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ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of kidney failure
globally, and a significant cause of morbidity and mortality. It is now recognized that it may result from both major and
minor genes with associated differences in disease penetrance, symptom burden and clinical outcomes. Genetic testing
is now readily available to discriminate between different genotypes and is being increasingly utilized for diagnostic and
prognostic indications. In this short review, we summarize the reasons why testing should become part of standard care

for ADPKD patients where available and highlight some current limitations and challenges to testing. Defining the
genetic landscape in ADPKD for all ethnic groups will be key to the future development and deployment of

individualized patient-centered management in this condition.

Keywords: ADPKD, genetic testing, precision nephrology, prognosis, variant-specific therapy

INTRODUCTION

Autosomal dominant polycystic kidney disease (ADPKD) affects
1 in 1000 to 1 in 2500 individuals and is responsible for up to
10% of kidney failure cases in developed countries. Although
the disease has long been associated with pathogenic variants
in PKD1 and PKD2, recent advances in molecular diagnostics
have uncovered a broader genetic landscape, with now seven
additional “minor genes” associated with the ADPKD spectrum.
Moreover, the increasing use of genetic testing has enhanced the
recognition of phenocopies—conditions mimicking ADPKD but
caused by distinct genetic mechanisms. This expanded under-
standing has reshaped both the classification and management
of ADPKD.

Despite the genetic basis of ADPKD, routine genetic testing
has not yet been universally adopted in clinical nephrology.
Concerns regarding cost, availability and interpretation persist.
However, the context is changing. With improved sequenc-
ing platforms, decreasing costs and growing clinical utility,
there is a strong case for broader implementation of genetic
testing.

This review arises from a pro-con session on genetic testing
in ADPKD at the 2025 European Renal Association meeting. The
first author argues for systematic, judicious testing supported by
10 evidence-based points, whereas the last author emphasizes
current limitations and practical challenges in cystic kidney dis-
eases.
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Figure 1: Chronological expansion of the ADPKD gene spectrum. Schematic timeline illustrating the progressive discovery of genes implicated in ADPKD.

GENETICS IN ALL ADULTS WITH ADPKD: YES!
Because ADPKD is a genetic disease

The name itself underscores the fundamental rationale for test-
ing: ADPKD is a genetically defined disorder.

PKD1 and PKD2 alone account for approximately 90% of ge-
netically resolved cases, with PKD1 pathogenic variants typically
conferring a more severe clinical phenotype. PKD1 is located on
chromosome 16 and encodes polycystin-1 (PC1), a large N-linked
glycoprotein expressed at the primary cilium [1]. PKD2, on chro-
mosome 4, encodes polycystin-2 (PC2), a calcium-permeable
channel that interacts with PC1 [2]. Both proteins function in the
ciliary membrane and play key roles in mechanosensation and
intracellular calcium signaling.

There is strong evidence that PC1 and PC2 interact to form
a heterotetrameric complex composed of one PC1 and three
PC2 subunits, as revealed by cryo-EM data [3]. This interac-
tion is thought to be essential for proper maturation, trafficking
and function of both proteins at the cilium [4]. ADPKD is clas-
sified as a ciliopathy, and several signaling pathways likely
relevant to cystogenesis—including calcium, cAMP, G-protein,
and possibly Wnt and planar cell polarity signaling—are linked
to ciliary function. However, the precise physiological role of
the polycystin complex in cilia remains incompletely under-
stood. Evidence suggests that the polycystin complex may
act as a mechanosensor, a receptor or a regulator of ciliary
signaling [5].

