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a b s t r a c t 

The pharmaceutical industry is going through a significant change to adopt smart manufacturing for more in- 
tegrated supply chains and improved sustainability. Today’s competitive market demands have put pressure on 
healthcare systems to take a comprehensive assessment of the drug life cycle, its environmental effect, indus- 
trial use of energy and resources, supply chain, and impact on end-users. The exploitation of emerging Industry 
4.0 technologies will allow a sustainable process design and personalised health care system through the real- 
isation of digital twins, which could transform the pharmaceutical sector to be more flexible, robust, adaptive, 
and smart. A significant level of research and development has been applied to pharmaceutical manufacturing 
especially in existing, outdated design and scale-up paradigms in isolated unit operations. However, addressing 
the key challenges in pharmaceutical manufacturing requires whole systems approaches to incorporate Industry 
4.0 concepts. 

This paper aims to share the latest development of an advanced digital twin of a continuous wet granulation 
and tableting process at The University of Sheffield. These include the delivery of a digital platform consisting 
of an Advanced Process Control system (APC), mechanistic model platform and industrial IoT platform for data 
analytics and visualisation. The combined solution aligns with the concepts of Industry 4.0 by providing a digital 
twin, cloud integration, sophisticated statistical, as well as hybrid and mechanistic models. The models are in 
turn, used for soft-sensors, Model Predictive Control and Optimisation algorithms to predict and control product 
Quality Attributes. The potential application of digital twins in the pharmaceutical industry will also be explored. 
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Great research and development are undergoing in engineering con-
epts, methods, and tools for smart process manufacturing. In partic-
lar, the pharmaceutical industry is embracing the general digitalisa-
ion trend with the help of academic institutions, solution providers
nd regulatory agencies. However, despite the strong desire to move to-
ards digitalised continuous manufacturing, this trend seems to be less
ell advanced compared to the oil and petrol industries ( Ding, 2018 ;
ee et al., 2015 ; Litster & Bogle, 2019 ). Pharmaceutical manufactur-
ng technologies continue to advance as Pharma 4.0 begins to challenge
he traditional batch approaches and old business models for the man-
facture of pharmaceuticals. This is especially highlighted during the
OVID-19 pandemic, where the need for manufacturing technologies
hat are flexible, more responsive to changing demand and less depen-
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ent on human interventions during production became paramount. For
xample, with lockdowns preventing people from being in factories, the
se of automation and control in industry rose. The pandemic has shown
hat digital technologies can be used to enable remote working. In addi-
ion, there has been a shift in specialities firms to continuous operations.
he transformation has been fostered by regulatory entities as well as
riven by cost reduction and shorter development cycles (Batch Manu-
acturing | Batch to Continuous | Control Global, 2021). The Quality by
esign guidelines has promoted the comprehensive generation of neces-

ary product and process understanding required to execute a continu-
us and systematic operation for process operation and product quality
ontrol. This includes determining essential quality characteristics, pro-
ess parameters, and control techniques. 

In recent years, comprehensive methodologies for the design and im-
lementation of control strategies for continuous drug product manufac-
ng, The University of Sheffield, Sheffield, S1 3JD, UK. 
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uring, particularly the incorporation of Process Analytical Technologies
ensors into the control system, have been implemented and gradually
mproved ( Su et al., 2019 ). For example, a simulated plant-wide model
redictive control for an end-to-end continuous production line has been
resented at the Novartis-MIT centre ( Su et al., 2019 ). Global sensitiv-
ty analysis methodologies allow systematically identifying key process
arameters that affect critical product attributes ( Metta et al., 2019 ).
ontinuous manufacture of formulated products necessitates the use of
AT for quality control ( Stegemann, 2016 ; Rehrl et al., 2018 ). However,
ften commercially available unit operations lack a comprehensive on-
ine assessment unit; as a result, the adoption of PAT devices requires
onetary investment. 

