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Utilizing classical results on the structure of Hopf
algebras, we develop a novel approach for the
construction of cubature formulae on Wiener space
based on unshuffle expansions. We demonstrate the
effectiveness of this approach by constructing the first
degree-7 cubature formula on d-dimensional Wiener
space with drift in the sense of Lyons and Victoir
(Lyons & Victoir 2004 Stoch. Anal. Appl. Math. Finance
460, 169–198) which is explicit as a function of an
underlying Gaussian cubature. The support of our
degree-7 formula is significantly smaller than that of
currently implemented or proposed constructions.

1. Introduction
Cubature, in combination with Taylor expansion for
error estimation, is a classical and efficient method
for approximating the integrals of sufficiently regular
functions of several variables. The cubature paradigm
replaces a target measure with a discrete measure of
small, finite support that exactly matches the integrals
of a finite-dimensional space of (polynomial) test
functions. Cubature on Wiener space (as developed
by Lyons & Victoir [1]) extends this concept to path
space: the traditional Taylor expansion is replaced
by the stochastic Taylor expansion and Stratonovich
iterated integrals of Brownian motion take the place of
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polynomials. In its iterated form, known as the Kusuoka–Lyons–Victoir (KLV) method [1,2],
cubature on Wiener space provides high-order weak approximations of measures evolving in
infinite-dimensional spaces.

The KLV method, in its basic form, approximates a broad class of potentially hypo-elliptic
parabolic partial differential equations (PDEs) by computing weak solutions of stochastic
differential equations (SDEs). Unlike classical cubature methods, it can be shown using
Malliavin calculus that these approximations achieve high-order accuracy even when the test
function only has Lipschitz regularity. This foundational work has opened up a range of
cubature applications, including McKean–Vlasov SDEs [3,4], backward SDEs [5,6], sensitivity
analysis for financial derivatives [7], stochastic [8] and the nonlinear filtering problem [9,10].
Numerical implementations of cubature on Wiener space combining the KLV method with partial
sampling techniques in [11] and recombination in [12] demonstrate the high-order convergence
properties of cubature up to degree-9. These implementations also show that high-degree
cubature approximations can be significantly more efficient than first- and second-order methods,
especially when high-accuracy solutions are required. A numerical toy example implemented in
[13] used high-degree Gaussian quadrature to make the recombining KLV method adaptive to
the regularity of the boundary data. Although this approach produces exceptionally accurate and
efficient approximations of the PDE solution, the high-degree cubature measures on path space
necessary for extending this methodology to practical problems remain unavailable.

The construction of efficient, high-degree cubature measures for more than two- or three-
dimensional noise remains a significant challenge for Wiener space. The algebraic and
computational complexity increases rapidly with the degree of the approximation, e.g. [11].

Explicit constructions of cubature measures on Wiener space broadly involve three steps:

(1) Pick a convenient basis of the free Lie algebra and expand the expected signature of
Brownian motion (augmented with drift) as a symmetric tensor product of these basis
elements.

(2) Define a suitable Lie polynomial with unknown, random coefficients. Setting its expected
tensor exponential equal to the expected signature of desired degree gives rise to a
moment problem.

(3) Finally, the most challenging step. Solve this moment problem by constructing the
random coefficients as polynomials of (a small family of) distributions for which
(efficient) finite-dimensional joint cubature measures of the necessary orders are
available. Replacing these random variables with their cubature measures yields the
cubature measure on Wiener space.

Crucially, producing a cubature formula does not only entail solving a moment problem but also
designing one (with as few degrees of freedom as possible) so that it can be solved. For this reason,
steps 2 and 3 must often be iterated many times before a good solution is found.

In this paper, we propose a novel approach based on unshuffle expansions that leverages the
Hopf algebra structure of the tensor algebra. Instead of a basis of the free Lie algebra, we use a
redundant spanning set given by the images of the linear extension of the logarithm restricted
to grouplike elements, in order to expand the expected signature. This map is also known as
the canonical projection onto the free Lie algebra [14] or Eulerian idempotent [15,16] and occurs
naturally in the non-commutative correction terms of the Campbell–Baker–Hausdorff formula.
The choice to abandon the use of a basis, while counterintuitive, has the benefit of leveraging the
symmetries of the Wiener measure in a way that makes the construction more tractable.

Our approach has several advantages over existing methods in [11,17–19]. The unshuffle
expansion of the expected signature in this spanning set leads to a simplified and sparser
moment problem. This greatly mitigates the technical complexity that makes existing approaches
increasingly intractable for higher degrees. As a consequence, we can construct a degree-7
cubature measure on Wiener space that, in contrast to existing constructions, can be
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stated explicitly for arbitrary dimensions in terms of an underlying Gaussian cubature of
inhomogeneous degree. This results in measures with vastly smaller and, hence, more efficient
supports than existing constructions.

Our paper is organized as follows. In §2, we review background notions: §2a is a gentle
introduction to some well-known facts about the tensor Hopf algebra and §2b is a reminder
on cubature on Wiener space using the formulation in terms of Lie polynomials. Our original
contribution is contained in §3, which builds up to the main result theorem 3.11, a degree-
7 formula on Wiener space in arbitrary dimension plus drift. This theorem is later refined in
corollary 3.14 and we end the section with a detailed comparison to existing constructions, §3d.
The appendices A and B contain the more technical aspects of the calculations and appendix C
contains a numerical toy example showcasing the effectiveness of our formula. Before we begin,
we provide some context for our results by reviewing the literature on existing methods for
cubature on Wiener space.

(a) Existing constructions
Constructions for cubature measures on Wiener space of degree-3 and degree-5 were first
obtained in [1] by solving moment problems for discrete random variables arising from the
expansion of the non-commutative exponential in a Poincare–Birkhoff–Witt (PBW) basis of the
free tensor algebra. Since then, several attempts have been made to develop constructions of
cubature measures on Wiener space that extend to higher degrees. For the one- and two-
dimensional noise, Litterer [18] generalizes the Lyons–Victoir construction to degree-7. Using a
similar approach, Gyurkó and Lyons [11] obtained measures of degree-9 and degree-11 for one-
dimensional noise. In three dimensions, a degree-7 generalization of the Lyons–Victoir cubature
in the Hall basis has been obtained by Herschell [20], extending the original construction of [1]. As
observed by Gyurkó–Lyons [11], such a three-dimensional degree-7 construction has support on
91 Lie-basis elements whose coefficients must satisfy more than 150 inhomogeneous polynomial
constraints, underscoring the difficulty of the problem. The size of the support of the formula
in [20] serves as a key benchmark for our results; in particular, we recover the corresponding
support size for three-dimensional noise from our construction in §3c. While these constructions
result in efficient, explicit cubature formulae on Wiener space with the smallest support known
to date, they do not extend in any obvious and tractable way to higher dimensions owing to the
lack of symmetry in both the basis and the associated moment constraints.

The first construction of a general, if not explicit, degree-7 cubature measure on Wiener
space is due to Shinozaki [19, theorems 3.1 and 3.4], who leverages the algebraic relations
of products of iterated stochastic integrals to construct a moment similar family on grouplike
elements that matches the expectations of Stratonovich iterated integrals of Brownian motion
up to degree-7. The construction is a remarkable technical achievement, but does not lead to
a cubature measure on Lie polynomials or paths that can be explicitly stated in dimensions
greater than two. Reference [19, theorem 3.4] is stated for the two-dimensional case and the
intrinsic technical complexity of the calculations means it cannot be stated in higher dimensions.
Despite this, higher-dimensional examples can at least in principle be obtained from theorem
3.1 using computer algebra programmes [19, remark 3.7]. Shinozaki’s construction relies on
high-dimensional Gaussian cubature measures. The 7-moment similar families for d-dimensional
Brownian motion require discrete random variables matching sufficient moments of a

2d + 3
(

d
2

)
+ 3

(
d
3

)
= d3 + 3d

2
, d ≥ 3,

dimensional standard normal random variable. For the case of two-dimensional Brownian
motion, Shinozaki’s construction has been implemented using a seven-dimensional degree-7
Gaussian cubature [12].

An alternative, randomized construction of cubature measures based on recombination was
first proposed in [13, p. 1307–1308]. The algorithm is based on an observation by Wendel [21] who
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observed that for a spherically symmetric measure, an independent and identically distributed
sample of 2n points contains the origin inside its convex hull with probability 1/2. In [18], the
signature was also used as a test function for recombination on path space. A sophisticated
extension of these ideas in Hayakawa & Tanaka [17] and Hayakawa et al. [22] provides far more
general estimates that also apply to the number of paths required for the randomized construction
of cubature measures on Wiener space. Since the randomized construction makes no use of the
symmetries inherent in the Wiener measure, the support of the resulting formula grows with
the dimension of the truncated tensor algebra over d variables. The computational complexity in
the examples considered grows even faster, making the proposed construction for degree-7 and
above numerically intractable even for moderate-dimensional Brownian noise. For degree-7, only
a two-dimensional example is constructed in [17].

The approach proposed in this paper resolves some significant limitations of existing
constructions. It allows us to construct explicit cubature measures for d-dimensional Brownian
motion based on d-dimensional degree-7 Gaussian cubature measures and some auxiliary
variables that only have to match Gaussian moments up to degree-3. This results in cubature
measures on Lie polynomials that are explicit for arbitrary dimension and have in many
important cases vastly smaller support compared to any existing construction (cf. §3d(ii) for a
detailed discussion).

The support of any cubature measure on Wiener space is trivially bounded below by the size
of the support of its underlying d-dimensional Gaussian cubature measure (cf. Lyons & Victoir
[1]). We can show that the size of the support of our cubature measure for d-dimensional noise
is bounded above by 4d2 times the size of the support of any d-dimensional degree-7 Gaussian
cubature measure (cf. §3d for a discussion of such measures).

2. Background on algebra and cubature

(a) The tensor Hopf algebra and its Eulerian idempotent
In this section, we provide the algebra background which will be used for the construction of the
cubature formula; for details we refer to [14].

