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Aims This study aimed to investigate the distribution of myocardial fibrosis and patterns of tissue characteristics on cardiovascular 
magnetic resonance (CMR) between athletes with left ventricular (LV) dilatation and mild dilated cardiomyopathy (DCM) 
patients.

Methods 
and results

We prospectively recruited male cyclists/triathletes aged ≥50 years who undertook ≥10 h/week of exercise for ≥15 years 
along with age-/sex-matched patients with non-ischaemic heart failure (HF). Participants underwent clinical assessment, 
12-lead ECG, stress-perfusion CMR with fibrosis assessment, and parametric tissue mapping.

Following CMR, included participants in both groups had left ventricular ejection fraction (LVEF) > 40% and left ventricu
lar end-diastolic volume indexed to body surface area (LVEDVi) ≥ 110 mL/m2 without ischaemic heart disease or significant 
cardiac pathology on CMR likely to cause HF. Of 113 participants (64 athletes and 49 mild DCM patients), athletes with 
fibrosis demonstrated a greater prevalence of inferolateral fibrosis (87.5% vs. 50.0%, P = 0.002), whereas inferoseptal fibro
sis was more common in mild DCM patients (45.8% vs. 9.4%, P = 0.002). Native T1 (1249.0 ± 38.1 vs. 1308.3 ± 47.1 ms, 
P < 0.001) and extracellular volume (ECV) (22.0 ± 2.1 vs. 25.9 ± 3.5%, P < 0.001) were lower in athletes. Athletes had great
er right ventricular end-diastolic volume indexed to body surface area (RVEDVi) (121.0 ± 14.3 vs. 97.6 ± 25.2%, P < 0.001), 
myocardial perfusion reserve (MPR) (3.65 ± 1.30 vs. 2.76 ± 0.92, P < 0.001), and stress myocardial blood flow (MBF) (2.09  
± 0.70 vs. 1.62 ± 0.66, P < 0.001) than mild DCM patients. On receiver-operator curve analysis, native T1 [area under the 
curve (AUC) 0.89, P < 0.001], ECV (AUC 0.85, P < 0.001), RVEDVi (AUC 0.81, P < 0.001), and stress MBF (AUC 0.68, 
P = 0.002) were able to differentiate between groups.

Conclusion Septal fibrosis is rare amongst veteran athletes with LV dilation in contrast to mild DCM patients. Native T1, ECV, and 
RVEDVi can also discriminate between these overlapping phenotypes, which may be clinically useful.
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Graphical Abstract

Cardiovascular magnetic resonance (CMR) characteristics of veteran athlete’s heart (bottom panel) with left ventricular (LV) dilatation vs. mild di
lated cardiomyopathy (DCM) (top panel). Left hand column, schematic fibrosis patterns; left centre column, four-chamber view; right centre column, 
native T1 and ECV maps; right hand column, quantitative perfusion maps. ECV, extracellular volume; LGE, late gadolinium enhancement; LV, left 
ventricular; MBF, myocardial blood flow; MPR, myocardial perfusion reserve.

Keywords myocardial fibrosis • athlete’s heart • dilated cardiomyopathy • parametric tissue characterization

Introduction
Endurance athletes often undergo cardiovascular adaptions that lead to 
an ‘athlete’s heart’ phenotype, which includes left ventricular (LV) dila
tation and mildly reduced left ventricular ejection fraction (LVEF) at 
rest. In elite athletes, the degree of LV dilatation may be marked as de
monstrated by a study involving 286 former Tour De France cyclists, 
where half of the cohort exhibited LV diastolic diameters >60 mm 
on echocardiography.1 Furthermore, one-third of the cyclists with sig
nificant LV enlargement concurrently had reduced LVEF at rest. Such 
LV adaptation is thought to occur due to the exponential increase in 
LV stroke volume during high-intensity aerobic exercise. Male endur
ance athletes who simultaneously undertake a high degree of isometric 
exercise such as cyclists, rowers, and swimmers are believed to experi
ence the greatest extent of LV remodelling.2,3

