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Explainable Artificial Intelligence (XAI) methods enhance the diagnostic efficiency of clinical decision 
support systems by making the predictions of a convolutional neural network’s (CNN) on brain 
imaging more transparent and trustworthy. However, their clinical adoption is limited due to limited 
validation of the explanation quality. Our study introduces a framework that evaluates XAI methods 
by integrating neuroanatomical morphological features with CNN-generated relevance maps for 
disease classification. We trained a CNN using brain MRI scans from six cohorts: ADNI, AIBL, DELCODE, 
DESCRIBE, EDSD, and NIFD (N = 3253), including participants that were cognitively normal, with 
amnestic mild cognitive impairment, dementia due to Alzheimer’s disease and frontotemporal 
dementia. Clustering analysis benchmarked different explanation space configurations by using 
morphological features as proxy-ground truth. We implemented three post-hoc explanations methods: 
(i) by simplifying model decisions, (ii) explanation-by-example, and (iii) textual explanations. A 
qualitative evaluation by clinicians (N = 6) was performed to assess their clinical validity. Clustering 
performance improved in morphology enriched explanation spaces, improving both homogeneity 
and completeness of the clusters. Post hoc explanations by model simplification largely delineated 
converters and stable participants, while explanation-by-example presented possible cognition 
trajectories. Textual explanations gave rule-based summarization of pathological findings. 
Clinicians’ qualitative evaluation highlighted challenges and opportunities of XAI for different clinical 
applications. Our study refines XAI explanation spaces and applies various approaches for generating 
explanations. Within the context of AI-based decision support system in dementia research we found 
the explanations methods to be promising towards enhancing diagnostic efficiency, backed up by the 
clinical assessments.
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Alzheimer’s disease (AD) is a significant and growing burden on global healthcare systems. Estimates suggest 
a global population of 152.8 million people living with dementia by 20501, for which AD accounts for more 
than two-thirds of all cases2. The increasing prevalence of AD warrants the development of automated clinical 
decision support systems to improve the efficiency of diagnostic procedures and early disease detection. Deep 
learning (DL) has emerged as a promising tool in this context, offering state-of-the-art methods for the fast and 
robust analysis of complex neuroimaging data. However, the integration of DL into clinical practice is often 
hampered by a lack of transparency and interpretability of its predictions due to its ‘black-box’ nature3.

Explainable Artificial Intelligence (XAI) methods offer a potential solution to this challenge by making 
DL models more human-comprehensible and interpretable. By explaining the decisions made by complex 
DL systems, XAI aims to bridge the gap between model predictions and clinical insights. This is particularly 
relevant under the European Union’s General Data Protection Regulation (GDPR) and Artificial Intelligence 
(AI) act, which under the ‘right to explanation’ requires AI systems to provide explanations of their decision-
making processes4. Other regulatory and government bodies have also advocated for similar AI capabilities, 
emphasizing the need for accountable and transparent AI systems in critical domains such as healthcare and 
medical decision-making5–9.

Despite the advancements in XAI methods, a research gap remains in validating and assessing the quality of 
the explanations generated by AI systems10–12. Notably, it is time-consuming and expensive to consult experts to 
provide ‘ground-truth’ explanations and to evaluate the explanations generated by XAI methods. It also requires 
additional fine-tuning of the XAI methods to improve their correctness and suitability for a specific use case. 
Furthermore, with regards to the inference process, it is often unclear and depends on the user’s experience level 
in determining—what needs to be explained, how, and in what detail12.

Additional methods for generating explanations rely on sets of rules, to combine symbolic reasoning such 
as knowledge graphs, with neural models to provide human-understandable insights into AI decision-making. 
Rule-based explanations offer structured and semantic explanations which enhances transparency by relying 
upon a-priori domain knowledge13,14. Meanwhile, XAI methods that simplify model predictions reduce 
cognitive burden on the user by presenting the most useful information, and utilize methods such as network 
pruning or compression15,16. XAI methods like explanations-by-example describe model decision for a query 
sample by providing information about the most similar sample(s) from the training set17.

Moreover, XAI-generated explanations, beyond the end use-case of providing insights into the AI system, may 
also be used as an additional information modality. One recent study highlighted a more separable arrangement 
of the participants in the ‘explanation space’, i.e., the vector space where the data points are arranged according 
to the explanation, compared to the original input space18. Specifically for convolutional neural networks (CNN) 
applications, explanation space refers to the representational space derived from the attribution (relevance) 
heatmaps or its feature-level representations. Some CNN studies further explored this ‘quantification gap’ of 
explanations and evaluated the overlap between visual explanations, i.e., attribution-based relevance maps 
and ground truth19–21. Other studies have addressed the consistency and coherence of the relevance mapping 
techniques with respect to expert-created ground truth segmentations22. Some dementia studies quantified 
the voxel-level overlap between relevance maps and proxy ground truth maps, i.e., AD likelihood maps with 
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relevant regions found through literature meta-analysis23,24. Notably, all of these studies have predominantly 
used supervised machine learning approaches that utilize expert-assessed, expensive-to-obtain, ground truth or 
other proxy measures to calculate these ground truths.

