FLOW LINES ON THE MODULI SPACE OF RANK 2 TWISTED HIGGS
BUNDLES

GRAEME WILKIN

ABSTRACT. This paper studies the gradient flow lines for the L? norm square of the Higgs field
defined on the moduli space of semistable rank 2 Higgs bundles twisted by a line bundle of positive
degree over a compact Riemann surface X. The main result is that these spaces of flow lines have
an algebro-geometric classification in terms of secant varieties for different embeddings of X into the
projectivisation of the negative eigenspace of the Hessian at a critical point. The Morse-theoretic
compactification of spaces of flow lines given by adding broken flow lines then has a natural algebraic
interpretation via a projection to Bertram’s resolution of secant varieties.

1. INTRODUCTION

The moduli space of Higgs bundles over a compact Riemann surface admits a natural Morse—
Bott function, given by the square of the L? norm of the Higgs field. This has been instrumental in
efforts to understand more about the topology of this space, with an enormous amount of activity
beginning with the original work of Hitchin [I7]. There has been much recent interest in gradient
flow lines of this function and their connection with Geometric Langlands, which has focused on
understanding the very stable and wobbly bundles (see [6], [10], [11], [16], [21], [24]).

Motivated by the geometric description of Yang—Mills-Higgs flow lines in [29], the goal of this
paper is to give a concrete description of the space of flow lines connecting two critical sets for the
function ||¢[|7 .. In general, for any Morse-Bott function, the unstable set of a critical set is stratified
by the types of the critical sets that can appear as downwards limits of the flow. The main result
of this paper is that, for rank 2 Higgs bundles, this stratification has a geometric interpretation
in terms of secant varieties for different embeddings of the underlying Riemann surface into the
projectivisation of the negative eigenbundle of the Hessian at each critical point. Moreover, this
geometric description of the flow lines also leads to a simple proof that the function [|¢||7, is in fact
Morse-Bott-Smale (so that the stable and unstable manifolds intersect transversely), and therefore
one can use the methods of [I] to construct a Morse complex in which the cup product is determined
by the topology of the spaces of flow lines.

In general, the critical points for ||¢[|2, have a concrete algebraic description as fixed points of

the C* action on the moduli space given by scaling the Higgs field (cf. [I7], [28]). For the case of
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rank 2 Higgs bundles twisted by a holomorphic line bundle M, these have the form [L; @& Lo, ¢],
where Lp, Lo are line bundles with degL; > degLs and ¢ € HO(LTLQ ® M). With respect to
the downwards gradient flow of ||¢[|3,, the unstable manifold W, of such a critical point C,, is
homeomorphic to H'(L}Ls), which parametrises extensions 0 — Ly — E — L; — 0. Since
deg Ly > deg Lo, then there is a canonical embedding X < PH!(L}Ls), and the first main result is
that the limit of the downwards flow with initial condition in the unstable manifold of the critical
point [L1 ® Lo, ¢] is determined by the secant varieties of X — PH*(L}Ls).

Theorem 1.1 (Theorem [4.8). Fiz rank(E) =2, deg E =0 or 1 and let Cy, C,, be two critical sets
indexed by 0 < 0 < u < %degEJrg —1. If £ > 0, then the space L} of flow lines between Cy and C,,
is a circle bundle over the (u — €)™ global secant variety Py from Deﬁmtion where the fibres
are the orbits of the S* action €' - [E, ¢] = [E, e?¢] on Miiggs(E)-
If £ =0, then
Ly —»Pw,\ |J ¥
0<tl<u

is a circle bundle with fibres given by the orbits of the S* action.

Remark 1.2. The notation L7 is used for the space of flow lines and F} is used for the space of
points that flow up to C, and down to C; (cf. (2.6) and (2.7))). The two spaces are related by

L} =T} /R, where R acts by time translation along a flow line.

Therefore we have a parametrisation of the unbroken flow lines connecting two critical sets,
however to construct a Morse-Bott complex on the moduli space one needs to prove that the
function satisfies the stronger Morse-Bott—Smale condition. Theorem leads to a simple proof
of the Morse-Bott-Smale property (see Proposition , which has the following consequences for
the cup product on the Morse complex.

There are canonical projections mp : F — C; and m, : F} — C, given by taking the limit of
the flow as ¢ — d-co. Similarly, there is canonical projection p, : P} — Cy (from Definition as
well as a projection p, : Py — C taking a point in a secant space to the limiting Higgs pair from
Section

5y
Jg
(1.1) / pu N\
AN
Cy Cuy

Let n € H*(Cp) and w € H*(M3; ,(E)). The class w restricts to a cohomology class on

JF) C Mj;jiggs(E), which we also denote by w. The cup product in the Morse-Bott complex (see [,
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Sec. 3.5]) for M3, ,<(E) is given by

Cn(w) = (mu)s (mg (0) ~ W) -
The previous theorem shows that this factors through the global secant variety via the diagram

(1.1). Therefore, using the results of [1], the cup product on the Morse complex can be expressed

entirely in terms of the homomorphisms p; and (py)«

(1.2) cn(w) = (pu)«gs (g"pz (M) ~ w) = (pu)s+ (pr(N) ~ gx(w))

and therefore the cup product can be computed using the topology of secant varieties.

Finally, it is natural to construct the Morse-Bott—Smale compactification of the space of flow
lines given by attaching spaces of broken flow lines (this is explained in detail by Austin and Braam
[1]). The next theorem shows that this compactification of the space of flow lines has an algebro-

geometric interpretation in terms of the resolution of secant varieties constructed by Bertram [2].

Theorem 1.3 (Theorem . Let Pyjorse : 27; — th be the Morse resolution associated to the
compactification of broken flow lines from and let Pge. : f/ﬁ% — ﬁ be the resolution of secant
varieties defined by Bertram [2] (cf. (6.2)). Then the map that takes a broken flow line to the
corresponding chain of points in secant spaces from Definition makes the following diagram
commute.

ZE‘ Def. :’ﬁ/g

(13) Pﬂlorsel lPSec
sz Prop. gz ﬁ

Since the function Hng%z is proper and analytic, then any point below the lowest nonminimal
critical point will flow to the minimum. Therefore the space of flow lines Jj from a nonminimal
critical set C, to the minimum Cj can be characterised by the complement

(Woo/B)\ U £F-
>0

Moreover, every flow line emanating downwards from a nonminimal critical set can be extended to
a broken flow line that terminates at the minimum {¢ = 0} = M**(E), which determines a forgetful
map from the Morse resolution to the moduli space of semistable bundles Zg — M?®(E). In the
case M = K of Higgs bundles twisted by the canonical bundle, the image of this map lies in the
locus of wobbly bundles; the bundles in M**(E) that are connected by a flow line to a nonminimal
critical point. Pal & Pauly [23, Thm. 1.1] describe the irreducible components of the wobbly locus
and relate these to the image of Bertram’s resolution of secant varieties in [23] Prop. 2.3]. The
above theorem shows that these components correspond to the images of Z”g — M*(FE) as Cy
varies among the nonminimal critical sets.

This projection from the unstable manifold of a critical set to the moduli space of semistable

bundles also appears in the work of Dinh & Teschner [5, Sec. 2.2], where the associated rational
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map is denoted My 4 --» Na. In the context of Theorem above, this map is well-defined on the
unbroken flow lines, and the Morse resolution of Theorem [1.3]| provides a resolution of this map. It
would be very interesting to see if this resolution can give any insight into the question of extending
the lifts of classical Hitchin Hamiltonians described in [5 Sec. 3.2].

Organisation of the paper. Section [2| contains the background material and notational con-
ventions used throughout the paper. The secant varieties of the Riemann surface in the unstable
manifold of a critical point are constructed in Section [3, which leads to the classification of the un-
broken flow lines (Theorem in Section 4 and in turn a proof that ||¢|2, is Morse-Bott—Smale
in Section[5} Finally, Section [6] contains the details of the compactification of the space of flow lines
and its relation with the resolution of secant varieties (Theorem [6.1)).

