Toward Predictable Deflection Routing in
Routerless NoCs for Real-Time Systems

M Norazizi Sham Mohd Sayuti
Faculty of Engineering and Built Environment
Universiti Sains Islam Malaysia
Negeri Sembilan, Malaysia
azizi @usim.edu.my

Abstract—Contention between packets on shared re-
sources, such as ejection links, causes high latency
on routerless Networks-On-Chip. Missing packet tim-
ing guarantees due to high latency render a real-
time application unschedulable. Deflection routing is
a mechanism that addresses contention when multiple
packets try to access the same links simultaneously.
Despite its benefits, packets may be deflected more than
what their timing guarantees allow in the worst-case
scenario. To achieve an upper bound of deflections in
conjunction with mapping, we proposed two methods:
first, a method that increases the deflections of all
communication flows, and second, a method that in-
creases the deflections based on selective communication
flows. Our findings, based on running both methods
in an evolutionary optimisation, show that the latter
outperformed the former, with a statistically significant
improvement in the maximum deflection.

Index Terms—networks-on-chip, routerless, deflec-
tion routing, evolutionary optimisation, design space
exploration

I. INTRODUCTION

Routerless Networks-On-Chip (NoCs) require lim-
ited buffering and flow control circuitry, providing
benefits in terms of energy consumption. On a ring
topology, multiple ring connections exist to transfer
packets over the NoCs. A packet is injected flit-by-
flit from the injection queue to an output port of
the switch and travels to the next switch on its ring.
Each switch has a single-flit buffer enough to store
a flit on each ring. An output port does not have
a buffer. Instead, each ring has a packet buffer to
temporarily store a packet’s flits if a newly injected
packet occupies the intended output port to the next
switch.

Despite such architecture, the ejection links of the
switch are still shared among packets on multiple

Universiti ~ Sains
(Grant numbers:

This work was supported by a
Islam Malaysia research grant
PPPI/USIM/FKAB/USIM/110523).

Leandro Soares Indrusiak
Distributed Systems and Services Group
School of Computer Science, University of Leeds
Leeds, United Kingdom
L.SoaresIndrusiak @leeds.ac.uk

rings. If the shared links are currently occupied, the
other packets are forced to perform several loops on
their rings until the links are available for ejection
to their destination core. This contention resolution
mechanism is known as deflection routing.

Every deflection imposes a time delay on every
packet, increasing its latency. Still, all packets of a
real-time application must meet their timing guaran-
tees; otherwise, the application will be deemed as
unschedulable. This condition restricts the number of
deflections permissible to every packet on its ring.
An upper bound defines the maximum deflection
of a packet to prevent it from looping beyond its
timing guarantee. Having this upper bound is the first
step; for packets with strict latency requirements, the
situation worsens if more rings are connected to the
processing core, with only small deflections permitted
to mitigate the contention. Therefore, it is essential
during the design space exploration to determine the
upper bound in conjunction with task mapping, as
it has the potential to dissipate packets under those
requirements to other cores with less contention.

To address these challenges, we propose two op-
timisation methods to explore the deflection upper
bound for the routerless NoCs. From the results,
we demonstrate that achieving the upper bound in
conjunction with task mapping is possible, and there
is potential for further increases in the maximum
deflections.

We organise the following sections as follows. Sec-
tion II provides a background overview of the related
works. Section III introduces the proposed optimi-
sation methods to explore the maximum deflections
bound. Section IV discusses the findings from the
evaluation we performed on the proposed methods.
Section V of the article concludes our findings and
proposes future work.

II. BACKGROUND

Wormhole switching [1] is a popular network
switching protocol in router-based Networks-on-Chip
because it strikes a good balance between perfor-
mance and buffer usage. Routers do not need to store
entire packets in buffers—just a fixed, small size of
data called flits is required to perform their routing
functions [2]. This has its drawbacks, as small buffers
mean there is not enough space to accommodate
stalled packets. Packets can become stagnant at mul-
tiple routers and occupy several links simultaneously,
making it challenging to predict network travel time.
Furthermore, despite their superior scalability, they
also incur significant power and area overhead due
to the complexity of the router structures.

