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ABSTRACT 
Buried infrastructure presents unique challenges for autonomous robotic 
inspection due to its confined geometry and the structural variations within pipe 
networks. While CCTV is widely used for pipe inspection, LiDAR sensors offer 
complementary advantages, including precise ranging capabilities and accurate 
depth perception. In this work, we introduce a low-cost LiDAR-based system 
designed to detect blockages and accurately identify critical structural features - 
such as joints, manholes, and other discontinuities - within these environments 
in real-time. By combining robust data acquisition, efficient processing, and 
clear decision-making criteria, the approach enhances the effectiveness, 
reliability, and automation of underground inspections. 
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INTRODUCTION 
Buried sewer and wastewater pipes form an essential part of city infrastructure, 
with 0.8 million kilometers in the UK. Inspection is essential but costly, and is 
predominantly done by deploying tethered crawlers through manholes which 
are remotely controlled by an operator on the roadside. The structure and 
condition of the pipes are assessed using video feeds recorded by the crawler 
[1]. Introducing a LiDAR scanner, which uses a laser to measure the distance 
from the sensor to surrounding surfaces, would enhance defect detection and 
enable autonomous navigation in future untethered robotic systems. 
 
The pipe environment imposes a number of constraints on inspection robots. 
The confined pipe geometry limits space for sensing, so computation should be 
applicable to small devices. The possible lack of available communications 
means that any computation for low-level control must be done on-board the 
robot. Lighting conditions are also minimal, making vision-based methods 
unreliable without additional illumination. For untethered, long-duration 
missions, both sensing and computation must be power-efficient to conserve 
battery life. At the same time, there are some aspects of the application which 
offer advantages to LiDAR-based sensing. The robot motion can be slow and 
steady, especially during manoeuvring. Therefore, the rate of sensing and 
localization required is low compared to aerial or open-environment robots. The 
environment is expected to be relatively static comprising only a small range of 
possible local environments: principally pipes and manholes, which is useful for 
classification [2].  
 
In our application, pipes are around 300𝑚𝑚 in diameter, and will generally be 
tens of metres long. Pipes are connected at manholes, which are larger 
chambers, greater than 1 metre across. Each of these possible environments 
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can be relatively featureless and self-similar, so the information that can be 
obtained from them is limited. The features that do exist are joints between 
sections of pipe, which are typically spaced around 3 metres apart, and 
blockages, which will vary in size and position. 

 
METHODS 

Our system is built around the low-cost Okdo LiDAR Module (LD06) [3], 
mounted at a 30∘ angle relative to the horizontal axis. This provides a good 
balance between detection range and point density making detection reliable 
and computationally efficient. As shown in Figure 1(a), the sensor is integrated 
into our robotic platform and positioned 150𝑚𝑚 above ground level, allowing us 
to effectively capture data from approximately 256𝑚𝑚 ahead of the robot. 
Although the LiDAR captures a full circular scan, we only process data within 
the three 60∘ regions shown in Figure 1(b), where obstacles and structural 
features are most likely to appear. The LiDAR emits laser pulses inside a pipe, 
recording the time-of-flight, angle, range and intensity of each reflection. 

                                 (a)                                                 (b) 
Figure 1. Robotic platform with the LiDAR sensor mounted at a 30 degrees 

angle and illustrates how each LiDAR scan is divided into three regions - front, 
left and right - for feature and blockage detection. 

 
Data Preprocessing. To enhance data quality, we first filtered raw LiDAR 
measurements, discarding invalid points and entries with infinite values. The 
remaining filtered points, each consisting of a radial distance 𝑟𝑖 and a polar 
angle 𝜃𝑖 are projected into the horizontal plane using our known sensor tilt. 
These projections are converted to Cartesian coordinates to give corresponding 
(𝑥𝑖 ,  𝑦𝑖) pairs and grouped to the three regions of interest shown in Figure 1(b). 
 
