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Abstract. The coordination of large-scale, decentralised systems, such as a fleet of Electric
Vehicles (EVs) in a Vehicle-to-Grid (V2G) network, presents a significant challenge for modern
control systems. While collaborative Digital Twins have been proposed as a solution to man-
age such systems without compromising the privacy of individual agents, deriving globally
optimal control policies from the high-level information they share remains an open problem.
This paper introduces Digital Twin Assisted Multi-Agent Deep Deterministic Policy Gra-
dient (DT-MADDPG) algorithm, a novel hybrid architecture that integrates a multi-agent
reinforcement learning framework with a collaborative DT network. Our core contribution
is a simulation-assisted learning algorithm where the centralised critic is enhanced by a pre-
dictive global model that is collaboratively built from the privacy-preserving data shared
by individual DTs. This approach removes the need for collecting sensitive raw data at a
centralised entity, a requirement of traditional multi-agent learning algorithms. Experimen-
tal results in a simulated V2G environment demonstrate that DT-MADDPG can achieve
coordination performance comparable to the standard MADDPG algorithm while offering
significant advantages in terms of data privacy and architectural decentralisation. This work
presents a practical and robust framework for deploying intelligent, learning-based coordina-
tion in complex, real-world cyber-physical systems.
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1 Introduction

The transition towards renewable energy sources has posed a significant challenge on the manage-
ment of energy generation and storage in modern power grids. Vehicle-to-Grid (V2G) technology
has emerged as a promising solution to tackle these challenges [17]. In V2G systems, the electric
Vehicles (EVs) can not only be scheduled to charge at valley time to better balance the generation-
usage unbalance of power grids, but also work as a virtual, aggregated distributed energy storage
to discharge stored energy back to the power grid when there are high demands. This capability
enhances grid stability and promotes more usage of renewable energy in power supplies.

A simple example of a V2G network is shown in Figure 1. The V2G network includes basic
power grid components, such as different energy sources, both renewable and non-renewable. The
energy sources connect to the grid to supply energy for power consumers. Typical power consumers,
for example, include residential homes and factories. The EVs connect to the grid by connecting to
different charging spots, such as the charging cord at home or public charging stations. Different
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from traditional grid structures where EVs are only regarded as power consumers, in V2G network,
the EVs also have the capabilities to feedback electricity to the grid. This ability enables EVs to
function as mobile energy pools, storing excess energy when grid supply exceeds consumer demand
and discharging power back to the grid when supply is insufficient [14]. While grids have tech-
nologies to dynamically adjust the generation and consumption to avoid imbalance, this process
typically involves using fossil fuel power generators, which is non-renewable and less ideal in terms
of environmental impacts. V2G offers a very promising solution to boost the usage of renewable
energy in traditional power grids.

However, there are several problems that hinder the realisation of V2G systems in real-world
power grids. The most significant challenge is the management of such a system with high uncer-
tainty originating from different user behaviours and mobility patterns [11]. Moreover, there are
problems with the scale of the system, as a potential V2G system may easily contain thousands of
EVs as autonomous agents. These complexities make V2G coordination a challenging problem for
traditional, centralised control methods, necessitating more intelligent and adaptive approaches.

Recent work has increasingly focused on the use of Digital Twins to model and manage large
complex systems [10,7,5]. A Digital Twin is a "live" model of a physical entity, continuously updated
with real-time data [8]. This continuous synchronization enables sophisticated "what-if" analysis
to identify optimal system actions and assess the potential consequences of human interventions
[4,23,22]. However, the traditional DT-based approach of creating a single, monolithic Digital Twin
for the entire V2G network presents significant disadvantages. For such systems with immense
scale, a centralised model will suffer from the inevitable problems of single-point-of-failure, high
synchronisation overhead, and may raise serious privacy concerns regarding the data of individual
owners.

Therefore, to fill the gap, the approach of federated collaborative Digital Twin has been proposed
[18]. While the concept of collaboration Digital Twins provides a robust architectural foundation, it
also introduces new challenges. The major challenge is how to effectively coordinate these indepen-
dent, autonomous entities to achieve system-wide objectives. Even though these frameworks allow
DTs to collaborate and build global models, a critical research gap remains: how to derive glob-
ally optimal and coordinated actions from the shared information, especially for intelligent Digital
Twins powered by Artificial Intelligence, e.g. through Reinforcement Learning (RL). RL enables
agents to learn complex, decentralised decision-making policies through trial-and-error interaction,
allowing them to develop emergent coordination strategies that optimise for long-term, collective
goals in dynamic environments.

