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ABSTRACT

The pharmaceutical industry is going through a significant change to adopt smart manufacturing for more in-
tegrated supply chains and improved sustainability. Today’s competitive market demands have put pressure on
healthcare systems to take a comprehensive assessment of the drug life cycle, its environmental effect, indus-
trial use of energy and resources, supply chain, and impact on end-users. The exploitation of emerging Industry
4.0 technologies will allow a sustainable process design and personalised health care system through the real-
isation of digital twins, which could transform the pharmaceutical sector to be more flexible, robust, adaptive,
and smart. A significant level of research and development has been applied to pharmaceutical manufacturing
especially in existing, outdated design and scale-up paradigms in isolated unit operations. However, addressing
the key challenges in pharmaceutical manufacturing requires whole systems approaches to incorporate Industry
4.0 concepts.

This paper aims to share the latest development of an advanced digital twin of a continuous wet granulation
and tableting process at The University of Sheffield. These include the delivery of a digital platform consisting
of an Advanced Process Control system (APC), mechanistic model platform and industrial IoT platform for data
analytics and visualisation. The combined solution aligns with the concepts of Industry 4.0 by providing a digital
twin, cloud integration, sophisticated statistical, as well as hybrid and mechanistic models. The models are in
turn, used for soft-sensors, Model Predictive Control and Optimisation algorithms to predict and control product
Quality Attributes. The potential application of digital twins in the pharmaceutical industry will also be explored.

Introduction

dent on human interventions during production became paramount. For
example, with lockdowns preventing people from being in factories, the

Great research and development are undergoing in engineering con-
cepts, methods, and tools for smart process manufacturing. In partic-
ular, the pharmaceutical industry is embracing the general digitalisa-
tion trend with the help of academic institutions, solution providers
and regulatory agencies. However, despite the strong desire to move to-
wards digitalised continuous manufacturing, this trend seems to be less
well advanced compared to the oil and petrol industries (Ding, 2018;
Lee et al., 2015; Litster & Bogle, 2019). Pharmaceutical manufactur-
ing technologies continue to advance as Pharma 4.0 begins to challenge
the traditional batch approaches and old business models for the man-
ufacture of pharmaceuticals. This is especially highlighted during the
COVID-19 pandemic, where the need for manufacturing technologies
that are flexible, more responsive to changing demand and less depen-

use of automation and control in industry rose. The pandemic has shown
that digital technologies can be used to enable remote working. In addi-
tion, there has been a shift in specialities firms to continuous operations.
The transformation has been fostered by regulatory entities as well as
driven by cost reduction and shorter development cycles (Batch Manu-
facturing | Batch to Continuous | Control Global, 2021). The Quality by
Design guidelines has promoted the comprehensive generation of neces-
sary product and process understanding required to execute a continu-
ous and systematic operation for process operation and product quality
control. This includes determining essential quality characteristics, pro-
cess parameters, and control techniques.

In recent years, comprehensive methodologies for the design and im-
plementation of control strategies for continuous drug product manufac-

* Corresponding author: M. Zandi, Department of Chemical & Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.

E-mail address: m.zandi@sheffield.ac.uk (M. Zandi).

https://doi.org/10.1016/j.dche.2022.100025

Received 8 February 2022; Received in revised form 5 April 2022; Accepted 5 April 2022
2772-5081/© 2022 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemkE). This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/)


https://doi.org/10.1016/j.dche.2022.100025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dche
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dche.2022.100025&domain=pdf
mailto:m.zandi@sheffield.ac.uk
https://doi.org/10.1016/j.dche.2022.100025
http://creativecommons.org/licenses/by/4.0/

D. Ntamo, E. Lopez-Montero, J. Mack et al.

turing, particularly the incorporation of Process Analytical Technologies
sensors into the control system, have been implemented and gradually
improved (Su et al., 2019). For example, a simulated plant-wide model
predictive control for an end-to-end continuous production line has been
presented at the Novartis-MIT centre (Su et al., 2019). Global sensitiv-
ity analysis methodologies allow systematically identifying key process
parameters that affect critical product attributes (Metta et al., 2019).
Continuous manufacture of formulated products necessitates the use of
PAT for quality control (Stegemann, 2016 ; Rehrl et al., 2018). However,
often commercially available unit operations lack a comprehensive on-
line assessment unit; as a result, the adoption of PAT devices requires
monetary investment.