Fast Two-Stage Decision System using Thresholding. The LiDAR-based 
feature detection needs to operate in real-time on a low-powered robot, 
therefore, we develop a lightweight, fast decision algorithm. 
 
Stage 1 Clustering. Within each region of interest (front, left, right), we apply 
the DBSCAN algorithm to identify 𝑘 spatially coherent clusters of points 𝐶𝑘 
along that slice of the pipe [4]. For each cluster 𝐶𝑘, we compute the average 

horizontal distance 𝑑𝑘 from the robot to the LiDAR reflective points in that 
cluster 
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where (𝑥𝑖 ,  𝑦𝑖) are the cluster’s projected coordinates. These mean distances 

are then sorted in ascending order (𝑑1 ≤ 𝑑2 ≤ . . . ). The cluster corresponding to 
the smallest mean distance 𝑑1 is chosen as our primary candidate and by 
extension the nearest surface. This cluster is accepted only if the separation 
distance 𝛿 =  𝑑2 −  𝑑1 (gap between the nearest and the next-closest cluster) 
exceeds a predefined threshold, otherwise, the cluster is discarded. 
 
Stage 2 Decision Threshold. Once the nearest cluster has been selected via 
its smallest average horizontal distance 𝑑1 and cleared the gap test against the 
next-closest cluster, we apply a threshold-based classifier to distinguish pipe 
walls, joints, manholes, and when looking straight ahead of the robot, 
blockages. In the right and left regions, the closest clusters are first assigned to 
pipe-wall when they lie within the typical pipe radius. Clusters that fall just 
beyond that range are interpreted as joints (the small gap at the interface of two 
pipe segments), and anything still farther out are treated as manhole openings. 
Any measurement that does not clearly fall into one of these ranges is treated 
as ambiguous and discarded. In the front region, once a cluster passes the gap 
test, we take the smallest average horizontal distance 𝑑1 and compare it to an 
obstruction threshold. If 𝑑1 falls below that threshold, we classify the cluster as a 
blockage and immediately alert the control system, otherwise, no front detection 
is issued, indicating a clear path ahead. 
 
LiDAR Ground Truth Labelling. To generate reliable ground truths, we 
developed a semi-automated labelling system. Raw LiDAR scans were 
visualised in polar form, and structural features were manually annotated. Each 
annotation captures the scan identifier, radial distance 𝑟𝑖 and polar angle 𝜃𝑖 of 
the LiDAR beam as well as the label of each feature. To validate generality, 
data were drawn from a variety of pipe materials, resulting in a balanced set of 
several hundred labelled features. From this dataset, we formulated a simple 
binary classification problem: distinguishing joints from manholes using each 
scan’s (𝑟𝑖 , 𝜃𝑖) as input features. This high-quality reference dataset allowed us 
to evaluate the performance of our Fast Two-Stage Decision System and also 
train and benchmark against a Random Forest classifier [5], discussed below. 
 
Performance Evaluation. To establish a baseline accuracy on feature 
classification performance using a more computationally intensive classifier, we 
trained a Random Forest ensemble composed of 200 decision trees with 

balanced class weights on 80% of our manually annotated scans (split so that 
no scan appeared in both sets). We then evaluated the model on the remaining 
20% and generated a normalised confusion matrix to quantify its classification 
accuracy for a subset of the four classes: joints and manholes. We also ran the 
Fast Two-Stage Decision System on the same LiDAR data. For each region in 
every scan, the detector generated a radial distance 𝑑, a polar angle 𝜃 and a 
predicted label. Each prediction (𝑑, 𝜃) was matched to the nearest ground-truth 

annotation (𝑟𝑖 , 𝜃𝑖) and considered correct if |𝑑 − 𝑟𝑖| ≤ 𝜖𝑑 and |𝜃 −  𝜃𝑖| ≤ 𝜖𝜃 
where 𝜖𝑑 and 𝜖𝜃 are the predefined distance and angle tolerances. 

