.

We have (n) = \/i;l(pi) A (s;), where (p;) = £ if p; is a literal ¢, and var(n) = Ule var(p;) Uvar(s;),
where var(p;) = {z} if p; is a literal in {z, =z}. Let Ag 7 be the function mapping every decomposition
node 7 to the deepest node t of T such that var(n) C var(t). For S to be an SDD that respects T, we
must have that for every decomposition node 7,

e cither 7 is of the form {(z,¢1), (—z,co)} with ¢; and ¢y two constant nodes and As (1) = ¢~ (z),

o or nis {(p1,1),- .., (Pk,Sk)} where some p; or s; is a decomposition node, and Ag7(n) is an
internal node of T' with two children ¢, and t4 such that, for all 4, first, var(p;) C var(t¢) (so, when
p; is a decomposition node, Ag 7 (p;) is either ¢y or a descendant of ¢,); second, var(s;) C var(t,)
(so, when s; is a decomposition node, Ag 7(s;) is either ¢, or a descendant of ¢,).

An SDD S with root node 7 represents the function (1) over var(n). Note that var(n) C var(T). The
size of S, denoted by |S], is its number of decomposition nodes. The p;’s and s;’s are called primes
and subs, respectively. A pair (p;,s;) is called a prime-sub pair. Graphically, a decomposition node is
represented as follows

where each p;, s; is 0, 1, &, -z, or a pointer to another decomposition node.

11
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Example 1. The SDD of Figure [3| (left) represents the function (b Aa)V (bA—aAc)V (=bAdAc).
It is structured by the vtree shown on the same figure (right).

m)y=>BAa)VbA-anc)V(mbAdAC) Ag7(m

m = {(m2,1),(n3,m5), (=b,na)} (m)
12 = {(b,16), (—b,0)} (12) (12)
ngz{(ﬁ 0), (b;n7)} (n3) (n3)
(d,n5), (=d, 0)} (na) =dne As,7(1m4)
( (m5) (15)
(a, (m6) (6)

( (m7)

¢ 1), (=¢,0)}
1), (—a,0)}
(@,0), (=a, 1)}

Note that the pre-image of some vtree nodes through A is empty.

]
@DOQWE®O

{
{
{
{

Darwiche’s definition. Darwiche’s definition of SDDs [I7] is seemingly simpler, but less convenient
to define concepts like completeness. Every SDD following Darwiche’s definition can be transformed
into an SDD following ours. First, we recall Darwiche’s definition. Let 7 = (T, ¢) be a vtree and A be
a mapping from the SDD’s nodes to T’s nodes. An SDD node 7 structured by (7, A) can be of three
types: (1) n can be a constant ¢ € {0,1} (interpretation: (n) = ¢, var(n) = 0); (2) n can be a literal
£ € {z,—-x}, then A(n) is a leaf and ¢(A(n)) = = (interpretation: (n) = ¢, var(n) = {z}); (3) n can
be a decomposition node {(p1,$1),- .., (Pk,sk)} and A(n) =t is an internal node of T with children ¢,
t, (interpretation: (n) = \/i;l(pi) A (si), var(n) = Ule var(p;) Uvar(s;)). In case (3), each p; is an
SDD node respecting (7, ) with A(p;) equal to ¢, or to a descendant of ¢,, each s; is an SDD node
respecting (7, A) with A(s;) equal to ¢, or to a descendant of ¢,, and it must hold that (p;) A (p;) =0

for every i # j, and also that \/I;:1<pi> =1

A few remarks help understanding the differences between Darwiche’s definition and ours.

Remark 1. In our definition, it is forbidden for a sub s; to be a literal. To obtain (s;) = x, one
sets s; = {(z,1), (—z,0)}. This means, for instance, that the SDD {(a, —b), (—a, b)} representing a & b
in Figure [5| is correct in Darwiche’s definition but not in ours. In our definition, one has to rewrite
like in Figure [4] Similarly, in our definition a single literal is not an SDD, whereas it is in Darwiche’s
definition.

Remark 2. In our definition, a decomposition node of the form {(z,co), (—z,¢c1)}, with ¢; and ¢
constant nodes, is mapped to a leaf of T by Ag 7 whereas in Darwiche’s definition, decomposition
nodes are always mapped to internal nodes of T'. It follows that our definition allows for SDDs that
are not “valid” under Darwiche’s definition, for instance the SDD of Figure[d Indeed, under Darwiche’s
definition, the root decomposition node of this SDD is mapped to the vtree node (1), but then the two
other decomposition nodes must be mapped to children of (1), which cannot be since these are leaves.

12
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Figure 5: An SDD for a @ b (Darwiche’s represen-
(3) (3) tation)
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Figure 4: An SDD for a @b

Figure 6: A vtree for the two SDDs

Remark 3. In both definitions, constants are SDDs. Constant nodes enable us represent the constants
0 and 1 without having to introduce any variable. Arguably we could write {(z,0), (—z,0)} to represent
the function over x that is uniformly 0, but this is not exactly the same as the constant 0 since
var({(z,0), (-=z,0)}) = {z} while var(0) = 0.

Remark 4. In Darwiche’s definition, there may be several A that work for the same vtree T = (T, ¢)
and the same SDD S. On the other hand, As 7 is uniquely defined. This allows us to say that S is
structured by 7 rather than by (7, As 7). Note that Ag 7 only maps decomposition nodes to nodes
of T and ignores constant nodes and literals.

The differences between Darwiche’s definition are minor and one can efficiently rewrite an SDD in
Darwiche’s definition to fit ours, and vice-versa.

Lemma 10. Every SDD following Darwiche’s definition can be rewritten to follow our definition in
linear time. And, conversely, every SDD following our definition can be rewritten to follow Darwiche’s
definition in linear time.