Dilated cardiomyopathy (DCM) is also characterized by LV enlarge
ment in combination with reduced LVEF.4 Differentiation of athlete’s 
heart from mild forms of DCM can be challenging, in particular in older 
athletes with cardiac risk factors. Furthermore, isolated LV dilatation is 
recognized as an important preclinical phase of certain DCM pheno
types.5 In clinical practice, response to exercise may be used to differ
entiate athlete’s heart from DCM. Healthy athletes who demonstrate 
physiological mildly depressed LV systolic function at rest exhibit an in
crease in LV function during exercise, and a period of detraining can re
duce LV cavity size amongst certain athletes.6,7 However, DCM 
patients may also significantly improve their VO2max during exercise.8

Additionally, LVEF may improve up to 20% during acute physical exer
tion in DCM patients, which further blurs the distinction between those 

with mild DCM and athlete’s heart when using exercise testing to 
differentiate these groups.9 Furthermore, athletes may be hesitant to 
de-train, and access to exercise assessment facilities is not ubiquitous, 
calling for other methods to reliably distinguish between mild DCM 
and athlete’s heart. It is important to distinguish these two entities to 
avoid athletes being erroneously labelled with a pathological cardiac dis
order with sporting implications whilst also enabling those with mild 
DCM to be correctly identified and receive early treatment.

In DCM, the presence of septal non-ischaemic myocardial fibrosis on 
cardiovascular magnetic resonance (CMR) has been shown to be inde
pendently associated with adverse prognosis, which is potentiated when 
combined with myocardial fibrosis of the LV lateral wall.10,11 Myocardial 
fibrosis has also been increasingly detected in lifelong endurance athletes, 
particularly those who are older males, the significance of which is de
bated.12 The specific patterns of myocardial fibrosis and parametric tissue 
characteristics between those with mild DCM and veteran endurance ath
letes with cavity dilatation have not been directly compared to determine if 
they can improve the differentiation of these two populations.

We aimed to compare the myocardial fibrosis distribution and tissue 
characteristics between athletic LV dilatation and mild DCM using ad
vanced CMR-late gadolinium enhancement (LGE) imaging and paramet
ric tissue characterization techniques.

Methods
This study was undertaken in accordance with the Declaration of Helsinki 
and was granted ethical approval by the South Yorkshire & Humber NHS 
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Research Ethics Committee and Health Research Authority (21/YH/0231 
and 17/YH/0300). Each participant provided written informed consent 
prior to taking part in the research. All study investigations and participant 
visits were undertaken at the University of Leeds Advanced Imaging Centre, 
Leeds General Infirmary, Leeds, UK.

Recruitment
One hundred eighty-one male endurance athletes who were aged 
≥50 years old were prospectively recruited from sporting clubs/organiza
tions within the UK via email invitation to their respective club/organization. 
Athletes undertook ≥10 h per week of formal exercise for ≥15 years and 
competed regularly either at the local, national, or international level.

Patients with mild DCM were selected from a larger cohort of 733 pa
tients with a clinical diagnosis of heart failure (HF) and impaired LV function 
(LVEF < 50%) on echocardiography, recruited in the preceding 12 months. 
From this cohort, 375 males were included in this study to match the sex of 
the athletes.

From these two cohorts, participants with LVEF ≥ 40% and left 
ventricular end-diastolic volume indexed to body surface area 
(LVEDVi) ≥ 110 mL/m2 were selected for this study based on European 
Society of Cardiology guidelines defining a mildly reduced EF as LVEF 41– 
49% and the CMR reference for LV dilatation.13,14 Exclusion criteria for 
both cohorts included known ischaemic heart disease (IHD), symptoms of 
chest pain, severe valvular heart disease, myocarditis, and hypertrophic car
diomyopathy. Participants were also excluded if they had cardiac amyloid, 
inducible ischaemia, or myocardial infarction (MI) on CMR.

Study procedures
All participants underwent baseline assessment consisting of physical exam
ination along with documentation of their medical and lifestyle history.

Physical examination involved measurement of height, weight, resting 
blood pressure (BP), and heart rate (HR). Blood sampling for full blood 
count, renal profile, lipid profile, and glycated haemoglobin was undertaken 
for haematocrit measurement and to identify the presence of hyperlipid
aemia, diabetes mellitus, or kidney disease. All participants underwent rest
ing 12-lead ECG (MAC500, GE Medical Systems, Milwaukee, WI, USA) to 
identify pre-existing cardiac disease and rhythm abnormalities.