Let V be a finite-dimensional vector space. We denote the tensor algebra

T(V) :=
∞⊕

n=0

V⊗n,

endowed with the tensor product ⊗, making T(V) the free (non-commutative) algebra generated
by V. As a vector space, it is spanned by elementary tensors v1 ⊗ · · · ⊗ vn with vk ∈ V, which we
identify with words v1 . . . vn, omitting the tensor product symbol; we use 1 to denote the empty
word, the generator of R = V⊗0 and sometimes call elements of V letters. The unshuffle coproduct
is defined by �∃ 1 := 1 ⊗ 1 and

�∃ : T(V) → T(V) ⊗ T(V)

and v1 . . . vn �→
∑

I	J=[n]

vI ⊗ vJ , v1, . . . , vn ∈ V,

⎫⎪⎬⎪⎭ (2.1)

where we are summing over partitions of the set with n elements into two sets I and J and vK :=
vk1 . . . vkp for K = {k1, . . . , kp} with k1 < . . . < kp. In other words, �∃ separates a word v1 . . . vn into
two subwords without altering the order they inherit. For example,

�∃ (uvw) = 1 ⊗ uvw + u ⊗ vw + v ⊗ uw + w ⊗ uv + vw ⊗ u

+ uw ⊗ v + uv ⊗ w + uvw ⊗ 1. (2.2)

The number of terms in the expression for the coproduct of a word grows very rapidly; for
example �∃ (uvwz) is a sum of 16 terms which include ones such as v ⊗ uwz and uz ⊗ vw. The
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coproduct is coassociative, i.e. its iterates are well-defined independently of the order: define

�1∃ :=1T(V), �n∃ := (1 ⊗ �n−1∃ ) ⊗ �∃ = (�n−1∃ ⊗ 1) ⊗ � ∃ : T(V) → T(V)⊗n,

for n ≥ 2 (so that in particular �∃ = �2∃ ). It can be shown that �∃ is also an algebra morphism and
that ⊗ is a coalgebra morphism, making (T(V), ⊗, �∃ ) a bialgebra [14, proposition 1.9]; since it is
graded and connected, it can be endowed with a (unique) antipode, making it a Hopf algebra, the
tensor Hopf algebra. It is the dual Hopf algebra to the (perhaps better known) shuffle Hopf algebra
(T(V), ∃ , �⊗) in which the coproduct is defined by deconcatenation, i.e. splitting a word in all
possible ways. One should think of the shuffle Hopf algebra as indexing iterated integrals (with

∃ encoding the operation of product of two iterated integrals), while the tensor Hopf algebra as
indexing vector fields (with the tensor product encoding composition of vector fields). We shall
always be working in the tensor Hopf algebra.

Remark 2.1. It is useful to remark that �∃ is cocommutative, i.e. τ ◦ �∃ = � ∃ , where τ

swaps the two copies of T(V). Therefore, it is possible to express �n∃ by summing over ordered
submultisets and using symmetric products, see equation (2.3) below, instead of subwords (for
example, in equation (2.2), v ⊗ uw and uw ⊗ v can be grouped together). This is advantageous in
implementations, as it reduces the number of terms factorially.

Notice that �∃ x is a sum which always contains the two summands 1 ⊗ x and x ⊗ 1; a similar
comment also applies to higher-order coproducts, in which some summands have the degree-0
element 1 ∈ R = V⊗0 in one of the ‘slots’. Sometimes it is helpful to remove these trivial summands
and for this purpose, one therefore defines the (iterated) reduced coproduct by

�̃n∃ := π⊗n
≥1 ◦ �n∃ where π≥1 : T(V) �

∞⊕
n=1

V⊗n,

which is the projection onto tensors of positive degree (for example �̃∃ x = �∃ x − x ⊗ 1 − 1 ⊗ x).
We introduce similar notation for the projections of the tensor algebra onto its graded
components:

πn : T(V) �
n⊕

k=0

V⊗k.

It will be helpful to use sum-free Sweedler notation:

�n∃ x =: x(1) . . . x(n), �̃n∃ x =: x(1) . . . x(n).

To be more precise, anytime x(1), . . . , x(n) appear in some expression, this means we are taking the
m-fold coproduct of x and performing some operation on the individual factors (and similarly in
the reduced case, with superscripts instead of subscripts); we provide an example of this notation
shortly in equation (2.4). For x1, . . . , xn ∈ T(V), define the symmetric (tensor) product by

(x1, . . . , xn) := 1
n!

∑
σ∈Sn

xσ (1) ⊗ · · · ⊗ xσ (n) ∈ T(V). (2.3)

Note that the symmetric product is not associative, e.g. the above product cannot be computed
recursively by ((x1, . . . , xn−1), xn).

The convolution product on linear endomorphisms of the vector space T(V) is defined by

� : End(T(V))⊗2 → End(T(V)) and f � g := ⊗◦(f ⊗ g) ◦ � ∃ .

Here ‘⊗◦’ denotes the product mapping T(V)⊗2 → T(V) and note that by cocommutativity this
can be replaced by the symmetric tensor product. End(T(V)) forms a group under �, with neutral
element the projection π0 : T(V) � V⊗0. Thanks to the bialgebra properties, multiple convolution
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products can be written using the iterated coproduct:

f1 � · · · � fn = ⊗n ◦ (f1 ⊗ · · · ⊗ fn) ◦ �n∃ ,

in Sweedler notation: (f1 � · · · � fn)(x) = f1(x(1)) ⊗ · · · ⊗ fn(x(n))

= (f1(x(1)), . . . , fn(x(n))).

⎫⎪⎪⎬⎪⎪⎭ (2.4)

For f ∈ End(V), consider its exponential and logarithmic series under the convolution product:

exp�(f ) :=
∑
n≥0

f �n

n!
and log�(f ) :=

∑
n≥1

(−1)n−1

n
(f − π0)�n.

When applied to any given element, these series always reduce to finite sums by conilpotency
(the property that for any x ∈ T(V), there exists n such that �n∃ x = 0).

Definition 2.2 (Eulerian idempotent). The linear map

e := log�(1T(V)) ∈ End(V)

is called the Eulerian idempotent of the Hopf algebra (T(V), ⊗, �∃ ).

The Eulerian idempotent is denoted π1 in [14, §3.2] (not to be confused with the map π1 as it
is denoted here, the projection onto single letters); we also refer to [15,16] for further details.

Define a Lie bracket on T(V) by [x, y] := x ⊗ y − y ⊗ x. The free Lie algebra L(V) over V is the
smallest Lie subalgebra of T(V) which contains V; it can be explicitly described as the direct sum

L(V) = V ⊕ [V, V] ⊕ [[V, V], V] ⊕ . . . ,

where Lie brackets between vector subspaces of T(V) denote the space spanned by all Lie brackets
of the two vector spaces; it can also be described more abstractly by a universal property, without
reference to T(V). It is a non-trivial result that L(V) coincides with the space of �∃ -primitive
elements [14, theorem 3.1]:

L(V) = {x ∈ T(V) | �̃∃ x = 0}.
The expression for the Eulerian idempotent can be made more explicit by

e(x) =
∑
n≥1

(−1)n−1

n
(1 − π0)�n(x)

=
∑
n≥1

(−1)n−1

n
⊗n ◦(1 − π0)⊗n ◦ �n∃ (x)

=
∑
n≥1

(−1)n−1

n
(x(1), . . . , x(n)).

In the first identity, we have used the bialgebra property to express convolution powers and in
the second, we have used cocommutativity to symmetrize the tensor product (and note that the
Sweedler notation is reduced).

We mention for the sake of completeness, though it will not be used in the following pages, that
x ∈ T((V)) :=∏∞

n=0 V⊗n is grouplike if � ∃ x = x ⊗ x and denote the group of these G((V)). Calling
Gn(V) := πn(G((V))), it still holds that for x ∈ Gn(V), � ∃ x = x ⊗ x on Tn(V). Therefore, calling
G(V) :=⋃

n≥0 Gn(V) ⊂ T(V), we have that for x ∈ G(V),

e(x) =
∑
n≥1

(−1)n−1

n
⊗n ◦(1 − π0)⊗n ◦ �n∃ (x) =

∑
n≥1

(−1)n−1

n
x⊗n = log(x),

i.e. e|G(V) = log |G(V), where the latter denotes the logarithmic series taken with respect to the
tensor product. In fact, e is the unique linear map T(V) → T(V) with this property, where
uniqueness follows from the fact that G(V) spans T(V). Recall that the inverse of log is the tensor
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exponential exp, whose expression on a finite sum can be written in terms of the symmetric
product as follows, cf. [1, proposition 4.3]. For x1, . . . , xn ∈ T(V):

exp

( n∑
k=1

xk

)
=
∑
m≥0

n∑
k1,...,km=1

1
m!

(xk1 , . . . , xkm )

=
∑
m≥0

m1+···+mn=m

(
m1︷ ︸︸ ︷

x1, . . . , x1, . . . ,
mn︷ ︸︸ ︷

xn, . . . , xn)
m1! · · · mn!

. (2.5)

We summarize the main properties of e of relevance to us in the following proposition, which
is classical (cf. [14, proof of theorem 3.7]) and closely related to the celebrated Milnor–Moore
theorem [23].

Proposition 2.3. The Eulerian idempotent is a projection onto L(V) and x ∈ T(V) can be expressed as
a symmetric product of Lie elements by

x =
∑
n≥0

1
n!

(e(x(1)), . . . , e(x(n))). (2.6)

In other words, this provides an isomorphism

∞⊕
n=0

e�n

n!
: T(V)

∼=−→
∞⊕

n=0

L(V)�n. (2.7)

Proof. Writing 1= exp�(log�(1)) yields the identity

x = exp�(e)(x) =
∑
n≥0

e�n(x)
n!

,

which coincides with the expression in the first statement, thanks to equation (2.4). �

We remark that the higher convolution powers of e that appear in equation (2.6) have a
simplified expression in terms of Stirling numbers of the first kind [24] (see [25, theorem 4.1.1]
for a recent presentation). We also use the following two symmetries of the Eulerian idempotent.
The first is a direct consequence of the isomorphism equation (2.7).

Proposition 2.4 (The symmetric property). Let x ∈⊕∞
n=2 V�n. Then, e(x) = 0.

For the second symmetry, we introduce the reversal operator, defined on elementary tensors as

∗ : T(V) → T(V) and (v1 . . . vn)∗ := vn . . . v1 for v1, . . . , vn ∈ V, (2.8)

and extended linearly; 1∗ = 1.

Proposition 2.5 (The reversal property, [26, proposition 20]). For n ≥ 1 and x ∈ V⊗n,

e(x) = (−1)n−1e(x∗).

Recall that a Hall basis is a particular type of basis of the L(V). The following is an immediate
consequence.

Corollary 2.6. Given a Hall basis H, the set

{(h1, . . . , hn) | n ∈ N, h1, . . . , hn ∈ H} (2.9)

is a basis of T(V), called the symmetrized PBW basis.