Acknowledgements. The author gratefully acknowledges support from the Simons Center for
Geometry and Physics, Stony Brook University and the organisers of the summer workshop on
Moduli which provided the motivation for this paper, as well as Tamas Hausel, Ana Pedén Nieto

and Paul Feehan for useful discussions.

INDEX OF NOTATION

Spaces associated to a critical set.

Co The minimum Cj := {¢ = 0} = M**(E); see pge [6]

Cy The critical set Cy for which the bundle is E = Ly ¢ Lo with deg L1 = d; see page [6}

Wj The set of points that flow down to Cy, defined in .

W, The set of points that flow up to Cy, defined in .

WIO Wd+ \ Cy.

Wio Wi \ Cy.

0 The sphere bundle inside W, defined in .

W, The set of points that flow up to a given critical point y, see page m

Ay The Morse index dimg W, defined in .

Spaces of flow lines between a pair of critical sets.

Iy The set of points that flow up to C, and down to Cp, defined in .

Ly F}/R: the set of flow lines connecting C,, and Cy, defined in (2.7)).

Spaces associated to secant varieties.

Seck (X) The N** secant variety of X in PH'(L); see Definition

Secﬁ’O(X) The subset Seck (X) \ Seck_,(X) C Seck(X) consisting of points that do not lie on a
secant space of lower dimension, defined in (|3.4)).

I, The projective subspace IT5 C Seck (X) c PH'(L) that osculates to a given order at each
point of X C PH!(L) determined by D; see Definition

ﬁ\g The linear subspace of H!(L) associated to IT%; see Definition
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Py The global secant variety, defined as a fibre bundle of secant varieties in Definition
T heoremshows that this is isomorphic to F§/C* = £ /S*: the set of C* orbits connecting
Cy and Cy, defined in .

Spaces associated to resolutions.

T% The closure of the space of flow lines in the sphere bundle S, .

Z}/f The Morse resolution of the closure of the space of flow lines; see Definition

ﬁ The closure of the global secant variety in PW,".

5’7@‘ The resolution of the closure of the global secant variety ?7;; see Definition

2. BACKGROUND AND NOTATIONAL CONVENTIONS

In this section we recall the relevant results and set the notation for the remainder of the paper.
Unless otherwise noted, the material is well understood and can be found in [I7] or [2§].

Let X be a compact Riemann surface of genus g > 2 and let £ — X be a rank 2 complex vector
bundle of degree d = 0 or 1. Fix a smooth Riemannian metric on X and a smooth Hermitian
metric on F, and let A%! denote the space of holomorphic structures on E. The complex gauge
group is denoted G€ and the unitary gauge group associated to the Hermitian metric is denoted §.

One can also consider the determinant map det : A%! — Jacy(X) and for a fixed ¢ € Jacy(X)
the subsets Ag’l = det™!(¢) and Endg(E) := {u € End(E) | tr(u) = 0}. Let M — X be a
holomorphic line bundle with a Hermitian metric, and suppose also that deg M > 0. For the two
cases G = GL(2,C) or G = SL(2,C), the space of G-Higgs pairs twisted by M is denoted

B ={(04,0) € A% x Q°(End(E) ® M) | da¢ =0} (G =GL(2,C))
Be = {(0a,¢) € AZ' x Q°(Endg(E) @ M) | da¢ =0} (G =SL(2,C)).

Many of the constructions for G = SL(2,C) are the same as those for G = GL(2,C). To avoid
notational complexity, from now on we will use the notation for G = GL(2,C) and only distinguish
between the two cases when necessary; for example when specifying the fixed point sets of the C*
action.

The open subset of stable (resp. semistable) Higgs pairs is denoted B! (resp. B*¢) and the
moduli space of stable (resp. semistable) Higgs bundles on E is denoted

Mﬁiggs(E) = ‘BSt/g’(C (resp. ﬁiggs(E) = BSS//S(C)'

If deg E and rank(FE) are coprime then Bt = B* and the moduli space is a smooth manifold.

For each (04,¢) € B*®, the associated equivalence class in M‘}jiggs(E) is denoted by [04, ¢].
When the holomorphic bundle is a direct sum L; @ Lo or an extension 0 — Lo —+ E — L1 — 0 of
line bundles, then it is more convenient to use the notation [Li @ Lo, ¢] or [E, ¢].

With respect to the fixed Hermitian metric, each holomorphic structure d4 has an associated
Chern connection denoted d4 with curvature F4. Hitchin’s equations for the Higgs pair (04, ¢) are

2mideg(E)
vol(X) rank(FE)"

(2.1) x(Fa+ [¢,0"]) = A-id, where A = —
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(Note that ¢* depends on the choice of metric on M as well as the Hermitian metric on E.) The
Hitchin-Kobayashi correspondence of Hitchin [17] and Simpson [27] shows that

(2.2) Higgs(E) = {(04,0) € B | (94, ¢) satisfy 2.1)}/S.

2.1. Properties of the energy function. The function [|¢[|2, : B — R is G-invariant, and so
(2.2) shows that the restriction to the solutions of (2.1) descends to a well-defined function

[= ||¢”%2 : ?jiggs(E) — R,

which is the moment map associated to the circle action € - [04, ¢] = [04,e?¢] (cf. [17]). The
general result of Frankel [I2] shows that (when the moduli space is smooth) f is a perfect Morse—
Bott function.

This action extends to a C* action e“ - [Ja, ¢] = [0a, "] for u € C. The gradient flow lines of f

on M33

HiggS(E) are generated by the subgroup R~y C C*, for which the action is

(2.3) ¢’ -[0a,¢] = [0a,€'d], teR.

The minimum f~!(0) corresponds to the subset of semistable Higgs pairs with zero Higgs field,
(E). The nonmin-
imal critical points of f correspond to fixed points of the C* action, which have a well-understood

which is the moduli space of semistable holomorphic bundles M**(E) < M3, o
classification in terms of variations of Hodge structure (cf. [28]). In general, a Higgs pair [(E, ¢)]
is a fixed point of the C* action if and only if

(i) the bundle decomposes as a direct sum E = F} @ -+ @ F,,
(ii) ¢(Fy) =0 and for each j = 1,...,n — 1 the Higgs field satisfies ¢(F;) C Fj11 ® M, and
(iii) the resulting Higgs pair is semistable.

The equation then determines the value of f = |¢[|, at each critical set.

In the rank 2 case, the minimum of f occurs when the holomorphic bundle is semistable and
the Higgs field is zero. At a nonminimal critical point, the holomorphic bundle is a direct sum of
line bundles E = L; @ Ly with deg Ly < deg L1 < deg Ly +deg M and ¢ € H(LiLy ® M). Let
dy = deg Ly, do = deg Lo and m = deg M. The critical values are ordered by the value of di — do,
and each critical set is homeomorphic to S%?~4+mX x J(X) (G = GL(2,C)) and S%—ditmx
(G = SL(2,Q)), where S¢X denotes the 229 fold cover of S?X studied by Hitchin [L7, Prop. 7.1].

In the sequel, the nonminimal critical set corresponding to deg L1 = d will be denoted Cjy for each
integer value of d in the range %degE <d< %(degE + deg M). The minimum (corresponding
to ¢ = 0) will be denoted Cj. Using the fact that the gradient flow of f is defined using the R-q
action , the stable and unstable sets of C; are defined by

(2.4) Wi = {[04, 8] € Mijig05(E) | lim[94, A¢] € Ca}
(2.5) Wd_ = {[514’ 9] € ?jiggs(E) | Ali—{go[gA’ M) € Cy}.
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Equivariance of the gradient flow with respect to S C C* means that the limits in the above
definition can be taken with respect to either A € Ry or A € C*. From now on the convention is

that A € Ryg. The corresponding spaces with the critical sets removed are denoted
W;:O = W;‘ \ Cy, Wao =Wy \ Cy.

