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ABSTRACT

A new framework for marginal regression model with bivariate responses from
different distributions was proposed in this study. It adopts a Generalized Estimating Equation
(GEE) approach of model estimation. A framework for mixture of response variables from
different distributions was proposed for “Normal and Poisson”, “Normal and Bernoulli”, and
“Poisson and Bernoulli”. Application on the proposal framework was examined in measuring
the effect of certain hospital inputs on hospital performance in three selected tertiary health

institutions.

Keywords: Bernoulli and normal; Generalized estimating equation; Marginal model; Mixed
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1. Introduction

Modeling useful and informative
relationships within possible groups of
research variables of interest has been a
common and standard practice in diverse
fields of study. Several forms of regression
models are abundantly available in the
literature for this purpose. However, in
situations where more than one response
variable is considered in a model, most

univariate ~ approaches to  parameter
estimation are deemed inefficient and
replaced with appropriate multivariate

approaches [1-5]. An even more interesting

and daunting situation in multivariate
modeling is when the response variables
comprise a mixture of discrete and
continuous variables [6]. Such mixed
response variables are common in health
sectors, social sciences and economics [6,
7]. In modeling the above scenarios, there is
always an assumption of independence of
observations.

However, such assumptions only
make sense in cross-sectional studies, not in
the case of time series and longitudinal data
[8]. This would then necessitate an approach
that will account for dependence among
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Repeated observations over time in a
longitudinal observed response.

When such a response is drawn from
a population that is normally distributed, an
extended generalized linear model is applied
[2]. Fitzmaurice [9] identified three broads,
but quite distinct, classes of regression
models for longitudinal data: (i) marginal or
population averaged models, (ii) random-
effects or subject-specific models, and (iii)
transition or response conditional models.
These models differ not only in how the
correlation among the repeated measures is
accounted for, but also have regression
parameters with  discernibly  different
interpretations. When the interest is to
ascertain the effect of the covariate on the
average population of the response, the
marginal model is considered more
appropriate [9-11]. Furthermore, for a
marginal model, using the Generalized
Estimating Equation (GEE) approach
developed by [12, 13] to model estimation is
considered more appropriate than the
Maximum Likelihood Method for various
reasons [9]. This study proposes the
framework for mixed response variables in a
panel data regression analysis when a
marginal model approach is adopted.

2. Methodology
Let y, be the i" panel with ¢ time
response variable and X, be the

corresponding vector of covariates. If y, is

from an exponential family of distribution,
then:

y‘re‘r _b(gir)
[ (330,90 —GXp{“—H ve0)p. (2.1
(50.0)=exp 22 (3, )
where ¢ is the location parameter of the
distribution, a(¢) is the scale or dispersion

parameter, is a function that

¢ (y it> (/7)
represents the normalizing term,
b'(6,)=E(y,)=pm, represents the mean of

y, and b"(0,)=Var(y,) is the variance of
Yie s

21

Hardin and Hilbe [10] gave the
Generalized Estimating Equation for
Marginal Model as:

o {{s 8l o
(2.2)

where y, and u, retains its definition in Eq.

(2.1), x,, =j" is the covariate at panel i in
time ¢, 7, represents the link function that

relates the parameter u, to covariates,

Var(u,)
function of x4, and «a(p) is the scale

is the variance function as a

parameter, S 1is the marginal regression

model parameters, and n is the number of
panels while p is the number of covariates.
Eq. (2.2) in terms of the panels can be
represented as:

v (p)= HiX/T'D(Z/r;j[VW(”’ )" [ZEZ)]H - [0],...
C23)

T
where Xi:(X”,Xiz,...,Xm‘) for j=12,...,

p is the matrix of covariates for panel i,

Y, =(Y,.%,.....,

l yeees m) is a vector of the
response variable for panel i, D(}) is the

diagonal matrix.
The variance function is Var(p;)

diagonal  matrixes  which be

decomposed thusly:

can

Var(w,)=| D(Far (1)) R(@),., D(ar(u))* |
(2.4)
Hence, Var(Y)=¢V(p;) where D(p,
diagonal matrix with Var(Y,) along the
and R(a)=Corr(Y,) the

correlation matrix as a function of a.

) isa

diagonal is
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2.1 Estimation of multivariate marginal
model

2.1.1 Mixed Normal and Poisson

responses

Let (Z,Y,) be mixed Poisson
(discrete) and normal  (continuous)
responses with »n observations for n

independent individuals (units or panels).
Where Y, =Y,.Y,,...Y, and Z,=Z,,Z,

i i 290 Q1229000

z

in; *

Let X, =(X,.X,.....X, ) be a pxn,
matrix of covariates, where

vector. Then from Eq. (2.1)

X..:p)(l

g

f(z/X,)=exp{z;In4, -2, -Inzl}, (2.5)

where A, =E(Z,)=p, =Var(Z,) is i panel

mean and variance for the response variable
Z and

(& /Z,;x[):exp{—%ln(hwz)—2:)_2
_F(Zi _,ul,-):|2}9

where s, =E(Y,) is i" panel mean for the

[y/ My

(2.6)

response variable Y, o’ is the variance of Y
and 7 represents the parameter of
regression of ¥, on X,.
Therefore, the joint distribution is
given by:
f(ZI’yf) :f(zi).f(y( /Z,.)
=exp{z;In4 -4 —Inz}
1 1 >
xexp{—gln(braz)—?(yl — =T (z,- 1)) }
2.7

