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Abstract 

ADPKD is the most common monogenic cause of kidney failure globally and a significant cause 
of morbidity and mortality. It is now recognized that it may result from both major and minor 
genes with associated differences in disease penetrance, symptom burden and clinical 
outcomes. Genetic testing is now readily available to discriminate between different genotypes 
and is being increasingly utilized for diagnostic and prognostic indications. In this short review, 
we summarize the reasons why testing should become part of standard care for ADPKD patients 
where available and highlight some current limitations and challenges to testing. Defining the 
genetic landscape in ADPKD for all ethnic groups will be key to the future development and 
deployment of individualized patient-centered management in this condition. 
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Introduction 

Autosomal dominant polycystic kidney disease (ADPKD) affects 1 in 1000 to 1 in 2500 individuals 
and is responsible for up to 10% of kidney failure (KF) cases in developed countries. Although 
the disease has long been associated with pathogenic variants in PKD1 and PKD2, recent 
advances in molecular diagnostics have uncovered a broader genetic landscape, with now 7 
additional “minor genes” associated with the ADPKD spectrum. Moreover, the increasing use of 
genetic testing has enhanced the recognition of phenocopies—conditions mimicking ADPKD but 
caused by distinct genetic mechanisms. This expanded understanding has reshaped both the 
classification and management of ADPKD. 

Despite the genetic basis of ADPKD, routine genetic testing has not yet been universally adopted 
in clinical nephrology. Concerns regarding cost, availability, and interpretation persist. However, 
the context is changing. With improved sequencing platforms, decreasing costs, and growing 
clinical utility, there is a strong case for broader implementation of genetic testing. 

This review arises from a PRO–CON session on genetic testing in ADPKD at the 2025 European 
Renal Association meeting. The first author argues for systematic, judicious testing supported by 
ten evidence-based points, whereas the last author emphasizes current limitations and practical 
challenges in cystic kidney diseases. 

A - Genetics in all adults with ADPKD: Yes! 

1. Because ADPKD is a genetic disease 

The name itself underscores the fundamental rationale for testing: ADPKD is a genetically 
defined disorder.  

PKD1 and PKD2 alone account for approximately 90% of genetically resolved cases, with PKD1 
pathogenic variants typically conferring a more severe clinical phenotype. PKD1 is located on 
chromosome 16 and encodes polycystin-1 (PC1), a large N-linked glycoprotein expressed at the 
primary cilium [1]. PKD2, on chromosome 4, encodes polycystin-2 (PC2), a calcium-permeable 
channel that interacts with PC1 [2]. Both proteins function in the ciliary membrane and play key 
roles in mechanosensation and intracellular calcium signaling. 

There is strong evidence that PC1 and PC2 interact to form a heterotetrameric complex 
composed of one PC1 and three PC2 subunits, as revealed by cryo-EM data[3]. This interaction is 
thought to be essential for proper maturation, trafficking, and function of both proteins at the 
cilium[4]. ADPKD is classified as a ciliopathy, and several signaling pathways likely relevant to 
cystogenesis—including calcium, cAMP, G-protein, and possibly Wnt and planar cell polarity 
signaling—are linked to ciliary function. However, the precise physiological role of the polycystin 
complex in cilia remains incompletely understood. Evidence suggests that the polycystin 
complex may act as a mechanosensor, a receptor, or a regulator of ciliary signaling[5].  
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Over the past decade, additional genes associated with ADPKD-like phenotypes have been 
identified (Figure 1). These include GANAB and DNAJB11, involved in glycoprotein folding and ER 
quality control, as well as ALG8, ALG9, ALG5 and others in the glycosylation machinery [6–10]. 
These genes are now recognized to contribute to the spectrum of atypical ADPKD or overlapping 
syndromes such as ADPLD and ADTKD [11]. In addition to these N-glycosylation–associated 
cystic genes, two genes previously associated with recessively inherited ciliopathies are now 
recognized as part of the ADPKD spectrum: monoallelic predicted loss-of-function variants in 
IFT140 cause a mild form of ADPKD and account for ~2% of cases, whereas specific missense 
variants in the kinase domain of NEK8 can cause a severe, early-onset form [12, 13]. 

