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Abstract
Collective intelligence and autonomy of robot swarms can be improved by enabling indi-
vidual robots to become aware that they are the constituent parts of a larger whole and to 
identify their role within the swarm. In this study, we present an algorithm to enable posi-
tional self-awareness in a swarm of minimalistic, error-prone, stationary robots which can 
only locally broadcast messages and estimate the distance from their neighbours. Despite 
being unable to measure the bearing of incoming messages, the robots running our algo-
rithm can calculate their position within a swarm deployed in a regular formation. We 
show through experiments with up to 200 Kilobot robots that such positional self-aware-
ness can be employed by the robots to create a shared coordinate system and dynamically 
self-assign location-dependent tasks. Our solution has fewer requirements than state-of-
the-art algorithms and includes collective noise-filtering mechanisms. Therefore, it has an 
extended range of robotic platforms on which it can run. All robots are interchangeable, 
run the same code, and do not need any prior knowledge. Through our algorithm, robots 
reach collective synchronisation and autonomously become aware of the swarm’s spatial 
configuration and their position within it.
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1  Introduction

Coordination in natural and artificial collective systems is, fundamentally, a spatiotemporal 
problem. For two or more agents to coordinate their work, each must have a sense, even 
if imperfect, of when and where others’ actions have taken place relative to its individ-
ual frame of reference. For instance, flocking in birds or schooling in fish is only possible 
if each individual can quickly adjust their movement (a spatiotemporal attribute) to the 
movements of their immediate neighbours (another spatiotemporal attribute). Even in fixed 
groups of interacting agents, for instance, a network of sensors and actuators in a build-
ing, the topology (spatial) and timing (temporal) of the interactions will determine the type 
(e.g., synchronisation, oscillation) and the quality of the collective coordination.

In the context of swarm robotics (Hamann, 2018), a field of research studying the coor-
dination of large groups of simple autonomous robots, the temporal aspect of coordination 
is relatively easy to solve. Indeed, the microprocessors that control the behaviour of the 
robots are, essentially, clocks. They provide each robot with an internal temporal frame of 
reference against which it can log the events that it perceives from its environment. While 
individual robot clocks may drift over time, effective decentralised methods from the wire-
less sensor network literature have been developed to maintain synchronisation across the 
group (Sivrikaya & Yener, 2004). The spatial aspect, that is, where an event happens rela-
tive to a focal individual, is, however, less straightforward. Traditionally, it is solved using 
either an external frame of reference (e.g., a Global Positioning System) or implementing 
a “mental” mapping mechanism within the robot’s controller (Pritsker, 1984). The former 
is usually very precise, but GPS signals are not always accessible to the robotic agents 
(e.g., when they are blocked by obstacles) and their use runs somewhat contrary to the full-
autonomy goal of swarm robotics. The latter provides increased autonomy to the robotic 
swarm but requires significant processing power and memory storage, which may not be 
available on small or microscopic robotic agents.

Here, we propose an alternative approach using a fully decentralised mechanism that 
can be implemented in autonomous robots with limited capabilities. In particular, our 
approach allows a group of robots to build a global coordinate system without requiring 
external reference information, preset origin, or predetermined roles for the robotic agents. 
It is designed to work on any robotic platform, even with minimal, undirected communica-
tion abilities and noisy distance sensors. The proposed algorithm relies on the assumption 
that the robot swarm is deployed in a regular formation, either a rectangular or hexagonal 
lattice, which are formations particularly convenient for storing, charging, and transporting 
large swarms of robots. To demonstrate the feasibility of our approach, we implemented 
it using the well-known, minimalist Kilobot platform (Rubenstein et al., 2014a). We also 
show that it scales up to large robotic swarms by performing validation experiments with 
up to 200 real and 1000 simulated Kilobot units. Our approach is also potentially applica-
ble to the domain of wireless sensor networks (Yick et al., 2008) because our robots do not 
move, they only locally exchange asynchronous messages with each other, acting as static 
interactive autonomous sensors.

The rest of the manuscript will be organised as follows. First, we will give a general 
description of our approach and compare it with existing approaches in the literature, 
with a focus on minimalist robots (Sect. 2). In particular, we will highlight the strengths 
and limitations of our approach with respect to the existing ones. Then, we will provide a 
detailed description of the proposed algorithm and its implementation in the Kilobot plat-
form (Sect. 3). This will be followed by a description of the results of multiple experiments 
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with real and simulated Kilobot swarms demonstrating the capabilities and scalability of 
the approach (Sect. 4), before we offer our conclusions on the possibilities that it offers and 
on directions for future studies (Sect. 5).

2 � Previous work

Through our algorithm, robots can autonomously self-localise within a group and dynami-
cally self-assign roles depending on their position. The algorithm works under the assump-
tion that the robots are organised in a regular formation—either a rectangular or hexago-
nal lattice, as illustrated by the two examples in Fig. 1—and that they remain stationary 
throughout the execution. Having the robots organised in such regular formations can be 
particularly convenient for logistics reasons. Indeed, robots are normally stored, charged, 
transported, and deployed in regular formations: squared and rectangular lattices simplify 
the working logistics and hexagonal lattices maximise the packing density of robots with 
circular bodies. In addition to simplifying the transport and deployment logistics, having 
robots in regular formations can be a requirement for the successful execution of the col-
lective task, for instance, the coherent motion of multi-robot aggregates (Pratissoli et al., 
2019, 2023) and light pattern display (Alhafnawi et al., 2020). In these works, spatiotem-
poral coordination was achieved by manually providing the robots with information about 
their relative position within the formation. Our algorithm, by enabling the robots to self-
localise, increases the system’s autonomy.