A deflection switch in a routerless NoC can be
much smaller and faster than a wormhole or virtual
cut-through switch. Liu et al. have proposed the Iso-
lated multi-Ring (IMR) architecture [3], demonstrat-
ing improvements in throughput and average latency
over several router-based NoC architectures, includ-
ing Mesh and Torus networks. Following that work,
another improvement has been suggested by Alazemi
et al. [4]. Their routerless NoC eliminate routers
and optimises on-chip wiring to achieve comparable
hop count and scalability while reducing resource
requirements. The proposed design shows significant
power and area reduction while improving latency
and throughput compared to IMR and some low-cost
router-based NoC designs. Further study by Kapre
et al. [5] has shown that the benefit of deflection
routings extends to FPGA (Field Programmable Gate
Array) overlay by eliminating FIFO (First-in First-
out) buffers, and adopting a torus topology maximises
resource efficiency by reducing crossbar complexity.

The role of mapping in the early design stage is
essential, as it determines not only the response times
of tasks running on processing cores but also the
communication delays of packets originating from
the tasks. The problem with deflection-routed NoCs
is balancing the deflection of packets while opti-
mising other parameters, such as task mapping. For
a comprehensive review of dynamic mapping—also
referred to as run-time mapping—and static mapping
(design-time mapping), readers are directed to Saleem
et al. [6] and Sahu et al. [7], respectively. Given the
substantial influence of static task mapping on NoC
with wormhole switching, particularly in the context
of real-time applications, numerous prior studies [8],
[9] have investigated its impact on time guarantees
by employing the schedulability analysis [10].

It is common to see average performance metrics in
most NoC design space explorations. A design space
exploration tool, such as SUNMAP, automatically
selects the best topology for a given application, then
maps cores onto that topology to minimise average
communication delay and other performance metrics
[11], but does not support deflection router models.
Simulators, such as those proposed in [12], support
custom network topologies, detailed deflection router
models, and various simulation modes, with a focus
on average latency and power performance analysis.
The use of machine learning-based methods in design
space exploration has become a trend. This includes
the work in [13], but, similar to the former works, it
is challenging to effectively evaluate the NoCs under
worst-case scenarios.

Recently, a new schedulability analysis [14] has
been proposed to facilitate the worst-case analysis
of packet latency in deflection-routed NoCs. Using
this analytical approach, a thorough exploration of
the upper bound on deflection can be performed at
the early stage of design.

III. DEFLECTION ROUTING OPTIMISATION

The proposed deflection optimisation methods fa-
cilitate routerless NoCs design space exploration by
optimising task mapping and determining the upper
bound of deflections. To realise both optimisation
methods for the worst-case scenario, the schedu-
lability analysis in section III-B together with the
related functions in section III-D and III-E were
integrated with an evolutionary algorithm in section
II-C. In the following sections, we explain each of
the components.

A. Routerless NoCs Model

Let us elucidate the routerless NoC model used in
our methods. As depicted in Fig. 1 the routerless NoC
model contains a set of rings O = {01,092, ...,0},
switches & = {&1,&a, ..., &m) and a set of processing
cores II = {my, 7o, ..., }. Each switch &; has a
processor counterpart 7;, connected with two unidi-
rectional links to and from the switch. Each ring o;
passes through an ordered set of switches =f € &,
and each switch could serve multiple rings. The
switch must have a buffer 6° with sufficient size to
accommodate even the largest packet to that ring o;.
A set of buffers in each ring is defined as a set of
ordered buffers B = {by, ba, ..., b, }.

Each processing core 7; runs a set of mapped tasks
denoted as U; = {\1, \a, ..., A\ }. Each U, is a subset
of a real-time application A = {U; ¥, ... U}

e IO
Raeng. ot UE R
€1 Tk sfection ot
port | buffer
-‘E
1]
H acket

Fig. 1. Routerless network switch

All task sets of a real-time application are mutually
exclusive; that is, once a set of tasks is mapped on a
processing core, it remains on it until the application
terminates.

