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ABSTRACT 

A new framework for marginal regression model with bivariate responses from 
different distributions was proposed in this study. It adopts a Generalized Estimating Equation 
(GEE) approach of model estimation. A framework for mixture of response variables from 
different distributions was proposed for “Normal and Poisson”, “Normal and Bernoulli”, and 
“Poisson and Bernoulli”. Application on the proposal framework was examined in measuring 
the effect of certain hospital inputs on hospital performance in three selected tertiary health 
institutions. 
 

Keywords: Bernoulli and normal; Generalized estimating equation; Marginal model; Mixed 
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1. Introduction 

Modeling useful and informative 
relationships within possible groups of 
research variables of interest has been a 
common and standard practice in diverse 
fields of study. Several forms of regression 
models are abundantly available in the 
literature for this purpose. However, in 
situations where more than one response 
variable is considered in a model, most 
univariate approaches to parameter 
estimation are deemed inefficient and 
replaced with appropriate multivariate 
approaches [1-5]. An even more interesting 

and daunting situation in multivariate 
modeling is when the response variables 
comprise a mixture of discrete and 
continuous variables [6]. Such mixed 
response variables are common in health 
sectors, social sciences and economics [6, 
7]. In modeling the above scenarios, there is 
always an assumption of independence of 
observations. 

However, such assumptions only 
make sense in cross-sectional studies, not in 
the case of time series and longitudinal data 
[8]. This would then necessitate an approach 
that will account for dependence among 
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Repeated observations over time in a 
longitudinal observed response. 

When such a response is drawn from 
a population that is normally distributed, an 
extended generalized linear model is applied 
[2]. Fitzmaurice [9] identified three broads, 
but quite distinct, classes of regression 
models for longitudinal data: (i) marginal or 
population averaged models, (ii) random-
effects or subject-specific models, and (iii) 
transition or response conditional models. 
These models differ not only in how the 
correlation among the repeated measures is 
accounted for, but also have regression 
parameters with discernibly different 
interpretations. When the interest is to 
ascertain the effect of the covariate on the 
average population of the response, the 
marginal model is considered more 
appropriate [9-11]. Furthermore, for a 
marginal model, using the Generalized 
Estimating Equation (GEE) approach 
developed by [12, 13] to model estimation is 
considered more appropriate than the 
Maximum Likelihood Method for various 
reasons [9]. This study proposes the 
framework for mixed response variables in a 
panel data regression analysis when a 
marginal model approach is adopted. 

 
2. Methodology  

Let  be the  panel with  time 
response variable and  be the 
corresponding vector of covariates.  If  is 
from an exponential family of distribution, 
then: 

    
(2.1)

 
 

where  is the  location parameter of the 
distribution,  is the scale or dispersion 
parameter,  is a function that 
represents the normalizing term, 

 represents the mean of 
 and  is the  variance of 
.
 

Hardin and Hilbe [10] gave the 
Generalized Estimating Equation for 
Marginal Model as: 

 

 (2.2) 
 

where  and  retains its definition in Eq. 
(2.1),  is the covariate at panel i in 
time t,  represents the link function that 
relates the parameter  to covariates, 

  is the variance function as a 
function of  and  is the scale 
parameter,  is the marginal regression 
model parameters, and n is the number of 
panels while p is the number of covariates.

 Eq. (2.2) in terms of the panels can be 
represented as: 
 

 

(2.3) 
 

where  for  
 is the matrix of covariates for  panel i, 

 is a vector of the 
response variable for panel i,  is the 
diagonal matrix. 

