Interspeech 2025
17-21 August 2025, Rotterdam, The Netherlands

Automatic Detection and Sub-typing of Primary Progressive Aphasia from
Speech: Integrating Task-Specific Features and Spatio-Semantic Graphs

Fritz Peters', W Richard Bevan-Jones', Grace Threlfall', Jenny M Harris®, Julie S Snowden?,
Matthew Jones?, Jennifer C ThompsonQ, Daniel J Blackburn', Heidi Christensen'

!University of Sheffield, UK; 2University of Manchester, UK; 3University of Exeter, UK
fpeters3@sheffield.ac.uk, heidi.christensen@sheffield.ac.uk

Abstract

Primary progressive aphasia (PPA) describes a group of
neurodegenerative diseases that predominantly affect language
abilities. Its diagnostic process typically requires experienced
clinicians, often available only in specialised hospital depart-
ments. Patients with PPA frequently display changes in speech
and language early in the disease progression. In this study,
we extracted acoustic, linguistic, and task-specific features from
audio recordings and evaluated their utility for PPA classifica-
tion. Using a subset of task-specific features, we detected PPA
with 97% accuracy. For sub-typing, models trained on the full
feature set achieved 74% accuracy in a three-way classification
of PPA variants. Our results highlight the added value of task-
specific features, which complement traditional approaches.
Additionally, their visualisation offers an intuitive representa-
tion of task execution, improving clinical interpretability and
potential diagnostic utility.

Index Terms: clinical applications of speech technology, Pri-
mary Progressive Aphasia, PPA

1. Introduction

In recent years, there has been an increased interest in the auto-
matic detection and tracking of voice-based biomarkers for sev-
eral neurological conditions, including cognitive decline associ-
ated with dementia. The potential impact of this innovation on
the early detection and diagnosis could be transformational, not
least because it gives the opportunity to provide diagnostic aid
to specialists for very rare conditions like Primary Progressive
Aphasia (PPA). PPA is a syndrome caused by several underlying
diseases, including frontotemporal degeneration, Lewy body
disease or Alzheimer’s disease. It affects only 1 in 100,000, and
there is no accurate diagnostic test for PPA. Instead, people un-
dergo an often protracted diagnostic process. An automatic tool
could speed up this anxious wait and provide objective expert-
level identification of significant cues in a person’s speech and
language. This paper presents a study exploring the feasibility
of detecting and sub-typing PPA based on acoustic, linguistic
and task-specific features extracted from the speech signal.

1.1. Primary Progressive Aphasia

Primary progressive aphasia (PPA) describes a clinically het-
erogeneous group of disorders in which the primary problem
is a progressive impairment of language affecting activities of
daily living. The disorders are defined by their predominant
clinical features and, in particular, findings on examination of
language. Whilst these disorders have been described since the
1890s [1], they have had various names, and their diagnostic
criteria have been debated and revised several times. There are

now three subtypes of PPA defined in consensus diagnostic cri-
teria [2]. They are the non-fluent variant of PPA (nfvPPA), the
semantic variant of PPA (svPPA) (or semantic dementia), and
the logopenic variant of PPA (IvPPA). The core clinical features
of the language disorder in each syndrome vary. In IvPPA, the
core features are anomia, impaired sentence repetition and rel-
ative non-fluency of speech, sometimes with phonologic errors.
In svPPA, the core deficit is loss of semantic memory underpin-
ning knowledge of objects and concepts. In language exami-
nation this manifests most obviously as anomia, impaired sin-
gle word and/or object comprehension and regularisation errors
when pronouncing irregular words (surface dyslexia). The core
features of nfvPPA in varying combinations are non-fluency,
agrammatism and impaired syntactic comprehension.

The objective of this study is to pick up these changes in
participants with PPA by extracting a set of acoustic, linguistic,
and task-specific features for the automatic detection and sub-
typing of PPA.