With the growing need for patient-centeredness in medicine,
consumer-focused manufacturers of formulated products are acutely
aware of the need to move towards smart and continuous manufactur-
ing. However, at this stage, they are uncertain about the adoption of dig-
ital technologies due to the lack of industrial-scale demonstrators com-
pliant with the regulations such as 21 CFR Part 11 for industrial research
(Manzano & Langer, 2018; Chen et al., 2020; Schneider et al., 2010;
Nematollahi et al., 2017). In particular, the pharmaceutical industry op-
erates under tight regulations from governing bodies, e.g. the US Food
and Drug Administration (FDA). The exploitation of emerging Industry
4.0 technologies such as closed-loop control, online quality monitoring
of continuous processes, real-time data processing and soft sensors will
allow a sustainable process design and personalised health care system
while reducing environmental footprints (Bengtsson-Palme et al., 2018;
Gernaey et al., 2012; Stegemann, 2016).

The competitive edge of Industry 4.0 does not lie in having an in-
tegrated production line; but also in embedding digital systems in the
production which can independently generate data to make and inform
correct decisions. There is a demand for the deployment of more sophis-
ticated model-based tools to demonstrate the benefit of digital twins’
application in the pharmaceutical sector. As the pharmaceutical sector
prepares to introduce quality by design, integrated unit operation pro-
cesses and product models and the use of advanced control platforms
to maintain desirable product quality is paramount. Progress on prod-
uct and process models for customer demand and improved integration
with model-based design optimization will fuel a service-oriented busi-
ness model in the formulated product sector. An integrated digital twin
will enable manufacturers to be more attentive to their consumers’ needs
to provide timely products of consistently excellent quality.

The Challenge

Industry 4.0 delivers many benefits to process industries; however
some barriers impede digital transformation. These include costs asso-
ciated with model development and revalidation of existing systems,
regulatory costs to make the change; lack of expertise in digital tech-
nologies; knowledge gap in digital design and mathematical process
models (Litster & Bogle, 2019). According to élusarczyk et al’s survey,
the most important challenge to implementing Industry 4.0 is a lack of
digital culture and training, which is indicated by half of the respon-
dents (Slusarczyk, 2018). A lack of support from managers, ambigu-
ous economic advantages from investments in digital technology, cyber-
physical security and significant financial investment needs are all major
considerations. From Slusarczyk’s survey, the least frequently indicated
barrier is the fear of losing control over the intellectual property of the
company (Slusarczyk, 2018). Large data sets, including critical and pos-
sibly secret information, are shared, necessitating safe connection and
processing across all platforms.

Many large pharmaceutical companies have not embraced the new
digital ecosystem, and many of their pharmaceutical manufacturing
processes utilize legacy automation systems with no IoT capabilities
(Amini et al., 2020). Research shows that 70% of all pharmaceuti-
cal manufacturing data is not collected and therefore goes to waste
(Manzano & Langer, 2018). Lengthy, capital-intensive development
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timelines and legacy processes have made it difficult to exploit the
full potential of emerging digital technologies (Huang et al., 2021;
Kopalle et al., 2020; Leclerc and Smith, 2018). And therefore, the phar-
maceutical industry still heavily relies on batch production of products
as there are certain manual procedures within the process such as labo-
ratory testing and in-process control checks for drug quality (Chen et al.,
2020).