In this system model, switches communicate with
each other through one of their connected rings by
sending communication packets, flit by flit, through
each link on the ring until all of them arrive at the
destination core. Packet transmission in this model
is also known as traffic flow. Traffic flows of a real-
time application belong to a set I' = {7, 79,...7-}.
A real-time traffic flow is characterised based on
tuple 7, = {T;, D;, L;, J;, w5, 7d}. The source 7§ is
the processing core that releases the flow’s packets
to its corresponding switch’s output port, and we
assume that each packet’s release is either periodic or
sporadic. The minimum interval between two packet
releases is defined by the attribute 7;, while the maxi-
mum delay of the flow’s arrival at the destination core
7¢ is defined by the attribute D;. A packet contains a
load L; delivered as flits. As a ring forwards one flit
per cycle, L; is also the time it takes for the flits of the
packet to travel a link. We assume that the D; < T;
for simplicity, because every packet from the same
flow always carries the same amount of load. The
deviation from the successive release is also taken
into consideration, denoted as J;.

B. Schedulability Analysis

The schedulability analysis must account for the
maximum deflections to calculate the worst-case la-
tency. First, we assume that each ring in the routerless
NoC has independent injection links. Thus, the whole

packet from a traffic flow could be directed to the ring
without experiencing worst-case interference from
other traffic flows. Once the output link becomes
available, it is immediately acquired by the traffic
flow to send packets to the next downstream switch.
The worst-case latency of the flow is then modelled
as follows. The worst-case interference before injec-
tion I7"° is the amount of interference experienced
before the flow can have access to the output link of
the switch. For a detailed explanation of the equation,
interested readers are referred to the reference [14].

=1+ Y Li+
T;€ in,;
I+ J; + JF

S L+
T;
T ngpi
maxdef;

7 g4 T

2. 2 T

T;€Te 1 J

L

ey

We explain further the fourth term of the equa-
tion, as it has a direct relation to the maximum
deflection. Considering the ejection link is shared
among packets, the fourth term of (1) represents the
additional interference caused by the deflections of
packets using that ring. This interference, causing
the injection delay, is modelled by including each of
the packet deflections, accounting for them as if they
are replicas of the original packet flow, producing
interfering packets with the same period, jitter, and
upstream indirect interference.

Equation (2) provides the worst-case interference
IP?® for a packet 7; after ejection, with the additional
latency as the result of mazdef; deflections. To
account for the latency, links on which a packet must
travel while circling the ring must be considered; thus
(3) is factored with maxdef; deflections to account
for that.

17°° = 17°° mazdef; - 177!)

=Y B ®
e

We can determine the total worst-case latency
experienced by any packet 7; by substituting (1) and
(2) into (4). C; is added into the first term as the
maximum latency when no contention exists on the
ring where the flow travels from 77 to 7. Every
deflection incurs no-load latency, and to account for
every deflection, it must be factored with the number

—=o

of switches 7, on that ring (or in set =°) and the
number of maximum deflections maxde f;. Then, the
total worst-case latency experienced by flow 7; is

R; = C; + r° - maxdef; + I + I"*°. (4)

C. Optimisation Algorithm

A routerless NoC depends on the deflection param-
eter to dissipate contention at the ejection links. In-
creasing this parameter value to allow communication
flows to run several cycles at their respective rings,
however, imposes delays as indicated in (1). Analysis
based on (5) and (6) will determine if a given value
of the parameter will allow a communication flow
to become schedulable in the system or otherwise.
Therefore, we defined the maximisation of the sum
of all schedulable flows in (7) as the optimisation
objective, as follows.

g _{17 for R; < D; 5
"o, forR;>D; (6)
Obj = maxZSi 7

Application Routerless NoCs.
Model Model

Evolutionary Optimisation

[a

Crossover

*}{}(m e

Y

Fig. 2. Optimisation flow

Now, since task mapping allocates application
tasks among processing cores, it also affects the
ring paths as well as the communication flows that
utilise them. Thus, contention at the ejection links
of a processing core may differ from that of its
counterpart. Based on this notion, and guided by
(7), we explore the task mapping and the deflection
parameter by optimising them both in the optimisa-
tion framework depicted in Fig. 2. Optimisation of
both parameters requires two inputs from the system
model: a real-time application model and a routerless

NoC model. The application tasks are allocated to
the processing cores based on the mapping extracted
from the population chromosomes of the single-
objective evolutionary algorithm (SOEA). Similarly,
the deflection activation mode (refer to section III-E)
for each communication flow is extracted from the
population chromosomes. The maximum number of
iterations that the optimisation can perform is dictated
by the number of evaluations in its configuration.