Proof. To go from Darwiche’s definition to ours, first one repeatedly gets rid of the prime-sub pairs
(0, s;) which are irrelevant to compute the function represented by the SDD, and replaces the prime-
sub pairs (1,s;) by s;. This is part of the operation called trimming in [17], which preserves the SDD
format (in Darwiche’s definition) and the function computed. Hence, we have an SDD where no prime
is a constant. Next, every sub that is a literal z is replaced by {(x,1), (z,0)} and every sub that is a
literal -z is replaced by {(z,0), (—-z,1)}.

To go from our definition to Darwiche’s definition, it is sufficient to replace the decomposition
nodes {(z, 1), (-z,0)} by z, the decomposition nodes {(z,0), (—z,1)} by -z, the decomposition nodes
{(x,0),(—z,0)} by 0, and the decomposition nodes {(x,1),(—z,1)} by 1. These are the only decom-
position nodes that are mapped to leaves of the vtree in our definition. Once they are replaced by
literals or constants, all remaining decomposition nodes are mapped to internal nodes of the vtree by
A. The result is an SDD respecting Darwiche’s definition for the mapping A that is consistent with
A on decomposition nodes, and that maps literals for z to ¢~!(z), and that maps constants to some
child of their parent decomposition node. O

Since the difference between the two definition amount to a linear-time rewriting, all properties of
SDD advertised by Darwiche carry on to our settings. In particular, all polynomial-time transforma-
tions involving two SDDs respecting a common vtree (conjunction, disjunction, etc.) are still feasible
in polynomial time in our settings, and the canonicity of so-called compressed and trimmed SDDs in
Darwiche settings (that is, two compressed and trimmed SDDs are equivalent if and only if they are
syntactically identical) can be rephrased under our definition.

Now we move to SDD-width. There have already been attempts at defining the SDD-width of
functions [9], or the SDD-width of functions relative to a vtree [I7]. We believe that the width of an
SDD should be defined as a parameter of an SDD independently of the function it represents. This
would be consistent with how the width of an OBDD is defined.

13
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Figure 7: Standard rewriting from OBDD to SDD to DNNF circuit

Definition 3 (Width of an SDD). Let S be an SDD structured by the vtree T = (T, ¢). The width
of S is width(S) := maxier |/\§17—(t)|

For instance, the SDD of Figure 4| has width 2 since two nodes are mapped to the node (3) of
Figure @ and only one is mapped to node (1). Note that no node is mapped to (2). Next, the SDD-
width of a function is naturally defined as the smallest width of an SDD representing that function.

Definition 4 (SDD-Width of functions). Let f be a Boolean function, the SDD-width of f is the

minimum width of an SDD computing f.

4.2 Relations and Translations between OBDDs, SDDs and DNNF circuits
Here we recall the standard rewriting of OBDDs into SDDs and of SDDs into DNNF circuits.

OBDDs to SDDs. OBDDs are easily rewritten as SDDs respecting linear vtrees. A vtree (T, ¢) is
(right-)linear when, for every internal node ¢ of T' with children ¢, and ¢,, we have that ¢, is a leaf.
The internal nodes of a linear vtree are organized on a path. Given a variable ordering 7 of the set X
of variables, T, is the right-linear vtree over X such the left-to-right ordering of the variables on its
leaves is precisely . For B a m-OBDD, obdd2sdd(B) returns an SDD respecting 7, defined as follows

e obdd2sdd(0-sink) = constant 0 node
e obdd2sdd(1-sink) = constant 1 node
o obdd2sdd(ite(z, B1, By)) = {(z, obdd2sdd(B)), (~z, obdd2sdd(Bo))}

Caching is implicit in obdd2sdd. For instance, the OBDD ite(x, By,ite(y, B1, Bp)) is turned into

{(z, obdd2sdd(By)), (-, {(y, obdd2sdd(B1)), (—y, obdd2sdd(By))})} where the two occurrences of obdd2sdd (B )

refer to the same SDD. obdd2sdd creates one SDD decomposition node per OBDD decision node, so
the size of obdd2sdd(B) is in O(|B]).

SDD to DNNF. SDDs can be seen as particular DNNF circuits. For S an SDD, sdd2dnnf(S) is a
DNNF circuit defined as follows

e sdd2dnnf(c) = ¢ when ¢ € {0,1} is a constant node
e sdd2dnnf(¢) = ¢ when ¢ € {z, —z} is a literal
e sdd2dnnf({(p1,51), .-, (Pm>5m)}) = Vir, sdd2dnnf(p;) A sdd2dnnf(s;)

Again, we have left caching implicit.
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4.3 Complete and Smooth SDDs

To the best of our knowledge, complete and smooth SDDs have not been defined before.
textcolorblackLike with OBDDs, completeness implies smoothness and the reverse implication holds
when there are no irrelevant variables.

Definition 5 (smooth SDD). An SDD is smooth when, all its decomposition nodes {(p1,s1),-..,
(P Sm)} satisfy var(pr) = -+ = var(py,) and var(sy) = - - = var(sy,).

Definition 6 (complete SDD). An SDD S that respects T = (T, ¢) is complete when the source node
of S is mapped to the root of T' by Ag 7 and when, for every decomposition nodes 1,

e cither 7 is of the form {(z,¢1), (—z, o)} with ¢; and ¢y two constant nodes and As (1) = ¢~ (z),

e or nis {(p1,51),---, (Dm,Sm)} where some p; or s; is a decomposition node and Ag 7(n) is an
internal node ¢ of T' and we have that si,...,s,, are all mapped to the right child of ¢ and
P1,...,Ppm are all mapped to the left child of ¢.

Proposition 4. Let f be a Boolean function over X and T = (T, ¢) be a vtree over X. Suppose that
every variable x € X is relevant in f. Then every smooth SDD S representing f is also complete.