With the growing need for patient-centeredness in medicine,
onsumer-focused manufacturers of formulated products are acutely
ware of the need to move towards smart and continuous manufactur-
ng. However, at this stage, they are uncertain about the adoption of dig-
tal technologies due to the lack of industrial-scale demonstrators com-
liant with the regulations such as 21 CFR Part 11 for industrial research
 Manzano & Langer, 2018 ; Chen et al., 2020 ; Schneider et al., 2010 ;
ematollahi et al., 2017 ). In particular, the pharmaceutical industry op-
rates under tight regulations from governing bodies, e.g. the US Food
nd Drug Administration (FDA). The exploitation of emerging Industry
.0 technologies such as closed-loop control, online quality monitoring
f continuous processes, real-time data processing and soft sensors will
llow a sustainable process design and personalised health care system
hile reducing environmental footprints ( Bengtsson-Palme et al., 2018 ;
ernaey et al., 2012 ; Stegemann, 2016 ). 

The competitive edge of Industry 4.0 does not lie in having an in-
egrated production line; but also in embedding digital systems in the
roduction which can independently generate data to make and inform
orrect decisions. There is a demand for the deployment of more sophis-
icated model-based tools to demonstrate the benefit of digital twins’
pplication in the pharmaceutical sector. As the pharmaceutical sector
repares to introduce quality by design, integrated unit operation pro-
esses and product models and the use of advanced control platforms
o maintain desirable product quality is paramount. Progress on prod-
ct and process models for customer demand and improved integration
ith model-based design optimization will fuel a service-oriented busi-
ess model in the formulated product sector. An integrated digital twin
ill enable manufacturers to be more attentive to their consumers’ needs

o provide timely products of consistently excellent quality. 

he Challenge 

Industry 4.0 delivers many benefits to process industries; however
ome barriers impede digital transformation. These include costs asso-
iated with model development and revalidation of existing systems,
egulatory costs to make the change; lack of expertise in digital tech-
ologies; knowledge gap in digital design and mathematical process
odels ( Litster & Bogle, 2019 ). According to Ś lusarczyk et al’s survey,

he most important challenge to implementing Industry 4.0 is a lack of
igital culture and training, which is indicated by half of the respon-
ents ( Ś lusarczyk, 2018 ). A lack of support from managers, ambigu-
us economic advantages from investments in digital technology, cyber-
hysical security and significant financial investment needs are all major
onsiderations. From Ś lusarczyk’s survey, the least frequently indicated
arrier is the fear of losing control over the intellectual property of the
ompany ( Ś lusarczyk, 2018 ). Large data sets, including critical and pos-
ibly secret information, are shared, necessitating safe connection and
rocessing across all platforms. 

Many large pharmaceutical companies have not embraced the new
igital ecosystem, and many of their pharmaceutical manufacturing
rocesses utilize legacy automation systems with no IoT capabilities
 Amini et al., 2020 ). Research shows that 70% of all pharmaceuti-
al manufacturing data is not collected and therefore goes to waste
 Manzano & Langer, 2018 ). Lengthy, capital-intensive development
2 
imelines and legacy processes have made it difficult to exploit the
ull potential of emerging digital technologies ( Huang et al., 2021 ;
opalle et al., 2020 ; Leclerc and Smith, 2018 ). And therefore, the phar-
aceutical industry still heavily relies on batch production of products

s there are certain manual procedures within the process such as labo-
atory testing and in-process control checks for drug quality ( Chen et al.,
020 ). 