If the degree and rank of E are coprime then WJ, W, are manifolds. In general, the action of
Rsg C C* still determines a well-defined integral curve, and therefore the spaces Wj , W, are still
well-defined for E of any degree and rank.
For a fixed critical point y € Cq, the stable (resp. unstable) set is denoted W, (resp. W,").
For any ¢ < u, the space of Higgs pairs that flow down to Cy and up to C,, is denoted

(2.6) Fy =W, nWw,.

The space of unbroken flow lines between two critical sets is then given by dividing by the Ry

action generating the flow

(2.7) = 9% /Roo.

The S'-equivariance of the flow determines an action of S C C* on L}, and the quotient
(2.8) L£y/st =gy /C*

parametrises the C* orbits connecting the critical sets Cy and C,. Theorem shows that the
quotient (2.8) has a geometric interpretation as the global secant variety from Definition

2.2. Morse strata for the gradient flow. Recent work of Hausel and Hitchin [16, Prop. 3.4 &
3.11] gives a complete classification of the Morse strata for the upwards and downwards flow of f
in terms of the existence of filtrations of the underlying holomorphic bundle for which the Higgs
field satisfies a compatibility condition (see also Simpson’s work [26] for a de Rham version of this

construction). Their results are summarised in the following

Proposition 2.1 ([I6]). Let [(E, )], [(E',¢")] € M3, .- Then
(i) limy—o[(E, ®)] = [(E', ¢")] if and only if there exists a filtration by subbundles
O=FEyCcFEyC---CE,=F
such that ¢(Ey) C Exy1 ® K for each k=1,...,n—1, and the induced maps
gro(9) : Ep/Ep—1 — Epi1/Ej

satisfy (E',¢') = (E1/Eg @ - ® En/En—1,9r0(9)).
(ii) limyooo[(E, @) = [(E', ¢")] if and only if there exists a filtration by subbundles

O=FEyCFEiC---CFE,=F
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such that ¢(Egs1) C Ex @ K for each k =0,...,n— 1, and the induced maps
9roo(®) : Ext1/Ex — Ey/Ep—1

satisfy (E',¢') = (E1/Eo @ -+ @ En/En—1,9rec(9)).
Moreover, if [(E,®)] and [(E’, )] are stable, then the filtrations with the properties in (i) and

(ii) are unique.

In the case of rank 2, part (i) of the above result reduces to an earlier observation of Hitchin [17]
that the Morse strata for the downwards flow correspond to the Harder-Narasimhan strata for the
underlying subbundle (see also [15]). The same is true for U(2,1) and SU(2, 1) Higgs bundles [13].
For rank 3 and higher this is no longer true and the stratification (studied in detail by Gothen and
Zuniga-Rojas [14] for the rank 3 case) is much more intricate.

In order to apply [16, Prop. 3.4 & 3.11] to a specific Higgs pair [(94, ¢)] € Mifig9s(E), one needs
to first find a filtration of the appropriate type. The results of Section [4] give a criterion for such
filtrations to exist in the unstable set of each critical set. This criterion is geometric in nature and

emphasises the role of the complex structure on the underlying Riemann surface X.

2.3. The polystable locus in the rank 2 case. In general, the singularities of Mﬁjiggs(E) are

contained in the locus where [E, ¢] is strictly polystable, so that there is a direct sum

(Ev¢) = (E1a¢1) DD (Ena¢n)

of n > 1 stable Higgs pairs of the same slope. When rank(FE) = 2 and deg(E) = 0, then this can
only occur if (E, ¢) is a direct sum of two Higgs line bundles. In this case it was observed in [4]
that the locus of strictly polystable bundles does not intersect any of the nonminimal critical sets.
In particular, the unstable sets W, are all manifolds and all of the stable sets Wj are manifolds
when d > 0. Therefore, even though M3f, . (E) is singular, when rank(E) = 2 it still makes sense
to refer to ||¢]|3, as a perfect Morse-Bott function, or (after proving Proposition a perfect
Morse-Bott—Smale function (where the stable and unstable manifolds intersect transversely), since
it has a well-defined flow given by the Ryg C C* action, and the spaces of flow lines and the
local structure around the nonminimal critical sets satisfy the Morse-Bott (or Morse-Bott—Smale)

conditions.

Remark 2.2. Note that even though M3;

Higgs(E) is singular when deg(F) = 0, then one can use

(E) in terms of

the Poincaré polynomials of the critical sets and their Morse indices (see [4] for more details), and

the above facts for the rank 2 case to compute the Poincaré polynomial of M3, o

so the terminology “perfect” applies in this case as well.

2.4. The unstable manifold in a neighbourhood of a critical set. In the rank 2 case studied
in [I7], the critical sets consist of Higgs bundles for which the holomorphic bundle is a direct sum
of line bundles F = Ly @ Lo (we will always use the convention that deg Ly > deg L) and the
Higgs field is ¢ € H°(Li Ly ® M)\ {0}. The next result is contained in [I7], and we state it here in

order to use it in the sequel.
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Lemma 2.3. In a neighbourhood of a critical point y := [L1 & La, ¢|, the unstable manifold W,
of points that flow up to y is given by equivalence classes of Higgs pairs for which the bundle is an
extension
0—ILs—FEF—L —0
and the Higgs field is ¢ € HO(LiLy @ M) C H°(End(E) ® M).
In particular, the unstable manifold is parametrised by the space of extensions W~ = HY(LiLo)

and the Morse index at the critical point y is then given by
(29) Ay :=dimg W, =2h'(L}L;) = 29 — 2 — 2deg(LjLs) = 29 — 2 + 2(deg L1 — deg Ly).

For a given critical set Cy, the unstable manifold, denoted W, is a vector bundle over Cy with
fibre over the critical point y := [L1 @ Lo, ¢] given by W~ = HY(L:Ly).

Since the critical values are isolated, for each critical set Cy there exists € > 0 such that there
are no critical values in the interval [f(Cy) — ¢, f(Cy)). Define

(2.10) S, ={zeW, | f(z) = f(Caq) — ¢},

which is homeomorphic to a sphere bundle S; — Cy, for which the fibre over y = [L1 ® La, ¢| € Cy
is a sphere of dimension A\, — 1 in H'(LjLs).

3. SECANT VARIETIES IN THE UNSTABLE MANIFOLD

Each unstable manifold W is stratified by

(3.1) wy = |J 9
0<t<d

In a neighbourhood of the critical set Cy, the unstable set W is diffeomorphic to a vector bundle
V. — Cg with fibres H Y(L%Ls). Since the C* action acts by scaling the extension classes in
these fibres, and the gradient flow is C* equivariant, then the stratification descends to the
projectivisation PV,". In the next section (Theorem we will show that the strata have a
geometric description in terms of certain secant varieties for the embedding X — PH!(L%Ly), and
so in this section we recall some facts about secant varieties and set the notation for the next
section. Useful references for the following are [2], [19], [20], [25].

Consider a critical point [L1 & Lo, ¢] € C4. Then L3L; ® K is very ample, and so there is an
embedding

F:X < PHYLiL,) 2 PHY(L3L, ® K)*.

One can then define the secant spaces of this embedding as subspaces of PHY(L3L; ® K)* that
osculate to a given order at a given set of points in F(X) C PHY(L}L; ® K)*. In order to prove
Theorem which relates flow lines to secant spaces, it will be more convenient to define these
algebraically in terms of Hecke modifications (Definition below) and then use this equivalent

definition in the sequel.
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Any effective divisor D = Z§:1 m;p; of degree N defines a Hecke modification
/1 = Ll [_D] )
together with an induced homomorphism

i* s HY(LiLy) — H'((L})*La).