CMR protocol
All participants underwent CMR imaging with an identical protocol 
(Siemens Prisma 3.0 T CMR scanner, Siemens Healthineers, Erlangen, 
Germany). Participants were advised to avoid caffeine for 24 h before the 
study. The CMR scan protocol consisted of the following: 

• Cine imaging in short axis (SAX) and multiple long axis (LAX) planes for 
volumetric analysis

• Adenosine stress and rest quantitative myocardial perfusion to identify 
myocardial ischaemia and microvascular function

• Pre- and post-contrast T1 mapping to allow estimation of the myocar
dial extracellular volume (ECV) fraction

• T2 mapping to identify inflammation and oedema

• Motion-corrected (MOCO) bright and dark-blood LGE in SAX and mul
tiple LAX planes to identify and quantify LV fibrosis

For perfusion imaging, a free-breathing MOCO dual sequence single bo
lus perfusion sequence was used to provide pixel wise mapping of myocar
dial blood flow (MBF).15 A 140 µg/kg/min of adenosine was administered 
through a peripheral intravenous cannula for 3 min or increased to 
210 µg/kg/min if there was a lack of haemodynamic response. BP was re
corded every 2 min, and continuous ECG monitoring was utilized through
out. When the HR increased by >10% compared with baseline 
accompanied with symptoms of adenosine-induced hyperaemia, a bolus 
of 0.05 mmol/kg non-ionic gadolinium-based contrast (Gadovist®, Bayer, 
Leverkusen, Germany) was given followed by a 20 mL saline flush using 

an automated injection pump (Medrad MRXperion Injection System, 
Bayer, Leverkusen, Germany) for both stress and rest imaging.16

Perfusion maps were acquired at three LV SAX 8 mm slices at the basal, 
mid, and apical levels with slice spacing varying on a per-patient basis to cov
er the LV.

Pre-contrast native T1 maps were acquired in three 8 mm LV SAX slices 
(basal, mid, and apical) with planning identical to perfusion slices using a 
breath-held 5s3s Modified Look-Locker inversion recovery (MOLLI) acqui
sition. T2 maps were acquired at the exact same LV SAX slice locations 
using a breath-held T2-prepared spoiled gradient echo (GE) pulse sequence 
resulting in single-shot T2-prepared images.

LGE images were acquired in a SAX stack covering the entire LV along 
with four-, three-, and two-chamber views using a free-breathing MOCO 
T1-weighted, inversion-recovery sequence. A top-up of 0.1 mmol/kg 
gadolinium-based contrast agent (Gadovist®, Bayer, Leverkusen, 
Germany) was given immediately following rest perfusion imaging. 
Post-contrast T1 mapping was performed exactly 15 min after contrast ad
ministration using 4s(3s)3s(3s)2s MOLLI with identical positioning and plan
ning to the native T1 mapping. A single slice of dark-blood LGE was 
performed at the SAX mid-LV to image both papillary muscles.

CMR analysis
All CMR studies were analysed using commercially available software (cvi42, 
Circle Cardiovascular Imaging Inc. Calgary, Canada). Volumetric data were 
calculated by tracing the LV (endocardial and epicardial borders excluding 
papillary muscles), right ventricle (RV) (endocardial borders), and left atrium 
(LA). LV/RV volumes, LV mass, and LA volumes were indexed to body sur
face area (BSA). LA volumes were produced by semi-automated tracing of 
the LA endocardial border in the four- and two-chamber cine views using 
the biplane area-length method. LV global longitudinal strain (GLS) was per
formed by manually tracing the LV endocardial and epicardial borders in 
end-diastole using the four-, three-, and two-chamber cine LAX images be
fore using semi-automated feature tracking software to track the contours 
throughout the cardiac cycle.

Visual assessment of regional ischaemia in a coronary distribution was 
performed from stress and rest perfusion images. Automated quantitative 
assessment of MBF at stress and rest was performed using a previously va
lidated method.17 This provided automated calculation of global and seg
mental MBF, myocardial perfusion reserve (MPR), and endo-epicardial 
MBF gradient.