Pharmaceutical manufacturing has been confronted with the need
or flexibility due to changing markets and the need for a more customer-
entric approach. However, due to insufficient sensors and intelligent
evices for interactions and co-operations between machines and oper-
tors, it is very challenging to meet these demands ( Gunes et al., 2014 ).
ifferent modelling methods for both upstream and downstream unit
ctivities in pharmaceutical production have been developed. However,
here is no vigorous model that captures Critical Process Parameters
CPPs) and Critical Quality Attributes (CQAs) for all the unit operations
n the integrated process ( Chen et al., 2020 ). Work in a holistic or sys-
ems thinking approach that goes beyond the physical infrastructure of
he manufacturing plant and its digitisation could enable the successful
ntegration of Industry 4.0 technologies. However, due to high compu-
ational costs, implementing all these methods within the digital space
s challenging ( Chen et al., 2020 ). Industry 4.0 digital technologies such
s cloud and edge computing have prompted the pharmaceutical man-
facturing industry to adopt cutting-edge solutions such as Advanced
rocess Control (APC) and continuous production. An Advanced Pro-
ess Control across the entire process operation will enable coordinated
ontrol of CPPs to reduce the variability of CQAs, improving product
uality and process robustness ( Huang et al., 2021 ). Pharmaceutical in-
ustries follow strict regulatory laws; therefore, accepting new technolo-
ies, such as an advanced model-based control system that can be used
or process fault detection (process monitoring) or to control the pro-
ess (APC), usually takes a longer time than other process industries
 Huang et al., 2021 ; Gunes et al., 2014 ). For example, the pharmaceuti-
al industry can learn from aerospace’s implementation of digital tech-
ologies in swift adoption of predictive maintenance of aero engines.
ncompatible platforms, models and systems remain a barrier to achiev-
ng integration. Heterogeneity in equipment program is an issue that
ay be overcome by developing a standardised interface or file format

hat allows seamless integration ( Chen et al., 2020 ). 
This paper aims to provide a detailed description of the present sta-

us of the digital architecture of the University of Sheffield’s Diamond
ilot Plant (DiPP), its benefits and application in industry. In the first
nstance, the project sought out an advanced digital control at the gran-
lator and tabletting components of the DiPP and has later evolved to
nclude smart manufacturing technologies across the entire tablet man-
facturing process. These technologies include soft sensing, cloud tech-
ology and data visualization platforms. 

The remainder of the paper is structured as follows. Firstly, a descrip-
ion of DiPP’s key powder processes such as crystallisation, wet granu-
ation and tablet press is provided. Secondly, a detailed description of
he critical components of the DiPP’s digital twin architecture and eval-
ation of the performance of these components are given. These include
he advanced control system, moisture content soft sensor and the Mind-
phere cloud integration. After discussing the status of digital architec-
ure, the limitations connected with the development and application
f the Digital Twin will be discussed, followed by future directions and
onclusions. 

rocess Description 

The University of Sheffield commissioned DiPP within the Faculty of
ngineering in 2018. DiPP includes large scale equipment representing
everal industries but mainly the pharmaceutical industry. These include
 continuous crystallisation unit, a filter dryer and an industrial-scale
EA Consigma 25 powder to tablet line, representing an example of a
ontinuous process in the pharmaceutical industry. The continuous os-
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Figure 1. The Consigma 25 line at Diamond Pilot Plant (DiPP) (a) Twin screw granulator (b) Segmented fluidized bed dryer (c) Cone mill (d) Blender (e) Tablet 
press. 
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illatory baffled crystallizer (COBC) and the continuous filter dryer are
oth used to produce high purity crystals/ drug substances which can
ct as active materials for the preparation of drug products. As shown in
igure 1 , the Consigma 25 line includes a series of unit operations. The
lant starts with a hopper and a loss-in-weight feeder, which deliver pre-
lended powder to the twin-screw granulator (TSG), where granules are
roduced after mixing with the appropriate binder. The mixing in the
ranulator occurs via two screws which come with kneading and con-
eying elements to provide different stress based on the configuration.
he wet granules are then transported gravimetrically to the fluidized
ed dryer (FBD), this is a six segmented dryer in which granules are
ried at pre-set drying conditions. The dried granules are then trans-
orted pneumatically to the granules conditioning unit where the mois-
ure content is monitored using a NIR technology and then granules are
illed down using a cone mill. The NIR probe acts as a Process Ana-

ytical Technology (PAT) tool to monitor the product quality, namely
he moisture content and it sends feedback to the system on whether
o keep the product or divert it to waste. Following the milling, process
ranules are passed through an additional two blending units where an
xtra material can be added as well as lubricants before going to the last
nit which is the rotary tablet press. 