Remark 2.7. We take a moment to reflect on the difference between equation (2.6) and the
expression of x in a basis equation (2.9). The latter is the choice made in [1] and has the benefit
that the expression of x ∈ T(V) as a commutative polynomial in the Hall elements is unique. On
the other hand, there is no canonical choice of a Hall basis and such bases are inherently designed
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to break the symmetry; for example, the Lyndon Hall basis depends on the choice of a frame on V.
As a consequence, expansions in Hall bases generally involve little structure and are therefore not
easy to present concisely. On the other hand, equation (2.6), while not an expansion in a particular
basis of L(V)—the set {e(w) | w word} is necessarily a dependent spanning set of L(V), even if the
letters in w are only taken to belong to a basis of V—has the property of only using the intrinsic
structure of the Hopf algebra (T(V), ⊗, �∃ ). One significant benefit is that high-degree identities
become tractable and presentable in a fraction of the space, thanks to the use of compact algebraic
notation. Moreover, any formula that is mathematically derived using equation (2.6) can always
be implemented in a PBW basis. To illustrate this point, in appendix B, we compute the images of
the Eulerian idempotents of words of degree up to 5 (those needed in theorem 3.11) in the Lyndon
basis.

Throughout this paper, V will be R
1+d and we denote ε0, ε1, . . . , εd its canonical frame. The

zeroth coordinate will be reserved for the drift, which has twice the regularity of Brownian
motion and therefore be given double the weight as the other coordinates, thus resulting in an
inhomogeneously graded tensor algebra. It will be convenient to define

π̃m : T(R1+d) �
⊕

2i+j≤m

(R1+d)⊗(i,j), (2.10)

where (R1+d)⊗(i,j) denotes the space spanned by all words of length i + j of which exactly i letters
are the letter 0. The inhomogeneous grading of the tensor algebra reflects the fact that the drift
scales differently from Brownian motion. Because of the central role that the coordinates {e(w) |
w word} play in this paper, we use the following shorthand.

Notation 2.8. For i1, . . . , in ∈ {1, . . . , d}, we denote

ξi1...in := e(εi1 . . . εin ). (2.11)

(b) Cubature measures for Wiener space supported on Lie polynomials
Throughout this paper, B denote a d-dimensional Wiener process and B̂ is B augmented with time
in its zeroth coordinate, B̂t = (t, Bt). We write S(◦B) and S(◦B̂) for their respective Stratonovich
signatures. A cubature measure (or formula) of degree-m for a probability measure ρ on R

d is
a finitely supported positive measure whose moments up to order m agree with those of ρ. We
recall the following definition of Lyons and Victoir for cubature measures on path space.

Definition 2.9 ([1] definition 2.2). We say a discrete probability measure Q =∑n
j=1 λjδωj

supported on n paths ωj ∈ C1-var([0, 1], R1+d) is a degree-m cubature measure on d-dimensional Wiener
space with drift, if

E[π̃m(S0,1(◦B̂))] =
n∑

j=1

λjπ̃m(S0,1(ωj)), (2.12)

where π̃m is defined in equation (2.10).

By scaling and stationarity of increments, a cubature measure on the interval [s, t] can be

obtained from Q above by letting ω
j
s,t;i(u) = √

t − s · ω
j
i(u/(t − s)), j = 1, . . . , d, and keeping the

weights of Q. The drift component of the cubature paths is given by ω0(t) = t.
In the KLV method, cubature measures are used to weakly approximate solutions to R

e-valued
Stratonovich SDE of the form

dXt = F(Xt) ◦ dB̂t, (2.13)

with sufficiently regular vector fields F which contains drift F0 and the diffusion coefficients Fk,
k = 1, . . . , d. The KLV approximation is computed by solving differential equations controlled by
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the cubature paths ωj (rescaled according to the interval on which the equation is defined):

dYj;t = F(Yj;t)dωj(t). (2.14)

For suitable test functions f , it is then shown [1, proposition 3.2] that on the interval [s, t]∣∣∣E[f (Xt)|Xs = x] −
n∑

j=1

λjf (Yj;t)
∣∣∣� (t − s)(m+1)/2 with Yj;s = x,

with the constant of proportionality independent of t − s. Thanks to the independence of
Brownian increments, this one-step estimate can be iterated along a partition to obtain a numerical
scheme converging at rate k1−(m+1)/2, where k is the number of intervals in the partition [1,
theorem 3.3].

It is well-known (e.g. [2,27–29]) that the one-step order-m Taylor expansion of equation (2.14)
on [s, t] is equal, up to an error of order (t − s)(m+1)/2, to the ODE

Żt = F◦(Z)π̃m(log Ss,t(ωj)), Zs = Yj;s, (2.15)

where the map F◦ : L(R1+d) → C∞(Re, Re) is the restriction to L(R1+d) ⊂ T(R1+d) of the universal
extension of the linear map that takes basis elements εi ∈ R

1+d to the vector fields Fi. In the
expression F◦(z)
, z is the argument in R

e and 
 is the argument in L(R1+d) on which F◦ acts
linearly, so that F◦(z)
 ∈ R

e; the inverse order of the arguments is motivated by the fact that we
think of first evaluating F◦ at a state z and then contracting it with a Lie element. When defined
on a word, F◦ equals the differential operator

F◦(z)εi1 . . . εin := (ϕ �→ Fi1 ◦ · · · ◦ Finϕ(z)),

where ◦ denotes composition of vector fields, i.e. Fi1 ◦ · · · ◦ Finϕ(z) is recursively equal to Fi1 acting
on the function y �→ Fi2 ◦ · · · ◦ Finϕ(y) evaluated at the point z. When the algebra homomorphism
F◦ is restricted to L(R1+d), it takes values in the Lie algebra of vector fields on R

e, C∞(Re, Re).
The error incurred by replacing ODEs controlled by paths ωj with autonomous ODEs defined by
F◦(π̃m(log S(ωj))) matches the order of error already present in the cubature approximation. We
naturally arrive at the following alternative definition of a cubature measure.

Definition 2.10 ([1] definition 4.9). Letting 
j := π̃m(log S(ωj)), we say that the discrete
probability Q =∑n

j=1 λjδ
j measure on L(R1+d) is a degree-m cubature measure on d-dimensional
Wiener space with drift if

E[π̃m(S0,1(◦B̂))] = EQ[π̃m exp(
)].

Both definitions of cubature on Wiener space, when applied iteratively in the KLV method,
have the same order of convergence, see, e.g. [30]. The KLV method based on measures on Lie
polynomials corresponds to a version of Kusuoka’s algorithm [2]. The logarithmic signature
maps cubature paths to Lie polynomials. Conversely, Chow’s theorem guarantees the existence of
continuous bounded variation paths with logarithmic signature matching any Lie polynomial (cf.
[1], where measures on Lie polynomials serve as a crucial intermediate step for the construction of
cubature measures on paths). In the following, we adopt definition 2.10, which has been preferred
in implementations of high-order cubature measures [11,12]. Also, it has the advantage of being
algebraic and of already providing the building blocks for most numerical ODE solvers, the
simplest of which is a Taylor scheme.

3. Explicit, general-d, degree-7 cubaturemeasures throughunshuffleexpansions
We propose the following variation and refinement of the three-point plan explained in §1 for
constructing a degree-7 cubature measure on dimension-d Wiener space with drift in the sense of
definition 2.10.

(1) Expand E[π̃m(S0,1(◦B̂))] using the Eulerian idempotent expansion equation (2.6).
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(2) Write an unknown L(R1+d)-valued random variable L as a linear combination in those
elements ξ 2.8 which appear in said expansion, with unknown random coefficients.
Expand using equation (2.5) and equate with the expansion of step 1, thus obtaining
conditions on the joint moments of the unknown random coefficients up to some
inhomogeneous order.

(3) The most challenging step. Solve the above moment problem by realizing the random
coefficients as polynomials of a low number of Gaussians. Substituting in Gaussian
cubature yields a cubature formula on Wiener space.

(a) Expansion of the expected signature over a symmetrized spanning set
We begin by stating the main result of this subsection—the expected signature of Brownian
motion expressed in representation equation (2.6). The remainder of the subsection is used to
derive the result through a series of lemmas.

Proposition 3.1. Let B be a Brownian motion in R
d. Then it has expected signature given by

E[S(7)
0,1(◦B)] = 1 +

∑
1≤i≤d

1
2

(ξi, ξi) +
∑

1≤i,j≤d

[
1
2

(ξi, ξijj) + 1
4

(ξij, ξij) + 1
8

(ξi, ξi, ξj, ξj)
]

+
∑

1≤i,j,k≤d

[
1
12

(ξi, ξijjkk) + 1
24

(ξj, ξiijkk) + 1
6

(ξij, ξijkk) + 1
12

(ξik, ξijjk)

+ 1
8

(ξijj, ξikk) + 1
12

(ξijk, ξijk) + 1
4

(ξi, ξi, ξj, ξjkk) + 1
8

(ξi, ξi, ξjk, ξjk)

+1
6

(ξi, ξj, ξik, ξjk) + 1
48

(ξi, ξi, ξj, ξj, ξk, ξk)
]

. (3.1)

Moreover, the time-augmented case can be reduced to the above by

E[S(7)
0,1(◦B̂)] = E[S(7)

0,1(◦B)] + ξ0 + 1
2

(ξ0, ξ0) + 1
6

(ξ0, ξ0, ξ0)

+
∑

1≤i≤d

(
1
2
ξ0ii + 1

2
(ξ0, ξi, ξi) + 1

2
(ξ0, ξ0ii) + 1

6
(ξ0i, ξ0i) + 1

4
(ξ0, ξ0, ξi, ξi)

)

+
∑

1≤i,j≤d

(
1
12

ξ0iijj + 1
24

ξii0jj + 1
2

(ξ0, ξi, ξijj) + 1
4

(ξj, ξj, ξ0ii)

+1
4

(ξ0, ξij, ξij) + 1
3

(ξi, ξ0j, ξij) + 1
8

(ξ0, ξi, ξi, ξj, ξj)
)

. (3.2)

Proof. The expected signature truncated at degree-7 is

E[S(7)
[0,1](◦B̂)] = ε0 + 1

2
ε2

0 + 1
6
ε3

0 + 1
2

∑
1≤i≤d

ε2
i + 1

2

∑
1≤i≤d

(ε0, ε2
i ) + 1

4

∑
1≤i≤d

(ε0, ε0, ε2
i )

+ 1
8

∑
1≤i,j≤d

(ε2
i , ε2

j ) + 1
8

∑
1≤i,j≤d

(ε0, ε2
i , ε2

j ) + 1
48

∑
1≤i,j,k≤d

(ε2
i , ε2

j , ε2
k ).

By recalling notation 2.8 and the fact that for each i, ξi = e(εi) = εi, we can obtain the following
fairly trivial expansions:∑

1≤i≤d

ε2
i = 1

2

∑
1≤i≤d

(ξi, ξi), ε2
0 = (ξ0, ξ0) and ε3

0 = (ξ0, ξ0, ξ0).