T1 and T2 maps were analysed by manually contouring the LV mid-slice 
endocardial and epicardial borders with a 15% offset applied. T1 measure
ments were performed on the same mid-LV slice for native T1 pre- and 
post-contrast along with corresponding blood pool. ECV was calculated 
using the formula:

ECV = (1 − haematocrit)
(ΔR1myocardium)

(ΔR1blood) 

The presence of focal LV fibrosis was confirmed only when an area of LGE 
was visualized on an LV SAX stack image along with corresponding orthog
onal LV LAX plane and/or matching ECV map images. Segmental quantifica
tion was performed on LGE LV SAX stack images by contouring LV 
endocardial and epicardial borders on those slices containing LGE using 
the five-standard deviation method to provide numerical quantitative LV fi
brosis in grams. The five-standard deviation method was chosen to avoid 
overestimating the presence of fibrosis, particularly where fibrosis was sub
tle.18 Segmental quantitative fibrosis assessment was performed by sub- 
dividing each myocardial segment of the conventional 16 myocardial seg
ment model into three further segments; subepicardial, mid-myocardial, 
and subendocardial, leading to 48 myocardial sub-segments. The LV fibrosis 
percentage of the total myocardium was calculated by dividing the total LV 
fibrosis by the LV mass. RV insertion point (RVIP) LGE was noted but not 
classified as fibrosis. The presence of papillary muscle fibrosis was confirmed 
using a single slice of dark-blood LGE at the mid-LV level.
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Statistical analysis
Statistical analyses for all studies were undertaken using SPSS statistics 29 
(IBM SPSS, Armonk, New York, USA). Normality of data was assessed using 
the Shapiro–Wilk test. Continuous data were presented as mean ± stand
ard deviation or median ± interquartile range depending on the normality 
of the data. Categorical data were presented as frequency (percentage). 
Continuous variables were compared using the unpaired t-test or Mann– 
Whitney U test depending on the normality of data. Categorical variables 
were compared using χ2 test. Depending upon normality of data, either 
Pearson’s or Spearman’s correlation coefficient was used to assess correl
ation. C-statistics were used to perform receiver operating characteristic 
(ROC) curve analysis. A P value of <0.05 was considered statistically signifi
cant in all analyses.

Results
The final analysis included 113 participants (64 athletes and 49 mild 
DCM patients) after identifying male athletes and HF patients with an 
LVEDVi ≥ 110 mL/m2 and an LVEF ≥ 40% on CMR (Figure 1).19

Athletes had lower body mass index (BMI), HR, and BP along with a 
lower incidence of pre-existing hypertension, hyperlipidaemia, and 
stroke than patients with mild DCM (Table 1).

LVEDVi (123.3 ± 12.6 mL/m2 vs. 129.8 ± 23.1 mL/m2, P = 0.06) and 
LV mass indexed to BSA (LVMi) (78.0 ± 10.6 g/m2 vs. 78.9 ± 17.9 g/m2, 
P = 0.73) were not significantly different between athletes and mild 
DCM patients. However, LVEF (52.0 ± 6.1% vs. 47.6 ± 5.2%, P <  
0.001) and right ventricular end-diastolic volume indexed to BSA 
(RVEDVi) (121.0 ± 14.3 mL/m2 vs. 97.6 ± 25.2 mL/m2, P < 0.001) 
were both greater in athletes than mild DCM patients (Table 2).

LV GLS values were more significantly negative in athletes with cavity 
dilatation compared with mild DCM patients (−14.9 ± 2.4% vs. −11.8  
± 3.4%, P < 0.001). However, both groups had reduced longitudinal 
function compared with normal reference ranges.19 There were no dif
ferences in LA volume indexed to BSA (LAVi) between athletes and 
mild DCM patients (56.4 ± 15.6 mL/m2 vs. 53.2 ± 25.5 mL/m2, 
P = 0.41).

Native T1 (1249.0 ± 38.1 ms vs. 1308.3 ± 47.1 ms, P < 0.001) and 
ECV (22.0 ± 2.1% vs. 25.9 ± 3.5%, P < 0.001) were both lower in ath
letes than mild DCM patients (Table 3). Furthermore, athletes had high
er MPR (3.65 ± 1.30 vs. 2.76 ± 0.92, P < 0.001) and stress MBF (2.09 ±  
0.70 mL/g/min vs. 1.62 ± 0.66 mL/g/min, P < 0.001) than mild DCM pa
tients, but there was no significant difference in resting MBF (0.61 ±  
0.27 mL/g/min vs. 0.61 ± 0.17 mL/g/min, P = 0.93) between the groups 
(Figure 2).