There are other studies that proposed decentralised algorithms for the construction of 
coordinate systems and self-localisation in robot swarms. Our solution is able to work 
with fewer requirements and on simpler robots than state-of-the-art methods. In particular, 
there are a few decentralised algorithms (Beal et al., 2013; Sahin et al., 2002; Guo et al., 
2011; Coppola et al., 2019; Mathews et al., 2017; Wang & Rubenstein, 2021; Batra et al., 
2022; Li et al., 2018; Klingner et al., 2019; Jones & Hauert, 2025) that allow each robot 

Fig. 1   Two Kilobot swarms organised in two regular formations with two different topologies. In both 
cases, the robots by running the Routine R1 (Sect. 3.2) are able to identify their neighbourhood on the two 
distinct regular lattices and compute their position group, i.e., CORNER position displayed with a red light, 
BORDER position with a blue light in (a) and a magenta light in (b), and MIDDLE position with a green 
light in (a) and a cyan light in (b)
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to compute its relative positioning with respect to the rest of the swarm through the use of 
distance and directional information about neighbours—i.e., each robot is able to know the 
relative location of other robots nearby—and in some cases of a global reference orienta-
tion (e.g., a compass). On the one hand, our algorithm can work on simpler robots only 
equipped with noisy distance sensors and transceivers for local broadcasting of small mes-
sages. Therefore, with our solution, neighbours’ bearing is not needed, making its imple-
mentation on Kilobots and other minimalist robotic platforms possible. On the other hand, 
our solution requires the deployment of the robots in a regular formation while the robots 
could operate in arbitrary arrangements in the studies cited above, as long as the robots 
could communicate with each other.

Previous studies that implemented coordinate system construction on Kilobot swarms 
(hence using robots without bearing sensors) also required the robot to be deployed in 
a regular formation, in their case in a hexagonal lattice (Rubenstein et al., 2014b; Gauci 
et al., 2018). However, in their case, a subset of the robots ran a different code than the rest 
of the swarm and needed a precise initial placement to form the coordinate system origin 
and axes orientation. Another study has shown that the requirement of a regular formation 
can be removed by including a sizeable neighbourhood (minimum average of 15 neigh-
bours), yet still requiring a subset of the robots to run a different code and have a precise 
initial placement (Nagpal et  al., 2003). In our swarm, all robots run identical code and 
do not need any pre-configuration. Every robot can be replaced with any other and their 
relative position interchanged without compromising the collective behaviour. Addition-
ally, our algorithm executes simpler mathematical operations than the previous methods by 
Rubenstein et al. (2014b), Gauci et al. (2018) and Nagpal et al. (2003), which can be better 
suited for minimal computing devices.

In summary, there is a trade-off in the requirements to run algorithms for the self-organ-
ised construction of a coordinate system. Previous works require more sensing capabilities 
(i.e., bearing sensors) or a subset of robots with special pre-configuration (i.e., different 
programs and precise placement) but can have fewer constraints on the deployment config-
uration of the robots. Our algorithm has reduced sensing and robot configuration require-
ments because it leverages the knowledge of the regular lattice configuration of the robots, 
which is one of the key requirements for our algorithm.

3 � Self‑organised construction of a coordinate system

In order to build a shared coordinate system, the robots run a sequence of three Routines: 

	R1.	 Neighbourhood construction
	R2.	 Coordinate system construction
	R3.	 Synchronised dynamic role assignment

Each routine is composed of sub-routines that we describe in detail in this section. Fig-
ure 2 gives an overview of the full process. Our three routines are designed to be run by 
each robot comprising the swarm. Every robot runs identical code, therefore, there is no 
requirement to pre-assign roles before deployment and any robot can replace any other. 
Despite the robots relying solely on local and error-prone communication, the execution 
of routines R1 and R2 allows the swarm to build a global-level coordinate system and ena-
bles every robot to self-localise within the shared coordinate system. Such capabilities can, 
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Fig. 2   Overview of the three routines to (R1) allow every robot to identify its lattice neighbourhood, (R2) 
construct a swarm-level coordinate system, and (R3) dynamically assign roles to robots in specific positions 
within the formation. All routines consist of decentralised algorithms to let the robot reach global coordina-
tion in a self-organised way. Each routine comprises one or more sub-routines (SR). The specific require-
ments for each subroutine also include requirements from previous subroutines
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then, allow the robots to self-assign roles based on their position within the swarm and on a 
shared time clock, as showcased with routine R3. The routines’ algorithms are presented in 
a generic form and are designed to work on both rectangular and hexagonal regular lattices, 
with exception of routine R2 which has been tailored to build a coordinate system on rec-
tangular lattices only. In fact, the coordinate system in rectangular and hexagonal lattices 
is structurally different (Snyder et  al., 1999), therefore, routine R2 needs to be designed 
specifically for each type of lattice. For the purpose of this study, we show the construction 
of the coordinate system (R2) in rectangular lattices only.

Before describing the three routines, we explain how the robots can maintain a time 
clock synchronised among all the robots, which is a fundamental requirement for the suc-
cessful execution of our routines.

3.1 � A synchronised swarm

In our study, every robot is an autonomous entity that runs the same code and exchanges 
messages with close neighbours. In several parts of the process, the transition from one 
subroutine to the next one is based on a shared time clock. However, without any closed-
loop control, the independent clocks of a large number of devices can desynchronise over 
time. On the contrary, implementing a communication protocol that maintains every device 
in step with the same global clock at all times can require either a global orchestrator or 
fast communication and large bandwidth (Sivrikaya & Yener, 2004; Li & Rus, 2006). 
Therefore, in our system, we implement a hybrid solution similar to the method proposed 
by Naz et al. (2016), that combines independent clocks and closed-loop synchronisation: 
the robots independently measure time during limited periods and periodically exchange 
synchronisation messages to reset their clocks and avoid large drift.