The new continuous powder processing in the DiPP emphasises the
mportance of complex particulate products and formulated products
ore broadly in modern chemical engineering and the University of

heffield is reflecting this in their new curriculum in chemical engi-
eering. DiPP key features include a dedicated industrial control room
hat accommodates an advanced control system and a digital twin of
he whole plant. The University of Sheffield, Perceptive Engineering
nd Siemens collaborated forces to develop an innovative solution to
igitalise the whole continuous drug manufacturing process from crys-
allisation to tablet press and convert it into the world’s leading Industry
.0 demonstrator. The main objective of the project was to adopt a data-
entric approach and automation as well as demonstrate facilities to test
nd validate potential IoT applications in the real world. 

The challenges in digitalisation of the continuous tablet manufactur-
ng process included a low detailed process maturity; in other words,
he process was not IoT enabled. Each system and process unit repre-
3 
ented its own isolated data islands, therefore, data had to be locally
aved in separate locations and then brought together manually for of-
ine analysis. Also, existing knowledge from technical personnel could
ot be fully leveraged when controlling the process, ultimately making
he operation of the pilot plan highly manual resulting in considerable
orkload on operators. The University of Sheffield wanted to develop a

olution that could improve the system operations and overcome these
hallenges. The main goals of the research were to coordinate all data
rom the different systems in a centralised location, develop dashboards
or monitoring the systems locally and remotely, a solution that could
se all the data in real-time and can use machine learning techniques to
odel, predict and ultimately control critical process variables. Also, to

mplement a solution that can upload in real-time all data to the cloud,
uch as Siemens MindSphere so the data can be used across the univer-
ity for data science research activities. 

esults and Discussion 

evelopment of an Advanced Process Control System 

The first step in the development of the control system for the pi-
ot plant was to set up the digital architecture, summarised in Figure 2 .
erceptive Engineering’s PharmaMV software platform was employed
or the fusion of all data from the process, digital twin and Siemens
indSphere platform. This facilitated access to all data from a single in-

erface. This digital architecture enables synergy between the statistical
nd nonlinear models providing a complete set of tools for monitoring
dvanced process control and machine learning, seamless integration
o the process units and PAT instruments and enabling data fusion and
lignment across the platform. 

PharmaMV software collects and aligns to all process data from all
rocess units at the DiPP and was set up as a single point repository
or all the data in real-time. Then, an Optimised Experimental Design
latform (OEDP) template was configured for all the equipment to en-
ble control, monitoring and data-driven predictions in real-time. The
EDP is a commercial solution built upon PharmaMV software devel-
ped by Perceptive Engineers and provides the workflow and tools for
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Figure 2. Integrated Digital Architecture of the DIPP’s Digital twin. The architecture’s key parts include an Advanced Process Control platform (PharmaMV), 
MindSphere clouds platform, and real-time endpoint prediction software, gPROMS Formulated Products. The architecture’s structure and data flow network are set 
up to allow all process-relevant data to be collected, aligned and centrally stored, the use of intuitive and accessible process dashboards, an Advanced Process Control 
of product-relevant data capable of controlling measured or inferred quantities and cloud connectivity of all process units. 
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apid process development using optimised experimental design tech-
iques. These techniques include the automated design of experiments,
achine learning for self-optimisation and automated model adaption,

esponse testing and integration with mechanistic digital twins for the
evelopment and deployment of advanced process control. OEDP Solu-
ion has been employed in other projects in a different research centre,
.g., Digitalisation and APC for a fed-batch reactor for mammalian cell
rowth ( Craven et all.,2014 ). OEDP solution is provided in PharmaMV
nd can be modified by scientists/engineers. The OEDP includes pre-
onfigured tools and embedded documentation to reduce overall con-
guration and development effort. All these tools can be accessed via

nteractive dashboards shown in Figures 3 , so operators can navigate
cross all the process units drill down to a specific part of the system
nd activate any of the digital tools using such interactive dashboards.
he platform also supports user authentication with different levels of
ccess; for example, limiting user’s access to only allow process monitor-
ng. OEDP enables smart process development for the crystalliser filter
ryer and the Consigma continuous tablet line. The APC was equipped
ith a mechanistic modelling platform, gPROMS FormulatedProducts,
ia a Foreign Process Interface for the exchange of control variables
nd model predictions of CQA’s, which is included within the standard
ackage. gPROMS FormulatedProducts has been selected in this project
ecause it brings the added value of utilising mechanistic models to
erve as digital twins for the process. The standard package includes
vailable model library to describe all unit operations and transforma-
ions involved in each case to the required fidelity. The required unit
perations and the required fidelity of model with respect to phenom-
na considered and ability to predict the effect of process parameters
ritical Quality Attributes (CQA’s) has not been available in other mod-
lling packages. And finally, the platform’s ability to communicate with
he rest of the DiPP’s digital twin platforms, including PharmaMV and
indSphere has been another advantage. 