Here, we propose to extend the common understanding of the explanation space and present a framework 
that incorporates clinically relevant morphological features - such as cortical thickness and gray matter volumetry 
- combined with relevance maps to create a context-enriched explanation space. Previous multimodal studies 
have informed our additive approach to extend the explanation space. To date, studies of dementia detection 
that combine multiple data modalities, such as MRI and PET scans, often outperform unimodal models25,26. 
Previously developed disease state indices for differential diagnosis also utilized different information sources 
in a generalized additive model27. Taken together, we hypothesized that the explanation space that better 
separates, distributes, and structures disease pathology information would also be a more appropriate space for 
generating explanations. We assumed that the combination of these information sources would produce more 
contextually sensitive explanations, which in turn would improve the quality of the explanations. To examine 
these assumptions, we performed a clustering analysis to explore the distribution of participants in different 
explanation space configurations. Our unsupervised analysis was intended to act as a proxy measure of the utility 
of explanations, thus bypassing the dependence of a supervised analysis based on ground truth explanation 
labels. Our framework generates post hoc explanations for a CNN model detecting dementia diseases at both 
global level, i.e., subgroup membership, and local level, i.e., cognitive trajectory examples or textual prediction 
explanations.

To comprehensively evaluate our AI-based explanations, we also conducted a qualitative analysis with 
expert clinicians, assessing each explanation’s usefulness for improving patient examinations. Through expert 
evaluation, we tackled a common issue in developing XAI prototypes for clinical decision support systems, 
i.e., the lack of user involvement in the co-development process11,24,28. Our overall aim was to advance the 
development and validation of robust XAI methods, and address the gaps in the evaluation of the explanations 
generated in the context of AD diagnosis.

Methods
The workflow of our study is schematically presented in Fig.  1. Our framework provides several ways to 
generate post-hoc explanations for a CNN model trained to detect dementia diseases, including: (i) global-level 
explanations, such as membership in the stable versus converter subgroups, and (ii) local-level explanations 
for each individual prediction, such as ii-a) example-based explanations of cognitive trajectories or ii-b) 
textual explanation by pathology summarization. To evaluate clinical validity of the different types of AI-based 
explanations produced from our framework, we also conducted a qualitative analysis with a focus group of 
radiologists (N = 4) and neurologists (N = 2).

Neuroimaging datasets
In this study, we collected T1-weighted brain MRI scans (N = 3253) from publicly available neuroimaging data 
cohorts. The data scans were pooled from the following data cohorts: (i) the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), study phases ADNI2/GO and ADNI3, (ii) the Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing (AIBL)29, (iii) the DZNE Longitudinal Study on Cognitive Impairment and Dementia 
(DELCODE)30, (iv) the European DTI Study on Dementia (EDSD)31, (v) the DZNE Clinical Registry Study on 
Frontotemporal Dementia (DESCRIBE-FTD), and (vi) the Frontotemporal Lobar Degeneration Neuroimaging 
Initiative (FTLDNI) which is also known as Neuroimaging Initiative in Frontotemporal Dementia (NIFD).

It should be noted that mild cognitive impairment (MCI) can arise from various underlying conditions, 
however, the ADNI, AIBL, and DELCODE cohorts apply inclusion and exclusion criteria to focus primarily on 
amnestic MCI, i.e., individuals with memory impairment. Other conditions, such as depression or substance 
abuse, were excluded. Summary statistics for the data used are presented in Table 1. See Supplementary Table S1 
for statistics reported for each cohort.

These datasets were initially intensity corrected using the N4ITK algorithm for bias field correction. Then, 
HD-BET was applied for skull stripping32. ANTs SyNQuick registration tool was used to linearly warp all images 
to the MNI reference spare and ANTs AtroposN4 was applied for tissue segmentation into CSF, white matter, 
and gray matter. The normalized gray matter maps served as input for the CNN model. Subsequently, based on 
the native space images, FastSurfer version 2.0.4 was used to perform brain segmentation into 100 anatomically 
defined regions-of-interest (ROIs) and cortical surface reconstructions to measure regional volume and average 
cortical thickness33,34. FastSurfer follows the Desikan–Killiany–Tourville (DKT) atlas protocol for producing 
the anatomical segments35,36. Finally, the linear deformations from ANTs were applied to the FastSurfer 
segmentation maps to extract CNN relevance scores per region.

Relevance segmentation, aggregation, and abstraction
We trained a multi-class CNN model based on the DenseNet architecture as the backbone37,38. A three-way 
classification setup was used that classified cognitively normal (CN), Alzheimer’s disease (AD; pooled patients 
with dementia due to AD and patients with amnestic mild cognitive impairment (MCI)), and phenotypes 
of frontotemporal dementia (FTD) - including behavioral variant (bvFTD), semantic dementia (SD), and 
progressive nonfluent aphasia (PNFA) - participants. See supplementary section S2 for further model training 
details.

We used the Layer-wise Relevance Propagation (LRP) attribution method that generates a heatmap of input 
regions that the model found useful for differentiating each class39. We chose the composite alpha-beta LRP rule 
as it highlights relevant input features with high specificity and avoids the dispersed distribution of relevance 
scores across multiple input regions40–43, unlike other methods such as GradCam44 or Occlusion Maps45. While 
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the LRP rule is sensitive to the parametric choice of alpha and beta hyper-parameters, it does not require defining 
a base image used by methods like the Integrated Gradients43,46. LRP relevance maps have also been used in 
several other previous dementia studies47–49.

The 3D LRP relevance maps were segmented using region of interest (ROI) segmentations generated by 
the FastSurfer segmentation tool. Within each ROI, we calculated the relevance density, i.e., the relevances 
were summed up and divided by the volume of the respective ROI. The relevance density metric has previously 
been found to be better associated with disease features than the total sum or other relevance aggregation 
mechanisms50,51. Based on the hierarchical ontology structure developed in our previous work52, relevance 
was aggregated and summarized across different levels of neuroanatomical abstraction, such as lobes and 
hemispheres; which added 24 higher-order (parent-level) aggregation concepts.

Data preprocessing
Feature extraction
 W-scores were calculated for each pathology feature, region, and participant, which quantified the relative 
deviations from the normative expectations. W-scores are an extension of Z-scores that adjust for covariates; in 
our study, we controlled for age, sex, brain size, and magnetic field strength, as these variables are widely known 
to influence brain volume and cortical thickness measures53–55.