Pharmaceutical manufacturing has been confronted with the need
for flexibility due to changing markets and the need for a more customer-
centric approach. However, due to insufficient sensors and intelligent
devices for interactions and co-operations between machines and oper-
ators, it is very challenging to meet these demands (Gunes et al., 2014).
Different modelling methods for both upstream and downstream unit
activities in pharmaceutical production have been developed. However,
there is no vigorous model that captures Critical Process Parameters
(CPPs) and Critical Quality Attributes (CQAs) for all the unit operations
in the integrated process (Chen et al., 2020). Work in a holistic or sys-
tems thinking approach that goes beyond the physical infrastructure of
the manufacturing plant and its digitisation could enable the successful
integration of Industry 4.0 technologies. However, due to high compu-
tational costs, implementing all these methods within the digital space
is challenging (Chen et al., 2020). Industry 4.0 digital technologies such
as cloud and edge computing have prompted the pharmaceutical man-
ufacturing industry to adopt cutting-edge solutions such as Advanced
Process Control (APC) and continuous production. An Advanced Pro-
cess Control across the entire process operation will enable coordinated
control of CPPs to reduce the variability of CQAs, improving product
quality and process robustness (Huang et al., 2021). Pharmaceutical in-
dustries follow strict regulatory laws; therefore, accepting new technolo-
gies, such as an advanced model-based control system that can be used
for process fault detection (process monitoring) or to control the pro-
cess (APC), usually takes a longer time than other process industries
(Huang et al., 2021; Gunes et al., 2014). For example, the pharmaceuti-
cal industry can learn from aerospace’s implementation of digital tech-
nologies in swift adoption of predictive maintenance of aero engines.
Incompatible platforms, models and systems remain a barrier to achiev-
ing integration. Heterogeneity in equipment program is an issue that
may be overcome by developing a standardised interface or file format
that allows seamless integration (Chen et al., 2020).

This paper aims to provide a detailed description of the present sta-
tus of the digital architecture of the University of Sheffield’s Diamond
Pilot Plant (DiPP), its benefits and application in industry. In the first
instance, the project sought out an advanced digital control at the gran-
ulator and tabletting components of the DiPP and has later evolved to
include smart manufacturing technologies across the entire tablet man-
ufacturing process. These technologies include soft sensing, cloud tech-
nology and data visualization platforms.

The remainder of the paper is structured as follows. Firstly, a descrip-
tion of DiPP’s key powder processes such as crystallisation, wet granu-
lation and tablet press is provided. Secondly, a detailed description of
the critical components of the DiPP’s digital twin architecture and eval-
uation of the performance of these components are given. These include
the advanced control system, moisture content soft sensor and the Mind-
Sphere cloud integration. After discussing the status of digital architec-
ture, the limitations connected with the development and application
of the Digital Twin will be discussed, followed by future directions and
conclusions.

Process Description

The University of Sheffield commissioned DiPP within the Faculty of
Engineering in 2018. DiPP includes large scale equipment representing
several industries but mainly the pharmaceutical industry. These include
a continuous crystallisation unit, a filter dryer and an industrial-scale
GEA Consigma 25 powder to tablet line, representing an example of a
continuous process in the pharmaceutical industry. The continuous os-
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Figure 1. The Consigma 25 line at Diamond Pilot Plant (DiPP) (a) Twin screw granulator (b) Segmented fluidized bed dryer (c) Cone mill (d) Blender (e) Tablet

press.

cillatory baffled crystallizer (COBC) and the continuous filter dryer are
both used to produce high purity crystals/ drug substances which can
act as active materials for the preparation of drug products. As shown in
Figure 1, the Consigma 25 line includes a series of unit operations. The
plant starts with a hopper and a loss-in-weight feeder, which deliver pre-
blended powder to the twin-screw granulator (TSG), where granules are
produced after mixing with the appropriate binder. The mixing in the
granulator occurs via two screws which come with kneading and con-
veying elements to provide different stress based on the configuration.
The wet granules are then transported gravimetrically to the fluidized
bed dryer (FBD), this is a six segmented dryer in which granules are
dried at pre-set drying conditions. The dried granules are then trans-
ported pneumatically to the granules conditioning unit where the mois-
ture content is monitored using a NIR technology and then granules are
milled down using a cone mill. The NIR probe acts as a Process Ana-
lytical Technology (PAT) tool to monitor the product quality, namely
the moisture content and it sends feedback to the system on whether
to keep the product or divert it to waste. Following the milling, process
granules are passed through an additional two blending units where an
extra material can be added as well as lubricants before going to the last
unit which is the rotary tablet press.