Statistically rich data from modelling torque dynamics can be gener-
ted using the OEDPs response test tool. Then, through machine learning
echniques, the platform is able to identify the model automatically and
dapt the model to new operating conditions if needed. Figure 4 shows
ow a model can be identified to predict the torque of the twin-screw
et granulator. An example of an automated step test is displayed on
4 
he right-hand side of the dashboard, displayed in Figure 4 . Real-time
orque measurements are displayed in green on the top trend. The other
rends shown in red are the steps applied by PharmaMV, and in blue,
eadbacks from the process variables. These data are used in real-time
o adapt the model and after a predefined time has elapsed or when a
odel accuracy level is reached, the automated modelling stops, and

he new model is integrated within a Model Prediction Control (MPC)
rchitecture to control torque to the setpoint. The MPC package was de-
eloped by Perceptive Engineering and is part of the PharmaMV tools.
he MPC is based on the following function: 

 = 

𝑁 ∑

𝑖 =0 

[
𝑒 𝑖 +1 𝑃 𝑒 

𝑇 
𝑖 +1 + Δ𝑢 𝑖 𝑄 Δ𝑢 𝑇 

𝑖 
+ 𝑓 𝑖 𝑅𝑓 

𝑇 
𝑖 

]

here e is set-point error, P is set-point weight (configured by the user),
u is actuation move, Q is move weight (configured by the user), f is
anipulated variable target and R is manipulated variable target weight

configured by the user). Operators can activate and configure the auto-
ated model adaptation via the panel at the left-hand side of the dash-

oard. The platform will continuously monitor the quality of the data
nd will notify operators of any interface communication errors. The
latform will stop any response test if such communication errors are
etected. Data from any automated response test is uploaded to Mind-
phere in real-time to allow the users access to the data for analysis and
esearch activities. 

A data driven moisture soft sensor was developed for CQA predic-
ion and subsequent control for monitoring and real-time control of
nd-point moisture by manipulated the drying time in real-time as the
ampaign runs. Data for modelling were obtained by executing an au-
omated Design of Experiments (DoEs) on the fluidised bed dryer. This
ata was then analysed offline to develop the below moisture soft-sensor
odel: 

 𝑖𝑛𝑎𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 = ( 𝐷𝑟𝑦𝑖𝑛𝑔 𝑇 𝑖𝑚𝑒 𝑃 𝑉 − 𝐹 𝑖𝑙 𝑙 𝑖𝑛𝑔 𝑇 𝑖𝑚𝑒 ) × 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + 𝐵𝑖𝑎𝑠 

here, the G radient and the B ias are computed based on available data
rom normal operation. The Bias can be modified online based on the
urrent liquid-to-solid ratio and the product key (PK) weight: 

𝑖𝑎𝑠 = 𝐿𝑖𝑞𝑢𝑖𝑑 𝑡𝑜 𝑆𝑜𝑙𝑖𝑑 𝑟𝑎𝑡𝑖𝑜 ∕2 × 100 × 𝑃 𝐾 𝑤𝑒𝑖𝑔ℎ𝑡 
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Figure 3. Overview screen of PharmaMV User Interface for (top) Continuous oscillatory baffled crystallizer and Filter-Dryer system and (bottom) DiPP Continuous 
Wet granulation and Tableting process. Operators can navigate between dashboards using the embedded buttons and monitor specific unit operations and access 
configurable tools i.e automated DoE, step testing, APC and online model adaption to monitor and control unit operations. 
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The soft sensor accuracy to estimate moisture continuously can be
bserved on the top trend in Figure 5 , in which the blue line shows mois-
ure measurements in real-time using NIR spectrometer equipped with
 fiber-optic Lighthouse Probe TM (LHP, GEA Pharma Systems) and the
reen line corresponds to the soft sensor predictions. The advantages of
he data-driven approach for development of moisture soft-sensor com-
ared to hybrid approaches used in other woks ( Rehrl et al. 2020 ) are
hat in this approach deep knowledge of the system dynamics is not re-
uired, easier to identify, more robust for extrapolation which makes
hem good candidates for implementation in model predictive control
pproaches, provided that the operation conditions do not change. How-
ver, it should be noted that a model re-identification is needed when
he operating conditions change. 