Individual clocks In our implementation, Kilobots are equipped with a microcontroller 
that runs the robot’s control algorithm at a rate of approximately 32 Hz. The approximate 
time elapsed from an event (e.g., the start of the process) can thus be measured using 
the number of control loops that the robot executed (which in the Kilobot’s firmware are 
expressed as kilo_ticks). This approach is easy to implement and does not require 
communication among the robots, however, despite calibration by the producer, the Kilo-
bots’ clocks can quickly desynchronise over time. After a few minutes, the difference can 
become noticeable (i.e., one or two seconds). Therefore, in our implementation, robots use 
their internal clock to estimate the time elapsed from the beginning of the current phase 
of the process (e.g., a subroutine) and synchronise their internal counter at every phase 
change.

Message-based synchronisation When a robot reaches the given time limit according 
to its internal clock, it immediately moves to the next phase of the algorithm and broad-
casts a synchronisation message to notify its neighbours that the new phase has begun. 
This message-passing strategy mirrors distributed time synchronization schemes in wire-
less sensor networks, which propagate timing information via local broadcasts rather than 
relying on a single master clock (Sivrikaya & Yener, 2004; Li & Rus, 2006). In contrast 
to approaches that require a global orchestrator or continuous high-rate communication 
to keep all devices in lockstep, our method leverages periodic local resets: any robot that 
receives a synchronisation signal will promptly transition to the next phase and relay the 
message onward. As every phase is relatively short, the clock drift accumulated between 
these synchronisation events remains small, consistent with prior findings that frequent 
re-synchronisation bounds the divergence between node clocks  (van Greunen & Rabaey, 
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2003). In large swarms this often results in multiple robots reaching the phase deadline 
almost simultaneously (before receiving others’ signals), so synchronisation messages are 
generated from multiple sources in parallel. Such a multi-source broadcast approach to 
time sync is known to reduce propagation delay across the network compared to a single-
source scheme (van Greunen & Rabaey, 2003). This principle—allowing any node to act as 
a time reference—has also been observed in biologically inspired algorithms (e.g., firefly 
clock synchronization) and other fully-decentralized protocols (Tyrrell et al., 2006), under-
scoring the robustness of our design. Overall, our Kilobot implementation follows the same 
fundamental principles as these established distributed synchronization methods (message 
propagation and periodic correction) but adapts them to minimalistic robots with severely 
constrained hardware. Notably, recent work in multi-robot systems has shown that even 
simple, low-cost robots can achieve emergent temporal coordination through local mes-
sage exchanges  (Barciś & Bettstetter, 2020), which further situates our approach within 
the broader literature on distributed time synchronisation in resource-constrained systems. 
We validated this message-based scheme on swarms of up to 200 real and 1000 simulated 
Kilobots, and observed that the swarm did not desynchronise over extended periods nor 
accumulate any notable delay, demonstrating that classical wireless sensor network syn-
chronization principles can be successfully applied to minimalistic robot swarms.

3.2 � Routine R1—neighbourhood construction

The routine Neighbourhood construction (R1) aims to enable each robot to construct a list 
of its closest neighbours which can be identified with locally-unique IDs. The routine R1 is 
composed of three subroutines: SR1a Locally-unique ID assignment, SR1b Neighbour list 
creation, and SR1c Relative position identification.

3.2.1 � Subroutine SR1a—locally‑unique IDs assignment

A locally-unique ID is essential for neighbourhood construction as it allows robots to count 
the number of robots in their proximity and establish one-to-one communication with each 
neighbour. This subroutine is composed of two phases presented as pseudocode in Algo-
rithm  1. During the first phase, each robot generates a random ID that it draws from a 
given range. In our case, the Kilobots use an 8-bit integer in the range [0255]. The robots 
broadcast their randomly selected ID. Each received ID is added to a blacklist of already 
used IDs. If a robot receives a message with an ID equal to its own ID, it selects a new 
random ID from the same range, excluding the IDs in the blacklist. After sufficient time 
has elapsed, in our case the time necessary to send about 20 messages (10 s), see line 1 of 
the Algorithm 1, the subroutine moves to the second phase. In this phase, the robots aim 
to remove duplicated IDs among their neighbours who may not be in direct communica-
tion with each other. However, a robot with two neighbours that use the same ID cannot 
distinguish between them and this causes problems in subsequent subroutines. In this sec-
ond phase, each robot generates a new random number and repeatedly broadcasts mes-
sages containing four pieces of information: its ID, the just-generated random number, and 
the ID and the random number received from one of its neighbours. Each new message 
contains information about a different neighbour, iteratively selected (lines 21–22). For 
each received message, the robot stores the received neighbour’s ID and the additional ran-
dom number in a list. The use of the additional random number is necessary to distinguish 
between its own ID included in the neighbour’s message or the ID from another robot with 
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the same value. The probability of random selection of both the same ID and the same ran-
dom number reduces exponentially with the range size. For instance, for the Kilobots using 
two 1-byte numbers, the probability that two robots pick the same two numbers is smaller 
than 0.002%, as there are 216 possible combinations. When a robot receives a message in 
which the third piece of information is equal to its ID and the fourth piece of information 
is not equal to its random number, it means that there are repeated IDs (line 23). Therefore, 
the robot adds its ID to the blacklist and self-assigns a new random ID. After sufficient 
time has elapsed, in our case the time to send about 30 messages (15 s, line 2), the subrou-
tine SR1a terminates and the subroutine SR1b begins.