This article proposes a novel solution to the problem of the collaboration of RL-based intelligent
twins. Our proposed approach leverages Centralised Training and Decentralised Execution (CTDE)
paradigm to learn globally-aware policies. The core of our contribution is a unique training mecha-
nism that uses a decentralised, collaboratively built global prediction model to assist the centralised
training process. This method allows for effective, coordinated learning without the need for the
collection of sensitive raw data from individual DTs to a central entity, thereby preserving privacy,
reducing communication overhead and achieving a high level of performance.

The contributions of this article is as follows:

— A novel, hybrid architecture and learning algorithm, Digital Twin Assisted Multi-Agent Deep
Deterministic Policy Gradient (DT-MADDPG), that integrates a multi-agent reinforcement
learning framework with a collaborative Digital Twin network. The core of this contribution
is a simulation-assisted critic mechanism that leverages a collaboratively-built global model
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to enhance the training of decentralised agents, enabling the learning of complex, coordinated
policies.

— The application and validation of this framework on the complex V2G coordination problem.
We demonstrate how our approach effectively manages the high uncertainty and conflicting
objectives inherent in V2G systems, providing a scalable and robust solution for balancing grid
stability with the needs of individual EV owners.

The rest of the paper will be organised as follows: Section 2 reviews the related work. Section 3 de-
scribes the proposed architecture. Section 4 details the DT-MADDPG algorithm. Section 5 presents
the experimental evaluation. Finally, Section 6 concludes the paper and outlines future work.

2 Related Work

Solving the complex coordination problem in V2G systems requires drawing upon advances in sev-
eral distinct research domains. To establish the context for our contribution, this section reviews the
relevant literature in three key areas. First, we discuss architectures for Collaborative Digital Twins,
which provide the structural foundation for multi-owner systems. Second, we examine algorithms
from Multi-Agent Reinforcement Learning, which offer powerful methods for intelligent decision-
making. Finally, we survey existing methodologies specifically applied to V2G Coordination.

2.1 Collaborative Digital Twins

Although the collaboration among DTs is a relatively new field of research, there are several works
that explore the possibility of Digital Twin collaborations. Work by Vergara et al. [18,19] proposed
Federated Digital Twins (FDT) as an enabling technology for collaborative decision making. Their
proposed paradigm allows the interconnections among autonomous DTs in the virtual space, which
therefore can leverage the information sharing among the DT network to enhance global decision
making. To build such collaborative DTs, a straightforward and intuitive approach is to organise
the DTs in a hierarchical manner. Villalonga et al. [20] presented a distributed DT framework using
several local DTs to make local decisions and aggregate these decisions at a global DT for scheduling
and global decision making.

To address the limitations of these approaches, particularly regarding data privacy, our previous
work introduced the Collaborative Digital Twin Framework [9]. This framework enables autonomous
DTs to cooperate by sharing high-level information, such as predictions and decisions, rather than
sensitive raw data, thus preserving the privacy of individual participants. To enhance the robust-
ness of the system against inaccurate information, the framework also incorporates a trust-based
mechanism that evaluates the historical accuracy of each D'T’s predictions. The effectiveness of this
approach was demonstrated in a smart grid-based Virtual Power Plant scenario.

While these frameworks provide the architectural foundation for cooperation, they require an
intelligent decision-making engine to achieve complex coordination, a role that can be filled by
multi-agent reinforcement learning.

2.2 Multi-Agent Reinforcement Learning

The field of Multi-Agent Reinforcement Learning has developed different methodologies to address
the challenges of multiple agents, such as the non-stationarity of the environment and the multi-
agent credit assignment problem. A dominant paradigm to emerge is Centralised Training with
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Decentralised Execution, which uses global information during the training phase to capture the
global outcomes, while ensuring agents can act independently based on local observations during
deployment. Actor-critic methods like MADDPG [13] utilise centralised critics to observe the joint
actions of all agents to provide a stable learning signal to decentralised actors, proving effective in
mixed cooperative-competitive settings. In parallel, value-decomposition methods have focused on
cooperative tasks by factorising a team’s joint value function. For example, Value-Decomposition
Networks [16] directly address credit assignment, decomposing the team value function into agent-
wise value functions, therefore solving the problem of spurious rewards. A third approach involves
learning explicit coordination through communication. Differentiable Inter-Agent Learning [6] cre-
ates a differentiable communication channel, allowing agents to learn effective communication pro-
tocols end-to-end by passing gradients between them during centralised training.