Lemmas 3.6–3.10 subsequently expand each remaining term in the symmetrized Eulerian
representation equation (2.6), which concludes the proof. �
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Remark 3.2. Each symmetric product in the expansion equation (3.1) of the expected signature
involves no more than three distinct basis elements εi and the general expansion can be deduced
from the three-dimensional case by symmetry. We later see that any Lie polynomial in the support
of a degree-7 cubature on Wiener space can also be written in terms of Lie monomials involving no
more than three distinct basis elements εi and the formula follows (provided the Lie polynomials
are sufficiently symmetric) by symmetry from the three-dimensional case.

Before stating and proving the expansions of each term using equation (2.6), we derive a
general result (corollary 3.5) which reduces the required computation approximately by half.

Lemma 3.3. The reversal operator ∗ equation (2.8) is a coalgebra morphism with respect to �∃ .

Proof. Let v1, . . . , vn ∈ V, x = v1 . . . vn, r(i) := n − i + 1. Then, recalling the notation of
equation (2.1)

(∗ ⊗ ∗) ◦ �∃ x =
∑

I	J=[n]

(vI)∗ ⊗ (vJ)∗

=
∑

I	J=[n]

(v∗)r(I) ⊗ (v∗)r(J)

=
∑

I′	J′=[n]

(v∗)I′ ⊗ (v∗)J′

= �∃ (v∗).

�

We say that x ∈ T(V) is a palindrome if x∗ = x. Every symmetric tensor—importantly, this
includes the expected signature of Brownian motion—is a palindrome, although the converse
is not necessarily true; in particular, the only single words that are symmetric are tensor powers
of a single letter, but many other single word palindromes exist. The invariance of palindromes
under the reversal operator, combined with a parity argument originating from proposition 2.5,
yields the following general result.

Theorem 3.4. Let mi ≥ 1 and xi ∈ V⊗mi be palindromes for i = 1, . . . , n. Let k ≥ 1 with k �≡∑n
i=1 mi

(mod 2). Then,
e�k((x1, . . . , xn)) = 0.

Proof. By symmetry and the fact that each xi is a palindrome,

(x1, . . . , xn) = 1
2 · n!

∑
σ∈Sn

[xσ (1) . . . xσ (n) + xσ (n) . . . xσ (1)]

= 1
2 · n!

∑
σ∈Sn

[xσ (1) . . . xσ (n) + (xσ (1) . . . xσ (n))
∗].

For y ∈ T(V) and f ∈ End(T(V)), using Sweedler notation for the convolution power of f
equation (2.4) and the fact that reversal is a coalgebra morphism 3.3, we can write

f �k(y∗) = (f ((y∗)(1)), . . . , f ((y∗)(k))) = (f ((y(1))
∗), . . . , f ((y(k))

∗)).

Let y = (x1, . . . , xn) and m =∑n
i=1 mi. Combining the above two identities and applying the

reversal property proposition 2.5 conclude the proof:

e�k(y + y∗) = (e(y(1)), . . . , e(y(k))) + (e((y(1))
∗), . . . , e((y(k))

∗))

= (1 + (−1)m−k)e�k(y)

= 0.

�

As an immediate corollary, we have the following, which can be applied to any term in the
expected signature for Brownian motion (augmented with time).
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Corollary 3.5. Let k ≥ 1 with k �≡ m (mod 2). Then for any i1, . . . , in ∈ {1, . . . , d}

e�k((ε0, . . . , ε0︸ ︷︷ ︸
m times

, ε2
i1 , . . . , ε2

in )) = 0.

We are now ready to expand each term of the Brownian motion expected signature in the
symmetrized representation. In each of these lemmas 3.6–3.10, the proof strategy follows the same
three steps:

(1) Begin with the representation equation (2.6) and simplify using corollary 3.5. For tensors
of even (resp. odd) length, all odd (resp. even) order symmetric products vanish.

(2) For each remaining non-zero level, compute the n-fold Eulerian idempotent by applying
equation (2.4) (and using remark 2.1 to immediately collect terms into symmetric
products). Ignore any symmetric products which include the trivially zero term ξii = 0
for any i.

(3) Eliminate linear redundancies by combining terms which are linearly dependent. This is
usually achieved by applying one of the two symmetries given in §a: the reversal property
proposition 2.5 and the symmetric property proposition 2.4. Subsequently, re-index such
terms to restore the ordering of the indices allowing them to be combined.

We order lemmas 3.6–3.10 in increasing order of the complexity of the expansion, beginning with
the (inhomogeneous) degree-4 terms. Similar expansions for these can be compared with work
on degree-5 cubature constructions. The first degree-4 term is (ε0, ε2

i ).

Lemma 3.6. ∑
1≤i≤d

(ε0, ε2
i ) =

∑
1≤i≤d

(ξ0ii + (ξ0, ξi, ξi)).

Proof. Representation equation (2.6) combined with corollary 3.5 gives

2
∑

1≤i≤d

(ε0, ε2
i ) = e�1

⎛⎝2
∑

1≤i≤d

(ε0, ε2
i )

⎞⎠+ e�3

⎛⎝2
∑

1≤i≤d

(ε0, ε2
i )

⎞⎠
= e�1

⎛⎝ ∑
1≤i≤d

(ε0ε
2
i + ε2

i ε0)

⎞⎠+ e�3

⎛⎝ ∑
1≤i≤d

(ε0ε
2
i + ε2

i ε0)

⎞⎠
=
∑

1≤i≤d

(ξ0ii + ξii0) +
∑

1≤i≤d

2(ξ0, ξi, ξi)

=
∑

1≤i≤d

(2ξ0ii + 2(ξ0, ξi, ξi)),

as required, where we use ξ0ii = ξii0 (reversal property) to obtain the final equivalence. �

Continuing to expand the lower-order terms, the next degree-4 term is (ε2
i , ε2

j ), which requires
a slightly more involved computation.

Lemma 3.7. ∑
1≤i,j≤d

(ε2
i , ε2

j ) =
∑

1≤i,j≤d

(4(ξi, ξijj) + 2(ξij, ξij) + (ξi, ξi, ξj, ξj)).

Proof. Representation equation (2.6) combined with corollary 3.5 gives

∑
1≤i,j≤d

(ε2
i , ε2

j ) = e�2

⎛⎝ ∑
1≤i,j≤d

(ε2
i , ε2

j )

⎞⎠+ e�4

⎛⎝ ∑
1≤i,j≤d

(ε2
i , ε2

j )

⎞⎠ . (3.3)
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Expanding the symmetric product as a pure tensor and applying linearity, we get

e�k

⎛⎝ ∑
1≤i,j≤d

(ε2
i , ε2

j )

⎞⎠= e�k

⎛⎝ ∑
1≤i,j≤d

ε2
i ε2

j

⎞⎠=
∑

1≤i,j≤d

e�k(ε2
i ε2

j ).

For k = 2:
e�2(ε2

i ε2
j ) = 2(ξi, ξijj) + 2(ξj, ξiij) + 2(ξij, ξij).

Substituting ξiij = ξjii (reversal property) before re-indexing the middle term (i, j) �→ (j, i), we get∑
1≤i,j≤d

e�2(ε2
i ε2

j ) =
∑

1≤i,j≤d

(2(ξi, ξijj) + 2(ξj, ξjii) + 2(ξij, ξij))

=
∑

1≤i,j≤d

(4(ξi, ξijj) + 2(ξij, ξij)). (3.4)

For k = 4:
e�4(ε2

i ε2
j ) = (ξi, ξi, ξj, ξj). (3.5)

Substituting equations (3.4) and (3.5) into equation (3.3), we obtain the required result. �

Next, we develop expansions for the degree-6 terms in the expected signature. It is these terms
in particular that have extremely convoluted expressions when expressed in a Hall basis, that
are infeasible to compute by hand. Our representation equation (2.6), on the other hand, gives
succinct derivations and results. First, the term (ε0, ε0, ε2

i ).

Lemma 3.8. ∑
1≤i≤d

(ε0, ε0, ε2
i ) =

∑
1≤i≤d

(
(ξ0, ξ0ii) + 2

3
(ξ0i, ξ0i) + (ξ0, ξ0, ξi, ξi)

)
.

Proof. Representation equation (2.6) combined with corollary 3.5 gives

3
∑

1≤i≤d

(ε0, ε0, ε2
i ) = e�2

⎛⎝3
∑

1≤i≤d

(ε0, ε0, ε2
i )

⎞⎠+ e�4

⎛⎝3
∑

1≤i≤d

(ε0, ε0, ε2
i )

⎞⎠
= e�2

⎛⎝ ∑
1≤i≤d

(ε2
0ε2

i + ε0ε
2
i ε0 + ε2

i ε2
0 )

⎞⎠
+ e�4

⎛⎝ ∑
1≤i≤d

(ε2
0ε2

i + ε0ε
2
i ε0 + ε2

i ε2
0 )

⎞⎠ . (3.6)

The first term simplifies by substituting ξ0i = −ξi0 and ξ0ii = ξii0 (reversal property):

e�2

⎛⎝ ∑
1≤i≤d

(ε2
0ε2

i + ε0ε
2
i ε0 + ε2

i ε2
0 )

⎞⎠
=
∑

1≤i≤d

(3(ξ0, ξ0ii) + 3(ξ0, ξii0) + 2(ξ0i, ξ0i) + 2(ξ0i, ξi0) + 2(ξi0, ξi0))

=
∑

1≤i≤d

(6(ξ0, ξ0ii) + 2(ξ0i, ξ0i)). (3.7)

The second term is evaluated as

e�4

⎛⎝ ∑
1≤i≤d

(ε2
0ε2

i + ε0ε
2
i ε0 + ε2

i ε2
0 )

⎞⎠=
∑

1≤i≤d

3(ξ0, ξ0, ξi, ξi). (3.8)

Substituting equations (3.7) and (3.8) into equation (3.6), we obtain the required result. �
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Continuing with the degree-6 terms, the final two lemmas while conceptually straightforward
each require a somewhat tedious calculation. First, the term (ε0, ε2

i , ε2
j ), for which we defer the

proof to appendix A.

Lemma 3.9. ∑
1≤i,j≤d

(ε0, ε2
i , ε2

j ) =
∑

1≤i,j≤d

(
2
3
ξ0iijj + 1

3
ξii0jj + 2(ξ0, ξi, ξijj) + 2(ξi, ξi, ξ0jj)

+2(ξ0, ξij, ξij) + 8
3

(ξi, ξ0j, ξij) + (ξ0, ξi, ξi, ξj, ξj)
)

.