The new continuous powder processing in the DiPP emphasises the
importance of complex particulate products and formulated products
more broadly in modern chemical engineering and the University of
Sheffield is reflecting this in their new curriculum in chemical engi-
neering. DiPP key features include a dedicated industrial control room
that accommodates an advanced control system and a digital twin of
the whole plant. The University of Sheffield, Perceptive Engineering
and Siemens collaborated forces to develop an innovative solution to
digitalise the whole continuous drug manufacturing process from crys-
tallisation to tablet press and convert it into the world’s leading Industry
4.0 demonstrator. The main objective of the project was to adopt a data-
centric approach and automation as well as demonstrate facilities to test
and validate potential IoT applications in the real world.

The challenges in digitalisation of the continuous tablet manufactur-
ing process included a low detailed process maturity; in other words,
the process was not IoT enabled. Each system and process unit repre-

sented its own isolated data islands, therefore, data had to be locally
saved in separate locations and then brought together manually for of-
fline analysis. Also, existing knowledge from technical personnel could
not be fully leveraged when controlling the process, ultimately making
the operation of the pilot plan highly manual resulting in considerable
workload on operators. The University of Sheffield wanted to develop a
solution that could improve the system operations and overcome these
challenges. The main goals of the research were to coordinate all data
from the different systems in a centralised location, develop dashboards
for monitoring the systems locally and remotely, a solution that could
use all the data in real-time and can use machine learning techniques to
model, predict and ultimately control critical process variables. Also, to
implement a solution that can upload in real-time all data to the cloud,
such as Siemens MindSphere so the data can be used across the univer-
sity for data science research activities.

Results and Discussion
Development of an Advanced Process Control System

The first step in the development of the control system for the pi-
lot plant was to set up the digital architecture, summarised in Figure 2.
Perceptive Engineering’s PharmaMV software platform was employed
for the fusion of all data from the process, digital twin and Siemens
MindSphere platform. This facilitated access to all data from a single in-
terface. This digital architecture enables synergy between the statistical
and nonlinear models providing a complete set of tools for monitoring
advanced process control and machine learning, seamless integration
to the process units and PAT instruments and enabling data fusion and
alignment across the platform.

PharmaMV software collects and aligns to all process data from all
process units at the DiPP and was set up as a single point repository
for all the data in real-time. Then, an Optimised Experimental Design
Platform (OEDP) template was configured for all the equipment to en-
able control, monitoring and data-driven predictions in real-time. The
OEDP is a commercial solution built upon PharmaMV software devel-
oped by Perceptive Engineers and provides the workflow and tools for
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Figure 2. Integrated Digital Architecture of the DIPP’s Digital twin. The architecture’s key parts include an Advanced Process Control platform (PharmaMV),
MindSphere clouds platform, and real-time endpoint prediction software, gPROMS Formulated Products. The architecture’s structure and data flow network are set
up to allow all process-relevant data to be collected, aligned and centrally stored, the use of intuitive and accessible process dashboards, an Advanced Process Control
of product-relevant data capable of controlling measured or inferred quantities and cloud connectivity of all process units.