This expanded genetic landscape has blurred the boundaries between cystic kidney diseases 
previously considered distinct.  

Modern sequencing technologies have substantially improved the analysis of these genes; 
molecular testing now increasingly complements clinical criteria, shifting the diagnostic 
paradigm from clinical suspicion to molecular confirmation. The 2025 KDIGO guidelines explicitly 
recommend a nomenclature integrating gene identity, acknowledging the diversity within the 
ADPKD spectrum[14]. 

In clinical practice, testing can be performed using targeted next-generation sequencing panels, 
exome sequencing, or genome sequencing depending on local resources.[15] Once a causal 
variant is defined within a family, Sanger analysis of just the pathogenic variant usually is 
sufficient to determine whether at-risk family members are affected. It should be noted, 
however, that PKD1 poses specific technical challenges due to its large size, high GC content, 
and partial duplication (exons 1–33), which share >97% sequence identity with six pseudogenes 
on chromosome 16. These regions may not be fully captured or reliably mapped by exome 
sequencing, and targeted enrichment or complementary Sanger sequencing—particularly of 
exon 1—may be required to achieve complete coverage. These technical limitations should be 
carefully considered when interpreting a result in which no pathogenic or likely pathogenic 
variant is identified in PKD1. [15] 

2. To differentiate ADPKD from its phenocopies 

Not all patients with bilateral renal cysts have a classical form of ADPKD. Genetic testing enables 
clinicians to distinguish ADPKD from phenocopies—conditions that mimic the phenotype but 
follow different inheritance patterns, prognoses, and management implications. For example, 
patients with OFD1, HNF1B, or COL4A1 pathogenic variants may present with cystic kidneys yet 
have syndromic or systemic involvement requiring tailored care (Figure 2)[15]. 

Data from the Genkyst cohort—a nationwide French registry of over 3900 individuals—highlight 
the frequency of phenocopies in real-world practice. More than 20 distinct genes have been 
identified in patients initially diagnosed with ADPKD based on clinical or radiological 
grounds[16]. These include genes associated with autosomal dominant tubulointerstitial kidney 
disease (ADTKD), nephronophthisis, or other ciliopathies. 
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Failure to recognize these entities can lead to mismanagement, misinform reproductive 
counseling, and delay appropriate surveillance. Genetic confirmation enhances diagnostic 
precision, allowing tailored follow-up and counseling. 

3. Because genetics helps stratify prognosis in ADPKD 

Genotype is a key predictor of disease progression in ADPKD. It has long been recognized that 
patients with PKD2 variants tend to experience a milder clinical course and reach kidney failure 
later than those with PKD1 variants[17]. Later research clarified that not only the gene but also 
the type of PKD1 variant influences disease severity[18]. Truncating variants in PKD1 are 
associated with a significantly earlier onset of kidney failure compared to non-truncating ones, a 
finding confirmed in multiple independent cohorts[19]. To provide individual prognosis 
information, the PROPKD score (predicting renal outcome in ADPKD) was subsequently 
developed [20]. This score combines genetic data with clinical information—onset of 
hypertension before age 35, urologic complications before age 35, and sex—to stratify patients 
into low-, intermediate-, or high-risk categories for disease progression. This stratification has 
practical clinical consequences: it informs the intensity of follow-up, eligibility and timing for 
therapeutic interventions, and anticipatory transplant planning. Notably, patients classified as 
low-risk by the PROPKD score did not show clear benefit from Tolvaptan in a post hoc analysis of 
the TEMPO 3:4 randomized controlled trial[21]. This suggests that the PROPKD score can be a 
useful tool to enrich clinical trial cohorts with patients at higher risk of rapid progression, 
thereby maximizing the likelihood of demonstrating a treatment effect. It is also a valuable 
instrument for selecting appropriate candidates for therapeutic interventions in routine care. 