3.2.2 � Subroutine SR1b—neighbour list creation

In order to create a list of its neighbours, a robot must filter incoming messages based 
on the senders’ distance. In our implementation, the Kilobots exchange messages through 
infrared (IR) messages and can estimate the sender distance using the IR signal strength 
Rubenstein et al. (2012). In agreement with the Kilobots’ capabilities, we assume that the 
robots can only rely on distances without directional information, that is robots cannot 
know the relative angle of the sender, they can only know its distance.

Subroutine SR1b is composed of three phases, and its pseudocode is shown in Algo-
rithm 1. In the first phase, every robot continues, as it did during SR1a, to broadcast its 
locally-unique ID. Each robot measures the distance of the incoming messages and records 
the shortest distance x (erroneous values smaller than the robot body-size are discarded, 
e.g., 33 mm for the Kilobots). After a threshold time, the robots start the second phase. 
In our case, we combined the first phase of SR1b with the second phase of the subroutine 
SR1a (line 27 of Algorithm  1), to speed up the process. Based on the shortest distance 
recorded, the robot computes the maximum neighbourhood radius r which it uses to filter 
the incoming messages and create the neighbour list. A robot only adds to its neighbour 
list the ID of senders at a distance smaller than r. Computing the radius r as a function of 
the estimated shortest distance x allows the algorithm to adapt to different spacing and grid 
layouts.

Subroutine SR1b enables the robots to create their neighbour list when they are organ-
ised in the regular lattice topologies of rectangular lattices (as in Fig. 1a) and equilateral 
triangular lattices, also known as hexagonal lattice (as in Fig. 1b). For the case of hexago-
nal structures, computing r is easier as all robot neighbours are at approximately the same 
distance. Therefore, r can be set to r = (1 + �)x , where 𝜖 < 0.5 is the proportion of toler-
able error in placement/sensing. For the case of rectangular lattices we want to identify the 
Moore neighbourhood, therefore computing r is more difficult as it must include robots at 
different distances: the neighbours on the diagonal are farther than the ones at the sides. 
Additionally, the rectangular lattices can have different vertical and horizontal distances, 
that is the lattice’s rows can be closer than the columns are, or vice versa. Given the robots’ 
limitations (i.e., absence of directional information), subroutine SR1b can only work with 
an asymmetry between vertical and horizontal distances up to a given limit. The limit is 
given by the inequality 2x >

√

x2 + y2 , where x and y are the inter-robot distances on the 
two dimensions (rows and columns). Assuming x ≤ y , the inequality states that twice the 
distance of one dimension should be larger than the distance on the diagonal of the rec-
tangular grid. Thus, we have the constraint that y <

√

3x . If we also assume a placement/
sensing error � , the inequality becomes 2x(1 − 𝜖) >

√

(x + 𝜖 x)2 + (y + 𝜖 y)2 , resulting to
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Exceeding this limit of horizontal–vertical asymmetry—in either direction—would cause 
robots located two hops apart along one axis of the lattice (e.g., the x-axis) to be closer than 
their direct neighbours along the other (e.g., the y-axis), thereby invalidating our distance-
threshold-based method for identifying neighbours.

These two limits also constrain the range of suitable values for the distance threshold 
r, which must lie between them, i.e., 2x > r >

√

x2 + y2 (and similarly when account-
ing for the sensing error � ), as illustrated in Fig. 3. As the horizontal–vertical asymmetry 
increases, the valid range for r narrows, making precise tuning more critical, especially in 
the presence of sensing noise � . The Kilobot algorithms benefit from simple computation, 
thus, in our implementation, the Kilobots compute r = 1.5x + 10 , a straightforward for-
mula that approximately lies midway between the two bounds of the inequality and consist-
ently performed well for both triangular and rectangular lattices (see Fig. 1).

Occasionally, it might happen that due to noise in the transceiver (especially in swarms 
with small spacing between individual robots), the distance of the sender is consistently 
overestimated. In such instances, messages sent by a valid neighbour are discarded because 
the estimated distance is larger than r. In this case, robots may create an incomplete list of 
neighbours. Even if a consistent overestimation of distance by a robot is rare, the presence 
of these errors is relatively high when operating with large swarms because the probability 
of these rare events occurring increases with the swarm size. Therefore, we implemented 
a repairing mechanism as the third phase of the subroutine SR1b, which begins 5 s after 
the start of the second phase. During this repairing phase, each robot broadcasts a mes-
sage with its ID (sender-ID) and all IDs in its neighbour list (neighbours-IDs). Each robot 
checks all incoming messages (regardless of the sender’s distance) and if its ID is one of 
the neighbours-IDs, it adds the sender-ID to its neighbour list. This approach reduces con-
siderably distance estimation errors which are typically asymmetric, that is only one robot 
in a couple of neighbours overestimates the distance.

(1)y <
x
√

3𝜖2 − 10𝜖 + 3
√

𝜖2 + 2𝜖 + 1

.