1.2. Automatic detection and sub-typing from speech

Previous research has explored the automatic extraction of
speech biomarkers in Primary Progressive Aphasia and its vari-
ous subtypes. For instance, Nevler et al. [3] demonstrated that
participants with nfvPPA (N = 15) and IvPPA (N = 23) exhibit
an increased speech pause rate. Additionally, individuals with
the non-fluent variant show a restricted fundamental frequency
(i.e., FO) range. Themistocleous et al. [4] extracted a set of
acoustic features from audio recordings of participants perform-
ing a picture description task. Machine learning models trained
on this feature set showed a relatively high classification ac-
curacy for nfvPPA (82%) compared to svPPA (66%) and IvPPA
(57%). For all classifiers, pause and FO-related measures ranked
among the most important features. The lower classification ac-
curacy for svPPA and 1vPPA highlights the need to incorporate
additional features, such as linguistic and task-specific features,
to improve the automatic detection of these PPA variants. For
instance, Cho et al. [5] extracted a set of lexical features from
transcribed participant speech to differentiate between differ-
ent variants of frontotemporal dementia (FTD) and PPA (N =
64). They were able to show statistically significant group dif-
ferences on a number of these features, including the number
of total words, nouns, and verbs in a participant’s transcript.
Moreover, Zimmerer et al. [6] achieved an accuracy of 90%
in a binary classification task distinguishing between healthy
controls (HC) and individuals from a diagnostic group. Their
classifier was based on linguistic features. However, when ex-
tended to a more complex five-way classification task differen-
tiating between HCs (N = 20), the three PPA variants (Nygvppa
=34; Nuppa =25 ; Ngwppa = 29), and the behavioural variant of
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FTD (IN = 14), the accuracy dropped to 59%. In later work,
Themistocleous et al. [7] extracted a combination of acous-
tic and linguistic features for the automatic sub-typing of dif-
ferent PPA variants: nfvPPA (N = 19) vs IvPPA (N = 16) vs
sVPPA (N =9). They trained a Deep Neural Network, which
for this three-way classification achieved an accuracy of 80%,
even outperforming trained clinicians. This highlights the im-
portance of combining features from different domains for the
automatic detection of Primary Progressive Aphasia, especially
for the more complex task of sub-typing different diagnostic
groups.

Besides these previously employed task-invariant acoustic
and linguistic features, speech elicited by the Cookie Theft pic-
ture description task allows for additional task-specific features
to be extracted. Such features cannot only help to distinguish
between HCs and diagnostic groups but also to understand
and visualise diagnosis specific patterns in the execution of
the task. The Cookie Theft picture contains various aspects
that may be identified by a participant, these are also called
content information units (CIUs). Extracting and quantifying
the CIUs can help to understand which aspects of the picture
a participant is describing. Favaro et al. [8] demonstrated the
robustness of CIU related features by showing significant group
differences between participants with Alzheimer’s Disease
and HCs across multiple corpora. Additionally, the automatic
extraction of spatio-semantic graphs and features was proposed
to further analyse the narrative path during picture description
[9]. This approach showed promising results for effectively
distinguishing between cognitively impaired and unimpaired
speakers.

In general, the automatic extraction of acoustic and linguis-
tic features from speech has shown promising results for detect-
ing and sub-typing PPA. While these features are useful across
various speech-elicitation tasks, they do not fully leverage task-
specific information [3-7]. In the context of picture description,
the automatic extraction of CIUs and spatio-semantic features
has proven effective in detecting cognitive impairment, high-
lighting the potential benefits of incorporating task-specific fea-
tures [8, 9]. This paper expands on these findings and explores
the automatic extraction of acoustic, linguistic, and task-specific
features for the detection and sub-typing of PPA. We then com-
pare and visualise these task-specific features to understand di-
agnosis specific patterns in the task execution. All features were
extracted from audio recordings of the most widely used picture
description task, the Cookie Theft picture.

2. Dataset

The dataset consists of audio recordings of 59 participants
completing the Cookie Theft picture description task from the
Boston Diagnostic Aphasia Examination (Figure 1). The task
was administered by a trained clinician who prompted the par-
ticipant to describe the picture in as much detail as possible.
Throughout the task, further prompts were given if necessary
(e.g., if the participant seemed to be making an extended pause
before giving a sufficient description of the picture.). The mean
length of the resulting audio recordings is 48.0 seconds (SD =
25.43s). Data collection was carried out at a research institution
in the UK between 2013 and 2014.

The Cookie Theft picture description task was first intro-
duced as part of the Boston Diagnostic Aphasia Examination
[10]. It requires participants to describe a kitchen scene in as
much detail as possible. Ever since its introduction, the pic-
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ture has become a routine task in clinical assessments of various
cognitive and language disorders. Its widespread use extends to
research on automatic dementia diagnosis, where it serves as a
staple way to elicit patient speech [11, 12].