Importantly, accurate prognostication in ADPKD ideally requires a holistic approach that takes 
advantage of all available elements. These include the Mayo imaging classification relying on 
height-adjusted total kidney volume (htTKV), genetic information and the PROPKD score, family 
history of kidney failure, and eGFR.[20, 22] No single tool provides a complete picture; instead, 
their integration supports more precise risk stratification, therapeutic planning, and timing of 
interventions[23]. 

4. Because it informs therapeutic decision-making 

In some cases, genetic findings can alter therapeutic decisions entirely. For instance, pathogenic 
variants in OFD1, which can mimic ADPKD clinically (Figure 2), are associated with a X-linked 
inherited ciliopathy without supportive evidence for Tolvaptan efficacy. Similarly, patients with 
ALG9-related disease may have enlarged kidneys at a young age, yet there is currently no 
evidence supporting the benefit of Tolvaptan or even the prognostic utility of TKV-based tools in 
these individuals. Individuals with IFT140 variants may also present with kidney enlargement, 
but available data suggest a generally favorable prognosis, further underscoring the importance 
of accurate molecular diagnosis when considering disease-modifying therapies [24]. 
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5. Because knowing the variant in one family member creates a diagnostic tool for others 

Once a pathogenic variant has been identified in an affected family member, cascade testing can 
be performed rapidly and cost-effectively. In many cases, a single Sanger sequencing reaction is 
sufficient to confirm or exclude the presence of the familial variant in at-risk relatives. This 
facilitates early diagnosis in asymptomatic carriers and confidently rules out disease in 
unaffected individuals. The emotional and clinical impact of a clear molecular diagnosis is 
significant—it replaces uncertainty with clarity and informs both clinical surveillance and life 
planning. In countries with access to genetic testing, patients should be able to choose between 
imaging and genetic information, with decisions made through shared decision-making.  

KDIGO 2025 acknowledges targeted familial testing as one of the approaches in genetically 
resolved families, reinforcing its practical value[15]. Importantly, exclusion of the diagnosis 
based on imaging alone is only possible after the age of 30 in individuals at risk of ADPKD-PKD1, 
and after the age of 40 in individuals at risk of ADPKD-PKD2[25]. Moreover, imaging-based 
diagnostic criteria—as well as imaging-based prognostic tools—are only validated in typical 
ADPKD due to PKD1 or PKD2 variants. In all other genetic contexts, molecular testing is the only 
reliable approach to confirm or exclude the disease. 

6. To support selection of living kidney donors 

The selection of living kidney donors from families affected by ADPKD is a frequent and 
challenging scenario. In younger individuals—particularly under 30 years of age, where no risk 
can be taken—genetic testing is indispensable. A second situation concerns equivocal imaging 
findings in mid-adulthood, such as the presence of multiple cysts in a potential donor. In this 
case, declining donation without further clarification risks losing a valuable opportunity, as the 
donor may in fact be unaffected. Genetic testing can resolve this uncertainty, and in the case of 
the identification of a small number of cysts in the candidate donor, a panel of PKD genes may 
be preferable to testing only for the known familial variant, to exclude other genetic forms of 
PKD. Importantly, this presupposes that a genetic diagnosis has already been established in the 
recipient, or another affected family member, which highlights the need to anticipate and 
organize testing early, ideally before the transplant evaluation process. KDIGO guidelines 
underscore the importance of excluding ADPKD in potential living-related donors and recognize 
the central role of genetic testing in both situations[14]. 