Building on these paradigms, the Federated Multi-Agent Reinforcement Learning (FMARL)
has recently emerged to explicitly address the privacy concerns in centralised training. Chu et al.
[3] propose a federated deep reinforcement learning framework to manage the charging of plug-in
electric vehicles. Their approach coordinates charging tasks across distributed nodes to decentralise
control, reduce peak loads and preserve the privacy of owners. Similarly, Qiu et al. [15] integrate
federated learning with DDPG method to tackle the privacy challenges in a decentralised energy and
carbon trading system for a community of smart buildings. These works demonstrate the growing
trend of applying MARL to complex energy systems under privacy constraints, motivating the need
for novel architectures that can balance coordination with data privacy.

2.3 Vehicle-to-Grid Coordination

There has been many works with different methodologies focusing on V2G coordination in recent
years. Zhang et al. [24] formulated the V2G coordination problem as a mean field game, and
proposed an algorithm to enable the distributed control of vehicles based on the equilibrium strategy.
Similarly, Zhou et al. [25] presented a game-theoretic model for heterogeneous EVs in V2G services,
where the individual decision making process of EVs can be captured by an aggregative game
framework, and individual behaviours can be affected by overall population behaviour. Beyond
game theory, mathematical optimisation is a common approach. Chai et al. [2] proposed a two-stage
optimisation method combining day-ahead and real-time optimisation to tackle the challenges in
unplanned user behaviour. By incorporating a real-time adjustment layer into the V2G scheduling,
the authors has shown that it is possible to balance the needs between power consumers and
EV owners. Yoon et al. [21] formulated the charging problem in V2G network as a integer linear
programming problem, assuming constant-rate charging with known schedules. Similar approaches
can also be seen in the work by Lotfi et al. [12], in which the authors proposed an optimal coordinated
charging model that formulates the EV coordination as a robust linear programming problem.

2.4 Summary

Our review of the literature reveals a significant research gap at the intersection of these three
domains: the need for an adaptive and privacy-preserving coordination mechanism. First, while
Collaborative Digital Twin frameworks provide solid infrastructure for privacy-preserving commu-
nication, they often rely on simple, pre-defined rules for decision-making and lack a mechanism
for learning sophisticated, emergent strategies. Second, while traditional V2G Coordination meth-
ods based on optimisation and game theory are powerful, they can be less adaptive to the large
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complex systems with unpredictable human behaviour. Finally, while state-of-the-art Multi-Agent
Reinforcement Learning (MARL) algorithms like MADDPG are highly adaptive, they typically as-
sume direct access to a centralised database of all agents’ raw state and action information, which
conflicts with the privacy-preserving goals of a distributed DT network.

This paper addresses these gaps by proposing a hybrid architecture that combines the strengths
of all three areas. We introduce a MARL algorithm, DT-MADDPG, designed to operate within
a collaborative DT framework, leveraging the simulation capabilities of DTs to enable effective,
centralised training without direct access to sensitive, raw agent data, thereby providing an adaptive
and privacy-preserving solution to the V2G coordination.

3 Architecture Design

3.1 Architecture Overview

Our proposed architecture, as shown in Figure 2, integrates a collaborative DT network with a
multi-agent reinforcement learning framework, operating on the paradigm of Centralised Training
and Decentralised Execution. In our specific use case, the design is aimed at coordinating a large
fleet of EVs in a V2G scenario. The architecture is composed of two primary layers: a decentralised
layer of autonomous actors, represented by the EV Digital Twins, and a centralised training layer
responsible for training. This structure allows for scalable, real-time decision-making at the agent
level while leveraging a global perspective to learn complex and coordinated behaviour.

EV Digital Twin Each EV in the V2G network has its own local Digital Twin, which acts as an
individual, stand-alone node in the Digital Twin Network. This DT contains an integrated decision-
maker based on RL, and this decision-maker functions as an agent, or a decentralised actor, in the
learning framework.

The core of the Digital Twin’s decision maker is a neural network-based actor. This actor takes
the EV’s local state as input and outputs an action to determine the EV’s behaviour, such as its
charging/discharging status and the corresponding power rate. Each EV keeps a private instance
of its local state, which includes key variables like the current battery level, estimated mileage
remaining, and the owner’s preferences, all stored in a local database.

Another key component of the local DT is an internal simulator, used for making predictions
about its future state. These high-level predictions and decisions, rather than sensitive raw informa-
tion, are shared within the network via a communicator. This communication enables collaboration
while preserving the privacy of each participant.

Central Learning Core While the actors operate decentrally, they are trained by a centralised
learning core that leverages the information shared across the network. This core is responsible for
understanding the system-wide impact of joint actions and providing intelligent feedback to the
individual actors.

The process begins with the Replay Buffer, an experience buffer that stores experiences collected
from all agents interacting with the environment. By sampling minibatches of these experiences,
the buffer allows for off-policy learning and breaks the temporal correlations in the data, which is
essential for stabilising the training of the deep neural networks.