Finally, the expansion of (ε2
i , ε2

j , ε2
k ), for which again we defer the proof to appendix A. This

expansion is the most involved as it concerns all of the terms in three distinct basis variables.

Lemma 3.10.∑
1≤i,j,k≤d

(ε2
i , ε2

j , ε2
k ) =

∑
1≤i,j,k≤d

(4(ξi, ξijjkk) + 2(ξj, ξiijkk) + 8(ξij, ξijkk) + 4(ξik, ξijjk)

+ 6(ξijj, ξikk) + 4(ξijk, ξijk) + 12(ξi, ξk, ξk, ξijj)

+ 6(ξi, ξi, ξjk, ξjk) + 8(ξi, ξj, ξik, ξjk) + (ξi, ξi, ξj, ξj, ξk, ξk)).

(b) Degree-7 cubature on Wiener space for arbitrary dimensions
Aided by our symmetrized representation of the degree-7 truncated expected signature of
Brownian motion proposition 3.1, we can now construct a cubature formula for (time-augmented)
Wiener space, which constitutes the main result of this paper. The measure introduced in this
section is based on an ansatz in which the Lie polynomials in its support are expressed as linear
combinations of Eulerian idempotents, with random coefficients given by linear combinations
of products of independent Gaussian random variables. These random variables are then
realized through independent Gaussian cubature formulas of suitable degree within our cubature
measure. For a discrete measure ρ =∑N

n=1 ρnδy(n) with y(n) = (y(n)
1 , . . . , y(n)

e ), we sometimes write
(yi, ρ) to highlight both the particles in the support of the measure which we also sometimes
interpret as random variables. Our main theorem is the following.

Theorem 3.11 (Degree-7 cubature formula on d-dimensional Wiener space with drift). Let
(zi, λ), (zij, μ) and (z, η) be independent Gaussian cubature formulae of (deg = 7, dim = d), (deg = 3, dim =
d2) and (deg = 2, dim = 1), respectively. Define

L(n,m,r) := ε0 +
∑

i

(
z(n)

i εi + 1√
3

z(m)
ii e(ε0εi) + 1

2
e(ε0εiεi)

)

+
∑

i,j

[(
1√
3

z(n)
i z(m)

jj + 1√
6

z(m)
ij

)
e(εiεj)

+1
2

z(n)
i e(εiεjεj) + 1

12
e(ε0εiεiεjεj) + 1

24
e(εiεiε0εjεj)

]
+
∑
i,j,k

(
1√
6

z(m)
ij z(n)

k z(r)e(εiεjεk) + 1

2
√

3
z(n)

i z(m)
jj e(εiεjεkεk)

+ 1

4
√

3
z(n)

i z(m)
kk e(εiεjεjεk) + 1

12
z(n)

i e(εiεjεjεkεk) + 1
24

z(n)
j e(εiεiεjεkεk)

)
,

and θn,m,r = λnμmηr for each (n, m, r) that indexes the product measure (zi, λ) × (zij, μ) × (z, η). Then,
L(n,m,r) and θn,m,r define the Lie polynomials and weights, respectively, of a degree-7 cubature formula on
d-dimensional Wiener space with drift.
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Before turning to the proof of theorem 3.11, we take a moment to explain how such a cubature
formula is constructed. Proposition 3.1 provides a sparse representation of the expected signature
of Brownian motion in terms of symmetric products of Eulerian idempotents (including the basis
vectors εi). Our aim is to first construct a measure supported on Lie polynomials, expressed
as linear combinations of these Eulerian idempotents with random coefficients that match the
cubature on Wiener space property. More precisely, the cubature condition definition 2.10 requires
that the expectation ELn,m,r (exp(L)) coincide with the expected signature of Brownian motion up
to degree-7 (in the inhomogeneous grading which counts drift vectors ε0 twice). Expanding
the exponential and applying equation (2.5) reduce this to a moment-matching problem: the
coefficients of the symmetric products of Eulerian idempotents, which are powers of the random
Lie polynomial coefficients, must match those arising in the Brownian case.

To make the problem tractable, we adopt an ansatz in which the random coefficients are
products of factors with (marginal) Gaussian distributions. This choice (i) preserves the symmetry
of the Brownian expected signature, ensuring that terms which vanish in the Brownian case
also vanish in our construction and (ii) reduces the remaining moment-matching constraints
to a manageable number. In addition, the coefficients of the basis vectors εi always match the
moments of a standard Gaussian up to degree-7, as seen by mapping the cubature property into
the commutative algebra (cf. [1], proposition 5.1).

After making this choice, there remains a (manageable) number of non-zero moment
constraints, which lead to systems of polynomial equations for the higher-order Eulerian
idempotent coefficients. To obtain real solutions, we extend the coefficient ansatz with linear
combinations of products of Gaussian variables, thereby introducing enough degrees of freedom
to solve these systems (compare the Lie polynomials in theorem 3.11).

Since the cubature on Wiener space property depends in our formulation only on the moments
of the random variables, Gaussian variables may be replaced by cubature measures of appropriate
degree. By taking the auxiliary Gaussian random variables to be independent, each is required to
match moments only up to degree-3. To see this, observe that the auxiliary variables are associated
to homogeneous Lie polynomials of degree at least 2. At most three can occur in any symmetric
product in the expansion of the cubature property up to degree-7. This observation allows the use
of degree-3 Gaussian cubatures for the auxiliary variables, greatly reducing the support size of
the resulting cubature measure. Independent cubatures are obtained by product constructions.

The following remark illustrates how this approach is natural and simplifies the problem
beyond the symmetries that force certain terms to vanish (compare also Litterer [18] and
Shinozaki [19]). It explores the construction of the random coefficient for e(εiεj), which is involved
in several nonlinear constraints. In the following, E denotes expectation with respect to the
discrete product measure (zi, λ) × (zij, μ) × (z, η).

Remark 3.12. Our ansatz in theorem 3.11 suggests the following form for the coefficient of
e(εiεj):

cijzizjj + ĉijzij.

Here, cij and ĉij are unknown constants to be determined by all constraints arising from matching
coefficients of the symmetric products involving e(εiεj) in the expansion of the expectation of the
Brownian signature. From the expansion of the expectation of the Brownian signature proposition
3.1, expanding the exponential in ELn,m,r (exp(L)) and equating the coefficients of the symmetric
product (e(εiεj), e(εiεj)) yield the following constraint:

1
4

= 1
2!

E((cijzizjj + ĉijzij)
2) = 1

2
[c2

ijE(z2
i z2

jj) + ĉ2
ijE(z2

ij)] =
c2

ij + ĉ2
ij

2
. (3.9)

Similar equations arise from matching the coefficients of the terms (ξi, ξj, ξik, ξjk), (ξ0, ξij, ξij),
(ξi, ξ0j, ξij) and (ξi, ξi, ξjk, ξjk) in the expansion of the expected signature, yielding a system of
polynomial equations that appears overdetermined.

However, owing to the choice of ansatz, several constraints are equivalent. For example,
the coefficient of (ξi, ξi, ξjk, ξjk). By equation (2.5) and proposition 3.1 and recalling that for any
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Gaussian cubature measure we have E[z2
i ] = 1, then,

1
8

= 1
2!2!

E(z2
i (cjkzjzkk + ĉjkzjk)2) =

c2
jk + ĉ2

jk

4
. (3.10)

Under the ansatz (which can be solved in the three-dimensional case and then generalized by
symmetry), the complete system of equations has a real solution cij = 1√

3
and ĉij = 1√

6
. Without

this internal consistency arising from the interplay of the symmetries of the expectation of the
Brownian signature and the structure of our ansatz, a construction that works for arbitrary
degree-7 cubatures (rather than one specific measure for the coefficients of the εi) and any
independent Gaussian auxiliary cubatures would not be possible.

We now present proof of our cubature formula on Wiener space by systematically verifying
all moment conditions for the coefficients of the Lie polynomials in the support of our cubature
formula.

Proof of theorem 3.11. The cubature property definition 2.10 can be verified by direct
computation: exponentiate the Lie polynomials in the support of the cubature measure, expand
in terms of symmetric products of Eulerian idempotents using equation (2.5) and compare the
resulting coefficients with those in proposition 3.1. Because the drift ε0 has coefficient one, the
constraints arising from symmetric products involving only the basis vectors ε0, . . . , εd reduce
to Gaussian moment identities after mapping the cubature-on-Wiener-space property to the
symmetric (commutative) algebra; equivalently, they are satisfied if and only if the coefficients zi,
i = 1, . . . , d, realize a degree-7 cubature formula (cf. [1], proposition 5.1). Hence, the coefficients
of the basis vectors εi always match the moments of a standard Gaussian up to degree-7. It
therefore remains only to verify the coefficients of those symmetric products that contain at least
one higher-order Lie polynomial. To keep the calculations concise, we organize this verification
into three parts: terms that vanish, terms that are non-vanishing but particularly involved (these
typically include lower-order Eulerian idempotents, which, since we truncate at degree-7, appear
in multiple conditions) and finally all remaining non-vanishing terms that, whilst tedious, are a
relatively straightforward bookkeeping exercise.

First, the zero terms. Any symmetric product that does not contain an even number of
instances of each basis variable εi should be zero. This holds since in the proposed cubature
formula any instance of a single basis variable is matched with a corresponding Gaussian
coefficient. To give two demonstrative examples, the coefficient of ξijj features a single i which
is matched by a coefficient proportional to zn

i . The coefficient of ξij features both a single i and
j. These are matched by two separate coefficients, one being zn

i zm
jj and the second being zm

ij , both
of which match a single i and single j. Because the Lie polynomials feature this structure, then
after exponentiation any term which contains an ‘odd’ number of instances of any particular
basis variable have at least one ‘odd’ Gaussian coefficient—which in expectation is always zero
as required. There are also a handful of additional terms which despite containing only even
instances of basis variables, do not appear in the expansion of proposition 3.1. Listing these
exhaustively, we can verify that the auxiliary Gaussian cubature coefficients have been carefully
selected to correctly ensure these are also removed via an odd-degree Gaussian coefficient after
exponentiation. The details are listed in the following table, where all constants have been
dropped for brevity.

basis term exp. coeff.
(ξi, ξ0i) E[zizii]
(ξ0i, ξijj) E[ziizi]
(ξi, ξj, ξij) E[zizjzij]
(ξi, ξj, ξijkk) E[z2

i zjzjj]
(ξi, ξk, ξijjk) E[z2

i zkzkk]
(ξi, ξjk, ξijk) ∝ E[z]a

basis term exponentiated coefficient
(ξi, ξij, ξjkk) E[zi(zizjj + zij)(zj + zjkzkz)]
(ξij, ξjk, ξik) E[(zizjj + zij)(zjzkk + zjk)(zizkk + zjk)]
(ξ0, ξi, ξj, ξij) E[zizj(zizjj + zij)]
(ξi, ξj, ξj, ξ0i) E[ziz2

j zii]

(ξi, ξj, ξk, ξijk) E[zizjz2
kzijz]

(ξi, ξj, ξk, ξk, ξij) E[zizjz2
kzij]

a The full coefficient here is convoluted and it is simpler to observe
that z only ever appears in the ξijk coefficient.
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Next, the non-zero terms. As we know, the expected signature represented in proposition 3.1
contains a number of linear redundancies, for example e(ε1ε2) = −e(ε2ε1), yet both terms appear
in the expansion. Our cubature formula features the same redundancies to preserve the majority
of the symmetries. In this regard, for each term we aim to show that the cubature produces the
correct coefficient for that exact term. There are, however, two special cases for which this process
does not work and a more detailed computation must be carried out and so we present these first.