Definition 3.1 (Secant space of total multiplicity N). Given any integer N < deg L1 — deg Lo and
an effective divisor D = Z§:1 mjp; of degree N, the secant space of D in PH'(L}Ls) is the space
determined by the projectivisation of

ker (Hl(L“{Lg) o, Hl((Ll[—D])*Lg)) .
The total multiplicity is N.

If N > 2 then it is a priori possible that the dimension of the secant space will be lower than
expected; for example, if three points in X lie on a projective line in PH 1(L’{Lg). The next lemma
gives a bound on N for which the secant space is guaranteed to have the expected dimension. In

particular, this result applies to all flow lines between nonminimal critical sets (see Lemma 4.3)).

Lemma 3.2. If N < dy — da, then every secant space in PHY(L%Ly) corresponding to a divisor
D =%, mypy of degree N is isomorphic to PN=1 and corresponds to the unique linear PN~1 C

PHY(L}Ls) that osculates to order m; — 1 at each pj € X C PHY(L}Ls).

Proof. The bound on N shows that deg(L})* Ly = deg LiLs + N < 0, and so h°((L})*L2) = 0, in
which case the long exact sequence for 0 — L} < L1 — @?:1 (C;njj — 0 reduces to

0— CN — HY(LILy) -5 HY(L))*Ly) — 0.

Therefore dimc ker¢* = N, as required.
The statement that the space osculates to the correct order at each point p; € X follows from
[18, Prop. 2.4]. O

The notation for the above construction is written in terms of the notation for critical points of
I Miiggs (E) — R in order to be compatible with the results of the next section. To simplify the
following, from now on let L := L] Ly with deg L < 0.

If 0 < N < —degL satisfies the bound of the previous lemma, then the above construction

defines an injective map
(3.2) seck : SN X — Gr(N, HY(L))
that takes an effective divisor of degree N to keri* C H'(L) (or equivalently, the secant space in
PH!(L)).
Consider the tautological bundle T' — Gr(N, H(L)), and let Ty denote the complement of the

zero section in 7. There is a projection 7 : Ty — PH'(L) which takes each point in a space to its
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image in PH!(L), and therefore there is a projection map
(seck)*Ty — PHY(L).

Definition 3.3 (N'" secant variety). Let N satisfy the bound of Lemma The N** secant
variety of X in PHY(L), denoted Seck (X), is the image of the projection (seck)*Ty — PH'(L).

For each effective divisor D = Z§:1 mjp; of degree N, the secant space oAf/ D in PHY(L) is
denoted T1% C Seck (X) ¢ PHY(L). The associated space in H'(L) is denoted I1%.

Remark 3.4. The relationship between this construction and Schwarzenberger’s secant bundle
construction [25] is explained in [3].

The construction above shows that Seck (X) € PH'(L) is the subvariety containing all of the
points that lie in secant spaces of total multiplicity N.

Lemma [3.2] then implies the following result.

Corollary 3.5. IfdegD < dy —ds—1 and p € X is not in the support of D, then 1:1\;1} ﬂﬁg ={0}.

Proof. Let N = deg D. Since D + p satisfies the bound of Lemma then H%+p =~ PN and
H% =~ PN=1 Since p is not in the support of D, then Hf)ﬂ, is the space spanned by Hf) and p.
Therefore p ¢ 1k, O

Lemma 3.6. Let L — X be a line bundle with deg L < 0 and let D1 and D5 be effective divisors
on X with deg D1 + deg Dy < —deg L. Then the secant spaces defined by D1 and Dy will intersect
in PHY(L) if and only if there exists an effective divisor E such that D1 — E >0, Do —E > 0. The
intersection I/I\LD/1 N ]'j'[%; is the space ﬁ% for the maximal such choice of E.

Proof. Since deg D1 + deg Dy < — deg L, then inductively applying Corollary shows that if Dy
and Dy have disjoint support, then H%)l N Hf}z = {0}. Therefore, if the intersection of the two

spaces Hgl and H& has positive dimension, then there is an effective divisor £ > 0 such that

FE < Dy and E < D5 such that

(3.3) Hé C H%l N H%Q,

and the above inclusion is an equality if F is the maximal divisor such that £ < D1 and F < Ds.
Conversely, if there exists an effective divisor £ > 0 with E < Dy and E < Ds, then Hé - Hf)l

and Hf; C HL2, so (3.3]) is satisfied. ]
The results of the next section show that spaces of flow lines can be parametrised by secant

varieties in PH'(L}Ly) (cf. Lemma . The following open subset of points that do not lie on

any secant spaces of smaller dimension will parametrise unbroken flow lines
(3.4) Secho(X) := Seck (X) \ Seck_;(X).

Numerous authors have studied the singularities in Seck (X); see for example [2], [20], [25]. The

precise statement we need in the sequel is the main theorem of [3].
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Lemma 3.7 ([3]). If N satisfies the bound of Lemma then Sing (SecN )) = Seck ((X). In
particular, Sec&O(X) is a smooth manifold of complex dimension dimc SecNO(X) =2N - 1.

The above construction will be used to parametrise spaces of flow lines that appear within the
unstable manifold of a single critical point [L1 @ Lo, ¢]. This determines a fibre bundle over each
critical set, with each fibre given by a secant variety as above for the bundle L]Ly. This is made

precise in the following definition.

Definition 3.8 (Global secant variety). Let C,, be a nonminimal critical set and let PW, be the
projectivisation of the unstable manifold from Lemma The N global secant variety over C,,
is the smooth fibre bundle P*_ . — PW, — C, for which the fibre over [L; & Lo, ¢] € C,, is
Seciio?(X) € PH'(L}Ly).

The points in P}y parametrise a subset of the C* orbits in W, o/C*. In order to parametrise a
subset of the associated sphere bundle S;; C W, define the fibre bundle 8}, — Cy by pullback

St Ny — S,

J/Sl l/ st

Pe N — PW;O.

4. CLASSIFICATION OF FLOW LINES

The goal of this section is to prove Theorem which gives a new criterion to predict the
downwards limit of the flow with initial condition in the unstable set of a critical point [L; & Lo, ¢].
The criterion is geometric in nature, in that it is given by the secant varieties of the embedding
X < PHY(L}Ls). This method has previously been used to classify Yang-Mills flow lines [29], and
here we show that a similar idea can be used to classify all of the flow lines in the rank two moduli
(B).

space JV[HZggS

4.1. Harder-Narasimhan types in the unstable manifold. Let Li, Lo be line bundles with
deg Ly > deg Ly and h%(L{Ly ® M) # 0, so that there exists a variation of Hodge structure
[L1 @ Lo, ¢ € H°(L}Ly ® M)] corresponding to a fixed point of the C* action. Lemma shows

that points in the unstable manifold for the flow are determined by extensions
(4.1) 0—Ly—FE— L —0.

The results of [I7] show that the limit of the downwards flow is determined by the Harder-
Narasimhan type of F, and this is made more precise by Hausel and Hitchin in [I6, Sec. 4.2.3],
where they describe the bundle extensions associated to a flow line. The goal of this section is to
explain how the limit is determined by whether the extension class lies in certain secant varieties
in PH' (L% Ly), which leads to a geometric description (cf. Lemma of the space of unbroken
flow lines connecting two critical points in terms of secant varieties in the spirit of the results of
[29, Sec. 4.4] for the Yang-Mills-Higgs flow.
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First note that since dimc X = 1, then with respect to the extension , if I} — Eisa
subbundle with deg L} > deg Lo, the composition L] < E — L; makes L] a locally free subsheaf
of Lj. Since both are locally free of rank one, then there is an exact sequence of sheaves

‘ ¢
O—>L§<i>L1—>@Cgk—>0.
k=1
Conversely, a subsheaf L} N Ly lifts to a subsheaf of F if e € H'(L}Ly) is in the kernel of the
pullback homomorphism

(4.2) HY(LiLy) - H'((L})*Ls)

(see [22]). Note that since e # 0, then this descends to a condition on the equivalence class
le] € PH (L% Ly).