Proof. Since all variables are relevant in f, the source node of S is mapped to the source node of T' by
As, 7. By assumption there is a decomposition node n = {(p1,51); ..., (Pm, Sm)} such that Agr(n) =t
and some p; is not mapped by Ag 1 to the left child ¢, of ¢ or some s; is not mapped by Ag 7 to the right
child ¢, of t. Tt follows that var(p;) Uvar(s;) C var(ty) Uvar(t,) = var(t) for some i. By smoothness,
we thus have the strict inclusion var(n) C var(t). Let (n1,...,m% = 1) be a sequence of decomposition
nodes with 7; the source node of S and where each 7;, i > 1, is a sub or a prime of 7;_1; we denote
by 7} the prime or sub of 7,_; paired with 7;. Smoothness ensures that var(n;—1) = var(n;) Uvar(n}).
Since var(As,7(n:)) Nvar(n,) = 0 we find that if x € var(As7(n;)) \ var(n;), then x & var(n;_1) and
thus = € var(As,7(n:-1)) \ var(n;—1). But then, knowing that var(n) = var(ny) C var(t), we conclude
that there is an x € var(t) that is not in var(n;). Since 7 is the source node of S, it follows that S
represents a function for which x is irrelevant, a contradiction. O

Thus smoothness and completeness are equivalent for functions without irrelevant variables and
generally, the minimal width of a smooth SDD representing a function (not uniformly 0 or 1) equals the
minimal width of a complete SDD representing the same function. In this section we prefer working
with the notion of smooth SDD.

The reason our definition of SDD differs from Darwiche’s definition is so that we can define
textcolorblacksmooth and complete SDD for every function in a satisfactory way. Formally, we want
the following to hold.

(1) Feeding a
textcolorblacksmooth OBDD to obdd2sdd yields a
textcolorblacksmooth SDD.

(2) Feeding a
textcolorblacksmooth SDD to sdd2dnnf yields a
textcolorblacksmooth DNNF circuit.

To see the small issue with the original definition of SDDs, consider the function a A b. The only
way to represent it as an SDD respecting the vtree of Figure [6] following Darwiche’s definition is
{(a,b), (—a,0)}. One can check to sdd2dnnf({(a,b), (—a,0)}) is not a

textcolorblacksmooth DNNF. Naturally, one wants to replace the 0 in this SDD by {(b,0), (—b,0)} and
then sdd2dnnf would return a

textcolorblacksmooth DNNF. But this is not compatible with Darwiche’s definition because this def-
inition does not allow that {(b,0),(=b,0)} respects the vtree node (3). As a decomposition node,
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Figure 8: An example of loss of completeness when using the original definition of SDD by Darwiche

{(b,0), (—b,0)} has to respect an internal node of the vtree, but it does not respect the only internal
node in this case, namely, (1). Another example is given in Figure [8l Here we have written a
textcolorblacksmooth OBDD as an SDD following Darwiche’s definition and next applied sdd2dnnf to
obtain a DNNF circuit that is not

textcolorblacksmooth. We believe that if B is a

textcolorblacksmooth OBDD, then sdd2dnnf(obdd2sdd(B)) should be a

textcolorblacksmooth DNNF. With our definition of SDDs, the same

textcolorblacksmooth OBDD is turned into a

textcolorblacksmooth SDD which is turned into a

textcolorblacksmooth DNNF as can be verified from Figure [7}

Lemma 11. Let B be a

textcolorblacksmooth OBDD, then obdd2sdd(B) is a
textcolorblacksmooth SDD representing the same function. Let S be a
textcolorblacksmooth SDD, then sdd2dnnf(S) is a
textcolorblacksmooth DNNF circuit representation the same function.

Proof. For obdd2sdd, the lemma is immediate if B = ¢-sink for ¢ € {0,1}. Suppose the lemma holds
for By and By, the

textcolorblacksmoothness of B implies var(By) = var(B;). By induction the variable sets are pre-
served so var(obdd2sdd(B;)) = var(obdd2sdd(By)). The induction also ensures that obdd2sdd(Bj)
and obdd2sdd(By) are

textcolorblacksmooth, so obdd2sdd(B) is

textcolorblacksmooth and computes (z A (obdd2sdd(By))) V (—x A (obdd2sdd(By))), which by induction
is (x A B1) V (—z A By).

For sdd2dnnf, the lemma is immediate for constants and literals. Let S = {(p1,51),.., (Pm,Sm)}
and suppose the lemma holds for every p; and s;. The
textcolorblacksmoothness of S implies var(py) = -+ = var(py,) and var(sy) = --- = var(sy,). Since

sdd2dnnf preserves the variable set, we have that var(sdd2dnnf(p;) Asdd2dnnf(s;)) = var(sdd2dnnf(p;)A
sdd2dnnf(s;)) for every i # j. By induction all sdd2dnnf(p;) and sdd2dnnf(s;) are
textcolorblacksmooth, so sdd2dnnf(.S) is

textcolorblacksmooth and computes \/" ; sdd2dnnf(p;) Asdd2dnnf(s;), which by induction is \/}~, (p;) A
(si) = (5). O

Similarly to OBDD and DNNF, an SDD can be made
textcolorblacksmooth such that the width of the
textcolorblacksmooth SDD is at most the number of variables times the width of the initial SDD (times
a constant factor). To create a procedure textcolorblacksmooth, we first need the procedure negate,
that returns the negation of an SDD. negate(.S) starts from the root of S and proceeds as follows, using
caching implicitly.

e negate(0) =1
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e negate(1l) =0

o negate({(p1,s1), .-, (Pk, 5x)}) = {(p1, negate(s1)), ..., (pr, negate(sy)) }

Note that subs are either constants or decomposition node, so the input of negate is never a literal.