(1) (ξijj, ξijj). This term requires careful consideration since it has contributions from (ξijj, ξikk)
and (ξijk, ξijk) (both whenever j = k). The required coefficient from proposition 3.1 is

1
8

+ 1
12

= 5
24

.

The total coefficient after exponentiating the cubature polynomials is

1
2!

·
(

1
4

E[z2
i ] + 1

6
E[z2

ijz
2
j z2]

)
= 5

24
,

as required, where 1
2! is the coefficient from the second level of the exp function and the

2 terms inside the brackets are the two ways to obtain (ξijj, ξijj) by combining the terms of
the cubature Lie polynomial.

(2) (ξi, ξi, ξij, ξij) (where i < j). This term is particularly involved owing to the asymmetry of
the ξij coefficient. The required coefficient from proposition 3.1 (noting that there are
positive contributions from both (ξi, ξi, ξij, ξij) and (ξi, ξi, ξji, ξji) as well as (ξi, ξk, ξij, ξkj)
when k = i) is

1
8

+ 1
8

+ 1
6

= 5
12

.

The total coefficient after exponentiating the cubature polynomials is(
4
2

)
· 1

4!
·
(

1
3

E[z4
i z2

jj] + 1
3

E[z2
i z2

iiz
2
j ] + 1

6
E[z2

i z2
ij] + 1

6
E[z2

i z2
ji]
)

= 5
12

,

as required, where
(4

2
)

is the size of the permutation group of {a, a, b, b}, 1
4! is the coefficient

from the fourth level of the exp function and the four terms inside the brackets are the
only possible ways to obtain either (ξi, ξi, ξij, ξij) or (ξi, ξi, ξji, ξji) by combining the terms of
the cubature Lie polynomial.

The remaining terms require no groupings. This is not because the linear redundancies
do not exist, rather the symmetries do not make them a problem and leaving redundant
terms ungrouped makes for a simpler and more efficient proof. Brief details on each case are
listed in the following table, where for each non-zero term in the expansion of the expected
signature proposition 3.1, the column ‘cubature coefficient’ gives the coefficient which results
from exponentiating and summing the proposed cubature formula. In each case, the coefficient
is computed by applying the tensor exponential identity equation (2.5) and scaling by the
(expectation of) the coefficients of each constituent term in the symmetrized product as they
appear in our Wiener space cubature formula. The result can be verified as equal to the target
value obtained directly from proposition 3.1. Unless otherwise indicated, each row holds for any
(non-trivial1) choice of i, j, k. If a term is marked with an asterisk, this is to indicate i �= j and if a

1By non-trivial choices, we are referring to those which make the symmetrized product term a non-zero tensor.
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term is marked with a dagger this is to indicate i, j, k are all distinct.

term cub. coeff. 3.1
ξ0ii

1
2

1
2

ξ0iijj
1

12
1
12

ξii0jj
1

24
1
24

(ξ0, ξ0ii) 2
2! (

1
2 ) 1

2

(ξ0i, ξ0i) 1
2! E[ 1

3 z2
ii]

1
6

(ξi, ξijj) 2
2! E[ 1

2 z2
i ] 1

2

(ξi, ξijjkk) 2
2! E[ 1

12 z2
i ] 1

12

(ξj, ξiijkk) 2
2! E[ 1

24 z2
i ] 1

24

(ξij, ξijkk) 2
2! E[ 1

6 z2
i z2

jj]
1
6

(ξik, ξijjk) 2
2! E[ 1

12 z2
i z2

kk] 1
12

(ξijk, ξijk) 1
2! E[ 1

6 z2
ijz

2
kz2] 1

12

term cubature coefficient 3.1
(ξijj, ξikk)† 1

2! E[ 1
4 z2

i ] 1
8

(ξij, ξij) 1
2! E[ 1

3 z2
i z2

jj + 1
6 z2

ij]
1
4

(ξ0, ξi, ξijj) 6
3! E[ 1

2 z2
i ] 1

2

(ξi, ξi, ξ0jj) 3
3! E[ 1

2 z2
i ] 1

4

(ξ0, ξij, ξij) 3
3! E[ 1

3 z2
i z2

jj + 1
6 z2

ij]
1
4

(ξi, ξ0j, ξij) 6
3! E[ 1

3 z2
i z2

jj]
1
3

(ξi, ξi, ξi, ξikk) 4
4! E[ 1

2 z4
i ] 1

4

(ξi, ξi, ξj, ξjkk)∗ 12
4! E[ 1

2 z2
i z2

j ] 1
4

(ξi, ξi, ξjk, ξjk)∗ 6
4! E[ 1

3 z2
i z2

j z2
kk + 1

6 z2
i z2

jk] 1
8

(ξi, ξj, ξik, ξjk)∗ 12
4! E[ 1

3 z2
i z2

j z2
kk] 1

3

�

Remark 3.13. All proofs in this paper are self-contained. In addition, the cubature measure
constructed in theorem 3.11 have also been verified by direct computation in Python (for
dimension-3, the general case follows by symmetry as discussed in remark 3.2); the corresponding
code is available at [31]. The verification code makes use of the computational library for the free
Lie algebra developed by Reizenstein [32]. We provide this code for readers who may wish to
construct further cubature measures on path space and who may find it a useful resource.

(c) Breaking symmetry to reduce the support size of the cubature measure further
Given that the Eulerian idempotent method produces a cubature formula with a number of
redundant terms, it is natural to question whether these can be removed to reduce the size of the
cubature formula. For the degree-7 cubature formula given in theorem 3.11, the only redundancy
that directly affects the number of cubature points is the inclusion of both the terms e(ij) and e(ji)
for any i, j, since these require zij to have dimension d2. These are linked by the anti-symmetry
e(ij) = −e(ji), so we could hope to (asymptotically) halve the dimension of zij by only considering
i ≤ j. Indeed, this can be achieved by the following corollary.

Corollary 3.14 (Degree-7 cubature formula with broken symmetries). Let (zi, λ), (zij, μ) and
(z, η) be independent Gaussian cubature formulae of (deg = 7, dim = d), (deg = 3, dim = 1

2 d(d + 1)) and
(deg = 2, dim = 1), respectively, where we understand zij has dimensions only for i ≤ j. Define

L(n,m,r) := ε0 +
∑

1≤i≤d

(
z(n)

i εi + 1√
3

z(m)
ii e(ε0εi) + 1

2
e(ε0εiεi)

)

+
∑

1≤i<j≤d

[(
1√
3

z(n)
i z(m)

jj − 1√
3

z(n)
j z(m)

ii + 1√
3

z(m)
ij

)
e(εiεj)

+1
2

z(n)
i e(εiεjεj) + 1

2
z(n)

j e(εjεiεi)
]

+
∑

1≤i,j≤d

(
1√
6

z(m)
ii z(n)

j z(r)e(εiεjεi) + 1
12

e(ε0εiεiεjεj) + 1
24

e(εiεiε0εjεj)
)

+
∑

1≤i<j≤d
1≤k≤d

(
1√
3

z(m)
ij z(n)

k z(r)e(εiεjεk)
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+ 1

2
√

3
z(n)

i z(m)
jj [e(εiεjεkεk) − e(εjεiεkεk) + e(εiεkεkεj)]

)
+

∑
1≤i,j,k≤d

(
1
12

z(n)
i e(εiεjεjεkεk) + 1

24
z(n)

j e(εiεiεjεkεk)
)

,

and θn,m,r = λnμmηr for each (n, m, r) that indexes (zi, λ) × (zij, μ) × (z, ξ ). Then, L(n,m,r) and θn,m,r define
the Lie polynomials and weights, respectively, of a degree-7 cubature formula on d-dimensional Wiener
space with drift.

Proof. Almost all computations are the same as in the proof of theorem 3.11, with the exception
of any involving ξij. The following table lists the computations for all such symmetric product
terms, which again can be directly compared with the required coefficient taken from proposition
3.1. Throughout, we have imposed i < j and used the fact that ξji = −ξij to combine terms where
relevant. Special attention should be given to the symmetrized term ‘(ξi, ξj, ξik, ξjk)’, where one
should group the case i < j < k with k < i < j and separately group the case i < k < j with j < k < i.
The calculation for both of these groupings is the same, but for brevity only written once in the
table.

Term Cub. coeff. 3.1
(ξij, ξijkk) 2

2! E[ 1
6 z2

i z2
jj]

1
6

(ξji, ξjikk) 2
2! E[ 1

6 z2
i z2

jj]
1
6

(ξij, ξikkj) 2
2! E[ 1

6 z2
i z2

jj]
1
6

(ξi, ξ0j, ξij) 6
3! E[ 1

3 z2
i z2

jj]
1
3

(ξi, ξ0j, ξji) 6
3! E[ 1

3 z2
i z2

jj]
1
3

term cubature coefficient 3.1
(ξij, ξij) 1

2! E[ 1
3 z2

i z2
jj + 1

3 z2
j z2

ii + 1
3 z2

ij]
1
2

(ξ0, ξij, ξij) 3
3! E[ 1

3 z2
i z2

jj + 1
3 z2

j z2
ii + 1

3 z2
ij]

1
2

(ξi, ξi, ξij, ξij) 6
4! E[ 1

3 z4
i z2

jj + 1
3 z2

i z2
j z2

ii + 1
3 z2

i z2
ij]

5
12

(ξk, ξk, ξij, ξij) 6
4! E[ z2

k
3 (z2

i z2
jj + z2

j z2
ii + z2

ij)]
1
4

(ξi, ξj, ξik, ξjk) 12
4! E[ 1

3 z2
i z2

j z2
kk] 1

6

�

(d) Comparison to existing constructions
(i) Positive Gaussian degree-7 cubature measures

Deterministic constructions of cubature measures on Wiener space all rely on the existence of
Gaussian cubatures that are exact to the same degree and positive weights. The existence of
cubature measures (both Gaussian and on Wiener space) is guaranteed by Tchakaloff’s theorem
(see [33]). Stroud [34] provides several examples of such measures. A degree-3 Gaussian cubature
in d dimensions can be realized by a measure with support of 2d particles (see [34], formula Er2

n
3-1, p. 315). Degree-7 measures have been constructed for d = 3 with support of 27 points ([34],
formula Er2

3 7-1, p. 327), d = 4 with 49 particles ([34], formula Er2

4 7-1, p. 329) and 3 ≤ d ≤ 8 with

2d+1 + 4d2 particles ([34], formula Er2

3 7-2, p. 319).
For higher dimensions, Gaussian cubature measures with polynomial size support can

be obtained by applying recombination (see [13]). A more efficient, enhanced recombination
algorithm is due to Tchernychova [35] who improves the efficiency of the original recombination
algorithm by a full order and applies them specifically to the construction of ‘Caratheodory’
cubature measures. Her algorithm iteratively extends the dimension of a d-dimensional cubature
measure by taking the product with a one-dimensional Gaussian quadrature measure, followed
by a recombination step with respect to the polynomials of degree at most m in d + 1 dimensions.