The variance function is  
diagonal matrixes which can be 
decomposed thusly: 

 

 

(2.4) 
 

Hence,  where  is a 
diagonal matrix with  along the 
diagonal and  is the 
correlation matrix as a function of  
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2.1 Estimation of multivariate marginal 
model  
 

2.1.1 Mixed Normal and Poisson 
responses 

Let  be mixed Poisson 
(discrete) and normal (continuous) 
responses with  observations for n 
independent individuals (units or panels). 
Where  and  

 Let  be a  
matrix of covariates, where  
vector. Then from Eq. (2.1) 

 

     (2.5) 
 

where  is ith panel 
mean and variance for the response variable 
Z and 

  

               (2.6) 
 

where  is ith panel mean for the 
response variable Y, is the variance of Y 
and  represents the parameter of 
regression of  on  

Therefore, the joint distribution is 
given by:   
 

(2.7) 
 

Building a Marginal Regression Model for 
Poisson and Normal responses, we have: 
 

  (2.8) 
and 
 

  (2.9) 

where  are sets 

of regression parameters,  are 
parameter vectors that induce correlation 

between  and  (With  characterizing 
the association between the responses on the 
observation within a panel, whereas  
characterizes this association for different 
observations within the same panel. 
For convenience of notation, let 
 

           (2.10a) 
and 

      (2.10b) 
 

Hence, Eq. (2.9) becomes: 
 

     (2.11) 
 

Applying Eq. (2.3), we have 
 

(2.12) 
 

Hence Eq. (2.12) yields the following: 
 

        (2.12a) 
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   (2.12d) 
 

Putting the repeated nature of the 
observation in consideration and from Eq. 
(2.4), we have 
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and 
 

        (2.12f) 
 

where  is a diagonal matrix with elements 
 and  
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    (2.14) 

 
2.1.2 Mixed Normal and Bernoulli 

responses 
Let  retain the same meaning 

it has in section 2.1.1 with  being 
Bernoulli (discrete) responses with  
observations for  independent individuals 
(units or panels). Then, 

 

 (2.15) 

and 

  

 (2.16) 
 

Therefore, the joint distribution is given by   
 

(2.17) 
 

Following the same procedure as in section 
2.1.1, the Marginal Regression Model for 
Bernoulli and Normal response is given by 
 

  

(2.18a) 
and 

  
(2.18b) 

 

Therefore, Eq. (2.14) for mixed Bernoulli 
and Normal has  and 

 a diagonal matrix with elements 
 

2.1.3 Mixed Poisson and Bernoulli 
Let  retain the same meaning 

they have in section 2.1.1 with  being 
Bernoulli and  being Poisson responses 
with  observations for  independent 
individuals (units or panels). Then, 
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Therefore, the joint distribution is given by 
as:    
 

 

(2.21) 
 

Following the same procedure in sections 
2.1.1 and 2.1.2, the Marginal Regression 
Model for Bernoulli and Poisson responses 
is given by 
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Therefore, Eq. (2.14) for mixed Bernoulli 
and Poisson has  and 
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called working correlation with vector 
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To ascertain the appropriate working 
correlation matrix  to account for the 
correlation of the repeated observation and 
the relevant covariates, we adopt a 
goodness-of-fit model test. Hardin and 
Hilbe [11] recommended the use of Quasi-
likelihood information criterion (QIC) 
which is analogous to Akaike Information 
Criterion (AIC) for likelihood-based 
models. The information criterion is given 
by 
 

(2.19) 
 

where  is the value of the 
quasi-likelihood computed using 
coefficients from the model with 
hypothesized correlation structure  is 
the variance matrix obtained by fitting an 
independent model,  is the modified 
sandwich estimate of the variance from the 
model with hypothesized correlation 
structure  Details of different existing 
working correlation can be seen in [10, 12].  

 
3. Results and Discussion  

We will illustrate the above 
methodology using data collected on 
number of outpatients, number of inpatients, 
number of active hospital beds, number of 
doctors, number of nurses, number of other 
medical staff and number of discharges. The 
derived variable that was adopted is 
Average Length of Stay (ALS). The 
response variables are number of discharges 
(Poisson), Average Length of Stay (ALS) 
(normal) while the covariates are number of 
doctors, number of other medical staff, 
number of active beds and type of hospital 
(Federal owned hospital = 1, Others = 0). 
The data was collected from Federal 
Teaching Hospital Abakaliki, University of 
Nigeria Teaching Hospital Enugu, and 
Enugu State University Teaching Hospital 
from 2010 to 2016. See Aloh et al. [14]. The 
average length of stay is derived as 

 

 

 
Table 1. The fit of ALS and Number of discharges on selected input variables plus type of 
hospitals (mixed Poisson and Normal). 