Lemma 12. For S an SDD structured by T = (T, ¢), negate(S) returns an SDD over var(S), equiv-
alent to —(S), structured by T. Moreover, the negate(S) has size at most 2|S| and of width at most
2 - width(S). Finally, if S is

textcolorblacksmooth, then so is negate(S).

Proof. By induction on the size of S. The base case is when S is a constant; this case is clear.
For the inductive case, let {(p1,s1),...,(Pk,Sx)} be the root node of S. We have negate(S) =
{(p1, negate(s1)), ..., (pk, negate(si))}. The condition on the primes holds trivially. By induction
var(negate(s;)) = var(s;) and negate(s;) respects the same vtree as s;, so negate({(p1, s1), - - -, (Pk, Sk)})
is an SDD that respects the same vtree as S.

Now, we have (negate({(p1,$1)---, (Pk,sk)})) = \/f:1<pi> A {negate(s;)) = \/f:1<pi> A = (s;), where
the last equality holds by induction. Since \/f:1<pi> =1 and (p;) A (p;) = 0 for every i # j, we have
that \/i_y (pi) A =(si) = = Vs (i) A (1) = ().

Next, for the size and the width, observe that each node in negate(S) is an node 7 originally in S,
or a node negate(n) for  a node originally in S. Thus negate(n) has size most twice as many nodes
as S. Since var(n) = var(negate(n)), Anegate(s),7 maps both 1 and negate(n) to the same node of 7.
Hence width(negate(S)) < 2 - width(S).

Finally,
textcolorblacksmoothness is preserved due to negate preserving the variable set. O

Next, we describe textcolorblacksmooth, a procedure that takes in an SDD S and a vtree 7 = (T, ¢)
over X D var(S) such that S respects 7, and returns a
textcolorblacksmooth SDD over X, structured by 7, and that computes the function over X that
accepts an assignment « if and only if the restriction of a to S is accepted by (S). For convenience,
we write textcolorblacksmooth(S,¢) for textcolorblacksmooth(S, 7|¢). Let us deal with constant nodes
first.

e if ¢ is a leaf with ¢(t) = x, then

textcolorblacksmooth(1,¢) = {(z, 1), (-, 1)}
textcolorblacksmooth(0,t) = {(z,0), (-z,0)}

e if ¢ is an internal node with children t, and ¢,, then

textcolorblacksmooth(1,¢) = {(textcolorblacksmooth(1, t;), textcolorblacksmooth(1,t,.))}
textcolorblacksmooth (0, t) = {(textcolorblacksmooth(1, ¢,), textcolorblacksmooth (0, ¢,.))}

Now, in the case where S is not a constant node. Let n = {(p1,51), ..., (Pk, Sk)} be S’s root node, let
t be the root of T and let t* = Ag 7 (7).

o If ¢ is a leaf of T', then nn = {(z,¢1), (-, co)} for some variable z and some cp,c; € {0,1}. In
that case textcolorblacksmooth(n,t) returns 7.

e If ¢t is an internal node of T with children ¢, and t,, then we have four cases.

1. If ¢* is ty or a descendant of t;, then we compute 1’ = textcolorblacksmooth(S,t,), S1 =
textcolorblacksmooth(1,¢,.) and Sy = textcolorblacksmooth(0, ¢,) and return

m= {(77/7 S1), (negate(n/)> SO)}
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2. If t* is t, or a descendant of ¢,., then we compute ' = textcolorblacksmooth(S,¢,.), S1 =
textcolorblacksmooth(1,¢,) and return

2 = {(S1,7)}

3. If t* =t and ¢, is not a leaf, then let p} = {(z,1), (—z,0)} if p; = , p; = {(—z, 1), (z,0)} if
p; = —x and pj = p; otherwise. Return

ns = {(textcolorblacksmooth(p}, t;), textcolorblacksmooth(sy, t,.)), .. ., (textcolorblacksmooth(p}, /), textcolorblack

4. If t* =t and t; is a leaf with ¢(ty) = =, then let p, = {(z,¢), (—x,¢)} if p; is the constant
node ¢ and p; = p; otherwise. Return

ns = {(p}, textcolorblacksmooth(sy, t,)), . . ., (p}, textcolorblacksmooth(sy, t,-))}

Lemma 13. Let ¢ € {0,1}, and T = (T, ¢) be a vtree. textcolorblacksmooth(c,T) returns an SDD
structured by T, with variable set var(T), of size O(|var(T)|), of width at most 2, and that computes
the constant ¢ function.

Proof. Two SDD nodes are created per node ¢ of T' namely, textcolorblacksmooth(0, t) and textcolorblacksmooth(1,¢).
Thus textcolorblacksmooth(c, T') contains O(|var(T)|) nodes. We prove the other properties by induc-

tion on the depth of T. When ¢ = root(T') is a leaf with ¢(¢) = z, then by definition var(textcolorblacksmooth(c, 7))
is an SDD respecting 7 with variable set {z} and that computes ¢. When t has children ¢, and

t,, then by induction textcolorblacksmooth(1,t,) is an SDD structured by T, with variable set

var(T|t,) and that computes the constant 1 function; whereas textcolorblacksmooth(c, 71;,.) is an SDD
structured by T, with variable set var(7|;.) and that computes the constant ¢ function. Thus,
textcolorblacksmooth(c, T) = {(textcolorblacksmooth(1,,), textcolorblacksmooth(c, ¢)} is an SDD that

respects T, with variable set var(T|;,) Uvar(T|;,.) = var(T) and that computes the function 1A¢ = c.

Finally, for the width, we have that A(textcolorblacksmooth(1,t¢)) = ¢, so only two nodes can be map

to any given node of T, hence width(textcolorblacksmooth(c, 7)) < 2. O

Lemma 14. Let S be an SDD respecting T = (T, @) and which root node is not a constant node.
There is a smooth SDD structured by T, with variable set var(T), of size O(n|S|), of width at most
2n - width(S), and that computes the same function as S.