Let m = 2k + 1. Note that if G is random variable with all even moments up to degree-2k
matching the standard normal distribution and Λ is an independent Bernoulli random variable,
then G then GΛ has standard normal moments up to degree-(2k + 1). Hence, the ‘Caratheodory’
cubature can be realized by recombination with respect to even polynomials and taking the
product with the Bernoulli distribution. This leads to cubature measures with support of size
at most 2 dim(G(d, 2k)) + 1, where G(d, 2k) denotes the space of even polynomials of degree at
most 2k in d variables.
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Table 1. Comparison of size of support of different constructions for degree-7.

dimension

2 3 4 5 6

hall basis d = 2: [18], d = 3: [20] 48 648
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

moment similar families: [12] 78 125
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

randomized construction: [17] 696 5632 30 348 121 554 392 464
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eulerian idempotent: theorem 3.11 96 972 3136 16 400 39 168
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eulerian idempotent: corollary 3.14 48 648 1960 9840 22 848
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Möller [36] proves lower bounds for the size of support of Gaussian cubature measures. These
bounds grow as a cubic polynomial in the dimension of the underlying space and have been
approached for some dimensions for degree-5 measures with positive weights (e.g. Victoir [37]).
However, to the best of our knowledge, no such examples are currently known for degree-7 in
higher dimensions.

(ii) Efficiency compared to existing constructions

Shinozaki’s construction [19] provides a general framework for degree-7 cubature measures on
Wiener space that, in principle, applies to arbitrary dimensions. The moment conditions necessary
for this cubature are outlined on pp. 907–910 of [19] and are somewhat more complex than in our
construction. Owing to its algebraic complexity, explicit constructions and implementations have
only been provided for two-dimensional Brownian motion. Discrete random variables/cubature
measures are not explicitly constructed and to implement the measure for two-dimensional
noise, Ninomiya & Shinozaki [12] use a product construction based on Gauss quadrature,
yielding a seven-dimensional degree-7 Gaussian cubature measure with a support size of 57 =
78 125 points. The dimension of the auxiliary Gaussian measures grows quickly and for the
case of three-dimensional noise, the moment conditions are based on a Gaussian cubature
measure on R

18.
Making a direct comparison in this case is challenging, as [19] does not focus on optimizing

the support size of their measures. While a product construction of high-dimensional degree-7
Gaussian cubature is theoretically possible, it would result in a very large support. It may be
possible to reduce the support size in [19] for higher-dimensional noise by incorporating some
of our ideas, which leverage lower-degree Gaussian auxiliary cubatures to construct discrete
random variables satisfying the moment conditions. However, given the algebraic complexity
of the construction, this would probably require non-trivial modifications to the formulae, which
we have not attempted to make.

The randomized construction from Hayakawa & Tanaka [17] applied to d-dimensional
Brownian motion leads, when computationally tractable, to a measure of degree-7 with size of
support bounded above by the dimension of the free tensor algebra over R ⊕ R

d truncated at
inhomogeneous degree-7 which we denote by D7

d. Note that

Dm
d = dimπ̃m(T(R1+d)) =

m∑
k=0

∑
i,j≥0

i+2j≤m
i+j=k

(
k
j

)
dk−j =

m∑
k=0

(m−k)∧k∑
j=0

(
k
j

)
dk−j,

which gives D7
2 = 696, D7

3 = 5632, D7
4 = 30 348, D7

5 = 121 554 and D7
6 = 392 464. Hence, the

randomized construction of Hayakawa & Tanaka [17] which is solved using linear programming
quickly becomes computationally intractable. This compares with our explicit formulae with
support of size 22 × 2 × 12 = 96, 2 × 32 × 2 × 27 = 972, 2 × 42 × 2 × 49 = 3, 136, 2 × 52 × 2 ×
(26 + 4 × 25) = 16 400 and 2 × 62 × 2 × (27 + 4 × 36) = 39 168, respectively, obtained from our
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construction for two-, three-, four-, five-, six-dimensional noise using Stroud’s Gaussian cubature
formulae referenced in the previous subsection. The formula obtained in §3c by breaking some of
the symmetries of the Eulerian idempotent reduces the size of the support by d(d + 1)/(2d2) (by
half for the special case of two-dimensional noise).

We have listed a summary of the results of our comparison for d = 2, 3, 4, 5 in table 1.
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Appendix A. Proofs of the technical lemmas
Proof. Representation equation (2.6) combined with corollary 3.5 gives

3
∑

1≤i,j≤d

(ε0, ε2
i , ε2

j ) = e�1

⎛⎝3
∑

1≤i,j≤d

(ε0, ε2
i , ε2

j )

⎞⎠+ e�3

⎛⎝3
∑

1≤i,j≤d

(ε0, ε2
i , ε2

j )

⎞⎠
+ e�5

⎛⎝3
∑

1≤i,j≤d

(ε0, ε2
i , ε2

j )

⎞⎠ . (A 1)

Expanding the symmetric product as a tensor and applying linearity, we get

e�k

⎛⎝3
∑

1≤i,j≤d

(ε0, ε2
i , ε2

j )

⎞⎠=
∑

1≤i,j≤d

e�k(ε0ε
2
i ε2

j + ε2
i ε0ε

2
j + ε2

i ε2
j ε0).

For k = 1, by substituting ξiijj0 = ξ0jjii (reversal property) and subsequently re-indexing the third
term: ∑

1≤i,j≤d

e�1(ε0ε
2
i ε2

j + ε2
i ε0ε

2
j + ε2

i ε2
j ε0) =

∑
1≤i,j≤d

(ξ0iijj + ξii0jj + ξiijj0)

=
∑

1≤i,j≤d

(ξ0iijj + ξii0jj + ξ0jjii)

=
∑

1≤i,j≤d

(2ξ0iijj + ξii0jj). (A 2)
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For k = 3:∑
1≤i,j≤d

e�3(ε0ε
2
i ε2

j + ε2
i ε0ε

2
j + ε2

i ε2
j ε0) =

∑
1≤i,j≤d

(3(ξ0, ξi, ξijj) + 3(ξ0, ξj, ξiij) + 2(ξi, ξi, ξ0jj)

+ (ξi, ξi, ξjj0) + (ξj, ξj, ξ0ii) + 2(ξj, ξj, ξii0)

+ 4(ξi, ξj, ξ0ij) + 4(ξi, ξj, ξi0j) + 4(ξi, ξj, ξij0)

+ 6(ξ0, ξij, ξij) + 8(ξi, ξ0j, ξij) + 4(ξi, ξj0, ξij)

+ 4(ξj, ξ0i, ξij) + 8(ξj, ξi0, ξij)). (A 3)

By substituting ξiij = ξjii (reversal property) and re-indexing of the second term:∑
1≤i,j≤d

(3(ξ0, ξi, ξijj) + 3(ξ0, ξj, ξiij)) =
∑

1≤i,j≤d

6(ξ0, ξi, ξijj). (A 4)

Similarly, substituting ξii0 = ξ0ii (reversal property) and re-indexing appropriate terms:∑
1≤i,j≤d

(2(ξi, ξi, ξ0jj) + (ξi, ξi, ξjj0) + (ξj, ξj, ξ0ii) + 2(ξj, ξj, ξii0)) =
∑

1≤i,j≤d

6(ξi, ξi, ξ0jj). (A 5)

By re-indexing of the middle term (i, j) �→ (j, i) before substituting ξij0 + ξj0i + ξ0ij = 0
(reversal + symmetric property):∑

1≤i,j≤d

(4(ξi, ξj, ξ0ij) + 4(ξi, ξj, ξi0j) + 4(ξi, ξj, ξij0)) =
∑

1≤i,j≤d

4(ξi, ξj, ξ0ij + ξj0i + ξij0) = 0. (A 6)

Finally, by re-indexing the third and fourth terms (i, j) �→ (j, i) and substituting ξji = −ξij and ξj0 =
−ξ0j (reversal/symmetric property),∑

1≤i,j≤d

(8(ξi, ξ0j, ξij) + 4(ξi, ξj0, ξij) + 4(ξj, ξ0i, ξij) + 8(ξj, ξi0, ξij)) =
∑

1≤i,j≤d

8(ξi, ξ0j, ξij). (A 7)

Substituting equations (A 4)–(A 7) into equation (A 3) yields∑
1≤i,j≤d

e�3(ε0ε
2
i ε2

j + ε2
i ε0ε

2
j + ε2

i ε2
j ε0)

=
∑

1≤i,j≤d

(6(ξ0, ξi, ξijj) + 6(ξi, ξi, ξ0jj) + 6(ξ0, ξij, ξij) + 8(ξi, ξ0j, ξij)). (A 8)

For k = 5: ∑
1≤i,j≤d

e�5(ε0ε
2
i ε2

j + ε2
i ε0ε

2
j + ε2

i ε2
j ε0) =

∑
1≤i,j≤d

3(ξ0, ξi, ξi, ξj, ξj). (A 9)

Substituting equation (A 2), (A 8) and (A 9) into equation (A 1), we obtain the required result. �

We conclude this appendix with the proof of the second technical lemma required for the
expansion of the expected signature.