Over the past decade, additional genes associated with
ADPKD-like phenotypes have been identified (Fig. 1). These in-
clude GANAB and DNAJB11, involved in glycoprotein folding and
endoplasmic reticulum quality control, as well as ALG8, ALG9,
ALG5 and others in the glycosylation machinery [6-10]. These
genes are now recognized to contribute to the spectrum of atyp-
ical ADPKD or overlapping syndromes such as ADPLD and auto-
somal dominant tubulointerstitial kidney disease (ADTKD) [11].
In addition to these N-glycosylation-associated cystic genes,
two genes previously associated with recessively inherited cil-
iopathies are now recognized as part of the ADPKD spectrum:
monoallelic predicted loss-of-function variants in IFT140 cause a
mild form of ADPKD and account for ~2% of cases, whereas spe-
cific missense variants in the kinase domain of NEK8 can cause
a severe, early-onset form [12, 13].

This expanded genetic landscape has blurred the boundaries
between cystic kidney diseases previously considered distinct.

Modern sequencing technologies have substantially im-
proved the analysis of these genes; molecular testing now in-
creasingly complements clinical criteria, shifting the diagnostic
paradigm from clinical suspicion to molecular confirmation. The
2025 KDIGO guidelines explicitly recommend a nomenclature
integrating gene identity, acknowledging the diversity within the
ADPKD spectrum [14].

In clinical practice, testing can be performed using tar-
geted next-generation sequencing panels, exome sequencing
or genome sequencing depending on local resources [15]. Once
a causal variant is defined within a family, Sanger analysis of
just the pathogenic variant usually is sufficient to determine
whether at-risk family members are affected. It should be noted,
however, that PKD1 poses specific technical challenges due to its
large size, high GC content, and partial duplication (exons 1-33),
which share >97% sequence identity with six pseudogenes on
chromosome 16. These regions may not be fully captured or re-
liably mapped by exome sequencing, and targeted enrichment
or complementary Sanger sequencing—particularly of exon 1—
may be required to achieve complete coverage. These techni-
cal limitations should be carefully considered when interpret-
ing a result in which no pathogenic or likely pathogenic variant
is identified in PKD1 [15].

To differentiate ADPKD from its phenocopies

Not all patients with bilateral renal cysts have a classical form of
ADPKD. Genetic testing enables clinicians to distinguish ADPKD
from phenocopies—conditions that mimic the phenotype but
follow different inheritance patterns, prognoses and manage-
ment implications. For example, patients with OFD1, HNF1B or
COL4A1 pathogenic variants may present with cystic kidneys yet
have syndromic or systemic involvement requiring tailored care
(Fig. 2) [15].

Data from the Genkyst cohort—a nationwide French reg-
istry of over 3900 individuals—highlight the frequency of phe-
nocopies in real-world practice. More than 20 distinct genes
have been identified in patients initially diagnosed with ADPKD
based on clinical or radiological grounds [16]. These include
genes associated with ADTKD, nephronophthisis or other
ciliopathies.

Failure to recognize these entities can lead to mismanage-
ment, misinform reproductive counseling and delay appropri-
ate surveillance. Genetic confirmation enhances diagnostic pre-
cision, allowing tailored follow-up and counseling.

Because genetics helps stratify prognosis in ADPKD

Genotype is a key predictor of disease progression in ADPKD.
It has long been recognized that patients with PKD2 variants
tend to experience a milder clinical course and reach kidney
failure later than those with PKD1 variants [17]. Later research
clarified that not only the gene but also the type of PKD1 vari-
ant influences disease severity [18]. Truncating variants in PKD1
are associated with a significantly earlier onset of kidney fail-
ure compared with non-truncating ones, a finding confirmed in
multiple independent cohorts [19]. To provide individual prog-
nosis information, the PROPKD score (predicting renal outcome
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Figure 2: Examples of ADPKD phenocopies. (A) T2-weighted MRI of a 65-year-old woman (eGFR 45 mL/min/1.73 m?) with a large HNF1B deletion. (B) T2-weighted MRI
of a 37-year-old woman (eGFR 69 mL/min/1.73 m?) with a frameshift variant in OFD1 (c.710dup). (C) Contrast-enhanced computed tomography of a 68-year-old man
(eGFR 56 mL/min/1.73 m?) with a frameshift variant in COL4A1 (c.1462del). (D) T2-weighted MRI of a 78-year-old man (eGFR 10 mL/min/1.73 m?) with a missense variant

in UMOD (c.184A>C; p.Thr62Pro).