There was no difference in the prevalence of non-ischaemic focal 
myocardial fibrosis between both groups (50.0% vs. 49.0%, P = 0.92). 
A greater burden of fibrosis trended towards the mild DCM group, 
but this did not reach statistical significance (3.5 ± 2.9 g vs. 7.4 ±  
12.0 g, P = 0.09) (Table 3).

The distribution of non-ischaemic fibrosis varied considerably be
tween the groups (Figure 3). Athletes with fibrosis had a significantly 
greater prevalence of basal mid-myocardial inferolateral fibrosis than 
mild DCM patients (87.5% vs. 50.0%, P = 0.002), whereas basal mid- 
myocardial inferoseptal fibrosis was significantly more common in 
mild DCM patients than athletes (45.8% vs. 9.4%, P = 0.002). 
Furthermore, athletes had a greater prevalence of RVIP LGE 
(67.2% vs. 6.1%, P < 0.001), but there was no significant difference in 
LV papillary muscle fibrosis prevalence (31.3% vs. 22.4%, P = 0.30) be
tween the groups.

On ROC analysis, native T1 [area under curve (AUC) 0.89, P <  
0.001], ECV (AUC 0.85, P < 0.001), RVEDVi (AUC 0.81, P < 0.001), 
and stress MBF (AUC 0.68, P < 0.001) were all able to differentiate ath
letes and patients with mild DCM (Figure 4). The presence of non- 
ischaemic LGE was not discriminatory (AUC 0.50, P = 0.93).

Discussion
In this prospective study, veteran endurance athletes with LV dilatation 
had a distinctive pattern of myocardial fibrosis along with greater RV 
dilatation and lower native T1 and ECV compared with patients with 
mild DCM. Athletes also demonstrated higher stress MBF and MPR 
than mild DCM patients.

Figure 1 Consolidated Standards Of Reporting Trials diagram. Flow chart of participant recruitment for male veteran athletes with cavity dilatation 
and patients with mild DCM. CMR, cardiac magnetic resonance; DCM, dilated cardiomyopathy; IHD, ischaemic heart disease; HCM, hypertrophic car
diomyopathy; HF, heart failure; IHD, ischaemic heart disease; LVEDVi, left ventricular end-diastolic volume indexed to body surface area; LVEF, left 
ventricular ejection fraction; MI, myocardial infarction; y, years.
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Fibrosis distribution
Despite no difference in the overall prevalence of myocardial fibrosis 
between athletes with ventricular dilatation and mild DCM patients, 
the distribution of myocardial fibrosis varied significantly. Athletes pre
dominantly exhibited myocardial fibrosis affecting the basal lateral seg
ments, whilst septal involvement was rare but common in mild DCM 
patients. Our findings therefore suggest that fibrosis involving the sep
tum is a specific finding in patients with DCM and when found in an ath
lete with cavity dilatation may raise the suspicion of underlying 
cardiomyopathy. This is also in keeping with previous literature, which 
has demonstrated that myocardial fibrosis occurring in otherwise 
healthy athletes predominantly affects the basal lateral myocardial 
segments.20,21

Fibrosis involving the basal inferolateral segment was a common find
ing amongst both groups. The postulated mechanisms for the develop
ment of basal inferolateral myocardial fibrosis include LV pressure and/ 
or volume overload causing an area of the myocardium, which is poten
tially more susceptible to high shear wall stress forces, to develop fibro
sis.12 It is therefore plausible that the fibrogenic mechanisms in both 
athletes with physiological remodelling and those with DCM overlap.