Data sampled from this buffer then goes into the Collaborative Global Model. This is a high-
fidelity simulation model of the V2G system’s dynamics, collaboratively constructed from the high-
level predictions shared by all the individual EV DTs. Its purpose during training is to receive a state



6 7. Hua et al.

Thermal power station
@ 5
.
Wind turbine Grid

fchargmgstahon f;\ D
‘Il

Solar Panel Electric truck

DD D DD
(11 ) [11) L1 Actor Network
0—@ e—0@ 0—0@

Local

Simulation Communicator

2 (5=

Digital Twin
A

Digital Twin Digital Twin

High-level
Information

Policy
Gradient
Minibatch

EEE
Replay Buffer
{ Minibatch

;\_Ziﬂ %i» &Zi) %ﬁi}
(O_" 10.‘ 40\, 10.‘

Critic Networks

Simulation
rollout

Collaborative Simulation Model

Central Critic Module

Fig. 1. Example V2G Network. Fig. 2. Architecture of the proposed framework.

and joint action from the replay buffer and perform a simulation rollout to generate a physics-based
value estimate.

This value estimate is then used to assist the Central Critic Module, which learns a global action-
value function to assess the quality of a joint policy. Its key innovation is that it learns a residual
value on top of the value baseline provided by the Collaborative Global Model’s simulation rollout.
By learning only the error of the physics-based model, the critic can achieve a more accurate and
stable value estimation, which is crucial for guiding the actors toward globally optimal behaviour.

3.2 System Formulation

We model the V2G coordination task as a multi-agent collaboration problem, which can be described
as a decentralised Partially Observable Markov Decision Process (POMDP). The system consists of
N agents, each of them has the goal of learning a policy which maximise its own long-term expected
reward.

The formulation of each individual agent i is defined using their state space and action space.
Each agent bases its decisions on a local state s; in its state space S. The local state is a vector
composed of the agent’s private information and observed environmental data. It includes essen-
tial variables such as the current battery level (as SoC;), the time remaining before the owner’s
scheduled departure (Trp), the owner’s target SoC at departure (SoC},) and the real-time
energy price P;. The action space for each agent is a continuous value a; in the entire action
space A that represents the flow of power in the current time. The power flow is constrained by
the maximum charging rate amau,charge and maximum discharging rate amaz,discharge, therefore
a; € [—Qmag, discharges Gmaz,charge]- A Negative value corresponds to discharging electricity from the
EV into the grid, while a positive value represents charging the EV’s battery.
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The core components of our learning framework are defined by a set of functions: policy function,
action-value function and collaborative global model function. Each agent’s behaviour is governed
by a deterministic policy a; = 7, (s;), which is represented by a neural network with parameters
;. This function maps agent’s local states to a specific charge or discharge action. The action-value
functions is the centralised critic @; with parameters ¢;. It approximated the expected outcome
after taking a joint action a = {a1,...,an} in the global state s. The key distinction of the proposed
architecture is that the critic is enhanced by the prediction generated by the collaborative global
model, denoted as Sg;,. Therefore, the critic will be formulated as Q; = (s,qa, Ssim) — R. The
collaborative global model function fs;,, represents the global simulation model of the V2G network,
which is collaboratively constructed by all participating DTs. It maps the current global state and
a joint action to a predicted next state fqim(s,a) = Ssim.

3.3 Reward Function Design

To address the complex trade-offs in the V2G network, we designed a hierarchical reward structure
that balances system-level goals with the individual preferences of users. The final reward signal for
an individual agent i at each time step ¢, denoted as 7;(¢), is a weighted combination of a shared
global reward and the agent’s own local reward. This is formally expressed as:

T’L(t) = Wgylobal X Rglobal (t) + (1 - wglobal) X Rlocal,i(t) (1)

In this formulation, wgiope: is @ hyper-parameter that controls the agent’s alignment with the
collective goal. The global reward component, Rgopqi(t), is shared among all agents and is derived
from system-wide performance metrics. Specifically, it is designed to reward grid stability (minimiz-
ing the variance of power drawn from non-renewable sources) and maximizing the use of renewable
energy. It is calculated as:

Pusedirenewable (t)

Rygiobai(t) = —a - Var(Pyria(t)) + 8 - (2)

Pavailable_renewable t)

Var(Pyriq(t)) is the variance of non-renewable power drawn from the main grid, and the second
term is the utilization ratio of available renewable power. The coefficients o and 8 are used to scale
these two objectives. The local reward component, Rjocqr,:(t), represents the individual objectives
of agent 1.