in ADPKD) was subsequently developed [20]. This score com-
bines genetic data with clinical information—onset of hyperten-
sion before age 35 years, urologic complications before age 35
years and sex—to stratify patients into low-, intermediate- or
high-risk categories for disease progression. This stratification
has practical clinical consequences: it informs the intensity of
follow-up, eligibility and timing for therapeutic interventions,
and anticipatory transplant planning. Notably, patients classi-
fied as low-risk by the PROPKD score did not show clear benefit
from tolvaptan in a post hoc analysis of the TEMPO 3:4 random-
ized controlled trial [21]. This suggests that the PROPKD score
can be a useful tool to enrich clinical trial cohorts with patients
at higher risk of rapid progression, thereby maximizing the like-
lihood of demonstrating a treatment effect. It is also a valuable
instrument for selecting appropriate candidates for therapeutic
interventions in routine care.

Importantly, accurate prognostication in ADPKD ideally re-
quires a holistic approach that takes advantage of all available
elements. These include the Mayo imaging classification [Mayo
Imaging Class (MIC)] relying on height-adjusted total kidney vol-
ume (TKV), genetic information and the PROPKD score, family
history of kidney failure and estimated glomerular filtration rate
(eGFR) [20, 22]. No single tool provides a complete picture; in-
stead, their integration supports more precise risk stratification,
therapeutic planning and timing of interventions [23].

Because it informs therapeutic decision-making

In some cases, genetic findings can alter therapeutic decisions
entirely. For instance, pathogenic variants in OFD1, which can
mimic ADPKD clinically (Fig. 2), are associated with a X-linked
inherited ciliopathy without supportive evidence for tolvaptan
efficacy. Similarly, patients with ALG9-related disease may have
enlarged kidneys at a young age, yet there is currently no evi-

dence supporting the benefit of tolvaptan or even the prognostic
utility of TKV-based tools in these individuals. Individuals with
IFT140 variants may also present with kidney enlargement, but
available data suggest a generally favorable prognosis, further
underscoring the importance of accurate molecular diagnosis
when considering disease-modifying therapies [24].

Because knowing the variant in one family member
creates a diagnostic tool for others

Once a pathogenic variant has been identified in an affected
family member, cascade testing can be performed rapidly and
cost-effectively. In many cases, a single Sanger sequencing re-
action is sufficient to confirm or exclude the presence of the
familial variant in at-risk relatives. This facilitates early di-
agnosis in asymptomatic carriers and confidently rules out
disease in unaffected individuals. The emotional and clini-
cal impact of a clear molecular diagnosis is significant—it re-
places uncertainty with clarity and informs both clinical surveil-
lance and life planning. In countries with access to genetic
testing, patients should be able to choose between imaging
and genetic information, with decisions made through shared
decision-making.

KDIGO 2025 acknowledges targeted familial testing as one
of the approaches in genetically resolved families, reinforcing
its practical value [15]. Importantly, exclusion of the diagno-
sis based on imaging alone is only possible after the age of 30
years in individuals at risk of ADPKD-PKD1, and after the age
of 40 years in individuals at risk of ADPKD-PKD2 [25]. Moreover,
imaging-based diagnostic criteria—as well as imaging-based
prognostic tools—are only validated in typical ADPKD due to
PKD1 or PKD2 variants. In all other genetic contexts, molecular
testing is the only reliable approach to confirm or exclude the
disease.
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To support selection of living kidney donors