The tableting line has a single moisture sensor located after the dryer.
his sensor can be relocated to monitor a single chamber out of six in the
ryer. With this new soft sensor, it is now possible to monitor moisture
cross the six chambers in real-time while using the single NIR Moisture
ensor to measure moisture at the endpoint before feeding the granules
o the tablet press. The trends at the bottom of Figure 5 can be used to
ompare the soft sensor endpoint moisture predictions versus the actual
5 
easurement taken with the LHP after the dryer. The predictions and
eal-time measurements are close to each other after the soft sensor was
alidated. And it is now in use for online control of the drying time to
educe moisture viability. 

The APC system developed for the DiPP allows to monitor, inter-
ct and optimise the tableting line using pre-configured dashboards.
igure 6 shows the dashboard employed by operators to activate
nd monitor the APC for the tableting line. The trends displayed in
igure 6 show the results of implemented a Model Predictive Control
MPC) to control torque. For the torque MPC control, step testing was
mplemented to generate statistically rich data to identify the model for
PC. Then the linear model identified for the MPC was employed in

imulation to perform the initial tuning of the controller and determine:
he prediction horizon (set to be time to steady state for the slowest re-
ponse from an input step change), the control horizon (set to match the
rediction horizon), the set-point weight for torque, the move weights,
nd the move limits for the manipulated variables. Set-points high and
ow limits, as well as manipulated variable high and low limits were
et by operators of the tableting line and they are linked to the process
afe operation limits. Noise was added to the simulation for tuning the
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Figure 4. Interactive dashboard for activation and monitoring of automated modelling adaptation of the twin-screw wet granulator torque. (a). Data quality monitor 
(DQM) to stop adoption if communication errors are detected (b). Time-series trends to observe how the twin screw wet granulator torque changes with liquid to 
solid ratio. (c). Dial to provide further warning information on the model adaption time. 
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PC where the signal-to-noise ratio used in the simulation was approx-
mately equal to what was observed on the real system. After the MPC
as tuned in simulation, it was deployed in real-time to control the real

ystem, at which point a fine-tuning was carried out. The MPC can make
he necessary adjustments to manipulated variables to follow different
etpoint values. The benefits of the MPC system were observed during
est fronts. For example, the MPC controller reduced the standard de-
iation by up to 43% and demonstrated that it is possible to minimise
he impact of process disturbances, including changes in raw material
roperties. Another significant improvement is the implementation of a
oisture endpoint control for the fluidised bed dryer. During the early

est runs, the moisture soft sensor showed an endpoint prediction error
f less than 0.5%. 

loud Integration and Data Visualisation 

One of the main goals of the project was to connect physical as-
ets and upload data to the cloud to manage the data in real-time.
wo Siemens nano boxes were interfaced to PharmaMV to enable
he possibility of pushing data from all process units to the Univer-
ity of Sheffield’s MindSphere account. MindSphere is Siemens indus-
rial IoT as a service solution which allows collecting, monitoring, and
nalysing data in real-time. In addition, it enables the development of
pps and solutions for different applications. Figure 7 shows an exam-
le of how data from the physical process collected by PharmaMV is
ploaded into the cloud in real-time. The data can be accessed by users
oth online and offline at the University of Sheffield for further data
rocessing. 