Fig. 3   In order to correctly identify the lattice neighbours (e.g., the Moore neighbourhood in a rectangular 
lattice) each robot filters the incoming messages using the estimated distance of the message’s sender (sub-
routine SR1b). The filtering threshold r must be within two limits, illustrated in the figures by the yellow 
and blue lines, for the case of noiseless measurements and positions. The limits become more stringent 
when we consider placement or measurement errors, as discussed in the text. a In our implementation, the 
Kilobots use a simple equation (green line) that lays approximately in the middle of the two limit lines. The 
panels b–d show how the focal robot, in the centre, scales its threshold r, green line, when inter-robot spac-
ing increases
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Algorithm 1   Subroutines SR1a and SR1b: Locally-unique IDs assignment and neighbour 
list creation

3.2.3 � Subroutine SR1c—position group identification

Once the neighbour list is created, subroutine SR1c enables every robot to determine its 
position group in the lattice (Algorithm 2). Each robot broadcasts messages indicating its 
ID and the number of neighbours in its list. Once the robots have collected the information 
regarding the number of neighbours from every neighbour, they use it to determine their 
own position in the lattice. We consider three possible position groups: CORNER, BOR-
DER, and MIDDLE, as illustrated with colour-coded positions in Fig. 1. The robot is posi-
tioned on the CORNER of the lattice if it has fewer neighbours than any of its neighbours 



343Swarm Intelligence (2025) 19:333–360	

(line 17 of Algorithm 2). The robot is positioned in the MIDDLE if its number of neigh-
bours is the largest of its neighbourhood (line 23). The robot is positioned on the BOR-
DER of the lattice in all other cases (line 20, i.e., it has neighbours with a higher number 
of neighbours and it has not fewer neighbours than any of its neighbours). Note that for a 
known regular topology, this procedure can be simplified as the position in the formation 
can be derived directly from the number of identified neighbours (e.g., in a rectangular 
topology the CORNER has 3 neighbours, the BORDER has 5 neighbours, and MIDDLE 
has 8 neighbours). However, subroutine SR1c, and more generally routine R1, does not 
require the robots to know the lattice topology in advance. On the contrary, during SR1c, 
the robots can self-deduce the regular topology they are part of by using the neighbour 
counts.

Algorithm 2   Subroutine SR1c: Position group identification

3.3 � Routine R2—coordinate system construction

Routine R2 enables the swarm to create a global coordinate system in which every robot 
self-localises by computing its 2-dimensional coordinates within the lattice. This routine 
requires the completion of routine R1 by which robots know the locally-unique IDs of 
their neighbours and know their position group in the lattice (i.e., CORNER, BORDER, 
or MIDDLE). This routine has been designed for rectangular lattices, however, our sub-
routines can be potentially extended to different protocols for building global coordinate 
systems (possibly in dimensions higher than two) for different lattice topologies, e.g., hex-
agonal (Snyder et al., 1999). For the rectangular lattice, the 2D coordinates are computed 
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with respect to the x and y axes which correspond to two orthogonal edges of the rectangle 
(that are randomly chosen in subroutine SR2a). The coordinates start from value (1,1) at 
the origin (a robot in a corner of the lattice) and indicate the discrete positional values for 
every robot in the lattice.

3.3.1 � Subroutine SR2a—axes origin and direction

Through subroutine SR2a, one of the four corners is randomly selected as the axes’ ori-
gin (Algorithm 3). At the beginning of this subroutine, every CORNER selects a random 
number, and the CORNER that selected the smallest number is selected as the axes’ ori-
gin. Because the four CORNER robots are not in direct communication range, all robots 
cooperate in the communication by spreading the corners’ random numbers throughout 
the lattice. In order to minimise bandwidth usage and speed up the information spreading, 
every robot only relays the lowest random number that it has received so far and ignores 
any other higher number (lines 19-21). The CORNER robots also stop broadcasting their 
random number once they receive a message with a number lower than their own (line 16). 
After sufficient time, which we estimate as the time necessary to send 25 messages (about 
13 s), we assume that the message representing the lowest random number of one COR-
NER robot has reached all other CORNERs. The CORNER robot that has not received any 
lower random number, then, takes on the role of origin of the axes and sets its coordinates 
to (x,y)=(1,1).

In order to minimise the probability that two random numbers have the same value, 
the random number should be uniformly drawn from the largest range possible. For exam-
ple, in our implementation, the Kilobots can exchange messages with a 9-byte payload (72 
bits). Therefore, the CORNER computes its random number in the range [0, 272] . Using 
such a large range, the probability of two identical 9-byte sequences being generated in two 
CORNER robots is negligible.

Once the axes’ origin CORNER robot is selected, it is possible to determine the axes’ 
orientation by assigning coordinates to its neighbours. The axes’ orientation is also ran-
domly determined, this time using information already locally available (from SR1a). 
The CORNER robot assigns to the BORDER node with the lowest locally-unique ID 
the coordinate (x,y)=(2,1) and to the BORDER node with the highest ID the coordinate 
(x,y)=(1,2). As a result, both the origin and orientation of the coordinate system are ran-
dom and self-emergent in every run. This operation terminates subroutine SR2a and ena-
bles the start of subroutine SR2b.
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Algorithm 3   Sub-routine SR2a: Axes origin and direction

3.3.2 � Subroutine SR2b—lattice dimension measurement

The subroutine SR2b enables the swarm to compute collectively the dimension of the two 
axes and gives information to the border robots on their position with respect to these axes. 
Knowing the axes’ dimensions also allows every robot to measure the size of the swarm, a 
quantity that is typically hard to compute with decentralised algorithms (Saha et al., 2021; 
Ganesh et al., 2007).