	
Wj∈ S; i∈ ROIs =

Observed F eaturei,j − Expected F eaturei,j

Std.Dev
(
residuals_controli,j

) � (1)

here features, i.e., S = {CNN relevance, cortical thickness, volume}. The expected feature is the prediction from 
a linear regression model that accounts for the confounding covariates and was trained only on the cognitively 
normal control participants. The residuals_controlsi, j are the residuals from the cognitively normal controls.

Feature selection
 W-score features per region (X), i.e., the CNN’s relevances, the volumetric measure, and the cortical thickness 
measure, were compared with the disease diagnosis labels (Y), by calculating the mutual information I(X, Y) 
between them, defined as.

CN MCI AD FTD

Sex (M/F) 732/963 448/369 266/282 112/81

Age 70.15 ± 7.58 72.76 ± 7.38 74.14 ± 7.69 63.35 ± 7.92

MMSE 29.02 ± 1.52 27.36 ± 2.3 22.15 ± 4.18 23.56 ± 7.10

Table 1.  Sample statistics per disease diagnosis stage and Subtype. CN cognitively normal, MCI mild cognitive 
impairment, AD dementia due to Alzheimer’s disease (the typical presentation), FTD Frontotemporal 
dementia where phenotypes include behavioral variant, semantic variant, and progressive nonfluent aphasia, 
MMSE mini-mental state examination score, F female, M male. Numbers are reported as (mean ± s.d.).

 

Fig. 1.  Study design for creating explanations for CNNs detecting dementia diseases from MRI scans. Here we 
illustrate (a) the input space with trained CNN’s relevance maps and brain segmentation, (b) the preprocessing 
steps of - feature selection and extraction, and (c) the explanation generation from the context-enriched 
explanation space and features extracted, utilizing different analysis methods.
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I (X; Y ) =

∑
y∈ Y

∑
x∈ Xp (x, y) log

p(x, y)
p (x) p (y) � (2)

where in Eq. 2, p(X, Y) is the joint probability distribution for random variables X and Y, while p(X) is the 
marginal probability distribution for the random variable X. Mutual information quantifies the dependence 
between individual features and the disease diagnosis, and lies between [0, +∞) where a mutual information 
of 0 indicates two independent variables. Mutual information (MI) is one of the most widely used methods 
for feature selection in machine learning, as it effectively quantifies the dependency between features and 
target variables. Its ability to capture both linear and non-linear relationships makes it particularly valuable 
in high-dimensional data analysis56. The features with mutual information above the threshold of 0.1, chosen 
heuristically, were selected for further analysis.

Enriched explanation space
We set up a clustering analysis as a proxy measure to calibrate the suitability of the various explanation spaces. 
Different variations of the explanation space were explored: (a) including only the relevance features from the 
CNN, i.e., the basic explanation space, (b) including only the morphological features - volumetry and/or cortical 
thickness, and (c) including both the relevance features from the CNN and the morphological features, i.e., the 
context-enriched explanation space. The derived clusters were evaluated using broadly two sets of metrics. First, 
the external validation metrics, measuring agreement between the predicted cluster labels and the ground truth 
disease diagnosis - homogeneity, completeness and v-measure57, adjusted mutual information58, adjusted rand 
score59,60, and Fowlkes score61. V-measure is the harmonic mean of the homogeneity and completeness scores. 
Second, the internal validation metrics, measuring the separation between the clusters within the space and 
requiring no external ground truth labels - average silhouette coefficient62 and Davies Bouldin score63.

Deriving explanations from the enriched explanation space
Group-level explanations
We utilized the agglomerative hierarchical clustering with Ward’s linkage to create the group-level, feature 
simplification explanations. The hierarchical clustering separates different subgroups of participants. Ward 
linkage criterion minimizes the within-cluster variance64 and has been found useful in other dementia 
studies65,66. We chose the Euclidean distance as the metric for calculating the distance between the clusters in the 
explanation space. For the participants grouped within a cluster, a repeated-measures linear mixed-effect model 
was fitted to cognition trajectories for Mini-Mental State Examination (MMSE) and global Clinical Dementia 
Rating (CDR) scores. The models included fixed effects for age at baseline, sex, and interaction terms between 
baseline cognitive diagnosis (cognitively normal - CN, mild cognitive impairment - MCI, or Alzheimer’s disease 
dementia - AD), cluster index, and time (months). We also specified random intercepts for each participant to 
account for individual variability in baseline cognition. We additionally performed the Kaplan-Meier survival 
analysis to compare the time to dementia conversion between the clusters. The conversion event was marked by 
the change of the CDR global score, i.e., conversion from unimpaired cognition (CDR = 0) to MCI due to AD 
(CDR = 0.5), and conversion from MCI (CDR = 0.5) to mild AD dementia (CDR = 1), beyond which any further 
increase in CDR score (> 1) was not considered. For each participant, longitudinal data was included for up to 
six years, and participants were right-censored when they did not convert.

Example-based explanations
The example-based explanations were generated using a meta-classifier abstracting over the details of the 
explanation space and presenting the likely cognition progression trajectories. The use of a simple meta-
classifier is a common practice in building decision support systems to assist experts67. We chose the k nearest 
neighbor (KNN) classifier as the meta-classifier. The size of the neighborhood k = 10 was set heuristically. The 
nearest neighbor for a query sample in the enriched explanation space represents a small group of examples, i.e., 
participants with similar pathology. Hence, using this notion of similarity, we then present exemplary cognition 
trajectories of the neighbors, here, the MMSE and CDR scores obtained from follow-up visits up to six years, 
where available.