7. To enable informed genetic counseling and reproductive choices 

Individuals with ADPKD who are of reproductive age face complex decisions regarding family 
planning. Genetic confirmation provides clarity that is essential for accurate counseling, 
including discussion of recurrence risks, inheritance patterns, and available approaches to avoid 
transmission of the disease, such as preimplantation genetic diagnosis (PGD).  
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KDIGO 2025 highlights the need to offer appropriate counseling and all available options to 
affected individuals[15]. Importantly, a confirmed genetic diagnosis in the affected parent is a 
prerequisite for any intervention involving genetic selection. Anticipation is therefore critical: 
the familial variant must be identified in advance to make PGT feasible. While PGT is not yet 
accessible in all countries, its availability is steadily increasing[26]. Genetic testing thus may 
empower patients to make informed, autonomous decisions about their reproductive future. 

8. To understand intrafamilial variability in disease severity 

In clinical practice, significant phenotypic heterogeneity is often observed within families 
affected by ADPKD. While some individuals may remain asymptomatic for decades, others 
progress to kidney failure in early adulthood or before. Genetic testing can provide insights into 
the underlying causes of this variability. 

One such mechanism is somatic mosaicism, in which only a subset of the individual’s cells carries 
the pathogenic variant because a de novo mutation arose just after the formation of the egg at 
an early embryonic stage. Mosaicism can result in a milder or atypical phenotype in the proband 
and may go undetected using standard testing approaches. In ADPKD, low-level mosaicism has 
been reported in clinically affected individuals and can pose challenges in diagnosis and familial 
interpretation. A study of 20 ADPKD families with mosaicism, all involving PKD1, found that five 
had germline transmission while 15 were sporadic[27]. Disease severity was generally milder in 
mosaic individuals than in their affected offspring, though phenotypes varied. 

Additionally, rare cases of biallelic inheritance involving pathogenic variants on both PKD1 or 
PKD2 alleles have been reported[11, 28–31]. These typically involve the co-inheritance of a 
hypomorphic allele from the unaffected parent and a pathogenic variant from the affected 
parent, leading to very early-onset ADPKD, which can be severe or even embryonically lethal. 
When such severe cases occur, identifying the underlying cause is essential to guide counseling 
for future pregnancies. Furthermore, rare cases of digenic disease have also been reported (e.g. 
co-inheritance of a PKD1 and a PKD2 variant)[32, 33]. 

Genetic testing helps elucidate these mechanisms and supports more accurate prognostication 
and genetic counselling.  

9. Because it is increasingly available and affordable 

Genetic testing is no longer a niche investigation nor prohibitively expensive. In many healthcare 
systems, including several European countries, targeted gene panels and exome sequencing are 
reimbursed by health insurance. The reagent and sequencing costs for a cystic gene panel or 
virtual exome are now well below €200. The main contributor to the overall cost is the time and 
expertise required for interpretation. Even when this is taken into account, the cost remains 
reasonable and should not constitute a major barrier to implementation, except where 
disproportionately inflated pricing is applied in certain healthcare systems. In such 
circumstances, the solution is not to restrict access, but rather to advocate—through 
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professional societies, key opinion leaders, and the academic community—for more equitable 
access to testing. 

Moreover, genetic testing is often performed once in a lifetime, with long-term utility for 
diagnosis, prognosis, and familial cascade screening.  

Although the interpretation of variants of uncertain significance (VUS) remains challenging, 
advances in population databases (e.g., gnomAD), in silico prediction tools, and segregation 
studies are improving interpretative accuracy[34]. Resources such as ClinVar and, specifically for 
ADPKD, the Mayo ADPKD Variant Database are valuable, and international multidisciplinary 
collaboration remains essential[35, 36]. Looking ahead, broader access to systematic in silico 
evaluation is expected to further support variant interpretation[37]. 