Once the axes’ origin has been selected (SR2a), the first BORDER robot on the 
x-axis, that is the robot with coordinates (x,y)=(2,1), starts the subroutine SR2b. The 
robot initialises a counter variable with the value 2 and sends this value throughout the 
lattice border; at each message hop, the next border robot increases the count by one and 
relays the message, as displayed in Fig. 4. These messages are flagged with a specific 
header denoting the border-count subroutine SR2b. These messages are composed of 
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four values (in addition to the header); one value is the border count that is increased at 
each step, while the other three values are initialised to zero and will be edited by the 
CORNER robots. The algorithmic implementation for this process is shown in Algo-
rithm  4 and indicates that every BORDER robot that did not receive a border-count 
message yet accepts the message, adds one to the counter, and broadcasts the new value. 
Three additional rules are necessary for computing correctly the lattice edge dimen-
sion. The first additional rule regards BORDER robots that are adjacent to a CORNER 
robot and received their first message from another BORDER robot. These robots must 
use a special header in their border-count message. Messages with such special header 
are only read by CORNER robots so that the other BORDER robot on the diagonal 
(which did not receive any border-count message yet) will ignore the message and wait 
for the CORNER robot to send its border-count message with the updated value. The 
second additional rule requires the CORNER robots to append further information to 
the border-count message. They include information about their local count that they 
store in the first zero value composing the message. Therefore the border-count mes-
sage maintains as separate pieces of information the local count of the three corners tra-
versed during the multi-hop spreading. The third additional rule prevents the execution 
of the counting in both directions. The rule only applies to the robots with coordinates 
(x,y)=(1,1) and (x,y)=(1,2); these two robots ignore any border-count message with a 
count value lower than three. This process ends when the count has travelled around the 
whole border of the lattice; this happens when a valid border-count message is transmit-
ted to the axes’ origin. This process is independent of timers and can scale to any grid 
size larger than or equal to 3 × 3.

Once the origin robot receives the total border count, the total count information and 
the local counts of the CORNER robots are spread throughout the border in the same 
direction as before until the message is returned to the origin once again. At this point, 
all BORDER and CORNER robots know the lattice size (total border count and corners’ 
local counts) and their position on the border with respect to the axes’ origin (their local 
count value). The robots can use this information to compute the swarm size and will 
subsequently use it to compute their coordinates in subroutine SR2c.

Fig. 4   Image of the border counting process (subroutine SR2b) in a swarm of 200 Kilobots. The robots on 
the borders of the 25 × 8 lattice light up when they receive the border-count message during the execution 
of subroutine SR2b. In this way, it is possible to see the message travelling throughout the lattice edges. In 
the bottom-left corner, there is the robot at the axes’ origin, (x,y)=(1,1), and its neighbours display different 
colours to signal their coordinates as discussed in subroutine SR2a
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Algorithm 4   Sub-routine SR2b: Lattice dimensions measurement

3.3.3 � Subroutine SR2c—coordinates assignment

Through subroutine SR2c, every robot computes its two coordinates and becomes aware of 
its position within the full formation. In subroutine SR2c, robots employ the information 
gathered in SR2b and incrementally assign coordinates, commencing from the edges of the 
lattice and moving inwards.

Corner and borders. The corner at the origin already has its coordinates, assigned dur-
ing subroutine SR2a, (x,y)=(1,1). The other three CORNER and all the BORDER robots 
use the information exchanged in the border-count messages in SR2b to set their coordi-
nates. The border-count messages contain ordered information on the local count of the 
three corners encountered during the multi-hop count on the border. We label as C1, C2, 
and C3, the local counts of the first, second, and third corners encountered during the bor-
der-count process (see Fig. 4). The CORNERs and the BORDERs then assign their coor-
dinates through Algorithm 5, where my_count is the local count of the robot running the 
algorithm and coord its coordinates.
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Algorithm  5   Part of subroutine SR2c: Coordinates assignment for CORNER and BOR-
DER robots

Middle robots. The MIDDLE robots—which are not on the edge of the lattice—assign 
their two coordinates independently using information locally broadcast by their neigh-
bours. Once any robot self-assigns its coordinates, it broadcasts its values to its neigh-
bours. Each robot locally stores the coordinates of its neighbours and once it receives the 
coordinates with three consecutive values on one axis, it self-assigns the middle value on 
that axis. For instance, a robot i that receives the coordinates from neighbours j, k,   and 
w with values (xj, yj) = (3, 7) , (xk, yk) = (4, 7) , and (xw, yw) = (5, 7) , will set its coordinate 
x = 4 . Similarly, when a robot i receives the coordinates, (xj, yj) = (3, 7) , (xk, yk) = (3, 8) , 
and (xw, yw) = (5, 9) , will set its coordinate y = 8 . This process allows every robot to self-
assign its coordinates and to become aware of both its position within the lattice and the 
relative position of all its neighbours. This information can be employed for various subse-
quent tasks which exploit spatial awareness of the robots (e.g., dynamic role assignment as 
a function of the robots’ position (Pratissoli et al., 2019, 2023), or exploit the swarm-level 
agreement obtained with routine R2 (e.g., use the coordinates to assign globally-unique 
IDs).