The resulting subsheaf L} < FE will be a subbundle if and only if it is saturated, so that there is no
intermediate sheaf L] with deg L} > deg L that satisfies L} < L} < L such that e € H'(L}Lo)
pulls back to zero in H'((LY)*Ls).

Since deg L1 > deg Lo, then L3L; ® K is very ample and so there is an embedding of the
underlying Riemann surface F : X — PHO(L3L1®K)* = PH'(L;Ls). Any point p € X determines
a Hecke modification L;[—p] < L; and the image F(p) € PH!(L} L) determines a line through the
origin in H'(L} L) which is the kernel of the pullback homomorphism H'(LjLs) — H'(L1[—p]*Lo).

More generally, an effective divisor D = »;_, mypi with degree mq + -+ + my < %(deg Ly —
deg Ls) determines a Hecke modification L} = L;[—D] and a subspace of PH* (L% L) via Lemma
Any point [e] in this space determines a line in H!'(L}Ls) that pulls back to zero in H*((L})*Ls).
Equivalently, by viewing [e] € PH'(L}Ls) as an extension class, then [e] determines a bundle E
with a subsheaf L.

This process is summarised in the diagram below.

O / O
0 r
0 Lo >y B s Ly > 0
(43) /
/ = D Gt
0 Di_1 Cpy 0
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Lemma 4.1. This subsheaf Ly — E is a subbundle of E if and only if both of the following are

true

(i) [e] does not lie on a linear subspace through a proper subset of the points F(p1),. .., F(pe),
and

(ii) [e] does not lie on a linear subspace through F(p1), ..., F(pe) that osculates to order strictly
less than mj — 1 at F(p;) for at least one j.

Proof. The subsheaf L} — E is a subbundle if and only if it is saturated. This occurs if and
only if there is no effective divisor D’ < D such that [e] lies on the space Hg,LQ. The condition
D’ < D shows that the subspace IIp is either a linear subspace through a proper subset of the
points F(p1),..., F(pe), or a plane through F(p1),...,F(ps) that osculates to order strictly less
than m; — 1 at F(p;) for at least one j. Therefore L] — E is saturated if and only if conditions
(i) and are both true. O

In particular, if degD = ), my < %(deg L; — deg Lo) such that deg L] > %deg E. then the
uniqueness of the Harder-Narasimhan filtration shows that there is a unique such subbundle of

maximal degree.

Lemma 4.2. Let 0 - Ly - E — L1 — 0 be an extension with deg L1 > deg Ls, let D be an
effective divisor such that deg D < %(deg Ly —deg La) and suppose that the extension class lies in

the kernel of the pullback ([&.2)). If [e] € PH'(L}Ly) satisfies the conditions of Lemma then E
has Harder-Narasimhan filtration

(4.4) {0} c L] CE.

Proof. The diagram shows that L] is a subsheaf of E, and conditions (i) and show that
this subsheaf is a subbundle. The bound on deg D implies that deg L} > 3 degE and so L} is
a destabilising subbundle. For a rank 2 holomorphic bundle over a compact Riemann surface, a
destabilising line bundle is the unique maximal destabilising line bundle, therefore we can conclude
that the Harder-Narasimhan filtration is . O

The following lemma relates this to the secant varieties of the previous section.

Lemma 4.3. Let E — X be a rank 2 complex vector bundle, let u be an integer in the range
sdegE < u < J(degE+degM), let [L1 ® Lo, ¢] € Cy and let D be an effective divisor with

deg D < %(deg Ly — deg Ls). Then the subset of the unstable manifold W[f

L1®La.6] consisting of

pairs [E, ¢'] where E is isomorphic to an extension of line bundles

0— Li[-D] - E — Ly[D] = 0
is given by W_l(SechggLé o(X)), where m denotes the projection  : LTS \ {0} — PWi om0

4.2. Higgs pairs in the limit of the downwards flow. The results of the previous section

classify the Harder-Narasimhan filtrations in each unstable set W, , however this only determines
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the holomorphic bundle underlying the Higgs pair in the lower limit of the flow, which is determined
by the extension from diagram . The goal of this section is to give an explicit description of the
gauge transformation that determines this isomorphism. This is motivated by the constructions in
[30, Sec. 4.5] and [29] which also give an explicit description of the effect of a Hecke modification
on a Higgs field. The difference here is that one can compose the two Hecke modifications that
appear in the diagram in such a way as to construct a smooth gauge transformation which
induces an isomorphism of Higgs pairs.

On writing the Higgs pair as an extension of bundles 0 — Ly — E — L1 — 0 with Higgs field
¢ € HY(L{Ly ® M), in this gauge it is easy to see the limit of the upwards flow, however the limit
of the downwards flow is not obvious. After changing gauge in this way, from this new point of
view the limit of the downwards flow appears via a simple calculation (see Lemma below).

In preparation for Lemma[£.4] first consider the case of a Hecke modification of multiplicity m at
a single point p € X. Let U be a coordinate neighbourhood with coordinate z centred at p. Choose
open neighbourhoods V, W of p with W C V, V C U and a C* bump function 1 : X — Rx( such
that n=0on W and n=1on X \ V. Then

w= f—g € Q%(X)
defines a smooth one form on X. In fact, since the support of w is contained in a coordinate
neighbourhood, then w € Q%!(L) for any line bundle L trivialised over U; in particular [w] defines
a cohomology class in H%!(L}Ls).

Let 7 : [0,1] — X be a loop contained in U \ V' which has winding number one around the point
p. Serre duality then identifies the Dolbeault cohomology class [w] € H%'(L} Ls) with an element
of HY(L{L ® K)* given by

43) i) = [ 20 ] OO

:/m:/m:27r’[:R,eSZ:0 (im) for all s € HY(L3L, ® K).
v v o

Zm z
When m = 1, then this is a scalar multiple of the evaluation map at the point p, and therefore
[w] € HYY(L3Ly) = HY(L5L, ® K)* corresponds to the image of p € X in PH(L3L; ® K)*. When
m > 1 then (4.5 determines an m-dimensional subspace

spanc{[w], [zw], ..., [z 'w]} € HY(LSL, @ K)*

which corresponds to the space in PH(L3L; ® K)* that osculates to order m — 1 to the image of
X at the point p € X.

Now consider an extension 0 — Ly — F — L1 — 0 with extension class [w]. On the trivalisation
over U, this corresponds to the holomorphic structure

a—ai (0
4.6 =0+ =
(1:6) i=ae (07
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where the matrix (which is only nontrivial over U) is defined using the basis on E|;; given by the
C* bundle isomorphism E|; & Lo|; & L1|;. Let ¢ € HY(LiLy @ M)\ {0} so that

(o %)

Then Lemma shows that [04,¢] is a Higgs pair in the unstable manifold of the critical point
[L1 ® Lo, ¢]. )

Let L} = Li[-mp]. On a trivialisation over the neighbourhood U, the pullback of f—ﬂ to
QUL((L})*Ly) is given by applying a meromorphic gauge transformation, so that the connection

form from (4.6) becomes
10 \[o &2\(1 o\ (o dy
0 zm/\o o/)\o =) \o o

0 On

which is an exact (0,1) form. To trivialise A = (0

), one can apply a smooth gauge transfor-
mation g- A = gAg~! — (9g)g™*

b )G R6 ) )6 ) ()

to obtain a trivial holomorphic structure over U. Therefore, gauging by the singular gauge trans-

({1 np=1\ (1 0\ (1 z27™(n-1)
=\ 1 )Jlo =m) "o =

on a trivialisation over U shows that the pullback of the extension 0 — Ly - F — L1 — 0is a
direct sum Lo & L.