In brief, SOEA’s underlying principle is based on
the concept of evolution in biology that describes how
inherited traits in populations change over genera-
tions. This process is driven by the natural selection
of individuals’ traits that help them survive and thrive
in their environment, as they reproduce and pass
those traits on to their offspring. Interested readers
are referred to [9] for a detailed explanation of the
typical processes of the algorithm.

Each flow will experience a minimum amount of
deflections on its ring after mapping. Assuming that
the destination core of all the flows on the shared
ring is the same, including the observed one. Then,
the latter will experience an amount of deflections
equivalent to the number of flows on the shared ring
minus itself. This value becomes the initial value of
the optimisation methods. Each proposed method will
increment the minimum value by one until an upper
bound is reached, at which point the system will
become unschedulable.

D. Scaling Deflection Function

The scaling deflection (SD) function, as depicted
in Algorithm 1, increments the deflection parameter
value to find the upper bound for all flows. This
is performed first by analysing the schedulability
of the system after every mapping. If all the flows
are schedulable, then the function will be called
to increment the deflection value of each flow by
one (maxdef < mazdef™"* + 1). The system
will be analysed again for its schedulability (in the
if statement). The same routine continues until the
schedulability test fails. Then, the previously incre-
mented values will be returned as the upper bound
of deflections in conjunction with the mapping.

E. Evolutionary Deflection Function

Evolutionary deflection (ED) performs a deflection
increment based on the activation provided by the
SOEA’s chromosome. Two discrete values determine
the activation. Value one (1) means the flow’s deflec-
tion will be increased, and zero (0) means its current
deflection value will remain. As shown in Fig. 3,

Algorithm 1 Scaling Deflection Function

Algorithm 2 Evolutionary Deflection Function

Input: ring set O
Output: upper
maxde fPt
schedulable < true;
while schedulable is true do
R < 0 mazxdefinit < 0;
foreach o in O do
foreach I'° in o do

mazdef™t <+ Y T

foreach 7; in I'° do

| mazdef{"" + maxde " +1;

end

end

bound deflection of all flows

end
foreach 7; in I' do
calculate R}**" from equation;
if R <= D, then
| R+~ R+1;
end

end
if R==> 7, €T then

| schedulable < true;
end
else

| schedulable < false;
end

end

in the second half of the chromosome (in orange),
not every flow will be activated. This characteristic
depends on the traits passed among the population.
For an inactivated flow, its deflection value remains
the same as the initial optimisation configuration.

Fig. 3. Evolutionary algorithm chromosome

First, the system is analysed for schedulability. If it
is schedulable, the function is called, and the deflec-
tion value of every activated flow will be increased
by one (within the innermost foreach). Subsequently,
the system will be re-evaluated for schedulability (in
the if statement). If it is schedulable, then the same
routine continues; otherwise, the last deflections of
all flows will be returned as the upper bound. The
function is depicted in the Algorithm 2.

Input: ring set O
Output: upper bound deflection of all
mazxde foPt
schedulable < true;
while schedulable is true do
R < 0 mazxdefin;: < 0;
foreach o in O do
foreach I'° in o do
mazdef™ «+ S T
foreach 7; in I'° do
if 7; is selected by EA then
| maxde " + maxde " 4 1;
end
end

flows

end
end

foreach 7; in I'" do
calculate R}““ from equation;
if R <= D; then
| R+ R+1;
end

end
if R==>) "7, €T then

| schedulable < true;
end
else

| schedulable + false;
end

end

IV. RESULTS

In Section III-B, we demonstrated from the anal-
ysis that deflection is a factor that increases the
worst-case latency. We will explain in the following
subsections that if task mapping and the deflection
parameter are sufficiently optimised, it is possible to
find the upper bound deflections of the flows within
their timing guarantees.