3.4 � Routine R3—synchronised dynamic role assignment

Routine R3 consists in assigning a different role, or task, to each robot depending on its 
coordinates. This operation is achieved by providing all robots with the desired action plan. 
The plan indicates what is the role of every robot depending on its coordinates and how 
the roles change over time. While all the robots know the full action plan in advance, each 
robot only knows its role once it computes its coordinates through routine R2. Using the 
synchronisation method described in Sect.  3.1, the robots can also synchronously move 
to the next step of the action plan. Such a synchronous role change can be interpreted as a 
change in the swarm state. Enabling swarm state changes allows the programming of robot 
swarms through swarm-level finite state machines, which can simplify the design of collec-
tive behaviour, as was also suggested by previous research (Pinciroli & Beltrame, 2016). 
Indeed, designing swarm robotics algorithms is complicated as the collective behaviour 
must be encoded in individual robot rules and the link between swarm and robots can be 
counter-intuitive. Having the possibility of defining the swarm action plan, while maintain-
ing a fully decentralised approach, can be useful.
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In this study, we implemented two types of action plans that differ in how the robots 
activate. In both action plans, a subset of robots in predefined locations becomes active. 
In the first case, the active robots activate their motors and move out from the formation. 
In the second case, the active robots light on their coloured LED and create a collective 
pattern as shown in Sect. 4. In the second action plan, robot activation is periodically alter-
nated between a cycle of robot subsets with potentially different active roles (implemented 
as different light colours). The repeated patterns allowed us to test the robustness of the 
system (e.g., to maintain swarm-level synchronisation) during several-minute-long runs.

3.5 � Complexity analysis

The complexity of our routines can be measured by computing the number of messages that each 
robot is expected to receive and process. Indeed, our subroutines (see Algorithms 1–4) have a 
single loop that repeats the execution of the listed operations for each received message.

The operations of every subroutine in R1 are local, with each robot only receiving 
and processing messages from its neighbours and neighbours of neighbours. This num-
ber depends on the specific regular formation and robot’s communication range, for exam-
ple, in our experiments with Kilobots in a rectangular lattice, the number of local neigh-
bourhood messages was in the worst case 25. When using simple devices, messages can 
get frequently lost, hence we let the robots repeat each message exchange for predefined 
time periods (configured through temporal timeouts). Therefore, the algorithm complex-
ity of routine R1 remains constant and independent of the swarm size N, O(1) , however it 
increases linearly with longer timeout periods.

Differently, the number of messages exchanged in the subroutines of R2 depends on the 
swarm size N. In particular, for a rectangular lattice n × m = N (with n ≥ m ), the complex-
ity of subroutines SR2a and SR2c scales as the diagonal of the rectangle, which in discrete 
space corresponds to the longer edge n. In subroutine SR2b, the complexity scales as the 
rectangle diameter. Therefore, for rectangular lattices, routine R2’s complexity is O(n) , and 
for a square lattice is O(

√

N).
Routine R3 is based on the synchronisation procedure which can be triggered anywhere 

and concurrently in multiple locations of the swarm. With relatively homogeneous internal 
clocks, the message exchange remains local, however in the worst case, synch messages 
need to be spread to everyone scaling as the diagonal of the rectangle, O(n) , or O(

√

N) for 
square lattices.

4 � Experiments

We tested the algorithms through a series of experiments in simulation and with swarms of 
real robots. As indicated earlier, the chosen robotic platform is the Kilobot robot (Ruben-
stein et  al., 2012, 2014a), which is a relatively simple robot that can move using vibra-
tion motors and exchange IR messages with other robots in a range of about 10 cm. The 
Kilobots can also estimate the distance (but not the position) of the sender of any received 
message. Finally, they can show their internal state through a coloured light-emitting diode 
(LED).
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The code to run our algorithm on the Kilobots is open source and available both on 
Github at https://​github.​com/​TBU-​AILab/​Kilob​ot-​self-​local​izati​on and in the Zenodo 
repository https://​doi.​org/​10.​5281/​zenodo.​14599​973.

4.1 � Simulations

The simulations have been performed with ARGoS (Pinciroli et al., 2012), a modular and 
efficient simulator for swarm robotics (Pitonakova et  al., 2018), which provides a con-
venient plugin for simulating the Kilobots (Pinciroli et al., 2018). The Kilobot-plugin for 
ARGoS allows the user to implement robot code that can be transferred directly from simu-
lation to physical robots without modification, thereby facilitating both implementation and 
testing.

All simulations were run with a time step of 0.1 s, using synchronous communication 
among robots. No noise was introduced in sensing and communication, allowing us to 
focus on evaluating the algorithm’s core logic and behaviour under ideal conditions.

Through simulation, we performed several tests, running numerous independent repeti-
tions with different random seeds for each investigated condition. We conducted tests in 
experiments with up to 1000 simulated Kilobots, where we tested rectangular lattices of 
different dimensions, from 3 × 3 to 40 × 25 , and in each case, we varied the inter-robot 
spacing, from 35 to 70 mm. In all experiments, the swarm successfully completed the pro-
cess: every robot correctly computed its coordinates and took on its expected role. Figure 5 
shows four screenshots of a simulation with 10 × 10 Kilobots illustrating the four main 
phases of the algorithm: neighbourhood construction (Fig. 5a), axes’ origin selection and 
border counting (Fig. 5b), and assignment of the x-axis values (Fig. 5c) and of the y-axis 
values (Fig. 5d).

4.2 � Kilobot experiments

We also conducted a range of real-robot experiments employing up to 200 Kilobots. We 
tested different grid sizes, topologies, and inter-robot spacing, as illustrated in Figures 1, 
6, 7, and 8. Experiments have been conducted in three different laboratories. Small-scale 
experiments, with up to 25 Kilobots, have been conducted in the Swarm Lab at the New 
Jersey Institute of Technology, large-scale experiments with 64–200 robots have been con-
ducted using the Kilobot infrastructure of Sheffield Robotics (Nikolaidis et al., 2017) at the 
University of Sheffield, and the experiments to quantify speed and robustness of the system 
have been conducted in the A.I.Lab of the Tomas Bata University in Zlín, Czech Republic.