 
RESULTS AND DISCUSSION 
Having outlined our sensor setup, clustering method, and two‐stage decision 
system, we then evaluated how these components perform in practice.  
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Figure 2 illustrates a 3D spatial reconstruction of an 11.5m pipe network with 
the corresponding temporal outcomes of the clustering method. In the top panel 
LiDAR scans are projected into the horizontal plane and aligned using the 
robot’s wheel-odometry to build a continuous 3D model of the pipe interior. 

Figure 2. 3D reconstruction of a pipe network using LiDAR scans and robot 
position estimates, alongside a time series graph of the mean horizontal 

distance from the front, left- and right-wall regions to the surface of the pipe. 
 
In this reconstruction, pipe joints between pipe segments appear as thin circular 
bands, while manhole chambers are visible as distinct expansions in the pipe’s 
cross-section. As the robot travels through the pipe, each LiDAR scan is split 
into front, left-wall, and right-wall clusters. In the bottom panel, the time series of 
the smallest average horizontal distance in the front (blue), left-wall (green), and 
right-wall (orange) regions remains flat through straight runs and spikes at joint 
and manhole locations, demonstrating real-time detection of structural features. 
 
Next, we examined the side-wall distance distributions to validate our threshold 
values. Figure 3(a) presents a histogram of the average horizontal distances 
from the left-wall and right-wall regions, overlaid with two fitted Gaussian 
curves: one centered at the true pipe radius, representing pipe-wall scans and a 
second centered at the joint distance, representing joint scans. The clear 
separation between these peaks confirms that our predefined distance 
threshold reliably distinguishes between the two feature classes. Figure 3(b) 
presents the histogram of manhole distance measurements with two separate 
Gaussian fits. These fits differ because the LiDAR is tilted within the manhole 
and thus its horizontal-plane slice cuts the circular opening above its centre, 
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producing two unequal chord lengths. Both manhole distributions lie well above 
the joint and pipe-wall thresholds, confirming that a higher distance cutoff 
cleanly isolates manholes. 

                                 (a)                                                             (b) 
Figure 3. (a) Histogram of side-wall average distances with Gaussian fits for the 
pipe-wall and joint clusters. (b) Histogram of manhole side-wall distances with 

two Gaussian fits for the shorter and longer chord lengths. 
 
Having confirmed that our distance threshold separated pipe walls, joints and 
manholes, we then measured how well those thresholds and our Fast Two-
Stage Decision System performed in a real-pipe environment. We assessed the 
binary classification performance on the two main feature classes - manhole 
and joint. The Random Forest classifier achieved 97% recall for manholes and 
over 93% recall for joints, as shown in Figure 4(a), confirming that a flexible, 
data-driven model can reproduce the distinctions between joints and manholes. 
Next, we evaluated the performance of our fast detection algorithm by matching 
its outputs directly against the ground truth annotations. Each predicted label 
was paired with the nearest ground truth annotation within ±5𝑚𝑚 in radial 
distance and ±1∘ in polar angle allowing each prediction to be uniquely matched 
to its annotation. The resulting confusion matrix, presented in Figure 4(b), 
demonstrates recall rates of 96.9% for manholes and 95.5% for joints, indicating 
that the combination of clustering and an efficient threshold-driven classifier 
provides robust real-time detection and accurate classification of pipe features 
in confined pipe environments. 
 

         
(a)                                                          (b) 

Figure 4. Confusion Matrices for manhole and joint classification from: (a)  
Random Forest trained on ground truth annotations. (b) The two-step feature 

detection algorithm. 
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CONCLUSIONS 
This paper has presented a low-cost LiDAR-based approach for real-time 
detection and classification of critical structural features within buried pipe 
networks. By combining robust pre-processing, spatial clustering using 
DBSCAN, and a clear two-step decision framework, our detection algorithm 
reliably distinguishes between smooth pipe walls, joints and manholes, 
matching the performance of a supervised Random Forest benchmark. Future 
work will expand the binary classification to robustly distinguish between an 
unobstructed pipe and a blockage before extending the framework to a full 
multiclass classifier for a variety of feature types. 
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