rapid process development using optimised experimental design tech-
niques. These techniques include the automated design of experiments,
machine learning for self-optimisation and automated model adaption,
response testing and integration with mechanistic digital twins for the
development and deployment of advanced process control. OEDP Solu-
tion has been employed in other projects in a different research centre,
e.g., Digitalisation and APC for a fed-batch reactor for mammalian cell
growth (Craven et all.,2014). OEDP solution is provided in PharmaMV
and can be modified by scientists/engineers. The OEDP includes pre-
configured tools and embedded documentation to reduce overall con-
figuration and development effort. All these tools can be accessed via
interactive dashboards shown in Figures 3, so operators can navigate
across all the process units drill down to a specific part of the system
and activate any of the digital tools using such interactive dashboards.
The platform also supports user authentication with different levels of
access; for example, limiting user’s access to only allow process monitor-
ing. OEDP enables smart process development for the crystalliser filter
dryer and the Consigma continuous tablet line. The APC was equipped
with a mechanistic modelling platform, gPROMS FormulatedProducts,
via a Foreign Process Interface for the exchange of control variables
and model predictions of CQA’s, which is included within the standard
package. gPROMS FormulatedProducts has been selected in this project
because it brings the added value of utilising mechanistic models to
serve as digital twins for the process. The standard package includes
available model library to describe all unit operations and transforma-
tions involved in each case to the required fidelity. The required unit
operations and the required fidelity of model with respect to phenom-
ena considered and ability to predict the effect of process parameters
Critical Quality Attributes (CQA’s) has not been available in other mod-
elling packages. And finally, the platform’s ability to communicate with
the rest of the DiPP’s digital twin platforms, including PharmaMV and
MindSphere has been another advantage.

Statistically rich data from modelling torque dynamics can be gener-
ated using the OEDPs response test tool. Then, through machine learning
techniques, the platform is able to identify the model automatically and
adapt the model to new operating conditions if needed. Figure 4 shows
how a model can be identified to predict the torque of the twin-screw
wet granulator. An example of an automated step test is displayed on

the right-hand side of the dashboard, displayed in Figure 4. Real-time
torque measurements are displayed in green on the top trend. The other
trends shown in red are the steps applied by PharmaMV, and in blue,
readbacks from the process variables. These data are used in real-time
to adapt the model and after a predefined time has elapsed or when a
model accuracy level is reached, the automated modelling stops, and
the new model is integrated within a Model Prediction Control (MPC)
architecture to control torque to the setpoint. The MPC package was de-
veloped by Perceptive Engineering and is part of the PharmaMV tools.
The MPC is based on the following function:

N
T = leqiPel,, + Au,0Au] + fiRf] |
i=0

where e is set-point error, P is set-point weight (configured by the user),
Au is actuation move, Q is move weight (configured by the user), f is
manipulated variable target and R is manipulated variable target weight
(configured by the user). Operators can activate and configure the auto-
mated model adaptation via the panel at the left-hand side of the dash-
board. The platform will continuously monitor the quality of the data
and will notify operators of any interface communication errors. The
platform will stop any response test if such communication errors are
detected. Data from any automated response test is uploaded to Mind-
Sphere in real-time to allow the users access to the data for analysis and
research activities.

A data driven moisture soft sensor was developed for CQA predic-
tion and subsequent control for monitoring and real-time control of
end-point moisture by manipulated the drying time in real-time as the
campaign runs. Data for modelling were obtained by executing an au-
tomated Design of Experiments (DoEs) on the fluidised bed dryer. This
data was then analysed offline to develop the below moisture soft-sensor
model:

Final moisture = (Drying Time PV — Filling Time) X Gradient + Bias

where, the Gradient and the Bias are computed based on available data
from normal operation. The Bias can be modified online based on the
current liquid-to-solid ratio and the product key (PK) weight:

Bias = Liquid to Solid ratio/2 x 100 X PK weight
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Figure 3. Overview screen of PharmaMV User Interface for (top) Continuous oscillatory baffled crystallizer and Filter-Dryer system and (bottom) DiPP Continuous
Wet granulation and Tableting process. Operators can navigate between dashboards using the embedded buttons and monitor specific unit operations and access
configurable tools i.e automated DoE, step testing, APC and online model adaption to monitor and control unit operations.

The soft sensor accuracy to estimate moisture continuously can be
observed on the top trend in Figure 5, in which the blue line shows mois-
ture measurements in real-time using NIR spectrometer equipped with
a fiber-optic Lighthouse Probe™ (LHP, GEA Pharma Systems) and the
green line corresponds to the soft sensor predictions. The advantages of
the data-driven approach for development of moisture soft-sensor com-
pared to hybrid approaches used in other woks (Rehrl et al. 2020) are
that in this approach deep knowledge of the system dynamics is not re-
quired, easier to identify, more robust for extrapolation which makes
them good candidates for implementation in model predictive control
approaches, provided that the operation conditions do not change. How-
ever, it should be noted that a model re-identification is needed when
the operating conditions change.