The importance of big data visualisation as a tool for Industry 4.0
s widespread and well documented ( Allen et al., 2021 ). An example
f the benefits of this project is the integration of web-based data ana-
ytics/visualisation tools to enable real time collection, monitoring and
nalysis of the data. Here, we integrated Wiz with DiPP through Mind-
phere ( Balzer et al., 2020 ). Wiz provides state-of-the-art data visual-
sation and analytics solutions to give both industry and academia ac-
ess to the data generated in DiPP. Development of new products would
e greatly accelerated if we develop better understanding of their key
aterial and process properties. Identification of such properties can

ake years as it requires time-consuming calculations or experiments.
learly, creation of data-driven insights and product-process relation-
6 
hips are essential to narrow down the design space and guide man-
facturing efforts towards quality products. Recently, high-throughput
ractices have allowed us to study hundreds of processes/products to
ptimise their performance. Given the enormous amount of data gener-
ted via such strategies, it is important to develop data analytics tools
hat are able to establish relationships between different parameters and
xtract values from multidimensional datasets. These relationships re-
eal critical components of manufacturing performance and guide ex-
eriments to generate quality products. Figure 8 shows a number of
rototypical plots produced in the Wiz application. By integrating Wiz
n MindSphere, real-time data from process equipment can be analysed
hrough user-friendly platforms lowering the barrier for understanding
arge datasets and providing valuable insights into troubleshooting or
ptimizing manufacturing processes. 

uture work 

Fusing three digital platforms, PharmaMV, gPROMS Formulated-
roducts and MindSphere, provides a fast and cost-effective hybrid strat-
gy for in silco development of a closed-loop controller. The current ap-
roaches for controller development are data-driven and require step
esponse testing and plant to be operational. However, a digital design-
ased control leverages in silco modelling and simulation to reduce ex-
erimental effort during development of the APC control strategy. Using
PROMS FormulatedProducts, the Diamond Pilot Plant unit operation
ill be modelled using high fidelity mechanistic models. The software’s
dvanced statistical analysis method will be used to estimate kinetic
arameters with high precision. It also its built-in global analysis will
e employed to carry out sensitivity analysis to choose key parameters
nd to design appropriate experiments. Several methods and tools will
e used to interpret the results of the parameter estimation including
oodness of Fit Test, Bias Test and Lack of Fit tests. The correlation
atrix will reveal the relationships between the unknown parameters.
ovariance between unknown parameters can increase the uncertainty

n their values as many combinations can result in a similar solution.
urthermore, additional information about the solid products, such as
issolution rates, will be incorporated into the simulation to determine
he best process setup and parameters for a specified product specifica-
ion. This also allows the integrated flowsheet to take a holistic view of
he drug cycles. The modelling of the process will also allow the digital
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Figure 5. Comparison of the moisture soft sensor performance with PAT sensor. (a) continuous real-time actual measurement vs prediction data and (b) actual 
moisture End-Point Measurement and Moisture Prediction in Consigma 25. 
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win to take advantage of the Digital Model Prediction Control (MPC)
hown in Figure 9 . The controller output (actuator) in PharmaMV can
e transmitted to the process model and act as the input used to com-
ute the new control variable signal. Digital Model Prediction Control
ill allow for controller parameter adjustment, model identification for
7 
PC, and assessment of the data-driven control system. The benefit of
his digital model predictive control is a reduced waste of material as
he control strategy can be designed without relying on PAT data from
he process, less operational downtime, and reduced experimentation
 Reynolds, 2019 ; Singh et al., 2014 ). 
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Figure 6. Pre-configured PharmaMV Advanced Process Control (APC) dashboard developed for the twin-screw wet granulator torque control. Operators can now 

monitor, interact and optimise the unit operations. On the left-hand side panels, there are indicators and activation buttons for the APC. The panel includes a faceplate 
to display the setpoint and actual values of the control variable which include endpoint moisture, PK weight, liquid to solid ratio and torque. On the right-hand side, 
there are real-time measurements trends relevant to torque MPC control. 

