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ABSTRACT

Buried infrastructure presents unique challenges for autonomous robotic
inspection due to its confined geometry and the structural variations within pipe
networks. While CCTV is widely used for pipe inspection, LIDAR sensors offer
complementary advantages, including precise ranging capabilities and accurate
depth perception. In this work, we introduce a low-cost LIDAR-based system
designed to detect blockages and accurately identify critical structural features -
such as joints, manholes, and other discontinuities - within these environments
in real-time. By combining robust data acquisition, efficient processing, and
clear decision-making criteria, the approach enhances the effectiveness,
reliability, and automation of underground inspections.
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INTRODUCTION

Buried sewer and wastewater pipes form an essential part of city infrastructure,
with 0.8 million kilometers in the UK. Inspection is essential but costly, and is
predominantly done by deploying tethered crawlers through manholes which
are remotely controlled by an operator on the roadside. The structure and
condition of the pipes are assessed using video feeds recorded by the crawler
[1]. Introducing a LIiDAR scanner, which uses a laser to measure the distance
from the sensor to surrounding surfaces, would enhance defect detection and
enable autonomous navigation in future untethered robotic systems.

The pipe environment imposes a number of constraints on inspection robots.
The confined pipe geometry limits space for sensing, so computation should be
applicable to small devices. The possible lack of available communications
means that any computation for low-level control must be done on-board the
robot. Lighting conditions are also minimal, making vision-based methods
unreliable without additional illumination. For untethered, long-duration
missions, both sensing and computation must be power-efficient to conserve
battery life. At the same time, there are some aspects of the application which
offer advantages to LiDAR-based sensing. The robot motion can be slow and
steady, especially during manoeuvring. Therefore, the rate of sensing and
localization required is low compared to aerial or open-environment robots. The
environment is expected to be relatively static comprising only a small range of
possible local environments: principally pipes and manholes, which is useful for
classification [2].

In our application, pipes are around 300mm in diameter, and will generally be
tens of metres long. Pipes are connected at manholes, which are larger
chambers, greater than 1 metre across. Each of these possible environments
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can be relatively featureless and self-similar, so the information that can be
obtained from them is limited. The features that do exist are joints between
sections of pipe, which are typically spaced around 3 metres apart, and
blockages, which will vary in size and position.

METHODS

Our system is built around the low-cost Okdo LIiDAR Module (LDO06) [3],
mounted at a 30° angle relative to the horizontal axis. This provides a good
balance between detection range and point density making detection reliable
and computationally efficient. As shown in Figure 1(a), the sensor is integrated
into our robotic platform and positioned 150mm above ground level, allowing us
to effectively capture data from approximately 256mm ahead of the robot.
Although the LIiDAR captures a full circular scan, we only process data within
the three 60° regions shown in Figure 1(b), where obstacles and structural
features are most likely to appear. The LIiDAR emits laser pulses inside a pipe,
recording the time-of-flight, angle, range and intensity of each reflection.

(@) (b)
Figure 1. Robotic platform with the LIDAR sensor mounted at a 30 degrees
angle and illustrates how each LIiDAR scan is divided into three regions - front,
left and right - for feature and blockage detection.

Data Preprocessing. To enhance data quality, we first filtered raw LiDAR
measurements, discarding invalid points and entries with infinite values. The
remaining filtered points, each consisting of a radial distance r; and a polar
angle 6, are projected into the horizontal plane using our known sensor tilt.
These projections are converted to Cartesian coordinates to give corresponding
(x;, ¥;) pairs and grouped to the three regions of interest shown in Figure 1(b).

Fast Two-Stage Decision System using Thresholding. The LiDAR-based
feature detection needs to operate in real-time on a low-powered robot,
therefore, we develop a lightweight, fast decision algorithm.

Stage 1 Clustering. Within each region of interest (front, left, right), we apply
the DBSCAN algorithm to identify k spatially coherent clusters of points Cj,
along that slice of the pipe [4]. For each cluster C, we compute the average
horizontal distance d; from the robot to the LIDAR reflective points in that
cluster

1
e = ﬁz(xi,yi) ecy JxZ + v,
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where (x;, y;) are the cluster’s projected coordinates. These mean distances
are then sorted in ascending order (d, < d, <...). The cluster corresponding to
the smallest mean distance d, is chosen as our primary candidate and by
extension the nearest surface. This cluster is accepted only if the separation
distance § = d, — d,; (gap between the nearest and the next-closest cluster)
exceeds a predefined threshold, otherwise, the cluster is discarded.

Stage 2 Decision Threshold. Once the nearest cluster has been selected via
its smallest average horizontal distance d; and cleared the gap test against the
next-closest cluster, we apply a threshold-based classifier to distinguish pipe
walls, joints, manholes, and when looking straight ahead of the robot,
blockages. In the right and left regions, the closest clusters are first assigned to
pipe-wall when they lie within the typical pipe radius. Clusters that fall just
beyond that range are interpreted as joints (the small gap at the interface of two
pipe segments), and anything still farther out are treated as manhole openings.
Any measurement that does not clearly fall into one of these ranges is treated
as ambiguous and discarded. In the front region, once a cluster passes the gap
test, we take the smallest average horizontal distance d, and compare it to an
obstruction threshold. If d, falls below that threshold, we classify the cluster as a
blockage and immediately alert the control system, otherwise, no front detection
Is issued, indicating a clear path ahead.