The selection of living kidney donors from families affected
by ADPKD is a frequent and challenging scenario. In younger
individuals—particularly under 30 years of age, where no risk
can be taken—genetic testing is indispensable. A second situ-
ation concerns equivocal imaging findings in mid-adulthood,
such as the presence of multiple cysts in a potential donor. In
this case, declining donation without further clarification risks
losing a valuable opportunity, as the donor may in fact be unaf-
fected. Genetic testing can resolve this uncertainty, and in the
case of the identification of a small number of cysts in the can-
didate donor, a panel of PKD genes may be preferable to test-
ing only for the known familial variant, to exclude other genetic
forms of PKD. Importantly, this presupposes that a genetic diag-
nosis has already been established in the recipient, or another
affected family member, which highlights the need to anticipate
and organize testing early, ideally before the transplant evalu-
ation process. KDIGO guidelines underscore the importance of
excluding ADPKD in potential living-related donors and recog-
nize the central role of genetic testing in both situations [14].

To enable informed genetic counseling and
reproductive choices

Individuals with ADPKD who are of reproductive age face com-
plex decisions regarding family planning. Genetic confirmation
provides clarity that is essential for accurate counseling, in-
cluding discussion of recurrence risks, inheritance patterns and
available approaches to avoid transmission of the disease, such
as preimplantation genetic testing (PG testing).

KDIGO 2025 highlights the need to offer appropriate counsel-
ing and all available options to affected individuals [15]. Impor-
tantly, a confirmed genetic diagnosis in the affected parentis a
prerequisite for any intervention involving genetic selection. An-
ticipation is therefore critical: the familial variant must be iden-
tified in advance to make PGT feasible. While PGT is not yet ac-
cessible in all countries, its availability is steadily increasing [26].
Genetic testing thus may empower patients to make informed,
autonomous decisions about their reproductive future.

To understand intrafamilial variability in disease
severity

In clinical practice, significant phenotypic heterogeneity is often
observed within families affected by ADPKD. While some indi-
viduals may remain asymptomatic for decades, others progress
to kidney failure in early adulthood or before. Genetic testing can
provide insights into the underlying causes of this variability.
One such mechanism is somatic mosaicism, in which only
a subset of the individual’s cells carries the pathogenic variant
because a de novo mutation arose just after the formation of the
egg at an early embryonic stage. Mosaicism can result in a milder
or atypical phenotype in the proband and may go undetected us-
ing standard testing approaches. In ADPKD, low-level mosaicism
has been reported in clinically affected individuals and can pose
challenges in diagnosis and familial interpretation. A study of 20
ADPKD families with mosaicism, all involving PKD1, found that
5 had germline transmission while 15 were sporadic [27]. Dis-
ease severity was generally milder in mosaic individuals than in
their affected offspring, though phenotypes varied.
Additionally, rare cases of biallelic inheritance involving
pathogenic variants on both PKD1 or PKD2 alleles have been
reported [11, 28-31]. These typically involve the co-inheritance

of a hypomorphic allele from the unaffected parent and a
pathogenic variant from the affected parent, leading to very
early-onset ADPKD, which can be severe or even embryonically
lethal. When such severe cases occur, identifying the underly-
ing cause is essential to guide counseling for future pregnan-
cies. Furthermore, rare cases of digenic disease have also been
reported (e.g. co-inheritance of a PKD1 and a PKD2 variant) [32,
33].

Genetic testing helps elucidate these mechanisms and sup-
ports more accurate prognostication and genetic counselling.

Because it is increasingly available and affordable

Genetic testing is no longer a niche investigation or prohibitively
expensive. In many healthcare systems, including several Euro-
pean countries, targeted gene panels and exome sequencing are
reimbursed by health insurance. The reagent and sequencing
costs for a cystic gene panel or virtual exome are now well below
€200. The main contributor to the overall cost is the time and ex-
pertise required for interpretation. Even when this is taken into
account, the cost remains reasonable and should not constitute
a major barrier to implementation, except where disproportion-
ately inflated pricing is applied in certain healthcare systems.
In such circumstances, the solution is not to restrict access, but
rather to advocate—through professional societies, key opinion
leaders and the academic community—for more equitable ac-
cess to testing.