Figure 7. Example of real-time temperature readings at different locations of the DiPP’s MindSphere. 
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onclusions 

This case study summarises the present state of the digital twin at
he University of Sheffield, offering insights and emphasising the ob-
tacles and benefits of deploying a fully integrated digital twin in the
harmaceutical sector. In addition to the summarised opportunities and
enefits, further research direction of the development of digital model
ontrol using mechanistic models has been explored. An advanced dig-
tal architecture platform for the control and optimisation of complex
ynamic particulate processes has been presented. The control system
as developed on PharmaMV platform, which provides a full suite of
nalytical modelling and APC tools for rapid process development and
ptimization. It allows fusion and visualisation of processing analytical
ata in real-time. For the DiPP, PharmaMV enables the prediction of
ritical Quality Attributes using data-driven and mechanistic models. It
lso enables the implementation of Model Predictive Control for CQAs
nd can be interfaced with IoT platforms such as MindSphere to transfer
ata in real-time to the cloud. 
8 
The digital architecture platform is highly flexible, customisable and
calable from one process unit to an entire line. The project has also
emonstrated the transmission of the DiPP production line data to cloud
echnology and the deployment of an interactive dashboard in Mind-
phere for multivariate data analysis. It has been shown how implement-
ng APC in the line can reduce process variability and increase process
tability; for example, it has been demonstrated that the implementa-
ion of an MPC controller reduced the standard deviation of torque by
3%. Similarly, it has been shown that data-driven models identified
sing machine learning algorithms can provide accurate predictions,
nd such predictions can be used to monitor difficult-to-measure pro-
ess variables, and ultimately allowing the use of these predictions to
urther control the system automatically; the example in this work is
he moisture soft sensor that was developed and implemented in real-
ime. This sensor allows continuous and end-point moisture estimation
or all the six chambers of the segmented fluidized bed dryer; the sen-
or showed an endpoint prediction error of less than 0.5%. This level
f prediction accuracy allowed the implementation of automatic end-
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Figure 8. Wiz interactive dashboard in Siemens’ MindSphere (a) Real-time miIl speed time-series trends from DiPP (b) Real-time dryer humidity scatter data and 
(c) Four-dimensional visualisation of different temperatures vs pressure in the dryer unit. 

Figure 9. Integration of the flowsheet model and control platform. The synchronisation of the two platforms will allow data flow (manipulated and control variable 
data) between flowsheet model and control platform for digital model prediction control (MPC) and real time simulation. 
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oint moisture control that can be activated by the operators using the
nteractive dashboards. 

The adoption of Industry 4.0 has had an impact on how to approach
harmaceutical manufacturing at the DiPP. The benefit of the digital
harmaceutical manufacturing solution developed for the diamond pi-
ot plant includes a digital control system that allows adopting a data-
entric approach and automation. Data also from the DiPP is continu-
usly collected and used to predict Critical Quality Attributes (CQAs)
hrough data-driven models and Digital Twin forecasts. It allows for
ost-effective testing with production-class operating equipment with-
ut the costly downtime and output reductions that would be required
f done on actual production units. It enables access to and optimization
f low-level control systems in a non-competitive context, as well as
he establishment of a client-oriented business model. The digital archi-
9 
ecture also allows an experience created by the engagement of in-use
nformation within a DiPP’s digital ecosystem through data visualisa-
ion and virtual reality. It is expected that the data-calibrated approach
utlined in the future work section using process model will reduce ex-
erimental effort in developing control strategies, reduce waste of the
PI materials, minimizes interruptions in the process production time

or step-testing and reduce process variability by accurately controlling
QA through APC. This hypothesis will be examined in future works. 

The project team has successfully collaborated to upgrade the Uni-
ersity of Sheffield’s industrial continuous wet granulation and tableting
ith the latest Industry 4.0 and APC enabled automation technology.
he upgrades provide a hands-on demonstrator for research and train-

ng. Data fusion and visualisation including multivariate trends, charts,
nd interactive dashboards, as well as automated execution of DoEs and
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rocess response testing reduces experimental workload and streamlines
ata generation for design space exploration and process modelling and
imulation. The use of machine learning techniques such as online model
daption enables the evaluation and deployment of process condition
onitoring, MPC optimization, and soft sensing approaches. The Mind-

phere platform allows process units to connect to the cloud to support
esearch and development across all data science activities. DiPP’s In-
ustry 4.0 demonstrator will be utilised to explore and exhibit the full
otential and benefits of digital technologies for the pharmaceutical in-
ustry. 
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