Textual explanations
Previous studies that applied knowledge-based approaches68–70 have established a more structured and 
knowledge-engineered usage of clinical information for decision support. We previously created a computational 
neuroanatomy ontology that enhanced the aggregation of pathologic information52. Based on this framework, 
we developed a post-hoc, rule-based explanation method where the information sources, here CNN relevances, 
volume, and cortical thickness features, could be integrated to generate textual explanations for a single 
participant.

The ontology’s hierarchical structure opens up space for the computational aggregation of different 
pathological features, at multiple abstraction levels. More importantly, the structured setup also allows for more 
sophisticated logical reasoning, for example, the inclusion or exclusion of entities. We developed a rule-based 
method that dynamically chooses anatomical entities for which all three (logical and) pathological features 
indicated abnormal levels, more specifically, the w-score exceeding 2 standard deviations from the norm. In 
cases where many regions at a lower hierarchy were selected, then only the higher hierarchy region was selected 
for presentation. This reduces the load of information presented to the end user.

The selected regions were reported to the clinical users as template-based textual explanations. When the 
average pathology w-score across all applicable features remains between 2 and 3, a region is classified as ‘mild’ 
pathology. Scores between 3 and 4 indicate ‘moderate’ pathology, while, scores exceeding 4 standard deviations 
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indicate ‘strong’ pathology. This threshold-based logic was empirically derived through the analysis of w-scores 
in our dataset. This logic facilitates the categorization of average pathology severity for each neuroanatomic 
region.

Qualitative interviews with the experts
We interviewed neurologists (N = 2) working in a memory clinic and radiologists (N = 4) with an average of 
10 + years of experience. This ensured expert feedback while avoiding input from newly trained professionals. 
The semi-structured interview was opened with introducing the experts to the high-level perspectives present 
in explainable artificial intelligence (XAI) field, i.e., the different values and goals, such as causality, confidence, 
informativeness, and trustworthiness, pursued by the XAI methods71. They were also introduced to the 
taxonomies for grouping various XAI methods16.

Furthermore, the semi-structured interview consisted of the following steps: introducing a case study sample, 
the various types of explanations generated for the sample presented one by one, and prompting the experts 
regarding the different usability aspects of the explanations. Figure 2 illustrates the process of semi-structured 
expert interviews. All interviews were carried out in accordance with relevant guidelines and regulations. For 
further details, please refer to the included ethics statement.

This order was chosen to let the experts present their opinions about each method’s value for a use-case, 
building on the opinions to define the more concrete strengths and challenges, and eventually to state the 
possible future works for the explanation types. Approximately an hour to an hour and a half was spent to go 
through all the explanation types and discuss them individually. The focus group interviews were conducted 
one-on-one or with at most two experts together. In total, 4 interview sessions were conducted. The interviews 
were conducted between February and March 2025. The focus group interviews helped us qualitatively evaluate 
the opportunities and challenges of applying XAI methods in clinical decision systems.

Results
Explanation space selection and subcluster identification
From our CNN model trained for three-way classification between CN, AD, and FTD, the CN node was chosen 
to acquire the relevance, as the relevance scores generated from it represent the deviation from the normal 
group. This means that the relevance of an input voxel reflects its contribution to a subject being classified (or not 
classified) as cognitively normal, thereby highlighting patterns associated with pathological aging.

After applying a heuristically set threshold of 0.1 on the mutual information criterion, 81 features remained. 
The selected features included K = 19 (23.5%) relevance features, K = 46 (56.7%) volume features, and K = 16 
(19.8%) cortical thickness features. Notably, for the cortical regions left entorhinal, left inferior and superior 
temporal, and left temporal lobe, as well as for the subcortical regions left hippocampus, left putamen, and left 
amygdala, all respective features had mutual information above the threshold. See Supplementary section S3 for 
more information.

Using the selected features, agglomerative clustering with ward linkage was conducted to compare different 
variations of the explanation space while separating the AD and CN participants. The results of the clustering 
analysis are presented in Table 2. According to the V-measure, the enriched explanation space provided the 
highest score of 0.43.

Figure 3 illustrates the cluster map of the dataset in the context-enriched explanation space, providing a 
hierarchical visualization (on the Y-axis) of relationships between data points. From the heatmap intensity, we 
found a relative segregation of the disease diagnoses between the two main clusters, where darker regions on the 
heatmap represent more pathologic patients being clustered together. The number of clusters was heuristically 
set to two to balance between cohesion and separation while maintaining clinical interpretability. Although we 
explored 3–4 clusters scenarios based on the splits found via the dendrogram, they did not provide additional 
meaningful insights. While a relatively homogeneous cluster with FTD patients emerged (in 3 cluster scenario), 
it offered limited new information with respect to the further explanations drawn from the framework.

As visualized by the pie charts in the left dendrogram in Fig. 3, one cluster mainly consists of healthy controls 
or participants with low levels of pathology, this cluster is here on termed as the stable cluster. The second cluster 
consists of participants with more advanced pathology, i.e., a high amount of atrophy in dementia patients, this 
cluster is here on termed as the converter cluster. Table 3 presents the confusion matrix comparing clustering 
outcomes with ground truth labels of participants’ baseline disease diagnosis.

Using Fleiss’ Kappa (κ), a score for inter-rater reliability was calculated to evaluate the stability (agreement) 
for the clustering-based binary classification task of stable vs. converter. We performed a 4-fold cross-validation, 
yielding a κ score 0.77, indicating substantial agreement, i.e., a relatively stable clustering outcome that is 
independent of the data folds used for initialization.