Individual users typically pursue two distinct and competing goals: satisfaction of their State-
of-Charge (SoC) needs and financial revenue. To model this, the local reward is a weighted sum of
two terms. We use a single weight, wg,c, to model a user’s preference, with the constraint that the
weights sum to one. The local reward for agent i is shown in Equation 3:

Rlocal,i (t) = Wgoc X RSOC (terminal) + (1 - wSoC) X Rrevenue (t) (3)

The first term, Rg,c, is a large terminal reward applied only at the agent’s scheduled departure
time. It is a large positive constant, Cs;ccess, if the final SoC has reached the user’s desired threshold,
and a large negative penalty, —Cqi;, otherwise. The second term, Rrcyenue(t), is the immediate
financial outcome, calculated as:

Rrevenue(t) = Price(t) X Priow(t) 4)
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Price(t) is the real-time electricity price, and Ppo,(t) is the power flow of the EV, which is
positive for discharging (selling) and negative for charging (buying). This two-level reward structure
provides a flexible and powerful mechanism for guiding the agents toward sophisticated, cooperative
behaviours that respect both global system needs and individual user priorities.

Table 1. Table of Notations

Notation Description

N Total number of agents (EVs) in the system.

i Index for an individual agent, where i € {1,..., N}.

s Global state of the environment, composed of all local observations.

0i Local observation for agent i.

a Joint action, composed of all individual agent actions {a1,...,an}.

a; Action taken by agent i.

T Reward received by agent .

N Random noise to encourage exploration.

D Central replay buffer, which stores experience tuples.

1i(6;) Actor network for agent i, parametrised by ;.

Qi(b:) Complete action-value function for agent i.

Qres,i(Pi) Residual critic network for agent i, parametrised by ¢;.

fsim Collaborative Global Model, which functions as a system simulator.

Raim Value baseline calculated from the simulation rollout.

Yi Target value used to train the critic for agent .

T Q'Ir‘es,i Target networks for the actor and residual critic, respectively.

Rgiobal(t) Shared global reward component at time ¢.

Riocat,i(t) Local reward component for agent 4 at time ¢t.

Rrevenue(t) Immediate economic reward component at time t.

Rsoc (terminal) Terminal reward for SoC satisfaction at the end of a session.

Pyria(t) Power drawn from the non-renewable grid source at time ¢.

Priow(t) Power flow of an EV at time ¢ (positive for discharging, negative for charging).
Price(t) Real-time price of electricity at time .

Cisuccess; Crail Positive constants for the terminal SoC success reward and failure penalty.
Wglobal Weight balancing the global and local components of the reward function.
Wsoe Weight balancing SoC satisfaction and revenue in the local reward function.
y Discount factor for future rewards.

T Soft update parameter for updating the target networks.

K Simulation rollout horizon (number of steps).

4 DT-MADDPG Algorithm

To address the cooperative control problem in a multi-agent environment like the V2G system,
we propose the Digital Twin-Assisted Multi-Agent Deep Deterministic Policy Gradient
(DT-MADDPG) algorithm. Our algorithm builds upon the MADDPG framework but introduces a
novel learning mechanism that deeply integrates the predictive power of the collaborative Digital
Twin network. The core innovation is a simulation-assisted critic that utilises a value decomposition
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approach, separating the physics-based, short-term value from the learned, long-term residual value.
This structure grounds the learning process, reduces the critic’s learning burden, and leads to more
stable and efficient policy optimisation.

The fundamental premise of our approach is that simulation models are highly effective at
making accurate, high-fidelity predictions over a short-term horizon, but their accuracy can degrade
over longer time frames due to compounding uncertainties and complex emergent behaviours. In
contrast, reinforcement learning critics excel at learning long-term strategic values but can be
sample-inefficient. Therefore, our architecture is explicitly designed to leverage the strengths of
both. We use the simulation to accurately calculate the predictable, short-term value baseline
(Rsim), and assign the neural network critic the task of learning the residual part (Qg.s), which
corresponds to the more complex, long-term value beyond the simulation’s reliable horizon.

Our proposed algorithm differs from MADDPG by leveraging the capabilities of the collabora-
tive Digital Twin framework. The collaborative framework is able to construct a global simulation
model that enables the short-term prediction of the system states. However, relying only on these
immediate predictions is insufficient for learning optimal, far-sighted policies, as it fails to capture
the complex, long-term strategic consequences of an action. Instead of using a simple one-step pre-
diction, we employ a more sophisticated mechanism involving two key steps: Simulation Rollout
and Value Decomposition. For a given state-action pair (s,a) sampled from the replay buffer,
we use the global simulation model f;,, to perform a short-term simulation rollout for the next k
timestamps. This process will generate a predicted trajectory of k pairs of future states and rewards
(St41, 41y - - 5 St+k, Te+k). We then use the simulated trajectory to decompose the total Q-value
into two parts. Firstly, we calculate the short-term estimation of a specific action by finding the
discounted sum of the predicted rewards from the rollout, denoted in Equation 5,where v is the
discount factor. This reward models the short-term, model-based estimate of the short-term value.

k
Rsim(sa a) = Z’Vj_lrt-l-j (5) Qi(& (l) = Rsim(s7 (l) + Qres,i(& CL) (6)

j=1

Since the accuracy of the simulation model tends to decay in long-term predictions, we reframe
the critic network’s task to learn the residual value function Qs ;, which captures the long-term
value beyond the horizon of simulation. Therefore, the complete action-value function for the agent
i is the sum of these two components, as in Equation 6.