A. Evaluation Setup

For comparison, a baseline (B) was developed
using the same SOEA as the proposed methods (SD
and ED). Its distinguishing characteristic is that the
total deflection of a flow is equivalent to the number
of flows on each ring. This setting would allow a
comparison in terms of schedulability before and after
the deflection parameters were optimised. Our goals
from this evaluation are as follows.

o To analyse the schedulability ratio of both meth-
ods.

e To analyse the maximum deflections of flows
from both proposed methods.

o To analyse both methods statistically to gain
confidence in the maximum deflection improve-
ment.

The attributes of the task and flow tuples charac-
terise the application model. By characterising these
attributes, 20 synthetic applications were produced,
with the smallest application containing five tasks
and the largest containing one hundred tasks. Each
application is a five-task increment over the previous.
This would allow us to evaluate the proposed meth-
ods using various application loads on the system
platform. In this work, we utilised the same number
of traffic flows as the tasks. One of the attributes of
traffic flow is the payload, which is the number of
flits a packet delivers from a source to a destination.
Using this attribute, we can further characterise the
traffic flows and generate uniformly distributed flits
between 1 and 126.

We modelled a single hardware platform following
a regular mesh-based topology. It contains four rows
and columns (4x4), with 16 processor cores intercon-
nected through routerless NoC rings via switches, as
depicted in Fig. 1.

B. Dataset Generation

All our analyses used the same datasets. Here, we
provide a detailed explanation of how these datasets
were created. Each proposed method and the baseline
produced 20 datasets, contributing to a total of 60
datasets. To make a dataset, the proposed methods
and baseline must run 25 times using the same task
set to generate an output file containing 25 data
samples. Every sample represents the highest incre-
mental maximum deflection value obtained during
a run. This value is determined by calculating the
incremental maximum deflection for every flow using
(8). Subsequently, this process was repeated for the
other task sets until all 60 datasets were produced.

C. Evaluation of Schedulability Ratio

Schedulability refers to the condition under which
an application can be scheduled to meet its timing
guarantees. To determine if the condition exists, we
refer to the schedulability analysis in section III-B.
This analysis evaluates the worst-case response times
of tasks and latencies of flows at two points during
optimisation: first, following the completion of task
mapping, and second, after every deflection incre-
ment. Suppose the executions of all tasks at the
originating cores and the delivery of all packets to the

destination cores are completed within the stipulated
timing guarantees in the worst-case scenario. In that
case, the application is deemed schedulable.

The schedulability ratio is a metric that defines the
percentage of all tasks and traffic flows that meet
their timing guarantees. For example, a value of 0.5
indicates that the condition is met by only 50% of
the tasks and flows. In this case, the application is
deemed unschedulable because its timing guarantees
are not fully met. The alternative hypothesis for this
comparison is that the proposed methods could meet
the application timing guarantees for up to 60% of the
flow sets, at least as well as the baseline achieved.

100 ¢ 6 66 0 0 6 0 0 0 0 0 o
'\'o-“‘-
o/ \e
v

4 '

Schedulability Ratio

0.75
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Communication Flows

ws@suB w0 SD & ED
Fig. 4. Schedulability ratio comparison with various flow sets

In terms of the schedulability ratio, SD, ED, and
the baseline show similar performance. Referring to
Fig. 4, from the application with the lowest flows to
the application with 60 flows, both methods and the
baseline achieve full schedulability (100%). On the
4x4 NoC platform, however, an application with over
60 flows imposed too much contention on the NoCs;
thus, meeting the condition proved very difficult. As
shown in the figure, the schedulability performance
further degrades as the number of flows increases.

D. Evaluation of Deflection Improvement

In this evaluation, the initial maximum deflec-
tion represents the default number of loops a flow
could travel around its ring. For both methods,
this value serves as the initial maximum deflection
(mazxdef™), from which the deflection optimisa-
tion runs to increment as many loops as possible for
every flow (in the case of SD) or activated flow (in the
case of ED) within the application’s timing guaran-
tees. The final value of the maximum deflection after
optimisation is known as the optimised maximum
deflection value (maxdefP?).