Moreover, genetic testing is often performed once in a life-
time, with long-term utility for diagnosis, prognosis and familial
cascade screening.

Although the interpretation of variants of uncertain sig-
nificance (VUS) remains challenging, advances in population
databases (e.g. gnomAD), in silico prediction tools and segre-
gation studies are improving interpretative accuracy [34]. Re-
sources such as ClinVar and, specifically for ADPKD, the Mayo
ADPKD Variant Database are valuable, and international mul-
tidisciplinary collaboration remains essential [35, 36]. Looking
ahead, broader access to systematic in silico evaluation is ex-
pected to further support variant interpretation [37].

Because variant-specific therapies are under
development

Precision nephrology is moving rapidly towards genotype-
guided therapies. Several experimental approaches are in devel-
opment. One example is the small-molecule PC1 folding correc-
tor VX-407, designed for certain missense variants in PKD1, with
a Phase 2a trial underway (AGLOW, NCT07161037). A better un-
derstanding of genetic determinants of ADPKD may also provide
clues for future therapeutic strategies: a recent study identified
rare 5'-untranslated region variants in PKD1 that reduce trans-
lation of polycystin-1 and suggest that modulation of upstream
regulatory elements could be explored as a novel treatment ap-
proach [38].

Additional therapeutic strategies for polycystic kidney dis-
ease are under investigation and may ultimately depend on
molecular stratification for patient selection. To prepare for this
future, genetic characterization needs to be integrated into cur-
rent practice. Identifying patients with relevant variants enables
their participation in clinical trials and accelerates the transla-
tion of discoveries into clinical applications. Embedding molec-
ular testing within standard care pathways today is essential to
ensure timely access to emerging therapeutic options.

GzZ0z Jequiede( 61 uo 1senb Aq G0620€8// LIz wuswe|ddng/g| /ejone/bo/woo dno-olwspese//:sdiy woly pepeojumod



100%7—

75% -

50% -

25% -

(M1, F1) (M2,F2) (M3, F2)

Genetic testing in ADPKD | ii21

(M5, F3) (M10, F4)

Number of cortical and medullary cysts (25mm)

0%
20-29  30-39 40-49

Number of cysts: 0

50-59 60-69 70-75  Age (years)

1 2 . s

Figure 3: Age-related cyst formation in a population of healthy living kidney donors. Screening computed tomography scan data of a group of healthy living kidney
donors (n = 1948) assessed between 2000 and 2008 at an expert center. The number of incidental cortical and medullary cysts (>5 mm) is indicated by color coding (0,
1, 2, 3 more more) according to age by decade. Based on size, these cysts should be detected by ultrasound. The numbering in each column by sex [male (M), female
(F)] indicates the 97th centile for each age group. Figure adapted by permission of the author from Fig. 1 in Rule et al. (AJKD 2012 [42]).

NORMAL DISEASE
100%
PC1 dosage
0%
L) t L) 1} 1 ] 1}
Hypomorphic Risk  Missense Null Digenic  Biallelic
allele
Variant classification .LB/VU;". LP/P
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Figure 4: Variant classification, their predicted effects on gene dosage and relationship to disease. The predicted effect of different PKD1 variants singly or in com-
bination (digenic, biallelic) on PC1 dosage (0%-100%) and their relationship to disease displayed as a dosage-dependent mechanism. Variants are classified by the
American College of Medical Genetics (ACMG) score of 1-5 [1 benign, 2 likely benign (LB), 3 VUS, 4 likely pathogenic (LP) and 5 pathogenic (P)]. The red arrowheads
indicate disease-causing alleles while the blue arrowheads indicate low penetrance (hypomorphic) or susceptibility (risk) alleles which are often scored as ACMG 2-3.
Missense variants may be classified as ACMG 3-5 depending on available evidence, leaving uncertainty in individual cases.