In a similar way, on the trivialisation over U one can gauge Lo @ L} by another singular gauge

Cfem o\ (1 o\ [ o
2=V o 1)\i=yp 1) " \1op 1

to obtain an extension 0 — Li[—mp] — E’ — Lo[mp| — 0 corresponding to the diagonal exact
sequence in the diagram (4.3). A priori this bundle E' may not be isomorphic to E, however the
composition of these gauge transformations is

[ 2" n—1
(4.7) 9291 = (1 Ly (- (1 77)2)> :

which is a C*° gauge transformation, since the point {z = 0} is contained in the neighbourhood W

M1
9291lw = 1 0/

formation

transformation

where 77 = 0, in which case we have
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In particular, gog; defines an isomorphism of Higgs pairs (E', ¢') := g2g1 - (E, ¢)

In summary, the above construction gives an explicit gauge theoretic construction of a family of
Higgs fields in B*® that represent a flow line in M, 95 (E), from which we have a new proof of the
results of [16], Sec. 4.2.3] on the limit of the downwards flow.

Lemma 4.4. Let [L1 ® Lo, ¢oo] € Cy and consider a Higgs pair in the unstable manifold W,
for which the underlying holomorphic bundle is an extension 0 — Lo — FE — Ly — 0 which is
isomorphic to 0 — L1[—D] — E — Ls[D] — 0 via for an effective divisor D such that deg D <
3(deg Ly — deg Ly). Then the limit of the downwards flow is the critical point [L1[—D] & Lo [D], ¢g],
where ¢g € H(L; L2[2D] ® M) is the image of ¢oo € H°(Li Lo @ M) via the sheaf homomorphism
LiLy® M — LiL2[2D] @ M.

Proof. In a local trivialisation around each point p; with multiplicity my, the construction above
determines a smooth gauge transformation gog; from (4.7) such that

¢ = (9201) - ¢ € H((L1[mypr))* Lo[mypr] ® K).

A computation shows that

e n—1 0 @) [z7™1A-(1=-n?% 1-n
(9291)'¢—<1_77 zmk(l—(l—n)2)> (0 0)( n—1 zm’“>

_ (=12 2P
—(L =) (1—mn)z"p
Now let [L} @ L, ¢] denote the critical point at the lower limit of the downwards flow. This flow
is given by scaling the Higgs field ¢ + e ¢ and applying a complex gauge transformation to

preserve Hitchin’s equations (2.1]). In the situation under consideration, this gauge transformation
has the effect of scaling the extension class to zero. On the Higgs field ¢’ this has the form

t 0 —1)z™m* 2my —t 0
¢/(t) — 6—215 e . (77 )Z ) 2 z ¥ € .
0 e’ )\ —(1=n) (L-n2Me/ 0 e
_ e—?t(n _ 1)kag0 Z2mkg0
—e (1 —n)%p e (L - )My
0 zzmkgp
. / _ —.
= Jlim ¢'(t) = (0 0 ) =: 0.
Therefore we see that the Higgs field in the limit of the flow now has an extra zero of order 2my at
each point py.
The general case works in the same way, by using disjoint coordinate neighbourhoods Uy, of each
Pk to construct an extension class associated to each effective divisor D = >~} mypy, satisfying

deg D < %(deg Ly — deg Ly). The same process as above shows that the limit ¢y must have a zero
of order 2my, at each point pp € X forallk=1,...,n. O
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Remark 4.5. Lemma classifies all of the points in W, that flow to a nonminimal critical set.
Since the function [¢[|3. : Mii49s(E) — R is proper and analytic, then the complement of these
flow lines in W, will flow to the minimum {¢ = 0} = M**(E) C M3, ,(E). Therefore, the above

result also gives a criterion for points in W, to flow to the minimum.

Conversely, given a critical point [L)} @ L}, ¢g] € Cy, the same method can be used to describe all
points in the upwards limit of a flow line emanating from [L}] @ L), ¢o]. This result was obtained
using a different method of proof by Hausel and Hitchin in [16], Sec. 4.2.3].

Corollary 4.6. Let [L} ® L}, ¢o] € Cy, let D be an effective divisor with degree bounded by
1
0<degD < 3 (deg E+ deg M) — ¢

and suppose that ¢o € H((L})*Ly @ M) is the image of some ¢o € HO(L} L4[—2D] @ M) under
the homomorphism HY((L})*L,[—2D] @ M) — H°((L})*Ly ® M). Then there exists a flow line
connecting [L} & L, ¢o] € Cy and [L}[D] & Ly[—D], ¢o] € CotdegD-

Proof. Lemma shows that for all effective divisors D satisfying the above degree bound, one
can construct a flow line between [L}[D] & L5[—D], ¢] and [L] @ L, ¢o] € Cp. O

4.3. Classification of flow lines. Using the results of the previous section, we can now classify

all the flow lines between two critical points.

Corollary 4.7. Let [L}| @ Ly, ¢o] € Cq and [L}[D] ® L[—D], ¢oo| € Cardegp be critical points
with ¢o € HO((L})*Ly ® M) the image of oo € H(Ly LY[—2D] ® M) under the homomorphism
HO(LYL4y[-2D]) @ M) < HO((L})*Lhy ® M). Modulo the St action, the space of all flow lines
between these critical points is parametrised by the open subset
o 272 Pl  gee (x) € i 220« pr (1) Ly[—2D)).

Proof. Lemma shows that the secant spaces in the projectivisation of the unstable manifold
determine the Harder-Narasimhan type. Lemma [4.4] and Corollary [£.6] show that the Harder-
Narasimhan type determines the limit of the downwards flow, from which we obtain the desired
result. O

In order to state the next theorem, let Cy and C,, be two critical sets with f(Cy) < f(Cy), and
recall the sphere bundle S, — C, from (2.10)). Since f is S* invariant, then the level sets and the
unstable sets are preserved by the S! action, and so there is a canonical homeomorphism

S /St =Pw, .

Recall from ([2.7)) that the space of unbroken flow lines from Cy to C,, is denoted by £}. Then there
is an inclusion £j < S, given by mapping a flow line to the unique point of intersection with the
level set f~1 (f(Cy) — €).
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It follows directly from Definition that there is an inclusion of the global secant variety
Py —=PW, .

The next result relates the space of flow lines £} to the global secant variety Pj. Recall the
convention from Section that Co = M** denotes the minimum for ||¢||%,, and the nonminimal
critical sets are Cp for £ > 0.

Theorem 4.8. If Cy is a nonminimal critical point, then the projection S, — S, /S! = PW,,
maps the image of L} — S, to the image of Py — PW, . In particular, this projection induces a
circle bundle g : LY — PY, where the fibres are orbits of the S* action e - [E, ¢] = [E, e ¢].
The space of flow lines L connecting C, to the minimum Cy is given by
Ly=s,\ | cr
0<t<u
The projection S,, — PW,~ induces a circle bundle
g: Ly —=PwW,\ | P
0<t<u

Proof. Corollary [£.7] determines the space of flow lines between two nonminimal critical points.
Extending this to the flow lines within the unstable bundle over the critical set C, gives the first

part of the result. Remark [£.5]shows that the space of flow lines to the minimum is the complement
of this set, which then gives the second part of the result. ]

Now let @ denote the closure of £} in S, . This corresponds to adding flow lines for which the
downwards limit lies in an intermediate critical set C,,
(4.8) e = | (ennzp.

{<m<u

Similarly, let ?7; denote the closure of P} in PW, . This corresponds to adding points lying on
secant spaces of lower dimension
(4.9) pipr= |J

{<m<u

Applying Theorem to the spaces L%, for £ < m < u gives us the following result, which shows
that the projection map £j — P} from Theorem extends to a projection on the closure.