The tableting line has a single moisture sensor located after the dryer.
This sensor can be relocated to monitor a single chamber out of six in the
dryer. With this new soft sensor, it is now possible to monitor moisture
across the six chambers in real-time while using the single NIR Moisture
sensor to measure moisture at the endpoint before feeding the granules
to the tablet press. The trends at the bottom of Figure 5 can be used to
compare the soft sensor endpoint moisture predictions versus the actual

measurement taken with the LHP after the dryer. The predictions and
real-time measurements are close to each other after the soft sensor was
validated. And it is now in use for online control of the drying time to
reduce moisture viability.

The APC system developed for the DiPP allows to monitor, inter-
act and optimise the tableting line using pre-configured dashboards.
Figure 6 shows the dashboard employed by operators to activate
and monitor the APC for the tableting line. The trends displayed in
Figure 6 show the results of implemented a Model Predictive Control
(MPC) to control torque. For the torque MPC control, step testing was
implemented to generate statistically rich data to identify the model for
MPC. Then the linear model identified for the MPC was employed in
simulation to perform the initial tuning of the controller and determine:
the prediction horizon (set to be time to steady state for the slowest re-
sponse from an input step change), the control horizon (set to match the
prediction horizon), the set-point weight for torque, the move weights,
and the move limits for the manipulated variables. Set-points high and
low limits, as well as manipulated variable high and low limits were
set by operators of the tableting line and they are linked to the process
safe operation limits. Noise was added to the simulation for tuning the
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Figure 4. Interactive dashboard for activation and monitoring of automated modelling adaptation of the twin-screw wet granulator torque. (a). Data quality monitor
(DQM) to stop adoption if communication errors are detected (b). Time-series trends to observe how the twin screw wet granulator torque changes with liquid to
solid ratio. (c). Dial to provide further warning information on the model adaption time.

MPC where the signal-to-noise ratio used in the simulation was approx-
imately equal to what was observed on the real system. After the MPC
was tuned in simulation, it was deployed in real-time to control the real
system, at which point a fine-tuning was carried out. The MPC can make
the necessary adjustments to manipulated variables to follow different
setpoint values. The benefits of the MPC system were observed during
test fronts. For example, the MPC controller reduced the standard de-
viation by up to 43% and demonstrated that it is possible to minimise
the impact of process disturbances, including changes in raw material
properties. Another significant improvement is the implementation of a
moisture endpoint control for the fluidised bed dryer. During the early
test runs, the moisture soft sensor showed an endpoint prediction error
of less than 0.5%.

Cloud Integration and Data Visualisation

One of the main goals of the project was to connect physical as-
sets and upload data to the cloud to manage the data in real-time.
Two Siemens nano boxes were interfaced to PharmaMV to enable
the possibility of pushing data from all process units to the Univer-
sity of Sheffield’s MindSphere account. MindSphere is Siemens indus-
trial IoT as a service solution which allows collecting, monitoring, and
analysing data in real-time. In addition, it enables the development of
apps and solutions for different applications. Figure 7 shows an exam-
ple of how data from the physical process collected by PharmaMV is
uploaded into the cloud in real-time. The data can be accessed by users
both online and offline at the University of Sheffield for further data
processing.