Proof. The smooth SDD is be the output S’ of textcolorblacksmooth(S, 7). We show by induction on
T’s depth that S’ is an SDD, that it is

textcolorblacksmooth, that it is structured by 7, that var(S’) = X = var(T) and that (S’) is the
function that maps assignments to X to the value returned by (S) on their restrictions to var(S). Let
t = root(T). We already know by Lemma [13|that S; and Sy verify this claim.

Base case. If t is a leaf with ¢(t) = z, then S = {(z,¢1),(—z,¢0)}, for co,c; € {0,1} and
textcolorblacksmooth(S;t) = S. Here it is clear that the lemma holds.

Inductive case. If ¢t has two children ¢, and ¢, then we consider the four cases.

1. The conditions on the primes of 7, are verified: (n’) A (negate(n’)) = 0 and (1) V (negate(n/’)) = 1.
By induction, 7’ is
textcolorblacksmooth and var(n’) = var(t;) and thus var(negate(n’)) = var(t;). We know that
var(S1) = var(Sy) = var(t,) (Lemma[13). So n; is
textcolorblacksmooth and var(n) = var(t;) Uvar(t,) = var(t). By induction, (') computes the
function (S) over var(ty), so (n) computes (n') A (S1) V (negate(n’)) A (So) = (') A (S1) = ()
over var(ty). By induction, " and negate(n’) are structured by T, and S; and Sy are structured
by Tlt,, so m is structured by T|;.
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2. The unique prime S; computes the constant 1 function over var(t) (Lemma, so the partition
condition of the primes is met. By induction, ’ is
textcolorblacksmooth and var(n') = var(t,). We know that var(S1) = var(ty). So 1, is
textcolorblacksmooth and var(nz) = var(t;) Uvar(t,) = var(t). By induction, (') computes the
function (S) over var(t,), so (n) computes (n') A (S1) = (') over var(t,). By induction, 7’ is
structured by T, and S is structured by T, so m1 is structured by T|;.

3. Let p} = textcolorblacksmooth(p}, t;) and s = textcolorblacksmooth(s;,¢.). By induction, p/ is a
textcolorblacksmooth SDD structured by 7, that computes (p;) = (p;) over var(ty) and s} is a
textcolorblacksmooth SDD structured by 7T, that computes (s;) over var(t,). Since (p;) A(p;) =
0 for all i # j, we also have (p{') A (p}) =0, and (p1) V-V (px) = 1 implies (p{) A (p}}) = 1.
Thus, 73 is a
textcolorblacksmooth SDD structured by 7T|; that computes \/f:1<p;’> INCAES \/fﬂ(p,-} A(si) =
(S) over var(t).

4. Since ¢(ty) = z, p; is either a constant node ¢ € {0, 1} or a decomposition node {(z, ¢1), (-, o)}
for some constants cg, ¢ € {0,1}. In both cases p} is a
textcolorblacksmooth SDD structured by T, that computes (p;) over var(t,). Let s; = textcolorblacksmooth(s;, t,).
By induction, s} is a
textcolorblacksmooth SDD structured by T, that computes (s;) over var(t,). It follows that
M4 1S &
textcolorblacksmooth SDD structured by 7T|; that computes \/f:1<p;) A(sh) = \/fﬂ(pi) A(si) =
(S) over var(te) Uvar(t,) = var(t).

To finish the proof, we bound the width of S’. We dismiss decomposition nodes that are mapped by
As/, 1 to leaves of T', as they are only at most four decomposition nodes of the form {(x,¢1), (-, co)},
co,c1 € {0,1} for a fixed . Every other node in S’ is either a node n from S, or is the root of
textcolorblacksmooth(n, t), or is the root of negate(textcolorblacksmooth(7,¢)). Since the variable sets
are preserved, at most width(S) nodes from S are mapped to t, by As 7. To these we must add the
roots of textcolorblacksmooth(7,t) and negate(textcolorblacksmooth(n,t)) for different 1. So we have
to count the maximum number of calls textcolorblacksmooth(#,t) for the same vtree node t. For ¢ an
internal vtree node, we may have computed textcolorblacksmooth(1,¢) and textcolorblacksmooth(0, t),
which both contribute one to the the number of nodes mapped to ¢ in S’. Next, we count the number
of calls textcolorblacksmooth(n, t) with n different from 0 and 1. A node 73 or ny mapped to ¢ is created
for every node n of S with Ag7(n) = ¢, so this is at most width(S) nodes of the form 73 or 4. Nodes
of the form 77 and 7, are created when calling textcolorblacksmooth(7,t) with n a node of S mapped
to a descendant of ¢t by Ag 7. There are at most 2n nodes in T, so we have at most 2n - width(S)
candidates for 1. Thus, the number of nodes of S’ mapped to t by Ag/ 7 is at most 2n - width(S). It
follows that width(S") < 2n - width(S) and |S’| € O(n|S|). O

In the following section, we will show that, similarly to OBDDs, the linear increment in the width
when making SDDs
textcolorblacksmooth is sometimes unavoidable.

4.4 Width Difference between SDD and
textcolorblackSmooth SDD

Definition 7 (

textcolorblackSmooth-SDD-Width of Functions). The
textcolorblacksmooth-SDD-width of f is the minimum width of a
textcolorblacksmooth SDD computing f.

The point of this section is to prove Theorem 2] which is the counterpart of Theorem [I] for SDDs.
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Theorem 2. There is an infinite set F of Boolean functions and two constants ¢ € N and v € (0, 1]
such that, for every f € F over n variables, the SDD-width of f is at most ¢ and the
textcolorblacksmooth-SDD-width of f is at least yn.