Simplified, Group-Level Explanations
Based on the two clusters identified in the context-enriched explanation space, the longitudinal cognitive 
trajectories were explored as simplified explanations of the CNN model’s predictions. Analysis of the longitudinal 
MMSE scores showed that the two identified clusters separate participants which would remain relatively stable 
or decline at an accelerated rate, i.e., converters. Specifically, as seen in Fig. 4, the MMSE score of the high-risk 
converter group exhibited cognitive decline at a rate of 0.54 points per year, whereas the low-risk stable group 
declined at a rate of 0.02 points per year. Details for the mixed-effects modeling and the analysis of the Clinical 
Dementia Rating (CDR) global score can be found in the supplementary section S4.

From the Kaplan-Meier survival analysis, we also see a similar separation (Fig.  5), where 80% of the 
participants in the stable cluster remain free of conversion for 60 months (or 5 years), with a conversion rate of 
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approximately 3.3% per year, while in the converter cluster approximately 10% of the participants convert per 
year.

Explanation by examples
Within the context-enriched explanation space, the longitudinal cognitive trajectories of participants with 
similar pathology to a query sample illustrate the possible trajectories over 72 months (6 years). A k nearest 
neighbor (KNN) model was employed, to find the participants that present the most similar pathology, with the 
neighborhood window heuristically set to k = 10.

Figure 6 shows the cognitive trajectories on the MMSE cognitive test, based on the nearest neighbors of one 
arbitrarily selected individual from the DELCODE data cohort with the clinical diagnosis of MCI. Supplementary 
Figure S7 illustrates the explanation-by-example cognitive trajectories for the CDR score, and Supplementary 
section S6 illustrates MMSE and CDR explanation-by-example plots where each cognitive trajectory is shown 
in a unique color for more detail. The participant is a 68-year-old female with 8 years of formal education and 
a baseline MMSE score of 24. In the figure legend, the ten nearest neighbors (with their baseline diagnosis and 
pseudonymised patient ID) are listed in the order of increasing Euclidian distance from this query sample, 
i.e., the most similar participant in the dataset is listed first. In a clinical setting, the trajectories could serve as 
illustrations of possible future cognitive development for the query participant.

Rule-based textual explanations
The knowledge-driven, ontology-based explanation method generated structured textual explanations for 
individual participants. By combining CNN relevances, volumetric, and cortical thickness measures, the rule-
based mechanism generated hierarchical summaries of neuroanatomical abnormalities, reducing redundancy 
by prioritizing higher-order regions.

Fig. 2.  Semi-structured expert interview flowchart. We collected the clinical feedback on different aspects 
of XAI explanation types to assist clinical decision-making. The interviews approximately lasted for an hour. 
Clinical experts highlighted which explanations enhance the decision-making process by making CNN more 
adoptable, what information should be added or removed, and future improvements for XAI support. These 
interviews served as a basis for qualitatively evaluating the opportunities and challenges of applying XAI 
methods.
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In Fig. 7a, we see an illustration of the hierarchical selection mechanism. Figure 7b,c illustrates the template-
based textual report generated for the same query participant from the DELCODE cohort. Figure 7b lists all the 
pathologic regions identified, including the left superior temporal, left middle temporal, left temporal lobe, left 
inferior temporal, and left inferior lateral ventricle. Meanwhile in Fig. 7c generated a template-based summary, 
presenting pathologic information specifically for the left temporal lobe and left inferior lateral ventricle.

Qualitative evaluation of the explanation types
Neurologists (N = 2) from the memory clinic found the simplified, group-level explanations to be particularly 
useful, as an aid to communicate with other clinical experts. They described a scenario where their risk 
assessment capabilities of XAI methods could possibly help in evaluating an individual’s eligibility for clinical 
trials. They also reported valuing the succinctness of these explanations, emphasizing the importance of limiting 
the presented information to 3–5 key facts to prevent cognitive overload. For patient interactions in memory 
clinics, explanation-by-example methods were seen as beneficial in facilitating personalized discussions, 
particularly to encourage healthier lifestyle choices such as quitting smoking, increasing social engagement, 
and exercising. However, neurologists also expressed reservations about using the explanation-by-example 
method with laypersons, as it could cause unnecessary anxiety to their patients, and acknowledged the inherent 
uncertainty in predicting an individual’s future cognitive development.

Radiologists (N = 4) favored textual explanations, as these aligned well with their clinical workflow of 
reporting pathological findings across different regions of interest. They reported being in favor of XAI systems 
that could pre-identify relevant areas, potentially saving time by highlighting key regions before manual 
assessment. However, they found relevance heatmaps to be of limited utility, as these visualizations did not 
directly support their need for regional pathological descriptions. Radiologists in our study also requested that 
the XAI methods should align with disease diagnosis guidelines, e.g., from the German Society for Neurology 
(Deutsche Gesellschaft für Neurology), and should automatically highlight relevant brain regions based on the 
suspected pathology.

Beyond XAI method’s clinical validity, both radiologists and neurologists advocated for AI systems capable 
of integrating longitudinal patient data while accounting for comorbidities beyond neurodegeneration, such 
as depression, microbleeds, white matter lesions, and medical history, which may influence a patient’s current 
disease presentation. Neurologists highlighted the need for multi-disease diagnostic capabilities to assess the 
likelihood of different pathologies. Additionally, they expect XAI methods to quantify certainty and confidence 
intervals of their suggestions. Neurologists also requested an extension to the explanation-by-example approach, 
to incorporate multimodal data—including PET-Tau, blood-based biomarkers, and genetic makeup, to be more 
confident of the projected trajectories.