Based on this value decomposition, the critic for each agent i is updated by minimizing the loss
between the target value y; and the composite Q-value.

L(¢:) = El(yi — (Rsim(s, ) + Qres,i(s,a)))?] (7)

The target value y; is calculated using the target networks, as is standard in actor-critic methods.
The actor policy for each agent is then updated using the deterministic policy gradient derived from
the full composite Q-function, guiding the agent to take actions that maximise both the simulated
short-term return and the learned long-term residual value.

The complete training procedure for our proposed DT-MADDPG algorithm is summarised in
Algorithm 1. The process begins by initializing the actor network p,; and the residual critic network
Qres,i with random weights for each of the N agents. Their corresponding target networks, u}
and Q.. ;, are then created by copying the weights from the main networks. A replay buffer D
is initialised to store experiences, and the Collaborative Global Model, fg;y,, which represents the
simulation capabilities of the DT network, is also initialised.
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The algorithm proceeds in episodes, with each episode consisting of multiple time steps where
agents interact with the environment to collect data. In each step, every agent i uses its local
observation o; and its actor policy u; to select a deterministic action a;. To encourage exploration,
random noise N; is added to this action. The joint action a = {aq,...,ax} from all agents is then
executed in the environment, causing a transition to a new global state s’ and yielding a reward r.
The complete experience tuple (s, a,r,s’) is stored in the central replay buffer D.

The centralised training phase begins once the replay buffer contains a sufficient number of
experiences. A random minibatch of K experiences is sampled from the buffer to update all networks.
For each experience (s, ax) in the minibatch, the collaborative global model f;y, performs a short-
horizon simulation rollout. This process calculates Rfim, a model-based estimate of the short-term
value, by computing the discounted sum of rewards predicted by the simulation. The algorithm then
iterates through each agent to update its networks. The residual critic, Qrcs.;, is trained to capture
the long-term value that the simulation cannot predict. This is achieved by minimizing the loss
between a stable target value, yf (computed using the target networks), and the critic’s predicted
composite value, which is the sum (R’;im + Qrew‘(sk, a*)). Subsequently, each actor y; is updated
using the policy gradient derived from its corresponding composite Q-function, Q; = Rsim + Qres,i-
Finally, the weights of all target networks are updated via a soft update controlled by the parameter
T to stabilise the learning process.

5 Experimental Evaluation

5.1 Experiment Setup

To validate the effectiveness of our proposed DT-MADDPG architecture, we designed a series of
experiments within a simulated V2G environment. The objective is to assess the ability of our
framework to learn effective coordination policies by comparing its performance on several key
metrics against established baseline methods.

We developed a discrete-event based simulation representing a local power distribution grid
servicing a community with a fleet of EVs. The simulator is programmed in Python using the SimPy
library and the objects in the simulation such as EV, generators and consumers are modelled as
SimPy processes. The environment consists of a power grid model and the EV fleet model. The grid
has a fluctuating base load from residential and commercial uses and two primary power sources: a
main grid connection representing non-renewable (fossil fuel) power, and a local renewable energy
source (e.g., solar or wind farms) with variable output based on historical data. In these settings,
we assume that the load of the grid can be balanced by adjusting the output power generated by
non-renewable resources. A dynamic pricing mechanism dictates the cost of drawing power from
and the revenue from selling power back to the main grid. The dynamic pricing is segmented, with
three periods - Peak, Valley and Normal. The detailed price is listed in Table 5.1. The data is taken
from the residential electricity prices in the city of Shenzhen, China. We also assume the price of
selling electricity back to the grid is the same as the energy price in the given period.

In the simulation, a fleet of N EVs, each represented by a Digital Twin agent as described
in Section 3 is placed in the grid environment. Each EV is assigned a unique battery capacity,
charging/discharging efficiency, and a stochastic behavioural profile governing its daily arrival time,
departure time, and energy consumption. To study the scalability of the system. we have also
constructed a model of the network infrastructure. While there are no constraints on the bandwidth
or latency, it is still worth studying the communication overhead of different approaches. For the
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A

lgorithm 1 Digital Twin-Assisted MADDPG (DT-MADDPG)

1
2

3
4
5
6:
7
8
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:
32:
33:
34:

35

: Input: Number of agents N, simulation rollout horizon k', hyper-parameters ~, 7.
: Output: Trained decentralised actor policies {p1,...,un}.