Coefficient 

Independent Working 
correlation 

Exchangeable working 
correlation AR(1) working correlation Unstructured working 

correlation 
Number of 
Discharges ALS Number of 

Discharges ALS Number of 
Discharges ALS Number of 

Discharges ALS 

 7.507* 
(0.0124) 

10.420* 
(1.1698) 

7.743* 
(0.0130) 

8.903* 
(1.5165) 

8.139* 
(0.0117) 

10.103* 
(0.8464) 

7.478* 
(0.0095) 

11.079* 
(0.2515) 

 -0.147* 
(0.0076) 

-1.902* 
(0.9536) 

-0.294* 
(0.0104) 

-1.187 
(0.7832) 

-0.314* 
(0.0119) 

-1.381 
(0.9562) 

-0.241* 
(0.0068) 

-1.951* 
(0.5241) 

 0.004* 
(5.93E-5) 

-0.009 
(0.0089) 

0.003* 
(5.26E-5) 

0.0100* 
(0.0049) 

0.001* 
(4.01E-5) 

0.014* 
(0.0074) 

-0.004* 
(5.59E-5) 

0.043* 
(0.0015) 

 -0.002* 
(6.17E-5) 

0.17* 
(0.0010) 

0.001* 
(5.67E-5) 

-0.002 
(0.0028) 

0.0001* 
(1.22E-5) 

-0.004* 
(0.0014) 

0.002* 
(1.58E-5) 

-0.013* 
(0.0016) 

 0.001* 
(1.95E-5) 

-0.005 
(0.0028) 

9.980E-5* 
(1.75E-5) 

-0.005 
(0.0107) 

0.001* 
(3.57E-5) 

-0.009 
(0.0065) 

0.004* 
(4.48E-5) 

-0.015* 
(0.0022) 

 - 0.0001* 
(0.0001) - -0.001* 

(9.57E-5) - 0.0001* 
(8.23E-5) - 0.0001* 

(2.24E-5) 
 - 0.0001* 

(3.09E-5) - 0.0001* 
(7.95E-6) - -5.29E-5* 

(11.47E-5) - 0.0001* 
(7.12E-6) 

QIC 27234.89 53.82 25313.12 50.897 36306.12 58.79 25996.80 59.24 
QIC for 

Univariate  137.136  195.336  157.409  2876.927 

( )-standard error, X1 = Type of hospital, X2 = BED, X3 = Number of Doctors, X4 = Number of other medical officers, ALS = Average length of stay, 
AR = Autoregressive, *-significant at 5%. 
 

Table 1 is the result of the estimate of 
the multivariate marginal model with mixed 
Poisson and Normal responses. An 
independent, exchangeable AR(1) and 
unstructured working correlation was 
adopted. The result showed that all the 

covariates under consideration have a 
significant effect on the average population 
of number of discharges for all different 
working correlations, but such was not the 
case with average length of stay (ALS). 
Based on QIC, the exchangeable working 
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correlation gave the best fit for the model 
estimate. For each working correlation, the 
multivariate model was found to be 
significantly better than the univariate. This 
is evident by comparing the values of the 
QIC for the univariate model against that of 
the multivariate. 
 
4. Conclusion 

A bivariate marginal regression 
model for mixed responses is examined in 
this study. A framework for mixed “Normal 
and Poisson”, “Normal and Bernoulli” and 
“Poisson and Bernoulli” using generalized 
estimating equation methodology was 
derived.  The model was applied in 
modeling the effects of the input variables 
on the output variables; where average 
length of stay serves as a normal response 
while number of discharges serves as a 
Poisson response. It was discovered that the 
multivariate marginal regression model 
performed far better than the univariate 
equivalent.  
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