Building a Marginal Regression Model for
Poisson and Normal responses, we have:

InE(Z)=In4 =X]p, (2.8)

and

E(Y,12)=X[B,+1\(Z, -, )+ TS, (2.9)

where S, = Z(Zit -, ).B=(B,,B,) are sets

t=1
of regression parameters, I'=(77,/" 2) are

parameter vectors that induce correlation

22

between Y; and Z, (With 77, characterizing

the association between the responses on the
observation within a panel, whereas 7,

characterizes this association for different
observations within the same panel.
For convenience of notation, let

Q,=(x1.2,~ .5 (2.10a)
and
8=(p,.1.1>) . (2.10b)
Hence, Eq. (2.9) becomes:
E(Y,12)=Qy. (2.11)
Applying Eq. (2.3), we have
0E(2,) OE(Y,1Z,)
-3 op, B, xCov™! % Z'iE(Z')
v(A=2 oE(2,) oE(7,/2,) |<C (Y./Zj(y‘—E(Y,/Z,))
BN EY)
(2.12)
Hence Eq. (2.12) yields the following:
OE(Z,
EZ) _ X'E(z)=XVar(Z),  (2.12a)
op,
E(Z,
M =0, (2.12b)
0d
PEOLE) (1) (-0 E(2) () ()
=() (=X )var(z,)+(I,)(-X] YVar(2,)
=—(I+0) (X )E(Z) == (1, + 1) (X] Yar(Z,),
(2.12¢)
CE(Y,/Z. T
% —Q, = (X' Z-u,S,) . (2.124d)
Putting the repeated nature of the

observation in consideration and from Eq.
(2.4), we have

Cov(Z,)=V, =A’R(a)A)?,  (2.12¢)

and

Cov(Y,/Z,)=V, =0c’R(a), (2.121)

where A, is a diagonal matrix with elements
Var(Z,)=p, =E(Z,) and o® =Var(Y,).
Substituting Eqgs. (2.12a)-(2.13f) to Eq.
(2.12), we have system of equation given
by:
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v (5) Z’_’}:[Xfch)r(Zi) ~(r, +1"2();(,TVar(Zi )j
X(VO'I VO)( ((igj (0). (2.14)

2.1.2 Mixed Normal and Bernoulli

responses

Let X,,Y,,Z, retain the same meaning
it has in section 2.1.1 with Z, being
Bernoulli (discrete) responses with 7,

observations for # independent individuals
(units or panels). Then,

1- lull

f(z,./x,)zexp{z,.ln[ £ }m( )} (2.15)

and

1
f(y/z5x)= exp{—Eln(Zﬂaz)

1 2
_F[J’i —Hy; _F(Zl. —,u“.)] } (216)
Therefore, the joint distribution is given by

f(zi’yi) :f(zi)f(yi/zi)

(2.17)

Following the same procedure as in section
2.1.1, the Marginal Regression Model for
Bernoulli and Normal response is given by

ln(l Hy; j = logit(,u“) = logit [E(Zi )] =X'B,,
— My
(2.18a)
and
E(Y] /Z,.) =X;B, + 1 (fo _Nw)+r2Sf'
(2.18b)

Therefore, Eq. (2.14) for mixed Bernoulli
and Normal has Var(Z,)=p,(1-4,) and

A =

i

Var(Z,.) = My (l_ﬂn)'

a diagonal matrix with elements

23

2.1.3 Mixed Poisson and Bernoulli
Let X,,Y,,Z, retain the same meaning

they have in section 2.1.1 with Z, being
Bernoulli and Y, being Poisson responses
with #n, observations for # independent
individuals (units or panels). Then,

f(z/x)= exp{zi 111[1 )—ln(l—,ul,- )},

(2.19)

Hii
—Hy;

and

] 10 772i
f (v /z5x, )—exp{y(ﬂh(:;';l 3 (y!)} (2.20)

=f(Z,)f(yi /Zi)

Therefore, the joint distribution is given by
Hy;

=X Z.]] +ll]—u

f(z.9)
X{exp[yi ln(:umuzi)_(/umuﬂ)_ ln(y!)]}.
2.21)

Following the same procedure in sections
2.1.1 and 2.1.2, the Marginal Regression
Model for Bernoulli and Poisson responses
is given by

In [1&} = logit (44, ) = logit [E(Zi )} =X/B,,
—Hy
(2.22)
and
mE(Y,/Z,)=In(u,m,)=X]B,. (2.23)