: Initialise for each agent i =1,..., N:
Actor network p; with parameters 6;.
Residual critic network Qres,; with parameters ¢;.
Target networks p; and Q... with weights 0; < 6; and ¢; < ¢;.
: Initialise replay buffer D and Collaborative Global Model fsim.
: for episode = 1 to M do
Receive initial observations {o1,...,0n}.
for t = 1 to max_steps do
For each agent i, select action a; = p;(0;) + N.
Let joint action be a = {a1,...,an}.
Execute a, observe rewards r = {r1,...,rny} and next observations {of,...,0}.
Store the tuple ({o;},{a:}, {r:}, {0i})i=1..~ in the replay buffer D.
if replay buffer D contains enough samples then
Sample a random minibatch of K experiences.
Let a sample k be ({of}, {aF}, {ri}, {o}x }).
> Perform simulation rollout using joint information
Calculate value baselines RY;,, = Rollout(fsim, {0F},{a¥}, horizon = k').
for agent i =1 to N do
> Update critic for agent i using global information
Form the target joint action: a’* = {1 (o/F), ..., Wy (%)}
Set ta’rget value: yf = Tf + ’Y(Rlsgim,nezt + Q;‘es,i({o‘;’k}j:L-N?a/k))'
Update critic by minimizing the loss:
L(95) = 7 X (0 = (BEin + Qresi({of }mrn {afhm1n))
Update actor for agent i using the sampled policy gradient w.r.t Q;.
end for
> Soft update all target networks
for agent i =1 to N do
¢ = T¢i + (1 — 7)o
0; < 70; + (1 —7)0;
end for
end if
end for
: end for

Calculate target simulation baseline: R, ,.... = Rollout(fsim, {0i*},a’*, horizon = k).

Table 2. Dynamic Electricity Price

Period Time Price (CNY/kWh)
Peak 10-12; 14-19 1.1121

Normal |8-10; 12-14; 19-24 0.6542
Valley 0-8 0.2486
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network model, we used Barabési-Albert model [1]. The experiments are conducted on a bare-metal
server with 4 Intel Xeon Gold 6230 CPU and a NVIDIA RTX A6000 GPU.

We evaluate the performance of all approaches using a combination of scenario-specific and
system-level metrics:

— Grid Stability: The primary goal of V2G is to stabilise the grid by reducing reliance on fossil
fuels during peak demand (peak shaving) and absorbing excess energy during off-peak times
(valley filling). We visualise this by plotting the power drawn from the non-renewable source
over time.

— Renewable Energy Utilisation: This metric measures the percentage of available renewable en-
ergy that is successfully used by the system, either consumed directly or stored in EV batteries
and consumed in the future, instead of being disposed of. This will be presented as a bar chart,
where higher utilisation is desirable.

— User Satisfaction: We measure the framework’s ability to meet the needs of individual EV owners
via the Owner Goal Success Rate. This is the percentage of EVs that successfully meet their
owner-defined State-of-Charge (SoC) requirements by their scheduled departure time. Results
will be compared across algorithms using a bar chart.

— User Revenue: To assess the economic benefit for participants, we calculate the Aggregated User
Revenue. This is the total income earned by all EV owners from selling energy back to the grid,
minus their total charging costs. This will also be presented in a comparative bar chart.

— Communication Overhead: The efficiency of the underlying collaborative framework is mea-
sured by the average number of messages exchanged between DTs per simulation step. Also, to
showcase the potential network congestion, we plot the distribution of network load (average
number of message flowing through a network node) to reveal the network usage.

We evaluate the performance of our proposed DT-MADDPG algorithm against two distinct
MARL baselines to demonstrate its advantages:

— Independent Learners (IL): In this approach, each EV agent is a fully decentralised reinforcement
learner with its own actor and critic. It learns a policy based solely on its local observations,
representing a non-collaborating but still intelligent baseline.

— Standard MADDPG: This is the canonical centralised training with decentralised execution
algorithm. A central critic collects state and action information from all agents to guide training.
This baseline is the crucial ablation study, allowing us to isolate and measure the performance
gain attributable directly to our novel simulation-assisted critic.