Participants were categorised into two diagnostic groups:
HC (/N = 14) and individuals with PPA. The PPA group was
further subdivided into specific clinical subtypes, including the
nfvPPA (N =10), IvPPA (N = 13), svPPA (/N =8), and a mixed
Alzheimer’s Disease (mixed AD) (/N = 14) group. The mixed
AD group consists of participants presenting with shared clini-
cal features of FTD and AD, reflecting the variability in the neu-
ropathological causes of language and cognitive decline. For
the purposes of binary classification, all clinical subtypes, in-
cluding mixed AD, were grouped together as PPA for compari-
son against HCs.

2.1. Data preprocessing

Open AI’s whisper model (’medium.en’)! was used to tran-
scribe all audio files. To differentiate between participant and
clinician speech, the generated transcripts were manually di-
arised and aligned with their respective audio files by a single
human annotator. Subsequently, clinician speech was excluded
from both the audio files and transcripts. This was achieved
by trimming the original recordings and removing text prefixed
with the clinician identifier in the transcripts. As a result, the
original audio recordings and respective diarised transcripts, as
well as the trimmed participant-only audio recordings and re-
spective transcripts, were available.

3. Classification
3.1. Feature extraction

A total number of 363 features were extracted from the partic-
ipants’ transcripts and audio files. These can be grouped into
three domain-specific feature sets: acoustic (N = 88), linguis-
tic (N = 220), and task-specific (N = 55) which are further
subdivided into CIU (/N = 44) and spatio-semantic (N = 11)
features. The selection of the extracted features was based on
previous research in the field and consultations with clinicians;
further description below.

3.1.1. Acoustic features

All acoustic features were extracted from the audio files con-
taining only participant speech using the eGeMAPSv02 fea-
ture set [13]. This feature set includes spectral, cepstral, and
prosodic descriptors and is widely used in speech analysis to
assess cognitive and affective states (e.g., [14]).

3.1.2. Linguistic features

The Linguistic Feature Toolkit (LFTK) is an open source li-
brary for the extraction of handcrafted linguistic features [15].
All of its 220 features were extracted from the participant only
transcripts to form the linguistic feature set used in this work.
These features can be grouped into four different classes. Sur-
face features (N = 24) are general high-level descriptors, such
as character, word, and sentence counts, that do not align with
the more specific linguistic domains. Lexico-semantic features
(N = 170) are word-level features and describe aspects such as
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lexical variation and the difficulty and frequency of the words
used. Discourse features (N = 57) capture broader relation-
ships between words and sentences and are mainly concerned
with the use of named entities. Finally, syntax features (N =
69) reflect structural properties of speech and are constructed
from part of speech tags and metrics that capture the readability
of the text.

3.1.3. Task-specific features

Content information units. The majority of task-specific fea-
tures is concerned with the CIUs of the Cookie Theft picture
that a participant correctly identifies. We measured whether and
how often a participant names each of the 20 CIUs (see Fig-
ure 1C for a list of the CIUs), or a respective synonym, outlined
by [8]. Moreover, the total number of CIUs (including repeti-
tions), the CIU-to-word ratio, and the percentage of correctly
identified CIUs were measured. In addition, the number of clin-
ician interventions was measured by counting the instances of
clinician speech during the recording.

Spatio-semantic features. For each participant, a spatio-
semantic graph was constructed, and corresponding features
were extracted following the approach outlined in [9, 16]. First,
the 20 Conceptual CIUs from [8] were manually assigned two-
dimensional coordinates based on their respective locations in
the Cookie Theft image. For each participant, the CIUs men-
tioned in their transcript were identified, stored in the order of
occurrence, and encoded with their corresponding coordinates.
Using the NetworkX toolkit [17], a directed graph was gener-
ated to represent the sequence in which the participant described
the image. Each node in the graph corresponds to a correctly
named CIU, while edges capture the temporal transitions be-
tween them. Euclidean distance measures the distance between
two connected nodes. Additionally, the image was divided into
four quadrants to analyse shifts in attention throughout the nar-
rative.

Once the graph was constructed, a set of spatio-semantic
features was derived to characterise the structural and spatial
properties of the description. These features summarise the se-
mantic sequencing and visuospatial organisation of CIUs. A
total of 11 features were extracted, omitting one from the orig-
inal set due to overlap with the CIU feature set. These graphs
and features provide insights into how participants navigate the
visual scene and structure their descriptions.