Discussion
In this study, we introduced a framework that offers a novel unsupervised approach to XAI by extending the scope 
of conventional relevance heatmaps. Our study extends the basic explanation space by including the regional 
morphological information, i.e., cortical thickness and volumetry measures, creating the context-enriched 
explanation space. Within this new space, we quantified the information present in the relevance heatmaps and 
provided evidence for relatively better clustering outcomes with respect to the disease diagnosis labels. We also 
explored three different methods of generating explanations for the model’s predictions, namely: (i) group-based 
clustering of stable and converter participants, leading to simplified explanations, (ii) neighborhood-based 
examples of cognitive trajectories, and (iii) rule-based textual reports of pathologic regions. To the best of our 
knowledge, only a few studies have quantitatively compared relevance heatmaps between different dementia 
diagnosis groups23,24,50. Our study is the first of its kind to examine clinicians’ feedback for the generated 
explanation types.

While our framework offers an enriched feature space that integrates model-derived relevance maps 
with regional morphological measures, it does not directly capture the entire decision-making process of the 
CNN. Instead, it validates and contextualizes the information embedded in the relevance maps by situating 

Explanation space V-measure AMI Homogeneity score Completeness score ARI FMI Silhouette score DBI

Relevance (Rel) 0.39 0.39 0.34 0.47 0.51 0.85 0.48 1.01

Volumetry (Vol) 0.13 0.13 0.15 0.12 0.02 0.59 0.20 1.56

Cortical thickness
(CortThk) 0.30 0.30 0.31 0.29 0.44 0.78 0.38 1.03

Vol + CortThk 0.32 0.32 0.26 0.42 0.40 0.83 0.35 1.21

Rel + Vol + CortThk 0.43 0.43 0.40 0.48 0.57 0.86 0.35 1.37

Table 2.  Clustering performance across explanation spaces. Explanations spaces: the basic explanation space 
only includes the relevance features, while the context-enriched explanation space includes volumetry and 
cortical thickness features with the relevance features. The metrics include V-measure, Adjusted Mutual 
Information (AMI), Homogeneity Score, Completeness Score, Adjusted Rand Score (ARI), Fowlkes-Mallows 
Index (FMI), Silhouette Score, and Davies-Bouldin Index (DBI). All measures ranged between [0,1], except 
- ARI [−0.5,1], Silhouette Score [−1,1], and DBI [0,∞). Higher values (except for DBI, where lower is better) 
indicate better clustering quality.  Best values per column are shown in bold.
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them in a clinically interpretable feature space. Within the broader challenges of XAI in imaging, aside from 
certain preliminary approaches such as topographic activation maps72,73, no current method, to the best of 
our knowledge, is capable of exhaustively reconstructing or tracing the internal reasoning of CNNs or other 
deep models. Our contribution should therefore be seen as a complementary approach to the existing relevance 

Fig. 3.  Cluster Map. Hierarchical clustering dendrogram (on the Y-axis) resulting from Ward’s hierarchical 
clustering analysis of individual w-scores profiles of participants computed from three features - CNN 
relevances, volume, and cortical thickness measures. Four disease diagnoses were considered: cognitively 
normal (CN, color-coded as blue), mild cognitive impairment (MCI, color-coded as pink), dementia due to 
Alzheimer’s disease (AD, color-coded as red), and frontotemporal dementia (FTD, color-coded as green). 
The pie charts visualize the relative homogeneity, with respect to the disease diagnoses, of the two clusters. 
The W-score features are visualized using a custom color scale to indicate the extent of the deviation, where a 
gradual intensification of color (either red or green) signifies increasing pathological observations. For a vector 
graphic rendering, please refer to the GitHub version of the plot.
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heatmaps generating methods, in that it enhances interpretability by bridging abstract heatmaps with clinically 
meaningful features, while acknowledging the limitations in tracing deep models’ reasoning.

Enriching explanation space and explanations generation
Recent studies have provided a quantitative interpretability framework by measuring the agreement between the 
generated relevance maps and meta-learned disease likelihood maps, i.e., a proxy-ground truth23,24. However, 
these were supervised approaches with only one fixed ground truth for all patients, i.e., the regional disease 
likelihood. Our study on the other hand, adopts an unsupervised approach that uses the morphological features 
as proxy ground truth features, which are unique to each patient. This allows for validation of the relevance maps 
based on the pathologic features tailored to each patient.

Based on the results presented in Table 2, we found that the inclusion of contextual information enhances 
the homogeneity of the clusters. Clustering in the enriched explanation space leads to better alignment with 
disease diagnosis labels. There is an improvement in the homogeneity (from 0.34 to 0.4) and V-measure (from 
0.39 to 0.43), when comparing clustering outcome in enriched explanation space to basic explanation space. Our 
findings suggests that contextual features create relatively more coherent clusters, where now participants with 
the same disease diagnosis are clustered together. As a result, this refines the explanation space itself, making it 
more representative of the underlying disease pathology. However, the improved homogeneity comes at the cost 
of cluster separability, as shown by the lower silhouette score and increased DBI, suggesting a trade-off between 
interpretability and structural distinction in the explanation space.

To further assess the added value of CNN-derived features, we conducted an additional clustering experiment 
using only volumetric and cortical thickness measures as the feature space (see Table 2). The resulting clustering 
outcomes in this explanation space were subpar in terms of cluster homogeneity (0.26) and had limited ability to 
distinguish between disease stages (V-measure of 0.32). These findings suggest that while morphological features 
provide supportive contextual information by enriching the explanation space.

Clustering, unlike supervised overlap quantifications, also serves as a flexible approach for integrating diverse 
information sources, making it adaptable for future applications incorporating various pathological measures, 
e.g., by adding FDG-PET or tau-PET scans74,75. This would allow for explanations to be generated from multi-
modal data sources, possibly better capturing the interaction between various clinical factors and making the 
explanations more inclusive of diverse clinical contexts.