The importance of big data visualisation as a tool for Industry 4.0
is widespread and well documented (Allen et al., 2021). An example
of the benefits of this project is the integration of web-based data ana-
lytics/visualisation tools to enable real time collection, monitoring and
analysis of the data. Here, we integrated Wiz with DiPP through Mind-
Sphere (Balzer et al., 2020). Wiz provides state-of-the-art data visual-
isation and analytics solutions to give both industry and academia ac-
cess to the data generated in DiPP. Development of new products would
be greatly accelerated if we develop better understanding of their key
material and process properties. Identification of such properties can
take years as it requires time-consuming calculations or experiments.
Clearly, creation of data-driven insights and product-process relation-

ships are essential to narrow down the design space and guide man-
ufacturing efforts towards quality products. Recently, high-throughput
practices have allowed us to study hundreds of processes/products to
optimise their performance. Given the enormous amount of data gener-
ated via such strategies, it is important to develop data analytics tools
that are able to establish relationships between different parameters and
extract values from multidimensional datasets. These relationships re-
veal critical components of manufacturing performance and guide ex-
periments to generate quality products. Figure 8 shows a number of
prototypical plots produced in the Wiz application. By integrating Wiz
in MindSphere, real-time data from process equipment can be analysed
through user-friendly platforms lowering the barrier for understanding
large datasets and providing valuable insights into troubleshooting or
optimizing manufacturing processes.

Future work

Fusing three digital platforms, PharmaMV, gPROMS Formulated-
Products and MindSphere, provides a fast and cost-effective hybrid strat-
egy for in silco development of a closed-loop controller. The current ap-
proaches for controller development are data-driven and require step
response testing and plant to be operational. However, a digital design-
based control leverages in silco modelling and simulation to reduce ex-
perimental effort during development of the APC control strategy. Using
gPROMS FormulatedProducts, the Diamond Pilot Plant unit operation
will be modelled using high fidelity mechanistic models. The software’s
advanced statistical analysis method will be used to estimate kinetic
parameters with high precision. It also its built-in global analysis will
be employed to carry out sensitivity analysis to choose key parameters
and to design appropriate experiments. Several methods and tools will
be used to interpret the results of the parameter estimation including
Goodness of Fit Test, Bias Test and Lack of Fit tests. The correlation
matrix will reveal the relationships between the unknown parameters.
Covariance between unknown parameters can increase the uncertainty
in their values as many combinations can result in a similar solution.
Furthermore, additional information about the solid products, such as
dissolution rates, will be incorporated into the simulation to determine
the best process setup and parameters for a specified product specifica-
tion. This also allows the integrated flowsheet to take a holistic view of
the drug cycles. The modelling of the process will also allow the digital
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Figure 5. Comparison of the moisture soft sensor performance with PAT sensor. (a) continuous real-time actual measurement vs prediction data and (b) actual

moisture End-Point Measurement and Moisture Prediction in Consigma 25.

twin to take advantage of the Digital Model Prediction Control (MPC)
shown in Figure 9. The controller output (actuator) in PharmaMV can
be transmitted to the process model and act as the input used to com-
pute the new control variable signal. Digital Model Prediction Control
will allow for controller parameter adjustment, model identification for

MPC, and assessment of the data-driven control system. The benefit of
this digital model predictive control is a reduced waste of material as
the control strategy can be designed without relying on PAT data from
the process, less operational downtime, and reduced experimentation
(Reynolds, 2019; Singh et al., 2014).
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Figure 7. Example of real-time temperature readings at different locations of the DiPP’s MindSphere.

Conclusions

This case study summarises the present state of the digital twin at
the University of Sheffield, offering insights and emphasising the ob-
stacles and benefits of deploying a fully integrated digital twin in the
pharmaceutical sector. In addition to the summarised opportunities and
benefits, further research direction of the development of digital model
control using mechanistic models has been explored. An advanced dig-
ital architecture platform for the control and optimisation of complex
dynamic particulate processes has been presented. The control system
was developed on PharmaMV platform, which provides a full suite of
analytical modelling and APC tools for rapid process development and
optimization. It allows fusion and visualisation of processing analytical
data in real-time. For the DiPP, PharmaMV enables the prediction of
Critical Quality Attributes using data-driven and mechanistic models. It
also enables the implementation of Model Predictive Control for CQAs
and can be interfaced with IoT platforms such as MindSphere to transfer
data in real-time to the cloud.