3.2. Classification

Random Forest models were employed for the detection and
sub-typing of PPA. The detection task involved a binary clas-
sification to distinguish between HCs and participants from
any diagnostic group. The sub-typing task included a five-
class classification to differentiate between HCs and the four
diagnostic categories (mixed AD, IvPPA, nfvPPA, and svPPA).
Additionally, a three-way classification task was performed to
distinguish between the traditional diagnostic PPA categories:
nfvPPA, 1vPPA, and svPPA.

A Random Forest (RF) classifier (IV trees = 100) was used
for all tasks, with two different approaches. In one approach,
Recursive Feature Elimination with Cross-Validation (RFECV)
was applied to identify an optimal subset of features. RFECV
iteratively removes less informative features based on model
performance across stratified 5-fold cross-validation. The final
model was trained on the selected feature set, and classification
performance was assessed using cross-validation predictions. In
the second approach, the classifier was trained on the feature set
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without feature selection to evaluate whether feature reduction
improved classification performance. Both approaches were
evaluated on the domain specific feature sets individually as
well as the whole concatenated feature set for the binary, three-
way, and five-way classification tasks. Moreover, predictions
from the RF classifier without RFECYV, trained on the domain-
specific feature sets, were aggregated using hard majority vot-
ing, where the final prediction was based on the majority vote
from the individual models trained on each domain-specific fea-
ture set.

Performance was evaluated primarily based on accuracy,
with additional assessment of classification metrics such as F1-
score. The models were implemented using the scikit-learn
toolkit [18].

4. Results
4.1. Detection and sub-typing of PPA

Binary classification. The RF classifier without Recursive Fea-
ture Elimination, trained on the CIU feature set, achieved the
highest performance for the binary detection of PPA, with an
accuracy of 97%. This model outperformed both classifiers
trained on the full feature set and the majority voting approach.
A summary of the results can be found in Table 1.

3-way classification. The two most successful models for
classifying the three traditional PPA variants achieved an accu-
racy of 74%. One of these models was the RF classifier with-
out RFECYV, trained on the complete feature set, while the other
utilised RFECV for feature selection, also trained on the full
feature set. Notably, the model with RFECV identified a sub-
stantial set of optimal features (/N = 341), incorporating features
from all four domain-specific feature sets.

5-way classification. The most complex sub-typing task,
which involved distinguishing between HCs and all diagnostic
groups, was best performed by the RF classifier with RFECYV,
trained on the full feature set. This model achieved an accuracy
of 63% and selected an optimal feature set of 46 features, which
also drew from all four domain-specific feature sets.

4.2. Task-specific features
4.2.1. Content Information Units

We conducted further analyses to examine differences between
diagnostic groups and HCs in terms of which CIUs they men-
tioned. An ANOVA revealed statistically significant group dif-
ferences in the naming of multiple CIUs. For instance, while
many HCs identified that the water is overflowing, this detail
was mentioned far less frequently by individuals in the diag-
nostic groups. The heatmap in Figure 1 visualises the naming
patterns for each CIU and highlights those that showed signifi-
cant group differences.

Additionally, the CIUs can be categorised into four groups:
animate objects, inanimate objects, exterior elements, and ac-
tions. We analysed the proportion of named CIUs within each
category and found significant group differences in all but the
exterior category. In each case, HCs named more CIUs than any
of the diagnostic groups.

4.2.2. Spatio-semantic graphs and features

Further analysis of the spatio-semantic features revealed signif-
icant group differences across multiple features. An ANOVA
comparing the five diagnostic groups showed significant differ-
ences for several features, including Total Path Distance, Self



Table 1: Overview of classification results.