Proposition 4.9. Restricting the projection S; — S, /S = PW,; to the closure L} C S, deter-

mines a circle bundle ?% — ?TZL

5. THE ENERGY FUNCTION IS MORSE-BOTT-SMALE

Hitchin [I7] uses a general result of Frankel [12] to show that if the degree and rank of E are

st
Higgs

become equalities (see also [§] and [9] for related results for Bialynicki-Birula stratifications of

coprime, then f : M — R is a perfect Morse-Bott function, so that the Morse inequalities
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singular moduli spaces). When rank(FE) = 2, then this also applies in the noncoprime case, since
the singularities in the moduli space do not intersect the stable or unstable manifolds for the
nonminimal critical sets (see Section . Now we can use the explicit description of the spaces of
flow lines to show that f satisfies the stronger Morse—Bott—Smale condition, which requires that
the stable and unstable manifolds of f intersect transversely.

Let rank(E) = 2, let 2 deg E < ¢ <u < } (deg E + deg M) and consider two critical sets Cy, C.
Recall that the Morse index Ay of Cy is the real dimension of the negative eigenspace of the Hessian
of any critical point in Cy, . Since f is Morse—Bott, then the index is constant on each critical set,

and WZF is a manifold with codimension equal to Ay. Therefore, for any x € F}' we have
T M09 = oW, & NJW,F,

where ]\@,J:V[WéJr denotes the normal bundle to TmI/VéJr in the ambient manifold M := M3} Theorem

Higgs®
shows that the space of unbroken flow lines between the two critical sets is 8 C S, . In

particular, we have the following
Lemma 5.1. If £ > 0, then the real codimension of Fy in W, is equal to the Morse index of Cy.

Proof. The codimension of the global secant variety Py C PW, is equal to the codimension of

Secqﬁfo(X) in a single fibre PH! (L% Ly). Lemma shows that dimg Sect “(X) =2 (2(u — £) — 1)

and so an application of Riemann-Roch shows that the real codimension in PH!(L}Ly) is

dimg H(LiLs) —2 —2(2(u—£) —1) =2(g — 1 +deg Ly — deg Ly — 2(u — £))
=2(g—1+u—(degFE —u)—2(u—1¥))
—2(g—1—degE +20),
which is equal to the Morse index 2(g — 1 + ¢ — (deg E — ¢)) at Cy from (2.9). O

Proposition 5.2. When rank(E) = 2, then the function f : M, (E) — R is Morse-Bott-Smale.

Proof. If £ =0, then WZF is an open dense subset of M37

Higgs(E£) and so the intersection W, nw,

is automatically transverse for all u > 0.
If £ > 0, then the previous lemma shows that there is a subspace N;V u Fy C T, W, which is

complementary to 7, xWZr and has the same dimension as N%V[W;r. Therefore we have
T M5 = TW,” © NYWF = TLW, @ NV 5§ € TWF + TLW,
and so the intersection W; N W, is transverse. g
6. COMPACTIFICATION OF SPACES OF FLOW LINES

An important step in the construction of the Morse-Bott—Smale complex (cf. [I]) is to compactify
the space of flow lines £} between two critical sets by adding broken flow lines. For the moduli
space of Higgs bundles, Theorem shows that L} has an algebro-geometric interpretation in
terms of the global secant variety Py and the goal of this section is to prove Theorem which
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shows that the compactification by broken flow lines also has an algebro-geometric interpretation
via the resolution of secant varieties studied by Bertram [2].

Recall the space £} of unbroken flow lines from and the inclusion £} < S, into the sphere
bundle . There are two compactifications of £} that will be important in the sequel. The
first, denoted by [7, is simply given by taking the closure in S, , and corresponds to taking the
union of £} with all spaces £% N LY such that £ < m < u (cf. (£8)).

The second compactification corresponds to adding broken flow lines between C,, and Cy. Austin
and Braam [I] give a detailed description of this compactification, which will be denoted @ in the
sequel (see Section for more details). There is a canonical projection

(6.1) Pitorse : £ — L¥

given by mapping a broken flow line emanating from C, to the unique point of intersection with
the level set f~! (f(C,) — €), where ¢ > 0 is chosen so that there are no critical values between
f(Cy) — € and f(Cy). This projection is one-to-one on the open subset L} C £ and for each

x € L} \ L} such that limy ;o p(2,1) = 2o € Oy, for £ < m < u, the fibre Pj\}}me(az) is the space
of broken flow lines between x,, and C,.
~ N
On the algebro-geometric side of the picture, Bertram [2] constructs a resolution Secy (X) —

Sec¥ (X) of each secant variety, which extends to a fibrewise resolution

(6.2) Psec : P4 — PY

of the closure of the global secant variety from Definition [3.8 In this resolution, the points in the
exceptional divisors correspond to sequences of points in secant varieties of X C PH!(L}L2[2D])
for different divisors D (see [2, Cor. 2.5(b)] and Lemma below for more details). From the

point of view of Theorem this corresponds to a sequence o, ..., Yy, of critical points together
with points z1 € PW, ..., 2, € PW,  such that each z; € PW,  lies in a secant space of

X — PW, | such that the preimage in the sphere bundle S,  flows down to yx. The projection
(6.2) then maps the sequence of points in secant varieties to the first term in the sequence

(6.3) Pgee : P — Py
{z1,..-,2n} — 21.

Theorem shows that the S' action on the moduli space determines a circle bundle Ly — Py,
and Propositio shows that this extends to a circle bundle ?7; — Tz. In Sectionm we construct
a map £} — P} that takes a broken flow line to a sequence of secant spaces, corresponding to a
point in the resolution . The goal of this section is to prove the following result that this map

extends to a projection from the Morse resolution (6.1) to Bertram’s resolution (6.2)).
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Theorem 6.1. The following diagram commutes
Zg‘ Def. @ {ﬁ‘g
(64) P]\/Iorsel J/Psec
L—g Prop. gg ﬁ

One of the motivations of [2] was to resolve the rational extension map to the moduli space of
semistable bundles P := PH!(LjLs) --+ M**(E) to a morphism P — M*$(E). Theorem gives
a Morse-theoretic interpretation of this morphism by showing that the Bertram’s resolution of the
extension map corresponds to the map Zg — M?**(E) taking a broken flow line to the critical point

in the lower limit.

6.1. The Morse resolution. In the following, let f : M — R be a proper Morse—Bott function,
with critical sets labelled Cy for 0 < d < n and f(C;) < f(C;) iff i < j. We also assume that f is
weakly self indexing, so that L; =0 if i < j (cf. [I, Sec. 3]). This assumption is satisfied for the
moduli space of rank 2 Higgs bundles with the critical sets labelled with the convention of Section
The time ¢t downwards gradient flow of f with initial condition z € M is denoted by ¢(z,1t).
Given a Morse-Bott—Smale function satisfying the conditions of [I], any pair of critical sets
determines a Morse resolution defined using the compactification of unbroken flow lines by adding
spaces of broken flow lines. More precisely, let Cy and C,, be two critical sets with f(Cy) < f(Ch),

and recall the definition of the space of unbroken flow lines
¢ ={zeM| lim p(z,t) € Cp, lim ¢(z,1) € Cu}/R,

where the action of R on a flow line is by time translation. When it is necessary to specify the

upper critical point y € Cy,, the space of flow lines is denoted
Ly ={ze M| lim ¢(z,t) € Cp, lim o(z,1) = y}/

Choose ¢ > 0 so that there are no critical values in the interval [f(C,) — ¢, f(Cy)). Then each
flow line emanating from C,, has a unique point of intersection with the level set f~! (f(C,) — €).
Identifying the sphere bundle S, inside the unstable manifold with a subset of the level set gives

a homeomorphism S, = W, (N f 1 (f(Cy) —€), and therefore there is an inclusion
Ly —S,.