LiDAR Ground Truth Labelling. To generate reliable ground truths, we
developed a semi-automated labelling system. Raw LIDAR scans were
visualised in polar form, and structural features were manually annotated. Each
annotation captures the scan identifier, radial distance r; and polar angle 6; of
the LIDAR beam as well as the label of each feature. To validate generality,
data were drawn from a variety of pipe materials, resulting in a balanced set of
several hundred labelled features. From this dataset, we formulated a simple
binary classification problem: distinguishing joints from manholes using each
scan’s (r;, 0;) as input features. This high-quality reference dataset allowed us
to evaluate the performance of our Fast Two-Stage Decision System and also
train and benchmark against a Random Forest classifier [5], discussed below.

Performance Evaluation. To establish a baseline accuracy on feature
classification performance using a more computationally intensive classifier, we
trained a Random Forest ensemble composed of 200 decision trees with
balanced class weights on 80% of our manually annotated scans (split so that
no scan appeared in both sets). We then evaluated the model on the remaining
20% and generated a normalised confusion matrix to quantify its classification
accuracy for a subset of the four classes: joints and manholes. We also ran the
Fast Two-Stage Decision System on the same LIDAR data. For each region in
every scan, the detector generated a radial distance d, a polar angle 6 and a
predicted label. Each prediction (d, 8) was matched to the nearest ground-truth
annotation (r;, ;) and considered correctif |d —r;| < ez and |8 — 6;| < ey
where €; and ¢g are the predefined distance and angle tolerances.

RESULTS AND DISCUSSION
Having outlined our sensor setup, clustering method, and two-stage decision
system, we then evaluated how these components perform in practice.
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Figure 2 illustrates a 3D spatial reconstruction of an 11.5m pipe network with
the corresponding temporal outcomes of the clustering method. In the top panel
LiDAR scans are projected into the horizontal plane and aligned using the
robot’s wheel-odometry to build a continuous 3D model of the pipe interior.
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Figure 2. 3D reconstruction of a pipe network using LIDAR scans and robot
position estimates, alongside a time series graph of the mean horizontal
distance from the front, left- and right-wall regions to the surface of the pipe.

In this reconstruction, pipe joints between pipe segments appear as thin circular
bands, while manhole chambers are visible as distinct expansions in the pipe’s
cross-section. As the robot travels through the pipe, each LiDAR scan is split
into front, left-wall, and right-wall clusters. In the bottom panel, the time series of
the smallest average horizontal distance in the front (blue), left-wall (green), and
right-wall (orange) regions remains flat through straight runs and spikes at joint
and manhole locations, demonstrating real-time detection of structural features.

Next, we examined the side-wall distance distributions to validate our threshold
values. Figure 3(a) presents a histogram of the average horizontal distances
from the left-wall and right-wall regions, overlaid with two fitted Gaussian
curves: one centered at the true pipe radius, representing pipe-wall scans and a
second centered at the joint distance, representing joint scans. The clear
separation between these peaks confirms that our predefined distance
threshold reliably distinguishes between the two feature classes. Figure 3(b)
presents the histogram of manhole distance measurements with two separate
Gaussian fits. These fits differ because the LIDAR is tilted within the manhole
and thus its horizontal-plane slice cuts the circular opening above its centre,
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producing two unequal chord lengths. Both manhole distributions lie well above
the joint and pipe-wall thresholds, confirming that a higher distance cutoff
cleanly isolates manholes.
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Figure 3. (a) Histogram of side-wall average distances with Gaussian fits for the
pipe-wall and joint clusters. (b) Histogram of manhole side-wall distances with
two Gaussian fits for the shorter and longer chord lengths.

Having confirmed that our distance threshold separated pipe walls, joints and
manholes, we then measured how well those thresholds and our Fast Two-
Stage Decision System performed in a real-pipe environment. We assessed the
binary classification performance on the two main feature classes - manhole
and joint. The Random Forest classifier achieved 97% recall for manholes and
over 93% recall for joints, as shown in Figure 4(a), confirming that a flexible,
data-driven model can reproduce the distinctions between joints and manholes.
Next, we evaluated the performance of our fast detection algorithm by matching
its outputs directly against the ground truth annotations. Each predicted label
was paired with the nearest ground truth annotation within +5mm in radial
distance and +1° in polar angle allowing each prediction to be uniquely matched
to its annotation. The resulting confusion matrix, presented in Figure 4(b),
demonstrates recall rates of 96.9% for manholes and 95.5% for joints, indicating
that the combination of clustering and an efficient threshold-driven classifier
provides robust real-time detection and accurate classification of pipe features

in confined pipe environments.
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Figure 4. Confusion Matrices for manhole and joint classification from: (a)
Random Forest trained on ground truth annotations. (b) The two-step feature
detection algorithm.
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CONCLUSIONS

This paper has presented a low-cost LIDAR-based approach for real-time
detection and classification of critical structural features within buried pipe
networks. By combining robust pre-processing, spatial clustering using
DBSCAN, and a clear two-step decision framework, our detection algorithm
reliably distinguishes between smooth pipe walls, joints and manholes,
matching the performance of a supervised Random Forest benchmark. Future
work will expand the binary classification to robustly distinguish between an
unobstructed pipe and a blockage before extending the framework to a full
multiclass classifier for a variety of feature types.
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