Group-based explanations
The identified subclusters in the context-enriched explanation space provided meaningful differentiation in 
longitudinal cognitive trajectories, reinforcing the importance of the CNN model’s attribution maps when 
grouped with morphological features. Participants in the stable subcluster demonstrated a significantly lower 
risk of progression, as evidenced by mixed-effects modeling (Fig.  4) and Kaplan-Meier analysis (Fig.  5), 
respectively. On the other hand, in the converter subcluster, participants were more likely to have a rapid 
cognitive decline. These findings highlight the potential of the clustering model to stratify participants’ disease 
progression risk, using structural MRI scans and CNN models trained on it, aiding in early identification and 
intervention planning. These explanations serve as simplified interpretations for generated relevance maps from 
CNN’s predictions and, without overly highlighting individual morphological or relevance features.

Explanation-by-examples
We used the K-nearest neighbor (KNN) model within the context-enriched explanation space to provide a 
dynamic method for generating example-based explanations of possible cognitive trajectories. Rather than 
relying on identified hierarchical sub-clusters, KNN allows for a dynamic selection of the neighborhood. By 
identifying participants with the most similar pathology, this method enables personalized projections of 
possible cognitive trajectories without making any modeling assumptions, as outlined by an earlier study24.

The choice of KNN over alternative meta-models was intentional, as it abstracts away complex aggregation 
details that could obscure interpretability for a clinical user. For instance, explanations offered by interpreting 
a regression model’s parameters, i.e., beta coefficients may less intuitive and might not provide needed decision 
support functionalities. A similar argument for a lack of intuitive clarity could also be made about marginal 
contribution scores calculated via Shapley values. Instead, the chosen neighborhood-based approach offers a 
more accessible way to present likely disease trajectories by linking a participant’s current pathology profile to 
other participants tracked longitudinally. More importantly, the objective of the KNN model was not to develop 
a meta-classifier superior to the original CNN, but rather to offer example-based explanations that enhance 

Clusters/ disease diagnosis CN MCI AD FTD

Stable cluster
(N = 2084)

1383
(66.4%)

612
(29.4%)

63
(3%)

26
(1.2%)

Converter cluster
(N = 1318)

219
(16.6%)

503
(38.2%)

462
(35.1%)

134
(10.2%)

Table 3.  Confusion matrix for the clustering outcome. The proportion of the participant’s baseline disease 
diagnosis stage and subtype within the found clusters - termed stable or converter - are presented as percentage 
points. CN cognitively normal, MCI mild cognitive impairment, AD dementia due to Alzheimer’s disease (the 
typical presentation), FTD Frontotemporal dementia where phenotypes include behavioral variant, semantic 
variant, and progressive nonfluent aphasia.
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interpretability. The notion of neighborhood plays a key role here, providing transparent and participant-specific 
insights into the rationale for predicting disease progression.

Rule-based textual explanations
Moving away from data-driven explanations towards knowledge-driven explanations, the ontology-based 
explanation method provides a structured approach to generating individualized textual summaries of 
neuroanatomical abnormalities. Rule-based summarization reduces cognitive overload on clinicians by 
hierarchically aggregating pathological findings using a-priori neuroanatomical knowledge. The generated 
template-based textual reports provide an intuitive means of communicating the model’s decisions to the clinical 

Fig. 4.  Longitudinal cognitive trajectories of different clusters of participants identified in the context-
enriched explanation space. Values on MMSE cognitive test are obtained from mixed effects regression models 
which included the age, sex, baseline disease diagnosis, and the interaction between cluster membership and 
follow-up time in months (FU Months), as well as the interaction between baseline disease diagnosis and 
follow-up months. The model also included random intercepts for each participant to account for repeated 
measurements. The shaded regions represent 95% confidence intervals.
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users. Unlike purely data-driven deep learning models, which often lack transparency, this approach integrates 
CNN relevance with morphological features in a rule-based manner, enhancing clinical usability.

Both rule-based explanations and explanation-by-examples generate so-called local explanations, which 
means they show individual properties of a single participant’s data. In contrast, methods that generate global 
explanations, which target the overall behavior of the whole model, might overlook the subtleties of individual 
cases. Local interpretations are often found to assist in making context-sensitive decisions76,77, which is crucial 
in domains such as medical diagnosis.

In our the focus-group interviews, we aimed to facilitate the collaboration between method developers 
and healthcare professionals. Martin et al.11 highlight the need for clinical stakeholders in evaluating XAI for 
dementia and radiology. Limited expert involvement hinders adoption and reduces the effectiveness of XAI 
methods, as clinicians ensure that the explanations align with their workflows and aid decision-making.

We report that the neurologists in our study favored group-level explanations for expert communication and 
risk assessment, but they were cautious about using explanation-by-example with patients. The radiologists in our 
sample preferred textual explanations for their workflow. Also, they viewed relevance heatmaps to be less useful 
for pathology reporting. These distinctions between the two professional groups underscores their differing 
priorities, with neurologists focusing on both current and future patient care, while radiologists concentrate 
more on the accurate description of pathological imaging findings to support diagnosis and treatment planning. 
Future XAI development in neurodegenerative research will benefit by accounting for these varying needs across 
clinical specialties and use cases.

As the current work is based on a data-driven methodology, one key limitation is that the explanation space 
is inherently dependent on the CNN model and the relevance heatmap generation XAI method used for its 
creation. This implies that the subsequent quantification of explanations’ quality relies upon the performance 
of the underlying CNN model and relevance attribution method, which necessitates the use of a well-trained 
and generalizable CNN model to derive relevance attributions from. In the current study to mitigate this issue, 
during cross-validation we select the CNN model from the fold with the best performance metrics. Additionally, 
the cluster quality metrics within various explanation spaces (Table  2), are relative measures and should 
therefore be interpreted in relation to one another rather than as absolute indicators. Although, the qualitative 
evaluation of XAI methods highlighted key considerations for future research and development, there remains 
certain limitations. We acknowledge a small sample size of experts in our study. The selection of neurologists in 
was non-random, which may introduce selection bias, as those experts may already favor XAI adoption. These 
drawbacks would be rectified in our future work.