Now define ?g to be the closure of £} inside S, . Similarly, for a given y € Cy, [7; denotes the
closure of L C S

6.1.1. Compactification by broken flow lines. Before defining the Morse resolution (see Definition
below), first recall the compactification ZE‘ of the space £} of flow lines defined by adding
broken flow lines. The motivation for this definition is that these compactified spaces are used to
show that the differentials ¢ in the Morse complex satisfy the conditions 6 o § = 0 (cf. [I, Prop.
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3.5]) and that they are compatible with the cup product via the chain relation [I, (2.2)]. This
compactification is explained in detail by Austin and Braam [I, Sec. 2].
Each point x € £} determines a sequence of intermediate critical sets Cp,,, Ciny,y - .., Cny = Co

T

with indices u > m; > mg > --- > m,, = ¢ and flow lines between these critical sets

(6.5) x1 €Ly xa €L, my, € L)Y
In the sequel, a flow line of this form will be denoted x = {x1,...,2,,} € 23?

Definition 6.2. The Morse resolution 27; — [Tg is the projection taking a broken flow line x =
{z1,...,2n, } € L} to the first flow line emanating from C,
Prrorse : L’z — TE/L

(6.6)
r={x1,...,2n, } — T1.

When the upper critical point y € C,, is fixed, then the restriction of the Morse resolution is denoted

Putorse : LY — LY

The following lemma shows that each fibre of Pyso.se is itself a Morse resolution at a lower critical
set.

Lemma 6.3. Let { < m < u, let Pyorse : EE‘ — ZZ be the resolution from Deﬁnition and let
x1 € L% ﬂf}‘ C ?? with y1 € Cy, the corresponding critical point at the lower limit of the flow line
z1. Then

Pigh e (11) = L7

Morse

Proof. The fibre Pﬂjﬁw (1) consists of all broken flow lines connecting y; € C,, to Cy, which is

precisely the resolution £Y'. O

6.2. Resolution of secant varieties. In this section we recall the resolution of secant varieties
defined by Bertram [2] and then prove Theorem [6.1] which relates this to the compactification by
broken flow lines of the previous section.

Let L — X be a line bundle with deg I < 0. Using Schwarzenberger’s secant bundle construction
[25], Bertram [2] constructs a resolution of Seck (X) ¢ PH'(L) by repeatedly blowing up PH'(L)
along the secant varieties of lower dimension. The precise statement we need is from [2 Sec. 2],
which is summarised in Lemma, below, however first we recall the key parts of the construction
(see also [T, Sec. 3.3] for further explanation).

If L* ® K separates at least k + 1 points, then let B¥(L) be the secant bundle of k-dimensional
subspaces associated to the line bundle L* ® K (cf. [2, Sec. 1]). Using H'(L) =2 HY(L* ® K)*, let
bl1(PH'(L)) denote the blowup of PH!(L) along X C PH'(L). Each secant variety is the image
of By, : B¥(L) — PHY(L), and bl1(B*(L)) is defined to be the blowup of B*(L) along 8, '(X). Let
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bl1(Bx) be the unique lift of Sy to a map
bly (BF(L)) Pl (PHY(L))

| |

BHIL) — P PHY(L).

Now inductively continue the process. If bl,(PH' (L)), bl,(B*(L)) and bl,(8) are defined for all
k > n and bl,,(5,) is injective, then (after identifying bl,,(B™(L)) with its image), define
(i) blpe1(PHY(L)) to be the blowup of bl, (PH'(L)) along bl,,(B™(L)),
(ii) blny1(B*(L)) to be the blowup of bl,,(B*(L)) along bl,(8) " (bl,(B™(L))), and
(iii) blp+1(Bk) to be the unique lift of bl,(Bx) to a map

blosr (BF(L)) —2t O gy (PHY(L))
blo(BF (L)) —2m) oy (PHY(L))

There is a canonical projection map bl,, 11(PH'(L)) — PH'(L) given by composing the projec-
tions bl 1 (PH(L)) — bl,(PH'(L)) at each stage of this process. This construction hinges on the
injectivity of bl, () at each step, which is proved in [2, Prop. 2.3].

Recall from Definition that the global secant variety P} (resp. the closure ﬁ) is defined as
a fibre bundle over the critical sets, where the fibre over [L; & Lo, ¢] is Secu ED(X) — PHY (L} L)

(resp. Sec 152 (X) < PHY(L}Ls)). Applying the above construction to the bundle PW, with
fibres PH' (L} Lz) gives us the following definition.

Definition 6.4 (Resolution of global secant variety). The resolution
lu | pu Du
Py Py — Py
is the (u — ¢ — 1) blowup of P¥ with fibre over [L1 & Lo, ¢] € C,, given by bl,_¢—1(B* “(LiLy)).

Remark 6.5. Note that this resolution is only nontrivial when u — ¢ > 1; for example, if u — ¢ =1
so that there are no intermediate critical sets between C,, and Cp, then fPi}f = P} is the fibre bundle
over C,, with fibres X C PH'(L}Ls), and so PY¥ = P¥.

The superscript in Pé’;f: will be dropped if themeaning is clear from the context. Now we can
restate [2, Cor. 2.5(b)] in the form needed in the sequel.

Lemma 6.6. Let { < m < u, let Psec : ffﬁg — P be the resolution from [2] and let z1 € P¥, C P¥

be a secant space in PH' (L} L) corresponding to a divisor D on X. Then
Pgee(w1) 2= bly—¢—1-aeg p(PH' (L L[2DY))).
Inductively applying Lemma [6.6] to the fibres of

Psec t bly—p—1—deg p(H' (Li L2[2D])) — PH' (L} L2[2D])
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shows that each point s € bl,_,_1(PH'(L}L3)) corresponds to a sequence of points in secant spaces
(6.7)
51 € SecggQ C PH'(LjLsy) corresponding to a divisor Dy of degree k;

59 € Secijfé2 2Dl - ppyt (LiL2[2D1]) corresponding to a divisor Dy of degree ko
s3 € SecijﬁZ 2D1+2D2) — ppy Y(LiLs[2Dy + 2Ds])  corresponding to a divisor D3 of degree k3

Sps € Secijg2 2Dl - pyy Y(L¥Ly[2D]) corresponding to a divisor D,,, of degree ki,

where D = Dy + --- + D, _1 is used to simplify the notation in the last line. In the sequel,
s € bly_¢_1(PHY (L% Ls)) of the above form will be denoted s = {s1,..., 8, } € bly_¢_1(PH'(L}Ly)).
We can now define a map relating the Morse resolution and the resolution of secant varieties.

Recall the circle bundle g : £} — P} from Theorem that takes an unbroken flow line = € L%’
to the corresponding point in Seciﬁ% C PH(L%Ls). The following definition extends this map to

the space of broken flow lines.

Definition 6.7. Let C; and C, be critical sets with ¢ < u and let y € C,. Define G : Z{Z —
blu,gfl(PHl (LTLQ)) by
G({z1,...,zn}) = {g(z1),..., 9(zn)}.

Since the fibres of g are orbits of the circle action, then we have the following result about the
fibres of G.

Lemma 6.8. Let [L1 ® Lo, ¢] € Cy, be a critical point and let {s1,...,8,} € bly_g_1(PHY(L}Ls)).
Then G=1({s1,...,8,}) = (S})™.

Proof. By definition, we have
G ({s1,. .. sn}) = {(z1,- .. an) €LY | g(zi) = sii=1,...,n},
and so G~({s1,...,sn}) is a Cartesian product
g (s1) X o x g (sn) = (ST m

In particular, we see that the subset of broken flow lines with n — 1 intermediate critical points
(E).
Now we can prove Theorem (6.1 which relates the compactification by broken flow lines to the

has a canonical (S1)" action induced from the S* action on M, 995

resolution of secant varieties.

Proof of Theorem [6.1] Proving that the diagram (6.4) commutes reduces to simply writing down
the maps using ((6.3)), and Definition We have

Pseco G({z1, ..., 2n}) = Psec({9(21), ..., 9(zn)}) = g(1)
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go PMorse({xly s 7:1771}) = g(a:l),

which completes the proof. O
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