Our comparison in this section applies the value
difference between the initial maximum deflection
and the optimised maximum deflection. The differ-
ence between these parameter values is denoted as
maxdef¥f . For every flow i the maximum deflection
difference is defined as follows.

maxdefidif = maxdefiopt — mazde fmt ®)

An application contains several flows; for the max-
imum deflection performance comparison, only the
flow that has the maximum mazdef%/ from all 25
runs is shown in Fig. 5. It is noted here that only
twelve flow sets are displayed in the graph, since flow
sets with over 60 flows are not schedulable (refer to
Fig. 4). The deflection optimisation is only effective
if the application is schedulable.

25
20

15

5
0—‘ mE u n |

5 10 15 20 25 30 35 40 45 50 55 60
Communication Flows

msD
ED

Incremental Deflection (loop)

Fig. 5. Maximum deflection performance comparison with various
flow sets

The alternative hypothesis of this evaluation states
that the incremental deflection of the selected flow
is higher than any of the flows incremented by SD,
when both task mapping and deflection are optimised
simultaneously. Among all the task sets, ED exhibits
a higher maximum deflection than SD. Seven task
sets from ED compared with only two for SD, and the
remaining three task sets are equivalent in terms of
performance. The highest maximum deflection shown
by ED, which overcomes the highest performance
shown by SD (at task set 30), is depicted at task sets
35, 15, and 5. Neither the SD nor the ED method
shows any incremental maximum deflection at the
two task sets of 45 and 60, thus they are considered
equivalent in terms of performance.

E. Statistical Tests

The evolutionary algorithm operates using a ran-
dom mechanism. Although this algorithm has demon-
strated exemplary performance, its solutions are al-
ways suboptimal. Furthermore, it relies on random

functions to operate; thus, there is a possibility that
it could fail to find any solution.

We run the Wilcoxon signed-rank statistical test
to gain confidence from the incremental maximum
deflection samples that the SD and ED produced. It
compares whether there is a significant shift in the
median between them. The paired samples Wilcoxon
test is a non-parametric test based on paired data. In
total, 25 samples were collected from each SD and
ED to use for this test.

The following hypotheses serve as the basis for
conducting the test using paired data from both
methods, with an alpha significance level set at 0.05.
The following is the statistical hypothesis.

« HO: Evolutionary optimisation with either SD or
ED shows no significant difference between their
observations.

o H1: Evolutionary optimisation with ED pro-
duces higher incremental maximum deflection
performance than SD.

We conducted the statistical tests based on three
flow sets: 20, 30, and 50. The selection of these flow
sets is based on the fact that they exhibited different
performance profiles. In the flow set with 20 flows,
they are equivalent; in the flow set with 30 flows, SD
is superior; and in the flow set with 50 flows, ED is
superior.

Table I summarises the results from the statistical
test. For all the selected flow sets, ED shows signif-
icant shifts at the median in different flow sets. For
example, the p-value of the test using the flow set
with 20 flows is 0.01166, less than the significance
level alpha 0.05. Here, we can conclude that the
median weight of the ED is significantly different
from that of the SD. Thus, we can reject the null
hypothesis and concur with the alternative hypothesis
that the incremental maximum deflection produced by
ED is greater than that produced by SD.

TABLE I
WILCOXON SIGNED-RANK STATISTICAL TEST RESULTS
Task set | p-value
20 0.01166
30 0.04609
50 0.00196

V. CONCLUSION AND FUTURE WORK

The study highlights the importance of optimising
deflection bounds to enhance real-time communica-
tion performance. To address this, two evolutionary
optimisation methods were proposed to explore and

maximise deflection limits. Results show that these
methods can effectively identify maximum deflection
bounds, with potential for further improvements. In
future work, the study on the maximum deflec-
tion bound could be extended by including other
routerless NoC resources to enhance the optimisation
framework further.

ACKNOWLEDGMENT

This work was supported by a Universiti Sains
Islam Malaysia research grant (Grant numbers:
PPPI/USIM/FKAB/USIM/110523).

[1]

(2]

(3]

REFERENCES

L. Ni and P. McKinley, “A survey of wormhole
routing techniques in direct networks,” Com-
puter, vol. 26, no. 2, pp. 62-76, Feb. 1993,
ISSN: 0018-9162. por1: 10.1109/2.191995.