A limitation of our study is that mutual information based feature selection and downstream analysis used 
the same dataset. Although cross-validation with Fleiss’ Kappa showed stable outcomes, future work would be 

Fig. 5.  Kaplan-Meier curves illustrating the time to conversion across identified clusters. These survival curves 
represent the proportion of participants within each cluster who progressed either from CN to MCI and/
or from MCI to dementia. Participants who did not develop dementia during the observation period were 
censored.
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further strengthened by validation on independent datasets. Moving forward, future studies should also explore 
different XAI methods for relevance map generation and compare them head-to-head with the LRP method 
presented in our current study. More pertinently, our future research will focus on assessing the model’s and the 
generated explanation’s confidence and certainty, for we assume that this would enhance the reliability of the 
explanations43,49. Furthermore, in future work we would like the explanations to be automatically tailored to 
their intended use case, i.e., distinguishing between communication among clinicians, where explanations are 

Fig. 7.  Rule-based textual explanation: (a) an hypothetical exemplary visual illustration of the rule-based 
mechanism of selecting neuroanatomical regions for which a pathologic threshold is reached for all the 
features - cortical thickness, volumetry, and relevance; and then narrowing down and optimizing the 
pathologic regions presented to the clinical user to reduce the information load. For a query participant from 
the DELCODE cohort, we show (b) a list of all the pathologic and presented regions, and (c) a template-based 
summary generated, listing w-scores from all relevant features.

 

Fig. 6.  Explanation-by-examples: Within the context-enriched explanation space, the longitudinal cognitive 
trajectories of k = 10 nearest neighbors of a query participant, from the DELCODE cohort, are shown. Scores 
on the MMSE cognitive test were observed on follow-up examinations for up to 6 years. Patient IDs of the 
nearest neighbors are pseudonymised, and the nearest neighbors are listed in the order of increasing Euclidian 
distance from the query sample, illustrating possible future cognition trajectories for the query participant. The 
cognition trajectories are additionally color-coded by the baseline disease diagnosis.
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detailed, versus communication between clinicians and laypersons, which requires simplified and layperson-
friendly language.

Another line of promising research is leveraging the large language models (LLMs) for knowledge-driven, 
ontology-based textual explanation refinement. Retrieval augmented generation (RAG) might be particularly 
suitable, as it improves interpretability by keeping LLMs grounded in the context provided78. This approach 
would minimize the risk of “hallucination” that is often associated with LLMs, while ensuring faithfulness to the 
underlying domain logic.

Discussion
This study introduces a framework for generating various types of explanations based on different XAI methods. 
Our proposed methods enrich the standard explanation space with clinically relevant morphological features. 
Our results demonstrate that the enriched explanation space yields more clinically meaningful insights, as shown 
by improved clustering metrics and the ability to distinguish between stable and converter participant subgroups. 
The explanation-by-example method visualizes exemplary possible cognition trajectories for a query participant 
for up to 72 months without making further modeling assumptions. The ontology-based textual explanations are 
dynamically generated in a rule-based manner, creating structured summaries that reduce cognitive overload for 
clinicians. Furthermore, our qualitative evaluation with clinicians highlighted the practical relevance of different 
explanation types.

Conclusion
This study introduces a framework for generating various types of explanations based on different XAI methods. 
Our proposed methods enrich the standard explanation space with clinically relevant morphological features. 
Our results demonstrate that the enriched explanation space yields more clinically meaningful insights, as shown 
by improved clustering metrics and the ability to distinguish between stable and converter participant subgroups. 
The explanation-by-example method visualizes exemplary possible cognition trajectories for a query participant 
for up to 72 months without making further modeling assumptions. The ontology-based textual explanations are 
dynamically generated in a rule-based manner, creating structured summaries that reduce cognitive overload for 
clinicians. Furthermore, our qualitative evaluation with clinicians highlighted the practical relevance of different 
explanation types.

Data availability
The source code is available via GitHub: ​[​h​t​t​p​s​​:​/​/​g​i​t​​h​u​b​.​c​o​​m​/​m​a​r​t​​i​n​d​y​r​b​a​/​x​a​i​4​d​e​m​e​n​t​i​a​-​f​r​a​m​e​w​o​r​k​]​(​h​t​t​p​s​:​/​g​i​
t​h​u​b​.​c​o​m​/​m​a​r​t​i​n​d​y​r​b​a​/​x​a​i​4​d​e​m​e​n​t​i​a​-​f​r​a​m​e​w​o​r​k​)​D​a​t​a used for training/evaluation of the models is available 
from the respective initiatives ADNI: https://adni.loni.usc.edu/data-samples/, AIBL: https://aibl.org.au/, ​D​E​L​
C​O​D​E​: https://www.​dzne.de/en/r​esearch/stud​ies/clinica​l-studies/delcode, DESCRIBE: ​h​t​t​p​s​:​​/​/​w​w​w​.​​d​z​n​e​.​d​​e​/​e​n​
/​​r​e​s​e​a​r​c​h​/​s​t​u​d​i​e​s​/​c​l​i​n​i​c​a​l​-​s​t​u​d​i​e​s​/​d​e​s​c​r​i​b​e​/​, EDSD: https://www.gaaindata.org/partner/EDSD, ​N​I​F​D​/​F​T​L​D​N​I​: 
https://memo​ry.ucsf.edu/​research-tri​als/researc​h/allftd.
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