Kübler et al.22 compared 40 top-level German athletes with 48 DCM 
patients. They found that the prevalence of myocardial fibrosis was sig
nificantly greater in DCM patients (44%) than athletes (5%) but did not 

compare the location of fibrosis. However, the groups were not 
matched for LV dilatation nor age, and DCM patients had significantly 
greater LV cavity volumes compared with athletes (132 ± 41 mL/m2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline assessment and demographic data 
according to athletes vs. mild DCM patients

Athletes  
(n = 64)

Mild DCM  
(n = 49)

P value

Age (years) 58.8 ± 6.0 56.8 ± 13.4 0.31

BMI (kg/m2) 24.4 ± 2.2 30.5 ± 16.5 0.004*

Resting HR (BPM) 51.6 ± 8.0 62.5 ± 13.0 <0.001*

Systolic BP (mmHg) 117.7 ± 18.8 131.1 ± 23.0 0.001*

Diastolic BP (mmHg) 72.7 ± 8.2 76.9 ± 11.1 0.03*

Diabetes (n) 0 3 (6.1%) 0.05

Hypertension (n) 1 (1.6%) 21 (42.9%) <0.001*

Stroke/TIA (n) 0 6 (12.2%) 0.004*

AF (n) 8 (12.5%) 10 (20.4%) 0.24

Hyperlipidaemia (n) 2 (3.1%) 10 (20.4%) 0.003*

Current smoker (n) 1 (1.6%) 8 (16.3%) 0.02*

Ex-smoker (n) 6 (9.4%) 14 (28.6%) 0.05

NYHA I N/A 34 (69.4%)

Antiplatelet (n) 0 7 0.002*

Beta-blocker (n) 2 37 <0.001*

ACE-i/ARB (n) 0 38 <0.001*

MRA (n) 0 13 <0.001*

Diuretic (n) 0 15 <0.001*

Statin (n) 3 21 <0.001*

Oral anticoagulant (n) 3 9 0.02*

SGLT2 inhibitor (n) 0 7 0.002*

Oral hypoglycaemic (n) 0 7 0.002*

Values are mean ± standard deviation or frequency (%). * Bold values denote P < 0.05.
AF, atrial fibrillation; BMI, body mass index; BP, blood pressure; BPM, beats per minute; 
DCM, dilated cardiomyopathy; NYHA, New York Heart Association; TIA, transient 
ischaemic attack.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 CMR volumetric parameters according to 
athletes vs. mild DCM patients

Athletes  
(n = 64)

Mild DCM  
(n = 49)

P value

LVEDV (ml) 241.7 ± 32.4 270.2 ± 49.6 <0.001*

LVEDVi (mL/m2) 123.3 ± 12.6 129.8 ± 23.1 0.06

LVEF (%) 55.4 ± 4.3 47.6 ± 5.2 <0.001*

LVM (g) 152.7 ± 22.5 164.3 ± 36.6 0.04*

LVMi (g/m2) 78.0 ± 10.6 78.9 ± 17.9 0.73

LVM/LVEDV 0.63 ± 0.07 0.61 ± 0.12 0.13

LV GLS (%) −14.9 ± 2.4 −11.8 ± 3.4 <0.001*

RVEDV (ml) 237.1 ± 33.1 202.9 ± 53.1 <0.001*

RVEDVi (mL/m2) 121.0 ± 14.3 97.6 ± 25.2 <0.001*

RVEDV/LVEDV 0.98 ± 0.09 0.75 ± 0.16 <0.001*

RVEF (%) 52.4 ± 5.3 54.7 ± 10.3 0.12

Interventricular septum MWT 

(mm)

9.7 ± 1.4 10.0 ± 2.2 0.32

Basal inferolateral MWT (mm) 7.2 ± 1.3 6.7 ± 1.9 0.10

LAV (mL) 110.4 ± 31.6 102.5 ± 46.8 0.29

LAVi (mL/m2) 56.4 ± 15.6 53.2 ± 25.5 0.41

Values are mean ± standard deviation. * Bold values denote P < 0.05.
LAV, left atrial volume; LAVi, left atrial volume indexed to body surface area; LVEDV, 
left ventricular end-diastolic volume; LVEDVi, left ventricular end-diastolic volume 
indexed to body surface area; LVEF, left ventricular ejection fraction; LVM, left 
ventricular mass; LVMi, left ventricular mass indexed to body surface area; MWT, 
maximum wall thickness; RVEDV, right ventricular end-diastolic volume; RVEDVi, 
right ventricular end-diastolic volume indexed; RVEF, right ventricular ejection fraction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 CMR fibrosis, parametric tissue mapping, and 
quantitative perfusion data according to athletes vs. mild 
DCM patients