4.4.1 Connecting
textcolorblackSmooth-SDD-Width and Circuit Treewidth

Before proving Theorem [2| we discuss its implications on the connection between SDD-width and
circuit treewidth.

Bova and Szeider [9] defined the SDD-width of a function as the width of a particular canonical
SDD representing that function. They use a notion of width different from ours. First, they consider
the width of a specific SDD per function and second, they essentially define the SDD-width as the
maximum number of prime-sub pairs belonging to decomposition nodes mapped to a common vtree
node. Formally, our width is max;er \)\gle(t)| while their width is maxer | UneAng(t) n| where each

decomposition node 7 is interpreted as a set of prime-sub pairs. Another way to interpret this difference
is to say that if one converts the SDD to a DNNF circuit using sdd2dnnf, then our width counts V-gates
of the circuit while theirs counts A-gates. This is not a big difference since one shows, using arguments
similar to that used by Capelli and Mengel [13, Observation 3], that the two widths w (ours) and w’
(theirs) verify w’ < O(w?).

The canonical SDDs of Bova and Szeider are defined in a recursive manner. They map nodes of
their SDD to the vtree nodes. If ¢ is an internal node of the vtree T" with left child ¢, and right child ¢,,
then all decomposition nodes n mapped to ¢ contain only prime-sub pairs (p;, s;) where the prime is a
node mapped to ¢, and the sub is a node mapped to t,. And if ¢ is a leaf of the vtree with ¢(t) = x,
then all nodes 7 mapped to v are either 0 or 1 or x or —~z. To rewrite their SDD so that they fit our
definition, it is sufficient to rewrite the nodes n mapped to a leaf ¢ (with z = ¢(¢)): if n = 0 then
replace it by {(z,0), (—z,0)}, if » = 1 then replace it by {(z,1), (—z,1)}, if n = = the replace it by
{(z,1),(—z,0)}, and if n = - then replace it by {(z,0), (—z,1)}. This rewriting ensures that no sub
is a literal and that no prime is a constant, so the SDD now fits our definition. In addition, a simple
inductive argument now shows that the SDD is
textcolorblacksmooth. Indeed the rewriting ensures that every decomposition node 1 mapped to a leaf
t of T verifies var(n) = {¢(t)} and, if 5 is a decomposition node mapped to an internal node ¢, then
all its prime-sub pairs (p;, s;) verify var(p;) = var(ty) and var(s;) = var(t,) by induction and thus
var(n) = var(te) Uvar(t,) = var(t).

Therefore, Bova and Szeider’s canonical SDD are
textcolorblacksmooth SDDs in our framework, and their notion of SDD-width differs only polynomially
from ours. They have shown the following.

Theorem 3 ([9, Theorem 4, Eq. (27)]). If there exists a circuit for [ with treewidth w, then there
erists a

textcolorblacksmooth SDD of width at most 22"

Let smooth-SDD(w) be the set of Boolean functions that admit

textcolorblacksmooth-SDD representations of width at most w and let CTWD(w) be the set of Boolean
functions that admit circuit representations of treewidth at most w. Their results can then be sum-
marized informally as:

20 (w)

CTWD(O(1)) = smooth-SDD(O(1)).

Now let SDD(w) be the set of Boolean functions that admit SDD representations of width at most w.
Then Theorem [2| essentially says that

SDD(O(1)) C smooth-SDD(O(1)).

Hence, just like completeness matters when connecting the OBDD-width of a function to its circuit
pathwidth, here
textcolorblacksmoothness matters when connecting the SDD-width of a function to its circuit treewidth.
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4.4.2 Proof of Theorem [2]

The proof of Theorem [2]is very similar to that of Theorem [1} in that we use the same function, but
it requires some preliminaries on techniques to prove lower bounds on the SDD-width of a Boolean
function.

Definition 8 (Rectangle). Let X be a set of Boolean variables and let IT = (X3, X3) be a bipartition
of X. A Il-rectangle is a function r(X) = p1(X1) A p2(X2) where p; and ps are Boolean functions over
X1 and Xs, respectively.

Definition 9 (Rectangle Cover). Let X be a set of Boolean variables and f be a Boolean function
over X. Let II be a bipartition of X. A Il-rectangle cover of f is a set R of II-rectangles such that

f = VTGR r.

Definition 10 (Induced Bipartitions). Let 7 = (T, ¢) be a vtree over X. A bipartition II = (X7, X5)
over X is induced by T when there is a node ¢ € T such that X; = var(t) for some i € {1,2}.

For instance, consider the following vtree over {a,b,c¢,d}. The partition (R

({a, b}, {c,d}) is induced by the vtree due to node (2). The partition ({b}, {a, c,d}) @ @

is induced by the vtree due to node (4). But the partition ({a,c}, {b,d}) is not

induced by the vtree. ® @
a c

In the next subsection we will prove the following.

Lemma 15. Let S be a

textcolorblacksmooth SDD representing a function f(X) and structured by the vtree T = (T, ¢) over
var(S). Then there is a bipartition I1 of X induced by T such that f has a I-rectangle partition of
size width(S).

For now, we use Lemma [T as a tool to prove Theorem [2] Recall the function

f(U,V,W) = ((wlwg...wi_lﬂwi) A (ul <—>’Ui))

—-

i=1

where U, V and W are sequences of variables such that |set(W)| = n and set(W)N(set(U)Uset(V)) = 0.
Recall that a pair {u;,v;} is split by a bipartition of (X7, X3) of set(U) U set(V) U set(W) if u; € X3
and v; € X, or if v; € X1 and u; € Xo.

Lemma 16. Suppose there ezists a bipartition II of set(U) U set(V') U set(W) and a set J C [n] such
that, for all j € J, II splits {u;,v;} and such that, for alli,j € J, i # j, we have {u;,v;}N{u;,v;} = 0.
Then every I-rectangle cover of f(U,V,W) contains at least |J| rectangles.