GENETICS IN ALL ADULTS WITH ADPKD:
LIMITATIONS AND CHALLENGES

There are some limitations and challenges to current practice
and the global implementation of genetic testing in ADPKD.

Patient selection and pre-test probability

There remains a high rate of genetically unresolved cases (no
mutation detected in 20%-30%) in less selected populations even
by whole-genome sequencing [39-41]. Since the pre-test proba-
bility of a positive result will depend strongly on patient selec-
tion, older individuals with atypical or mild disease who are in-
creasingly being diagnosed on imaging are likely to be negative
on testing, although some could carry minor gene or hypomor-
phic major gene variants. In some of these cases, testing may

have little clinical significance for treatment but unselected test-
ing on all patients will likely diagnose many patients who are
well and asymptomatic with reduced kidney function but a neg-
ligible risk of kidney failure.

An informative study of 1948 potential kidney donors with
normal kidney function at the Mayo Clinic between 2000 and
2008 reported the age-related prevalence of cysts (=5 mm) de-
tected on computed tomography scanning (Fig. 3) [42]. Although
the population was not genotyped, it is likely that cyst forma-
tion can be part of normal ageing process with males more likely
to develop cysts than females. In the 60-69 years age group, the
97th centile for males was 10 cysts, and for females it was 4 cysts.
Current imaging ultrasound, criteria for diagnosis or disease ex-
clusion have been derived from at-risk individuals in PKD1 or
PKD2 pedigrees and do not apply to the minor genes [43]. With
regard to magnetic resonance imaging (MRI), it should be noted
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Figure 5: Genotype groups in MIC 1 (typical) patients from the Mayo Development (n = 590) and Consortium for Radiological Imaging Studies of Polycystic Kidney
Disease (CRISP, n = 177) Validation Cohorts. The percentage of PKD1 (blue), PKD2 (red) and NMD (no mutation detected, green) variants in each MIC 1 subgroup is
indicated. The final column denotes the overall percentage of each genotype class in the cohort. The percentage of PKD1 variants increased from MIC 1A-E with a
corresponding decrease in PKD2 and NMD variants. The percentage of patients with non-PKD1 or -PKD2 variants (NMD group) was 6%-8% in patients with typical
imaging morphology. Figure drawn from Table 2 reported in Irazabal et al. JASN 2015 [22]).

that the diagnostic cut-off of 10 cysts in at-risk individuals only
applies to those from PKD1 and PKD2 families between 16 and
40 years of age [43].

Variant interpretation especially for PKD1

A common issue that arises with more testing is the issue of
variant interpretation. There is a significant though variable de-
tection rate of VUS especially in PKD1 (Fig. 4).

A genetic study in the Geisinger cohort in Pennsylvania
demonstrated that a proportion of PKD1 missense variants pre-
viously reported as likely pathogenic were, in fact, likely benign,
since none of the carriers was shown to have cysts [40].

Alternatively, a variant might remain classified as a VUS
(ACMG3) while it is in fact the cause of the disease simply
because sufficient evidence for reclassification is lacking. The
nephrologists and genetic counsellor have here a critical role to
play to reach out to family members to perform co-segregation
analysis to allow variant reclassification.

Since there are still no reliable functional assays accessible
outside the research setting to define pathogenicity in cases
of VUS, this could result in patient anxiety since the result
neither disproves nor confirms the diagnosis and cannot be used
for predictive testing, thus excluding screening options such
as presymptomatic diagnosis, live related donation and PGD
[44]. Pre-test counseling needs to explain the implications of an
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Figure 6: Actionability of genetic testing in ADPKD. Current and future applications of genetic testing in ADPKD, highlighting present-day clinical indications (today)

and anticipated perspectives (tomorrow).

uncertain result as much as a negative or positive one [45]. It is
worth noting however that the majority of PKD1 and PKD2 vari-
ants are predicted loss of function variants and hence classified
as pathogenic with confidence.