Athletes  
(n = 64)

Mild DCM  
(n = 49)

P value

Stress MBF (mL/g/min) 2.09 ± 0.70 1.62 ± 0.66 <0.001*

Rest MBF (mL/g/min) 0.61 ± 0.27 0.61 ± 0.17 0.93

MPR 3.65 ± 1.30 2.76 ± 0.92 <0.001*

Native T1 (ms) 1249.0 ± 38.1 1308.3 ± 47.1 <0.001*

ECV (%) 22.0 ± 2.1 25.9 ± 3.5 <0.001*

T2 (ms) 40.8 ± 2.0 41.8 ± 3.0 0.03*

Non-ischaemic fibrosis (n) 32 (50%) 24 (49.0%) 0.92

Fibrosis mass (g) 3.5 ± 2.9 7.4 ± 12.0 0.09

Fibrosis mass/LV mass (%) 3.5 ± 2.9 7.4 ± 12.0 0.09

RVIP LGE (n) 43 (67.2%) 3 (6.1%) <0.001*

Papillary fibrosis (n) 20 (31.3%) 11 (22.4%) 0.30

Values are mean ± standard deviation. * Bold values denote P < 0.05.
ECV, extracellular volume; LGE, late gadolinium enhancement; LV, left ventricular; MBF, 
myocardial blood flow; MPR, myocardial perfusion reserve.
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vs. 105 ± 17 mL/m2, P = 0.001) and were on average 29 years older 
than athletes. Furthermore, the study included patients with severe 
DCM (mean LVEF 29%) which may explain the significantly greater 
prevalence of fibrosis in DCM patients. Millar et al.7 compared 24 
healthy athletes with LV dilatation and 34 patients with mild DCM. 
They found a much higher prevalence of myocardial fibrosis in mild 

DCM patients compared with athletes [17 (50%) vs. 0, P < 0.0001] 
but did not perform parametric tissue mapping nor report the distribu
tion of fibrosis. The absence of fibrosis in athletes in this previous study 
may have been due to the inclusion of younger athletes (mean age 32.3  
± 10.4 years; range 18–58 years) compared with our study (mean age 
58.8 ± 6.0 years), and the athletes they studied were predominantly 

Figure 3 Fibrosis distribution in athletes compared with mild DCM patients. Athletes with fibrosis most commonly had mid-myocardial myocardial 
fibrosis affecting the basal inferolateral (87.5%) and anterolateral (53.1%) segments along with mid-inferolateral (25.0%) and subepicardial basal infer
olateral segments (21.9%), but only 9.4% of athletes with fibrosis had fibrosis affecting the basal inferoseptal segment. Mild DCM patients with fibrosis 
most commonly had mid-myocardial myocardial fibrosis affecting the basal inferolateral (50.0%), inferoseptal (45.8%), and anteroseptal (45.8%) seg
ments. DCM, dilated cardiomyopathy; LGE, late gadolinium enhancement.

Figure 4 ROC analysis of native T1, ECV, RVEDVi, and stress MBF between athletes and mild DCM patients. ECV, extracellular volume; MBF, myo
cardial blood flow; ROC, receiver operating characteristic, RVEDVi; right ventricular end-diastolic volume indexed to body surface area.
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runners (42%), which may have also affected fibrosis prevalence. This is 
pertinent as older male cyclists and triathletes are believed to be the 
group who exhibit the highest prevalence of myocardial fibrosis, and 
therefore this likely reflects the reason for the reported prevalence 
of fibrosis in our athlete cohort.12

Native T1 and ECV
Athletes with cavity dilatation had significantly lower native T1 and ECV 
than mild DCM patients. Raised native T1 times and ECV in those with 
DCM have also been demonstrated in other studies suggesting evi
dence of diffuse fibrosis.23–25 These results are consistent with previous 
findings that athletic remodelling is associated with myocyte hyper
trophy and thus lowered ECV as opposed to an increase in ECV, indi
cative of interstitial fibrosis, which occurs in cardiomyopathy.26

Native T1, ECV, and RVEDVi were superior to stress MBF as discri
minators of athlete’s heart from mild DCM with high specificity and 
sensitivity. This is in keeping with a study by Mordi et al.27 who com
pared middle-aged males with early DCM and male athletes with mildly 
or borderline depressed LV systolic function using T1 and T2 mapping 
on CMR. They also found native T1 to be the best differentiator of 
these groups (AUC 0.91, P < 0.001). Therefore, native T1 may have a 
potential important diagnostic role for distinguishing athlete’s heart 
from DCM. However, in both our and the previous study by Mordi 
et al., there was a considerable overlap of individual values between 
the groups, which may limit clinical utility.