Proof. Let II = (X1, X3). Use the definitions of a;, a} and a? from Lemma For j,5' € J, j # 7,
let r = p1(X1) A p2(X2) be a IT-rectangle in a cover of f. Suppose r is satisfied by a;, so p (a}) =1
and pg(a?) = 1. Recall from Lemmathat7 for every j,5' € J, j # 5/, f(a} U a?,) = 0. It follows
that r cannot be satisfied by a; for otherwise we would have p; (ajl,) =1 and po (a?,) = 1 and thus
r(ajUal) = p1(aj) A pa(a?,) would be 1. Hence, every rectangle in a cover of f(U, V, W) can cover at
most one model a; for some j € J. Since all a; must be all covered by at least one rectangle and since
the a; are pairwise distinct, at least |J| rectangles are necessary in the cover. O

Next, for G a graph with edge set {e1,...,en}, we again introduce the function f(Ug, Vg, W),
with Ug = (u(ey), ..., u(en)) and Vg = (v(er),...,v(en)). Here, vertices of G correspond to Boolean
variables. We say that an edge e is split by a bipartition of V(G) UW if {u(e),v(e)} is split by that
bipartition.
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fUg, Ve, W) = \/ ((wws ... wi—1~w;) A (u(e;) < v(e;))).
e, €E(G)

obdd2sdd preserves the width so, by Lemma [8] we already have that f(Ug, Vg, W) admits repre-
sentations as SDD of width O(1) when G is a 3-regular graph.

Lemma 17. For every 3-regular graph G, there exists an SDD of width O(1) representing f(Ug, Vg, W).

We again use that G is an expander graph to show that, every vtree over W U V(G) induces a cut
of V(@) that splits many edges.

Lemma 18. Let ¢ > 0. There is a constant « > 0 such that, for every (c,3)-ezpander n-vertex
graph G, all
texztcolorblacksmooth SDDs representing f(Ug, Ve, W) have width at least an.

Proof. Let S be a

textcolorblacksmooth SDD structured by the vtree 7 = (T,¢) over V(G) UW (note that V(G) =
set(Ug)Uset(Vg)). Let ¢ be the restriction of ¢ to ¢~ (V(G)). The restriction T of T is constructed
as follows: first, repeatedly remove the leaves of T' not mapped to V(G) by ¢, second, get rid of every
node that has a single child by contracting the edge between that node and its child. T¢ = (T¢, d¢)
is a vtree over V(G), so it is a binary decomposition tree of G. By Lemma [3| there is an edge e of
T whose removal induces a bipartition of G’s vertices that split Q(n) of G’s edges. Because G is
3-regular, a fifth of these edges are pairwise disjoint. The edges of Tz form a subset of the edges of T’
e originates from T, so the removal of e in T' gives a bipartition of V/(G) U W that split Q(n) pairwise
disjoint edges of G. It follows from Lemmas [16| and [15| that width(S) = Q(n). O

Theorem [2] follows directly from Lemmas [I7] and [I§ It only remains to prove Lemma [I5]

4.4.3 Proof of Lemma [15|

We construct rectangles from an SDD using functions called certificates that capture the variable
assignments accepted by the SDD. The notion of certificates for DNNF circuits has been used in [8] to
derive a variant of Lemma [15| for DNNF circuits. We use the same concepts and the same proof ideas
adapted to SDDs.

Definition 11 (Certificates). Let S be an SDD and X = var(S). A certificate C of S is a pair (T, )
with 7" a binary tree and ¢ a mapping from T to nodes(S) U lit(X) U {0, 1} that verifies the following

e the root of T' is mapped to the root node of S

e for all t € T such that ¢(t) is the decomposition node {(p1, $1),. .., (Pr,Sk)}, t has two children
t¢ and t, and there is an ¢ between 1 and & such that ¢(t;) = p; and ¥(t.) = s;.

e if ¢)(t) is a literal or a constant, then ¢ is a leaf

We write lit(C) = 1~ (lit(X)) the set of literals mapped to leaves of T', var(C) = {var(l) | | € lit(C)}
the set of variables mapped to leaves of T, and constant(C) = 1»~1({0,1}) the set of constants mapped
to leaves of T'. By construction, var(C) C var(¢(root(T)). We define the function represented by c as

= N1
lelit(C)

The set of certificates of S is denoted by cert(S). For convenience, we extend the notion of certificate
to literals and constant. The only certificate of a literal [ (resp. a constant c) is (T, v) where T is
made of a single node ¢ and ¥ maps t to [ (resp. c).
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Figure 9

A graphical way to construct certificates is to start from S’s root and, whenever we are at a
decomposition node, to choose a single prime-sub pair (p, s) of that node and proceed recursively on
p and s.

Example 2. Figure |§| shows a certificate (as a labeled binary tree) for the SDD of Figure This
certificate represents the function b A —a A c. The trace of the graphical construction for this certificate
is highlighted in red in the SDD.

All certificates that contain the constant 0 represent the null function. Technically we could focus
only on the 1-certificates, that is, the certificates for which const(C) = {1}, but this is not necessary
for our results. Let C € cert(S). Following notations used so far, for ¢t € T we write C|; = (T|¢, ¢|4),
where 1|, is the restriction of ¢ to the nodes of T';. It follows from Definition[IT]that C|; is a certificate
of 1(t). Certificates are interchangeable in the sense that “replacing C|; in C by any other certificate
of ¢(t)” yields a certificate of S. Formally, let C' = (T",4') is a certificate of 9(t), let T* be the binary
tree obtained by replacing T'|; by 77 in T, and let ¥* be the mapping defined by ¢*(7) = ¢'(7) if
7 €T and ¥*(7) = 9(7) otherwise. Then (T*,9*) is a certificate of S.