Proof. Representation equation (2.6) combined with corollary 3.5 gives

∑
1≤i,j,k≤d

(ε2
i , ε2

j , ε2
k ) = e�2

⎛⎝ ∑
1≤i,j≤d

(ε2
i , ε2

j , ε2
k )

⎞⎠+ e�4

⎛⎝ ∑
1≤i,j≤d

(ε2
i , ε2

j , ε2
k )

⎞⎠
+ e�6

⎛⎝ ∑
1≤i,j≤d

(ε2
i , ε2

j , ε2
k )

⎞⎠ . (A 10)
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Expanding the symmetric product as a pure tensor and applying linearity, we get

e�k

⎛⎝ ∑
1≤i,j≤d

(ε2
i , ε2

j , ε2
k )

⎞⎠= e�k

⎛⎝ ∑
1≤i,j≤d

ε2
i ε2

j ε2
k

⎞⎠=
∑

1≤i,j≤d

e�k(ε2
i ε2

j ε2
k ).

For k = 2:

e�2(ε2
i ε2

j ε2
k ) = 2(ξi, ξijjkk) + 2(ξj, ξiijkk) + 2(ξk, ξiijjk) + 4(ξij, ξijkk)

+ 4(ξik, ξijjk) + 4(ξjk, ξiijk) + 2(ξiij, ξjkk)

+ 2(ξijj, ξikk) + 2(ξiik, ξjjk) + 4(ξijk, ξijk). (A 11)

Substituting ξiijjk = ξkjjii (reversal property) and re-indexing the latter term by (i, j, k) �→ (k, j, i), we
obtain ∑

1≤i,j,k≤d

(2(ξi, ξijjkk) + 2(ξk, ξiijjk)) =
∑

1≤i,j,k≤d

(2(ξi, ξijjkk) + 2(ξk, ξkjjii))

=
∑

1≤i,j,k≤d

4(ξi, ξijjkk). (A 12)

Similarly, by substituting both ξjk = −ξkj and ξiijk = −ξkjii (reversal property) then by re-indexing,
we obtain ∑

1≤i,j,k≤d

(4(ξij, ξijkk) + 4(ξjk, ξiijk)) =
∑

1≤i,j,k≤d

(4(ξij, ξijkk) + 4(ξkj, ξkjii))

=
∑

1≤i,j,k≤d

8(ξij, ξijkk). (A 13)

Finally, by using ξiij = ξjii, ξiik = ξkii and ξjjk = ξkjj (reversal property) before re-indexing, we obtain

∑
1≤i,j,k≤d

(2(ξiij, ξjkk) + 2(ξijj, ξikk) + 2(ξiik, ξjjk))

=
∑

1≤i,j,k≤d

(2(ξjii, ξjkk) + 2(ξijj, ξikk) + 2(ξkii, ξkjj))

=
∑

1≤i,j,k≤d

6(ξijj, ξikk). (A 14)

Substituting equations (A 12)–(A 14) into equation (A 11),∑
1≤i,j,k≤d

e�2(ε2
i ε2

j ε2
k ) =

∑
1≤i,j,k≤d

(4(ξi, ξijjkk) + 2(ξj, ξiijkk) + 8(ξij, ξijkk)

+ 4(ξik, ξijjk) + 6(ξijj, ξikk) + 4(ξijk, ξijk)). (A 15)

Next, for k = 4,

e�4(ε2
i ε2

j ε2
k ) = 2(ξi, ξi, ξj, ξjkk) + 2(ξi, ξj, ξj, ξikk) + 2(ξi, ξi, ξk, ξjjk) + 2(ξi, ξk, ξk, ξjjk)

+ 2(ξj, ξj, ξk, ξiik) + 2(ξj, ξk, ξk, ξiij) + 8(ξi, ξj, ξk, ξijk)

+ 2(ξi, ξi, ξjk, ξjk) + 2(ξj, ξj, ξik, ξik) + 2(ξk, ξk, ξij, ξij)

+ 8(ξi, ξj, ξik, ξjk) + 8(ξi, ξk, ξij, ξjk) + 8(ξj, ξk, ξij, ξik). (A 16)
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By substituting ξjjk = ξkjj, ξiik = ξkii, ξiij = ξjii (reversal property) before re-indexing,

∑
1≤i,j,k≤d

12(ξi, ξk, ξk, ξijj)

=
∑

1≤i,j,k≤d

(2(ξi, ξi, ξj, ξjkk) + 2(ξi, ξj, ξj, ξikk) + 2(ξi, ξi, ξk, ξjjk)

+ 2(ξi, ξk, ξk, ξjjk) + 2(ξj, ξj, ξk, ξiik) + 2(ξj, ξk, ξk, ξiij)). (A 17)

Also, by only re-indexing,∑
1≤i,j,k≤d

6(ξi, ξi, ξjk, ξjk) =
∑

1≤i,j,k≤d

(2(ξi, ξi, ξjk, ξjk) + 2(ξj, ξj, ξik, ξik)

+ 2(ξk, ξk, ξij, ξij)). (A 18)

Finally, by substituting ξij = −ξji (reversal/symmetric property) before re-indexing,

∑
1≤i,j,k≤d

((ξi, ξk, ξij, ξjk) + (ξj, ξk, ξij, ξik))

=
∑

1≤i,j,k≤d

(−(ξi, ξk, ξji, ξjk) + (ξj, ξk, ξij, ξik))

= 0. (A 19)

We can eliminate one further term using ξijk + ξjki + ξkij = 0 (cyclic property):

∑
1≤i,j,k≤d

(ξi, ξj, ξk, ξijk) = 1
3

∑
1≤i,j,k≤d

((ξi, ξj, ξk, ξijk) + (ξi, ξj, ξk, ξijk) + (ξi, ξj, ξk, ξijk))

= 1
3

∑
1≤i,j,k≤d

((ξi, ξj, ξk, ξijk) + (ξj, ξk, ξi, ξjki) + (ξk, ξi, ξj, ξkij))

= 1
3

∑
1≤i,j,k≤d

(ξi, ξj, ξk, ξijk + ξjki + ξkij)

= 0. (A 20)

Substituting equations (A 17)–(A 20) into equation (A 16) gives∑
1≤i,j,k≤d

e�4(ε2
i ε2

j ε2
k ) =

∑
1≤i,j,k≤d

(12(ξi, ξk, ξk, ξijj)

+ 6(ξi, ξi, ξjk, ξjk) + 8(ξi, ξj, ξik, ξjk)). (A 21)

For k = 6: ∑
1≤i,j,k≤d

e�6(ε2
i ε2

j ε2
k ) =

∑
1≤i,j,k≤d

(ξi, ξi, ξj, ξj, ξk, ξk). (A 22)

Substituting equations (A 15), (A 21) and (A 22) into equation (A 10), we obtain the required result.
�

Downloaded from http://royalsocietypublishing.org/rspa/article-pdf/doi/10.1098/rspa.2025.0051/5657020/rspa.2025.0051.pdf
by guest
on 04 February 2026



25

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A482:20250051

..........................................................

Appendix B. Eulerian idempotent in Lyndon basis
In this appendix, we state the Eulerian idempotents appearing in the cubature formulae
constructed in theorem 3.11 in the Lyndon basis.

e(εi) = εi,

e(εiεj) = 1
2

[εi, εj],

e(εiεjεk) = 1
6

([εi, [εj, εk]] + [[εi, εj], εk]),

e(εiεjεkεl) = 1
12

([εi, [[εj, εk], εl]] + [[εi, εj], [εk, εl]] + [[εi, εk], [εj, εl]] + [[εi, [εj, εk]], εl])

and de(εiεjεkεlεm) = 1
60

(12[εi, [εj, [εk, [εl, εm]]]] + 9[εi, [εj, [[εk, εm], εl]]] + 6[εi, [[εj, εl], [εk, εm]]]

+ 6[εi, [[εj, [εl, εm]], εk]] + 6[εi, [[εj, εm], [εk, εl]]] + 2[εi, [[[εj, εm], εl], εk]]

+ 3[[εi, εk], [εj, [εl, εm]]] + [[εi, εk], [[εj, εm], εl]] + 2[[εi, [εk, εl]], [εj, εm]]

+ 3[[εi, [εk, [εl, εm]]], εj] + 2[[εi, [εk, εm]], [εj, εl]] + [[εi, [[εk, εm], εl]], εj]

+ 3[[εi, εl], [εj, [εk, εm]]] + [[εi, εl], [[εj, εm], εk]] − [[[εi, εl], εk], [εj, εm]]

− [[[εi, εl], [εk, εm]], εj] + 2[[εi, [εl, εm]], [εj, εk]] − [[[εi, [εl, εm]], εk], εj]

+ 3[[εi, εm], [εj, [εk, εl]]] + [[εi, εm], [[εj, εl], εk]] − [[[εi, εm], εk], [εj, εl]]

− [[[εi, εm], [εk, εl]], εj] − [[[εi, εm], εl], [εj, εk]] − 2[[[[εi, εm], εl], εk], εj]).

Appendix C. A numerical toy example for linear SDEs
We present a simple numerical toy example demonstrating the application of our cubature
formulas to linear SDEs. This example serves to illustrate and confirm the convergence of
our degree-7 cubature formula in comparison with lower-degree cubature approximations. The
convergence and practical implementation of cubature on Wiener space (up to degree-5 in general
dimension) for more general test functions has been studied in [11].

Specifically, we consider linear Stratonovich SDEs driven by three-dimensional noise, with a
two-dimensional solution (a case that generalizes readily), of the form

dYk = Ak
iγ Yi ◦ dWγ + Bk

i Yi dt, Y0 = y0,

in which we have used the Einstein summation convention. Its mean EY can be computed by
converting into Itô form and passing to the expectation, yielding an ODE:

dEYk

dt
= 1

2

d∑
γ=1

Ak
iγ Ai

jγ EYj + Bk
i EYi.

Solving this ODE to high accuracy provides us with an exact reference solution relative to which
errors are calculated; it should be noted that this method for averaging is only available for linear
SDEs and test functions.

Our numerical experiments approximate EY1 using degree-3 and degree-5 formulas based on
Lyons–Victoir cubature ([1] and the degree-7 formula with support of size 648 constructed in §3c
with a Taylor scheme on uniform partitions of the time interval [0, 1]). Relative errors |EYcub

1 −
EYODE

1 |/|EYODE
1 | are averaged across 10 random choices of the triple (y0, A, B), with each entry

normalized to have Euclidean norm 1. Results are summarized in figure 1 and the associated
code may be found in the notebook [31, cubature_plots.ipynb].

The implementation of our toy example is naive, computing the full tree of the cubature
approximation within memory constraints for three to five steps depending on the order of
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Figure 1. Cubature errors.

the cubature. In practice, exponential growth of the approximation tree can be overcome by
combining cubature with partial sampling schemes such as the tree-based branching algorithm
[38] or recombination [12,13] while preserving high-order accuracy; such an implementation lies
beyond the scope of this appendix.
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