The digital architecture platform is highly flexible, customisable and
scalable from one process unit to an entire line. The project has also
demonstrated the transmission of the DiPP production line data to cloud
technology and the deployment of an interactive dashboard in Mind-
Sphere for multivariate data analysis. It has been shown how implement-
ing APC in the line can reduce process variability and increase process
stability; for example, it has been demonstrated that the implementa-
tion of an MPC controller reduced the standard deviation of torque by
43%. Similarly, it has been shown that data-driven models identified
using machine learning algorithms can provide accurate predictions,
and such predictions can be used to monitor difficult-to-measure pro-
cess variables, and ultimately allowing the use of these predictions to
further control the system automatically; the example in this work is
the moisture soft sensor that was developed and implemented in real-
time. This sensor allows continuous and end-point moisture estimation
for all the six chambers of the segmented fluidized bed dryer; the sen-
sor showed an endpoint prediction error of less than 0.5%. This level
of prediction accuracy allowed the implementation of automatic end-



D. Ntamo, E. Lopez-Montero, J. Mack et al.

Digital Chemical Engineering 3 (2022) 100025

6 Mill_Speed 6 -m
Dryer Conditions

Temp Out (degC)

i.
Y | i «
200l ’
v g 50 . S?‘
: 2 o® e
. 202 2 uaee 08
i s . '7
& S 40 ¥
% =
5 L.“ I
Dryer_In_Humidity 20
Temperature_Cell_1
20 30
e 980
§ X
5. QI%o a0 7 9‘9;0
2 9 900"
o o & 7 s©
2 b 2 1™

Figure 8. Wiz interactive dashboard in Siemens’ MindSphere (a) Real-time mill speed time-series trends from DiPP (b) Real-time dryer humidity scatter data and
(c) Four-dimensional visualisation of different temperatures vs pressure in the dryer unit.
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Figure 9. Integration of the flowsheet model and control platform. The synchronisation of the two platforms will allow data flow (manipulated and control variable
data) between flowsheet model and control platform for digital model prediction control (MPC) and real time simulation.

point moisture control that can be activated by the operators using the
interactive dashboards.

The adoption of Industry 4.0 has had an impact on how to approach
pharmaceutical manufacturing at the DiPP. The benefit of the digital
pharmaceutical manufacturing solution developed for the diamond pi-
lot plant includes a digital control system that allows adopting a data-
centric approach and automation. Data also from the DiPP is continu-
ously collected and used to predict Critical Quality Attributes (CQAs)
through data-driven models and Digital Twin forecasts. It allows for
cost-effective testing with production-class operating equipment with-
out the costly downtime and output reductions that would be required
if done on actual production units. It enables access to and optimization
of low-level control systems in a non-competitive context, as well as
the establishment of a client-oriented business model. The digital archi-

tecture also allows an experience created by the engagement of in-use
information within a DiPP’s digital ecosystem through data visualisa-
tion and virtual reality. It is expected that the data-calibrated approach
outlined in the future work section using process model will reduce ex-
perimental effort in developing control strategies, reduce waste of the
API materials, minimizes interruptions in the process production time
for step-testing and reduce process variability by accurately controlling
CQA through APC. This hypothesis will be examined in future works.
The project team has successfully collaborated to upgrade the Uni-
versity of Sheffield’s industrial continuous wet granulation and tableting
with the latest Industry 4.0 and APC enabled automation technology.
The upgrades provide a hands-on demonstrator for research and train-
ing. Data fusion and visualisation including multivariate trends, charts,
and interactive dashboards, as well as automated execution of DoEs and
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process response testing reduces experimental workload and streamlines
data generation for design space exploration and process modelling and
simulation. The use of machine learning techniques such as online model
adaption enables the evaluation and deployment of process condition
monitoring, MPC optimization, and soft sensing approaches. The Mind-
Sphere platform allows process units to connect to the cloud to support
research and development across all data science activities. DiPP’s In-
dustry 4.0 demonstrator will be utilised to explore and exhibit the full
potential and benefits of digital technologies for the pharmaceutical in-
dustry.
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