RV dilatation
Athletes had evidence of balanced ventricular dilatation involving both 
the RV and LV as opposed to mild DCM patients where lone LV ven
tricular dilatation was mainly present. These findings are in keeping with 
physiological athletic adaptation as the more compliant RV tends to 
preferentially dilate with chronic athletic training.28 RV dilatation is a 
well-established feature of athlete’s heart and is directly proportional 
to training intensity.29 In DCM, RV involvement may occur in ∼30% 
of DCM cases and is possibly related to the extent of LV systolic dys
function.30,31 As our DCM cohort consisted of an early or mild form, 
this may explain why RV dilatation was not prevalent amongst those 
with mild DCM.

Stress MBF and MPR
Stress MBF and MPR were lower in those with mild DCM than athletes 
with LV dilatation. A study by Gulati et al.32 displayed a similar reduction 
in stress MBF and MPR in DCM patients compared with controls, and 
these findings were believed to represent microvascular dysfunction. In 
their study, resting MBF was also raised in DCM patients, which was not 
replicated in our study. However, they included those with a more se
vere form of DCM as the mean LVEF of their DCM cohort was 35%. 
Therefore, increased resting MBF may be a feature of more advanced 
disease or decompensation where there is increased cardiac workload 
at rest. In contrast, exercise training in athletes has been shown to en
hance peripheral microvascular function, and this may also extend to 
cardiovascular microvascular function.33

Stress MBF had the lowest AUC out of the parameters that were 
used to differentiate athletes with LV dilatation and mild DCM. Given 
that it requires specialized sequences and dedicated post-processing 
software along with the use of a stressor to induce hyperaemia, it 
may be argued that native T1, ECV, and RVEDVi are more time- and 
cost-efficient differentiators of athletic remodelling from mild DCM.

Limitations
This study was limited by a relatively small number of participants within 
both groups of whom were imperfectly matched for baseline charac
teristics and LVEF. Our study also exclusively included veteran male 

participants, which limits clinical translation to other groups. 
However, older male athletes are believed to be the athletic group 
who are at most at risk of developing myocardial fibrosis and therefore 
justified our study selection.12

Neither group was genetically tested for cardiomyopathy, and it is 
not clear what proportion of seemingly healthy athletes actually ex
pressed an underlying genetic DCM variant. Certain athletes with a 
mild DCM phenotype have been shown to possess cardiomyopathic 
genetic polymorphisms, and this has also been discovered in those 
with idiopathic fibrosis on post-mortem in those who have suffered 
sudden cardiac death.34,35 Therefore, an important area for future re
search involves combining advanced CMR and genetic testing in athletes 
who exhibit cardiac features consistent with a mild cardiomyopathy 
phenotype.

Conclusion
Veteran male athletes with LV dilatation exhibited a pattern of myocar
dial fibrosis and CMR parametric tissue mapping characteristics, which 
were distinctive from patients with mild DCM. Whilst both groups ex
hibited a similar prevalence of non-ischaemic fibrosis, septal fibrosis was 
rare amongst athletes. Furthermore, RV dilatation was common in ath
letes but not seen in those with mild DCM. Native T1, ECV, and stress 
MBF were all able to differentiate between these cohorts, albeit with 
overlap between the groups.

Recognition of this pattern may be clinically useful to differentiate 
these two overlapping phenotypes. In particular, older athletes with 
septal fibrosis and LV dilatation without co-existing RV dilatation should 
prompt further investigation to exclude cardiomyopathy. Larger stud
ies, particularly with longitudinal data and those combining advanced 
CMR techniques with genetic testing, are required to further investigate 
these findings.
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