Let n = {(p1,51),-.., (Pr,sk)}. For a fixed 4, let Cp, = (Tp,1p) be a certificate of p;, and let
Cs = (Ts,s) be a certificate of s;. Let merge(C,, Cs) be the pair (T,1) where T is the binary tree
whose root ¢ has T, for its leftsubtree and T; for its right subtree, and where 1) maps ¢ to 7, is consistent
with ¢, on T}, and is consistent with ¢, on T;. It follows from Definition [L1|that (T, v) is a certificate
of n and that

k
cert(n) = U U U merge(Cp, Cs)

i=1 Cp€cert(p;) CsEcert(s;)

Note that (merge(Cp, Cs)) = (Cp) A (Cs). From there, we show that the set of certificates of S covers
exactly the assignments accepted by S.

Lemma 19. Let S be an SDD structured by (T, ¢), then (S) = V oeoeri(s)(C), with the convention
that this formula is O when cert(S) = 0.
Proof. By induction on the depth of T'. For the base case. If T' is made of one leaf ¢ with ¢(¢) = x, then

S is made of a unique decomposition node {(x, ¢1), (-, ¢p)}. One can check that for all four values of
co and c1, Vegeeri(s)(C) = (xAc1) V(-2 Aco). In addition, the way we have defined cert(l) for a literal
I and cert(c) for a constant c, allows one to check that | = \/ ¢ .c,s()(C) and that b=V e o) (C)-

Next, for the inductive case, suppose S’s root is a decomposition node n = {(p1, $1),- .., (Pk,Sk)}
and that ¢(n) = ¢ has children t; and t.. We have that (S) = \/f:1<pi> A (s;). By induction,
<pi> = VCPECGTt(pi)<CP> and <Si> = \/CS€cert(si)<CS>'

k k
ss=\V V \ <cp>A<cs>=\/ \/ \/  (merge(C,.Cy)) \/ \V (©)

=1 Cpecert(p;) CsEcert(s;) 1 Cpecert(p;) Cs€cert(s;) 1=1 Cecert(n)
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Lemma 20. Let S be a
textcolorblacksmooth SDD structured by the viree T = (T, ¢) over var(S). Let C = (T7,¢') be a
certificate of S, then var(C) = var(S) and, for every t € T that is not a leaf, T' contains a node t'

with As (Y (t')) = t.

Proof. By induction on T’s depth. When T is made of a single leaf we have that S = {(x, ¢1), (-, ¢o)}
for some ¢, ¢ € {0,1}. By Definition root(T") is mapped to S’s root by ¢’ and var(C) = {z} =
var(S).

When T7s root is a node ¢ with children ¢, and t¢,, consider the root decomposition node n =
{(p1,51)s---, Pk, sk)} of S. We have that Ag 7(n) = root(T) because T is over var(S). By definition,
root(T') is mapped to n by ¢'. S is
textcolorblacksmooth, so var(p;) = - -+ = var(py) and var(sy) = - -+ = var(sg). Since T is over var(S)
we have var(p;) = var(t;) and var(s;) = var(t,) for every i. Each s; is a
textcolorblacksmooth SDD structured by (T, ¢|:.) over var(s;). If ¢, is not a leaf of T, then
|var(te)| = |var(p;)| > 2 and thus, p; is not a literal but a
textcolorblacksmooth SDD structured by (Ty,, @|:,) over var(p;). It follows by induction that every
certificate C"" = (T",¢") of p;, resp.s;, contains a node t” € T" with Ag7(¢"(¢")) = 7 for every
internal node 7 of T'|;,, resp. T,. Since the restriction of C' to tj, resp. t.., is a certificate for some

p;, resp. some s;, the result follows. O
To finish this section, we provide the proof of Lemma [I5]

Proof of Lemma[I5 Fixtan internal node of T such that |)\§17-(t)| = width(S). Let I = (var(t), var(S)\

var(t)). Let N = A71(t) and, for every n € N, let 3, be the set of certificates of S whose tree has
a node mapped to n. We claim that \/CGEW<C> is a Il-rectangle r, = p1 A pa. We prove this by
constructing p; and ps.

For C € %,, let 7 be the node of C’s tree mapped to n, then we call C|, for C|.. Note that, by
interchangeability of the certificates, if C,C’ € ¥, then replacing C|,, by C’|,, in C yields a certificate
in 3,,. Further, let (C'\ C|,) = /\lelit(C)\lit(Cln) [. Then (C) = (C|,;) AN{C\ C|,). We define

p=\ (Cly) and pr=\/ (C\Cl,)
cex, Ccex,

We have that p; A py = vch’GEn (Cly) N(C"\ C'|,,). By interchangeability of the certificates, for every
C,C" € %, there are C",C"" € ¥, such that (C") = (C|,) AN(C"\ C'|,) and (C"") = (C"|,;) AN(C\ Cl,,).

It follows that
pip=\ (ClyrE\Cly=\ (©
c,crex, cex,

Thus, for each node n mapped to ¢t by A, we have a rectangle r, = \/Cezn (C). Next, by Lemma
every certificate of S contains a node mapped to ¢ by A. Thus,

Vm=V Vo=V ©

nenN neN Cex, Cecert(S)

and we conclude using Lemma O

5 Conclusion

We have provided crucial clarifications and corrections regarding the relationships between knowledge
representation formalisms, specifically OBDDs and SDDs of bounded width, and Boolean circuits of

24



bounded pathwidth and treewidth. By demonstrating that previously claimed equivalences only hold
for

textcolorblacksmooth versions of OBDDs and SDDs, we reveal subtle but crucial distinctions that had
been overlooked. Our rigorous proofs and counterexamples help to establish fundamental limits and
connections between these widely used formalisms and provide a sound foundation for future work.
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