10. Because variant-specific therapies are under development 

Precision nephrology is moving rapidly towards genotype-guided therapies. Several 
experimental approaches are in development. One example is the small-molecule PC1 folding 
corrector VX-407, designed for certain missense variants in PKD1, with a Phase 2a trial 
underway (AGLOW, NCT07161037). A better understanding of genetic determinants of ADPKD 
may also provide clues for future therapeutic strategies: a recent study identified rare 5’ UTR 
variants in PKD1 that reduce translation of polycystin-1 and suggest that modulation of 
upstream regulatory elements could be explored as a novel treatment approach. [38] 

Additional therapeutic strategies for polycystic kidney disease are under investigation and may 
ultimately depend on molecular stratification for patient selection. To prepare for this future, 
genetic characterization needs to be integrated into current practice. Identifying patients with 
relevant variants enables their participation in clinical trials and accelerates the translation of 
discoveries into clinical applications. Embedding molecular testing within standard care 
pathways today is essential to ensure timely access to emerging therapeutic options. 

B. Genetics in all adults with ADPKD: Limitations and challenges 

There are some limitations and challenges to current practice and the global implementation of 
genetic testing in ADPKD 

1. Patient selection and pre-test probability 
There remains a high rate of genetically unresolved cases (NMD in 20-30%) in less selected 
populations even by whole genome sequencing [39–41]. Since the pre-test probability of a 
positive result will depend strongly on patient selection, older individuals with atypical or mild 
disease who are increasingly being diagnosed on imaging, are likely to be negative on testing 
although some could carry minor gene or hypomorphic major gene variants. In some of these 
cases, testing may have little clinical significance for treatment but unselected testing on all 
patients will likely diagnose many patients who are well and asymptomatic with reduced kidney 
function but a negligible risk of kidney failure. 
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An informative study of 1,948 potential kidney donors with normal kidney function at the Mayo 
Clinic between 2000-2008 reported the age-related prevalence of cysts (5mm) detected on CT 
scanning (Figure 3)[42]. Although the population was not genotyped, it is likely that cyst 
formation can be part of normal ageing process with males more likely to develop cysts than 
females. In the 60-69 age group, the 97th centile for males was 10 cysts and for females, it was 4 
cysts. Current imaging ultrasound, criteria for diagnosis or disease exclusion have been derived 
from at-risk individuals in PKD1 or PKD2 pedigrees and do not apply to the minor genes[43].  
With regard to MRI, it should be noted that the diagnostic cut-off of 10 cysts in at-risk 
individuals only applies to those from PKD1 and PKD2 families between 16-40 years of age[43]. 

2. Variant interpretation especially for PKD1 

A common issue that arises with more testing is the issue of variant interpretation. There is a 
significant though variable detection rate of ‘variants of uncertain significance’ (VUS) especially 
in PKD1 (Figure 4). 
 
A genetic study in the Geisinger cohort in Pennsylvania demonstrated that a proportion of PKD1 
missense variants previously reported as likely pathogenic were, in fact, likely benign, since 
none of the carriers were shown to have cysts [40]. 
 
Alternatively, a variant might remain classified as a VUS (ACMG3) while it is in fact the cause of 
the disease just because sufficient evidence for reclassification is lacking. The nephrologists and 
genetic counsellor have here a critical role to play to reach out to family members to perform 
co- segregation analysis to allow variant reclassification.  

Since there are still no reliable functional assays accessible outside the research setting to define 
pathogenicity in cases of VUS, this could result in patient anxiety since the result neither 
disproves nor confirms the diagnosis and cannot be used for predictive testing thus excluding 
screening options such as presymptomatic diagnosis, live related donation and PGD[44]. Pre-test 
counselling needs to explain the implications of an uncertain result as much as a negative or 
positive one[45]. It is worth noting however that the majority of PKD1 and PKD2 variants are 
predicted loss of function variants and hence classified as pathogenic with confidence. 

3. The new KDIGO nomenclature for ADPKD includes both benign and severe phenotypes 
under a common disease label: pros and cons 

The advantage of the new broader KDIGO nomenclature for ADPKD is to define a genetic basis 
for the observed phenotypic spectrum of ADPKD, defining major and minor genes which 
represent known population prevalence and disease incidence. Although useful for patient 
stratification, a disease label ‘ADPKD-gene’ may still impact insurability and employability 
without offering any benefits such as improved access to treatment or health care. The careful 
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education of all stakeholders will hence be essential, emphasizing the key importance of 
considering the gene suffix and not only the disease prefix. 