5.2 Results and analysis

First, we assessed the core performance of the models in managing the power grid. Figure 3 illus-
trates grid stability by plotting the required fossil fuel generation (Y-axis) over a 24-hour period
(X-axis). The results clearly show that both MADDPG and DT-MADDPG outperform the IL base-
line by requiring less fossil fuel. Crucially, DT-MADDPG achieves stability comparable to the fully
centralised MADDPG, proving its effectiveness in coordinating the V2G network.

This high performance extends to the use of renewables, as shown in Figure 4. DT-MADDPG
achieves a renewable energy utilisation of 40.97%, a result that is nearly identical to MADDPG
and significantly higher than IL. These findings establish that DT-MADDPG maintains top-tier
performance on primary system objectives without requiring full centralisation.
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Fig. 3. Energy drained from non-renewable energy Fig.4. Percentage of renewable energy utilisation
sources, indicating grid stability. with different algorithms.

To investigate how the models adapt to different user priorities, we conducted a sensitivity
analysis by varying the revenue weight, Wy eynue, from 0.2 to 0.8. A higher w,eynye encourages
agents to prioritise revenue generation over maintaining their target State of Charge. As expected,
increasing this weight leads to a clear trade-off: user satisfaction declines (Figure 5) while user
revenue increases (Figure 6) for all methods. However, a key trend emerges: the IL baseline is highly
sensitive to this parameter change, showing volatile swings in performance. In contrast, MADDPG
and DT-MADDPG demonstrate significantly more stability. This resilience can be attributed to
their coordination mechanisms; while IL agents narrowly focus on local, weight-sensitive goals,
MADDPG and DT-MADDPG agents must balance these with the global objective of grid stability.

This moderates their response to changes in local incentives, leading to more robust and predictable
system behaviour.
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Fig. 5. User satisfaction rate as a function of the Fig.6. Aggregated user revenue as a function of the
revenue preference weight (Wrevenue)- revenue preference weight (Wrevenue)
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While MADDPG’s access to complete global data may theoretically yield slightly better per-
formance, the primary advantage of DT-MADDPG lies in its privacy-preserving architecture and
communication efficiency. At first glance, the total communication volume appears similar. Figure 7
shows that the average number of messages per agent scales nearly linearly and at a comparable
rate for both MADDPG and DT-MADDPG as the system grows. However, the critical advantage of
DT-MADDPG is revealed in the distribution of this network traffic, shown in Figure 8. This figure
plots the percentage of total number of messages passing through each network node. MADDPG’s
centralised architecture creates significant network imbalances, resulting in bottlenecks where a few
nodes handle a very high load. In contrast, DT-MADDPG’s decentralised approach where most
data is exchanged locally between DTs leads to a substantially flatter and more balanced network
load. This demonstrates that DT-MADDPG achieves its strong coordination performance without
the communication bottlenecks of centralised systems, making it a far more robust and scalable
solution for real-world deployment.

1.0
MADDPG 0.910.92 = 20.0 MADDPG Messages
W DT-MADDPG s DT-MADDPG Messages
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Fig. 7. Scalability of communication overhead versus Fig. 8. Distribution of network communication load
the number of agents. across nodes.

6 Conclusion and Future Work

In this paper, we introduced DT-MADDPG, a novel hybrid architecture that addresses the chal-
lenge of coordinating large-scale V2G systems. Our core contribution is demonstrating that a de-
centralised, privacy-preserving framework can achieve strong coordination performance without the
communication bottlenecks inherent in centralised systems. While achieving performance compa-
rable to the standard MADDPG, our results show that DT-MADDPG’s primary advantage lies in
its ability to create a balanced and distributed network load. This architectural feature makes it a
significantly more robust and scalable solution for real-world smart grid applications.

We acknowledge several limitations that provide directions for future research. First, this study
relies on simulation-only validation and assumes accurate simulation models, which does not ac-
count for real-world factors like hardware variability or sensor noise. Second, our model assumes
homogeneous user profiles and preferences, whereas real-world heterogeneity could introduce new
coordination dynamics. Finally, while our framework is designed to be privacy-preserving, this study
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does not provide a formal, quantitative analysis of privacy leakage, which is necessary for a thorough
discussion of the privacy-utility trade-off.

Building on these limitations, future work will focus on extending this framework by formally
incorporating privacy as a quantifiable penalty in the reward function. By adding a negative reward
term proportional to privacy loss, agents will be forced to learn an explicit trade-off, optimizing their
policies to find a Pareto-optimal balance between maximizing performance and minimizing data
disclosure. Further avenues include developing more complex economic models, such as dynamic
energy pricing based on supply and demand or auction-based systems for resource allocation. These
models would move beyond simple transactions to create a true digital marketplace with emergent
economic behaviours. Finally, we plan to validate the learned policies on physical hardware testbeds
to bridge the sim-to-real gap.
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