R. Singh, M. K. Bohra, P. Hemrajani, et al.,
“Review, Analysis, and Implementation of Path
Selection Strategies for 2D NoCs,” IEEE Ac-
cess, vol. 10, pp. 129245-129 268, 2022, ISSN:
2169-3536. por: 10.1109/ ACCESS . 2022 .
3227460.

Shaoli Liu, L. Shaoli, Tianshi Chen, et al.,
“IMR: High-Performance Low-Cost Multi-
Ring NoCs,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 27, no. 6,
pp. 1700-1712, Jun. 2016. DOI: 10.1109/tpds.
2015.2465905.

Fawaz Alazemi, Fawaz M. Alazemi, F. M.
Alazemi, et al., “Routerless Network-on-
Chip,” International Symposium on High-
Performance Computer Architecture, pp. 492—
503, Feb. 2018. por1: 10.1109/hpca.2018.
00049.

N. Kapre and J. Gray, “Hoplite: A Deflection-
Routed Directional Torus NoC for FPGAs,”
ACM Transactions on Reconfigurable Technol-
ogy and Systems, vol. 10, no. 2, pp. 1-24, Jun.
2017, 1SSN: 1936-7406, 1936-7414. po1: 10.
1145/3027486.

S. Saleem, F. Hussain, W. Amin, et al,
“A Survey on Dynamic Application Map-
ping Approaches for Real-Time Network-on-
Chip-Based Platforms,” IEEE Access, vol. 11,
pp- 122694-122721, 2023, 1SSN: 2169-3536.
DOI: 10.1109/ACCESS.2023.3329233.

(7]

(8]

(9]

[10]

P. K. Sahu and S. Chattopadhyay, “A survey
on application mapping strategies for Network-
on-Chip design,” Journal of Systems Architec-
ture, vol. 59, no. 1, pp. 60-76, Jan. 2013, ISSN:
13837621. pot1: 10.1016/j.sysarc.2012.10.004.
M. N. S. M. Sayuti and L. S. Indrusiak, “Real-
time low-power task mapping in networks-on-
chip,” in VLSI (ISVLSI), 2013 IEEE Computer
Society Annual Symposium On, 2013. DOTI: doi.
org/10.1109/ISVLSI.2013.6654616.

M. N. S. M. Sayuti, L. S. Indrusiak, and A.
Garcia-Ortiz, “An optimisation algorithm for
minimising energy dissipation in NoC-based
hard real-time embedded systems,” in Pro-
ceedings of the 21st International Conference
on Real-Time Networks and Systems, Sophia
Antipolis, France, 2013, 1SBN: 978-1-4503-
2058-0. DOI: 10.1145/2516821.2516844.

L. S. Indrusiak, “End-to-end schedulabil-
ity tests for multiprocessor embedded sys-
tems based on networks-on-chip with priority-
preemptive arbitration,” Journal of Systems Ar-
chitecture, 2014. DOT: doi.org/10.1016/j.sysarc.
2014.05.002.

M. Srinivasan and G. De Micheli, “SUNMAP:
A tool for automatic topology selection and
generation for NoCs,” in Proceedings of the
41st Annual Design Automation Conference,
ser. Dac ’04, New York, NY, USA: ACM,
2004, 1SBN: 1-58113-828-8. poIL: 10.1145/
996566.996809.

G. Oxman and S. Weiss, “An NoC Simulator
That Supports Deflection Routing, GPU/CPU
Integration, and Co-Simulation,” IEEE Trans-
actions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 35, no. 10,
pp. 1667-1680, Oct. 2016, 1SSN: 0278-0070,
1937-4151. por: 10. 1109 / TCAD . 2016 .
2527698.

Ting-Ru Lin, T.-R. Lin, Drew Penney, et
al., “A Deep Reinforcement Learning Frame-
work for Architectural Exploration: A Router-
less NoC Case Study,” International Sympo-
sium on High-Performance Computer Archi-
tecture, pp. 99-110, Feb. 2020. por1: 10.1109/
hpcad47549.2020.00018.

L. Soares Indrusiak and A. Burns, “Real-
time guarantees in routerless networks-on-
chip,” ACM Transactions on Embedded Com-
puting Systems, vol. 22, no. 5, pp. 1-27, 2023.
DOI: doi.org/10.1145/3616539.