Therefore, Eq. (2.14) for mixed Bernoulli
and Poisson has Var(Z)=p,(1-u,) and

A =

Var(Zi ) =My (l _;uu)'
The correlation matrix R(a) also

a diagonal matrix with elements

called working correlation with vector
parameter a when properly specified equals
Cov(e) and gives an efficient estimate. The
is to the
population R(a), the more efficient the

closer the estimate of R(a)

parameter estimate of the model is.
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To ascertain the appropriate working
correlation matrix R(a) to account for the

correlation of the repeated observation and
the relevant covariates, we adopt a
goodness-of-fit model test. Hardin and
Hilbe [11] recommended the use of Quasi-
likelihood information criterion (QIC)
which is analogous to Akaike Information
Criterion (AIC) for likelihood-based
models. The information criterion is given
by

01C ==2p[ g™ (XBy ) ]+ 2erace A () Vs |-
(2.19)

where 250[g’1 (X[}R)J is the value of the

quasi-likelihood computed using
coefficients from the model with
hypothesized correlation structure R,A is
the variance matrix obtained by fitting an
independent model, V), is the modified

sandwich estimate of the variance from the
model with hypothesized correlation
structure R. Details of different existing
working correlation can be seen in [10, 12].

3. Results and Discussion

We will illustrate the above
methodology using data collected on
number of outpatients, number of inpatients,
number of active hospital beds, number of
doctors, number of nurses, number of other
medical staff and number of discharges. The
derived variable that was adopted is
Average Length of Stay (ALS). The
response variables are number of discharges
(Poisson), Average Length of Stay (ALS)
(normal) while the covariates are number of
doctors, number of other medical staff,
number of active beds and type of hospital
(Federal owned hospital = 1, Others = 0).
The data was collected from Federal
Teaching Hospital Abakaliki, University of
Nigeria Teaching Hospital Enugu, and
Enugu State University Teaching Hospital
from 2010 to 2016. See Aloh et al. [14]. The
average length of stay is derived as

Occupied Bed — Total Inpatient Days

ALS = x100%.

Number of Discharges

Table 1. The fit of ALS and Number of discharges on selected input variables plus type of

hospitals (mixed Poisson and Normal).

Independent Workin Exchangeable workin . . Unstructured workin,
P . ng X g .w ng AR(1) working correlation uctu ‘w ng
Coefficient correlation correlation correlation
Number of Number of Number of Number of
. ALS . ALS . ALS . ALS
Discharges Discharges Discharges Discharges

ﬂ 7.507* 10.420* 7.743* 8.903* 8.139* 10.103* 7.478* 11.079*
4 (0.0124) (1.1698) (0.0130) (1.5165) 0.0117) (0.8464) (0.0095) (0.2515)
ﬂ -0.147* -1.902* -0.294* -1.187 -0.314* -1.381 -0.241* -1.951*
! (0.0076) (0.9536) (0.0104) (0.7832) 0.0119) (0.9562) (0.0068) (0.5241)

B 0.004* -0.009 0.003* 0.0100* 0.001* 0.014* -0.004* 0.043*
2 (5.93E-5) (0.0089) (5.26E-5) (0.0049) (4.01E-5) (0.0074) (5.59E-5) (0.0015)
i -0.002* 0.17* 0.001* -0.002 0.0001* -0.004* 0.002* -0.013*
3 (6.17E-5) (0.0010) (5.67E-5) (0.0028) (1.22E-5) (0.0014) (1.58E-5) (0.0016)
B 0.001* -0.005 9.980E-5* -0.005 0.001* -0.009 0.004* -0.015*
4 (1.95E-5) (0.0028) (1.75E-5) 0.0107) (3.57E-5) (0.0065) (4.48E-5) (0.0022)
r ~ 0.0001* ~ -0.001* ~ 0.0001* 0.0001*
! (0.0001) (9.57E-5) (8.23E-5) (2.24E-5)
r 0.0001* 0.0001* -5.29E-5* 0.0001*
2 3 (3.09E-5) 3 (7.95E-6) 3 (11.47E-5) (7.12E-6)
0IC 27234.89 53.82 25313.12 50.897 36306.12 58.79 25996.80 59.24
QIC for 137.136 195.336 157.409 2876.927

Univariate

( )-standard error, X1 = Type of hospital, Xo= BED, X3= Number of Doctors, X4= Number of other medical officers, ALS = Average length of stay,

AR = Autoregressive, *-significant at 5%.

Table 1 is the result of the estimate of
the multivariate marginal model with mixed

Poisson and Normal responses. An
independent, exchangeable AR(1) and
unstructured  working  correlation was

adopted. The result showed that all the

24

covariates under consideration have a
significant effect on the average population
of number of discharges for all different
working correlations, but such was not the
case with average length of stay (ALS).
Based on QIC, the exchangeable working
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correlation gave the best fit for the model
estimate. For each working correlation, the
multivariate model was found to be
significantly better than the univariate. This
is evident by comparing the values of the
QIC for the univariate model against that of
the multivariate.

4. Conclusion

A bivariate marginal regression
model for mixed responses is examined in
this study. A framework for mixed “Normal
and Poisson”, “Normal and Bernoulli” and
“Poisson and Bernoulli” using generalized
estimating equation methodology was
derived. = The model was applied in
modeling the effects of the input variables
on the output variables; where average
length of stay serves as a normal response
while number of discharges serves as a
Poisson response. It was discovered that the
multivariate marginal regression model
performed far better than the univariate
equivalent.
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