4. Access to testing and patient selection for treatment 

The cost of genome sequencing continues to fall and is becoming more accessible. However, 
few public health systems are currently funding genetic testing for ADPKD, and the cost must 
therefore be borne by the patient in many countries. 

If testing is not accessible, a practical approach is to consider that the vast majority of ADPKD 
with typical diseases, i.e positive family history, bilateral kidney involvement and enlargement 
(Mayo Class 1) will have a major gene variant (PKD1 or PKD2). Thus, obtaining a Mayo Imaging 
Class (MIC) by MRI measured total kidney volume (TKV) or ultrasound-measure mean kidney 
lengths (MKL) may be sufficient for prognostic reasons, in the absence of historical eGFR 
information. This has been confirmed in a clinical diagnostic study using WGS [41].  

Patients with minor gene variants tend to present with atypical kidney morphology (Mayo Class 
2) and a negative family history. In the developmental (Mayo Translational PKD Centre) and 
validation (Consortium for Radiological Imaging Studies of Polycystic Kidney Disease) cohorts 
used to derive the Mayo Imaging Classification (MIC), >90% of MIC Class 1 patients had PKD1 or 
PKD2 variants with only 6-8% in the ‘no mutation detected’ (i.e. no PKD1 or PKD2 variant which 
likely included untested minor gene variants) group (Figure 5)[22]. Nonetheless, there was a low 
percentage of MIC Class 2 patients in both cohorts (8.8% MPTC, 2.2% CRISP) likely based on 
inclusion criteria with limited genotyping especially in the former[22]. 

Although genotyping information was incomplete, it is likely that only PKD1 or PKD2 patients 
were included in the pivotal trial for tolvaptan (TEMPO3/4, n=1445) since 97% of those in the 
extension study (TEMPO 4/4, n=770) with a positive test had PKD1 or PKD2 variants with only 
3% genetically unresolved[21]. If we considered only patients with MIC 1C-E for tolvaptan, there 
is a very small chance (< 10%) of treating the occasional patient with a minor gene variant. 
Regardless of their genotype, patients with atypical disease (MIC Class 2) would not be eligible 
for tolvaptan, given that they would not fall into a ‘rapidly progressive’ group. 

CONCLUSION 

In 2025, the rationale for genetic testing in ADPKD is stronger than ever. Genetic testing enables 
a definitive diagnosis, clarifies prognosis, informs therapeutic decisions, guides reproductive 
planning, supports donor selection, and prepares the field for emerging targeted therapies 
(Figure 6). 

While challenges remain—including interpretation of VUS and disparities in access—these are 
increasingly surmountable through collaborative care models. In parallel, attention must be paid 
to ensuring equitable access to genetic services across healthcare systems and geographies, as 
the benefits of testing should not be limited to specialized centers. 
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Genetic testing in ADPKD is no longer optional: it is a cornerstone of precision nephrology. 
Clinicians should advocate for its systematic but judicious use, prioritizing contexts where 
actionable insights are most likely. As the field continues to evolve, integrating genetic data will 
be essential for delivering optimal, equitable, and forward-looking care to patients with ADPKD. 
Lastly, and most importantly, our approach must recognize and respect the patient’s right to 
access genetic testing, as well as their perspective on its availability and timing.[44–46] 
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FIGURE LEGENDS 

Figure 1. Chronological expansion of the ADPKD gene spectrum. Schematic timeline illustrating 
the progressive discovery of genes implicated in ADPKD. 

Figure 2. Examples of ADPKD phenocopies (A) T2-weighted MRI of a 65-year-old woman (eGFR 
45 mL/min/1.73 m²) with a large HNF1B deletion. (B) T2-weighted MRI of a 37-year-old woman 
(eGFR 69 mL/min/1.73 m²) with a frameshift variant in OFD1 (c.710dup). (C) Contrast-enhanced 
CT of a 68-year-old man (eGFR 56 mL/min/1.73 m²) with a frameshift variant in COL4A1 
(c.1462del) (D) T2-weighted MRI of a 78-year-old man (eGFR 10 mL/min/1.73 m²) with a 
missense variant in UMOD (c.184A>C; p.Thr62Pro). 