The new KDIGO nomenclature for ADPKD includes
both benign and severe phenotypes under a common
disease label: pros and cons

The advantage of the new broader KDIGO nomenclature for
ADPKD is to define a genetic basis for the observed phenotypic
spectrum of ADPKD, defining major and minor genes that rep-
resent known population prevalence and disease incidence. Al-
though useful for patient stratification, a disease label “ADPKD-
gene” may still impact insurability and employability without
offering any benefits such as improved access to treatment or
healthcare. The careful education of all stakeholders will hence
be essential, emphasizing the key importance of considering the
gene suffix and not only the disease prefix.

Access to testing and patient selection for treatment

The cost of genome sequencing continues to fall and is becom-
ing more accessible. However, few public health systems are cur-
rently funding genetic testing for ADPKD, and the cost must
therefore be borne by the patient in many countries.

If testing is not accessible, a practical approach is to consider
that the vast majority of ADPKD with typical diseases, i.e. pos-
itive family history, bilateral kidney involvement and enlarge-
ment (MIC 1) will have a major gene variant (PKD1 or PKD2).
Thus, obtaining an MIC by MRI measured TKV or ultrasound-
measured mean kidney lengths may be sufficient for prognostic

reasons, in the absence of historical eGFR information. This
has been confirmed in a clinical diagnostic study using whole-
genome sequencing [41].

Patients with minor gene variants tend to present with atyp-
ical kidney morphology (MIC 2) and a negative family history.
In the developmental (Mayo Translational PKD Centre) and val-
idation (Consortium for Radiological Imaging Studies of Poly-
cystic Kidney Disease) cohorts used to derive the MIC, >90% of
MIC Class 1 patients had PKD1 or PKD2 variants with only 6%-
8% in the “no mutation detected” (i.e. no PKD1 or PKD2 vari-
ant which likely included untested minor gene variants) group
(Fig. 5) [22]. Nonetheless, there was a low percentage of MIC Class
2 patients in both cohorts [8.8% MPTC, 2.2% Consortium for Ra-
diological Imaging Studies of Polycystic Kidney Disease (CRISP)],
likely based on inclusion criteria with limited genotyping espe-
cially in the former [22].

Although genotyping information was incomplete, it is likely
that only PKD1 or PKD2 patients were included in the pivotal trial
for tolvaptan (TEMPO 3:4, n = 1445) since 97% of those in the ex-
tension study (TEMPO 4:4, n = 770) with a positive test had PKD1
or PKD2 variants, with only 3% genetically unresolved [21]. If we
considered only patients with MIC 1C-E for tolvaptan, there is a
very small chance (<10%) of treating the occasional patient with
a minor gene variant. Regardless of their genotype, patients with
atypical disease (MIC Class 2) would not be eligible for tolvaptan,
given that they would not fall into a “rapidly progressive” group.

CONCLUSION

In 2025, the rationale for genetic testing in ADPKD is stronger
than ever. Genetic testing enables a definitive diagnosis, clarifies
prognosis, informs therapeutic decisions, guides reproductive
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planning, supports donor selection and prepares the field for
emerging targeted therapies (Fig. 6).

While challenges remain—including interpretation of VUS
and disparities in access—these are increasingly surmountable
through collaborative care models. In parallel, attention must
be paid to ensuring equitable access to genetic services across
healthcare systems and geographies, as the benefits of testing
should not be limited to specialized centers.

Genetic testing in ADPKD is no longer optional: it is a corner-
stone of precision nephrology. Clinicians should advocate for its
systematic but judicious use, prioritizing contexts where action-
able insights are most likely. As the field continues to evolve, in-
tegrating genetic data will be essential for delivering optimal, eq-
uitable and forward-looking care to patients with ADPKD. Lastly,
and most importantly, our approach must recognize and re-
spect the patient’s right to access genetic testing, as well as their
perspective on its availability and timing [44-46].
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