Classifier Feature Set | Binary | 3-Way | 5-Way
| Acc. Precision Recall F1 | Acc. Precision Recall F1 | Acc. Precision Recall F1
RF RFECV  all 0.93 0.93 0.88 0.90 0.74 0.77 0.70 0.71 0.63 0.58 0.59 0.57
acoustic 0.90 0.86 0.86 0.86 | 0.61 0.63 0.61 0.62 | 0.59 0.61 0.56 0.56
linguistic 0.88 0.88 0.77 0.81 0.68 0.65 0.64 0.63 0.49 0.48 0.49 0.48
CIU 0.92 0.88 0.90 0.89 | 0.65 0.63 0.60 0.59 | 0.53 0.52 0.49 0.49
spatio-semantic 0.86 0.82 0.79 0.80 0.42 0.42 0.41 0.42 0.39 0.38 0.37 0.37
RF all 0.92 0.95 0.82 0.86 0.74 0.75 0.72 0.72 0.53 0.44 0.49 0.46
acoustic 0.83 0.78 0.72 0.74 | 0.58 0.62 0.56 0.56 | 0.49 0.41 0.44 0.42
linguistic 0.88 0.93 0.75 0.80 0.68 0.66 0.65 0.65 0.44 0.42 0.44 0.42
CIU 0.97 0.95 0.95 095 | 0.58 0.55 0.53 0.52 | 0.54 0.54 0.52 0.52
spatio-semantic 0.83 0.78 0.72 0.74 0.35 0.37 0.36 0.36 0.39 0.38 0.37 0.37
majority voting 0.93 0.96 0.86 0.90 | 0.58 0.62 0.54 0.55 | 0.56 0.57 0.53 0.53

Note. Precision, recall, and F1 scores are macro averages. Acc, Accuracy.

A) B)

Proportion of participants naming CIU
1 - Boy** -

2-Girl - 1.0

C)  3-womar NI
4 - Kitchen - | ] L]
5 - Cookie* - 08
6 - Jar -| I :
7 - Stool** - | |
8 - Sink* - ]
9 - Plate - || 06
10 - pisheloth | I N N
o 11 - Water - ]
12 - Window* -]
13 - Cupboard -= -= 04
14 - pishes -
15 - Curtains -
16 - Exterior - | ] 0.2
17 -steal - I
18 - Fall -
19 - Wash* - [ |
20 - Overflow*** 0.0
Mean proportion of named ClUs per category
Animate** - [ ]

Inanimate ** -

Actions** -

AD mixed HC ~ IVPPA nfuPPA SVPPA
Diagnostic Group

Category

Figure 1: Cookie Theft picture from the Boston Diagnostic Aphasia Examination [10], highlighting the location of the 20 CIUs and
their respective quadrants. A) and B) show spatio-semantic graphs for an HC and a participant with lvPPA. C) Heatmap of group
differences in CIU identification. ANOVA was used to test significance, with * p < 0.05, ** p < 0.01, *** p < 0.001 next to variable

names.

Cycles, Cycles, Unique Nodes, Self Cycles (quadrants), and
Cross Ratio (quadrants). Further explanation of these features is
provided in [9]. Spatio-semantic graphs were constructed for all
participants to visualise these differences. Figure 1 illustrates an
example of a graph for a HC and a participant with IvPPA. No-
tably, the HC’s graph displays distinct patterns compared to the
IvPPA participant. The HC’s graph shows a higher number of
correctly identified CIUs (numbered, red circles), whereas the
IvPPA participant identifies fewer CIUs. Both graphs exhibit a
consecutive repetition of an individual CIU, but the total path
length for the HC is much greater. The shorter path length, re-
duced number of identified CIUs, and repetitive CIU usage in
the 1IvPPA participant reflect difficulties in generating a broader
range of descriptive language, which is indicative of the anomia
commonly seen in individuals with IvPPA. Overall, the spatio-
semantic graphs provide a clear and intuitive means of inter-
preting how participants perform on the task, offering valuable
insights into their cognitive and speech patterns.

5. Discussion and conclusions

Previous approaches to the automatic detection and sub-typing
of PPA from speech have primarily relied on task-invariant
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acoustic and linguistic features. In this study, we built upon
these methods by additionally incorporating task-specific fea-
tures that have been previously shown to be effective in detect-
ing cognitive impairment. A random forest classifier trained
on a subset of these features (CIU features) achieved the high-
est PPA detection accuracy (97%). Additionally, the best-
performing models for the two sub-typing tasks (3-way accu-
racy = 74%; 5-way accuracy = 63%) were trained on the full
feature set. Recursive feature elimination identified an optimal
feature set that spanned all domains, highlighting the comple-
mentary role of task-invariant and task-specific features in dis-
tinguishing between PPA subtypes. Moreover, visualisations of
the task-specific features provide an intuitive overview of how
a person executes the Cookie Theft picture description task. In
a clinical setting, these visual representations can enhance in-
terpretability for clinicians, allowing for a quicker and more ac-
cessible assessment of a participant’s speech patterns.
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