Figure 3. Age-related cyst formation in a population of healthy living kidney donors Screening 
CT scan data of a group of healthy living kidney donors (n=1948) assessed between 2000-2008 
at an expert centre. The number of incidental cortical and medullary cysts (>5mm) is indicated 
by colour coding (0, 1, 2, 3 more more) according to age by decade. Based on size, these cysts 
should be detected by ultrasound. The numbering in each column by sex (M, F) indicates the 
97th centile for each age group. Figure adapted by permission of the author from Figure 1 in 
(Rule et al, AJKD 2012 (ref [42]) 

Figure 4. Variant classification, their predicted effects on gene dosage and relationship to 
disease The predicted effect of different PKD1 variants singly or in combination (digenic, 
biallelic) on PC1 dosage (0-100%) and their relationship to disease displayed as a dosage-
dependent mechanism. Variants are classified by the American College of Medical Genetics 
(ACMG) score of 1-5 (1 Benign, 2 Likely benign (LB), 3 Variant of uncertain significance (VUS), 4 
Likely pathogenic (LP) and 5 Pathogenic (P). The red arrowheads indicate disease-causing alleles 
while the blue arrowheads indicate low penetrance (hypomorphic) or susceptibility (risk) alleles 
which are often scored as ACMG 2-3. Missense variants may be classified as ACMG 3-5 
depending on available evidence, leaving uncertainty in individual cases. 

Figure 5. Genotype groups in MIC Class 1 (typical) patients from the Mayo Development 
(n=590) and Consortium for Radiological Imaging Studies of Polycystic Kidney Disease (CRISP, 
n=177) Validation Cohorts. The percentage of PKD1 (blue), PKD2 (red) and NMD (no mutation 
detected, green) variants in each Mayo Imaging Class (MIC) 1 subgroup is indicated. The final 
column denotes the overall percentage of each genotype class in the cohort. The percentage of 
PKD1 variants increased from MIC 1A-E with a corresponding decrease in PKD2 and NMD 
variants. The percentage of patients with non-PKD1 or PKD2 variants (NMD group) was 6-8% in 
patients with typical imaging morphology. Figure drawn from Table 2 reported in (Irazabal et al, 
JASN 2015, ref [22]) 

Figure 6. Actionability of genetic testing in ADPKD. Current and future applications of genetic 
testing in ADPKD, highlighting present-day clinical indications (today) and anticipated 
perspectives (tomorrow). 
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Figure 1. Chronological expansion of the ADPKD gene spectrum 
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Figure 2.  Examples of ADPKD phenocopies (A) T2-weighted MRI of a 65-year-old woman (eGFR 
45 mL/min/1.73 m²) with a large HNF1B deletion. (B) T2-weighted MRI of a 37-year-old woman 
(eGFR 69 mL/min/1.73 m²) with a frameshift variant in OFD1 (c.710dup). (C) Contrast-enhanced 
CT of a 68-year-old man (eGFR 56 mL/min/1.73 m²) with a frameshift variant in COL4A1 
(c.1462del) (D) T2-weighted MRI of a 78-year-old man (eGFR 10 mL/min/1.73 m²) with a 
missense variant in UMOD (c.184A>C; p.Thr62Pro). 
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Figure 3. Age-related cyst formation in a population of healthy living kidney donors  
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Figure 4. Variant classification and predicted effects on gene dosage  
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Figure 5. Genotype groups in MIC Class 1 (typical) patients from the Mayo 
Development (n=590) and Consortium for Radiological Imaging Studies of Polycystic 
Kidney Disease (CRISP, n=177) Validation Cohorts 
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Figure 6. Actionability of genetic testing in ADPKD 
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