Scalability. Kilobot experiments tested the capability of the algorithm to run without 
change in swarms of different sizes. We conducted experiments with square lattices of 5 × 5 
robots (Fig. 6), 8 × 8 robots, 10 × 10 robots (Fig. 7), and 25 × 8 robots (Fig. 8). The figures 
show key frames of the process, always terminating with the dynamic role assignment in 
the form of light patterns that show written text. Note that the axes’ origin and orientation 
are determined at run time and are randomly chosen, therefore in about half of our experi-
ments the text appeared mirrored (when the axes’ orientation is inverted the displayed text 
is subject to a reflection). For ease of visualisation, we only report images and videos of 
runs in which the light pattern is displayed in the same orientation as the observer.

In Fig. 6, the 25 robots have a cyclic role assignment in which they form the light pattern 
N-J-I-T. The video of one experiment with 25 robots is available at https://​youtu.​be/​RdUs_​
EHRnUU and in the supplementary online material (Video 1). Figure 7 shows frames for 

https://github.com/TBU-AILab/Kilobot-self-localization
https://doi.org/10.5281/zenodo.14599973
https://youtu.be/RdUs_EHRnUU
https://youtu.be/RdUs_EHRnUU
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a swarm of 100 Kilobots in some of the key algorithm phases which terminate with the 
cyclic role assignment of two light patterns forming the worlds “HE-LLO" and “WO-
RLD". The video of one of the experiments with 100 robots is available at https://​youtu.​
be/​KlooX​OOvZsY and in the supplementary online material (Video 2). Finally, Figure 8 
shows frames from experiments with the largest swarm tested, organised in a rectangular 

Fig. 5   Four key screenshots from an ARGoS simulation with 100 Kilobots. Panel a shows the completion 
of subroutines SR1c where robots in the three position groups CORNER, BORDER, and MIDDLE light up 
with colours red, blue, and green, respectively; thus, reproducing the results obtained with real Kilobots in 
Fig. 1a. Panel b shows the completion of subroutine SR2b with the axes’ origin in the bottom left corner, 
and the robots on the borders that have received the border-count message have their white light on, analo-
gous to Fig. 4. In panels c and d, the robots self-assigned roles (routine R3) depending on their x-axis and 
y-axis coordinates, respectively. The coordinate-based colours are only based on five colours, which there-
fore are repeated twice in the 10 × 5 lattice

Fig. 6   25 Kilobots in a square 5 × 5 lattice self-assign roles in synchrony with each other. They form a 
repetitive cycle of light patterns displaying the letters N-J-I-T

https://youtu.be/KlooXOOvZsY
https://youtu.be/KlooXOOvZsY
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lattice sized 25 × 8 . In these experiments, the cyclic role assignment displays the word 
“SWARM" that alternates between two different positions in the lattice. The video of one 
of the experiments with 200 robots is available at https://​youtu.​be/​S4s6f​pWZvMM and in 
the supplementary online material (Video 3).

Through a series of 80 robot experiments with up to 100 robots, we also tested the speed 
to complete the routines R1 and R2 and the various subroutines within. Figure 9 shows 
the results of the 80 experiments, where we run 10 repetitions for each of the eight tested 
lattice sizes, 3 × 3, 4 × 4,… , 10 × 10 . If we consider that the the horizontal axis is in loga-
rithmic scale (as at each tick the swarm size has a quadratic increase), the scaling of the 
algorithm in terms of competition time is relatively good. The speed of the process can be 
potentially further optimised by tailoring the time limits of the subroutines to the specific 
scenario. Anyhow, our experiments using the time limits indicated in Sect. 3 already show 
a relatively quick process compared with other research experiments that used large-scale 
swarms of Kilobots (Rubenstein et al., 2014b; Reina et al., 2017, 2018; Gauci et al., 2018).

Lattice topologies and inter-robot spacing. Through a set of Kilobot experiments, 
we tested different topologies and spacing among robots. While routine R1 can work 
on a variety of different regular lattices (as discussed in Sect. 3.2), routine R2 has been 
designed for rectangular lattices only. Figure 1 shows the final stage of routine R1 in 
the square and hexagonal lattices, in which the robots display with distinct colours their 
position group (i.e., CORNER, BORDER, or MIDDLE). Figures 6 and 7 show square 

Fig. 7   Six screenshots of an experiment with 100 Kilobots in a square 10 × 10 lattice. Panels a–d display 
the same four moments as displayed in Fig. 5 with simulated robots. Panels e and f show two moments of 
the synchronised dynamic role assignment (routine R3), where the robots form a repetitive cycle of light 
patterns displaying the words “HE-LLO" and “WO-RLD", respectively. The video of the full experiment is 
available at https://​youtu.​be/​KlooX​OOvZsY and in the supplementary online material (Video 2)

https://youtu.be/S4s6fpWZvMM
https://youtu.be/KlooXOOvZsY
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formation with largely different spacing among robots. Finally, in the experiments of 
Fig. 8, we tested a rectangular lattice (non-squared). In addition, these tests also validate 
the robustness of our algorithm to misplacement errors which have been introduced by 
the manual placing of the robots in the lattice formation. For example, in Fig. 7 it is pos-
sible to appreciate the visible misalignment of some of the robots on the second column 
from the right, which are particularly evident when the robots have their lights turned 
on.

Fig. 8   Six screenshots of an experiment with 200 Kilobots. Panels a–d display the same four moments 
as displayed in Figs.  5 and 7 in smaller groups. Panels e and f show two moments of the synchronised 
dynamic role assignment (routine R3), where the robots form a repetitive cycle of light patterns displaying 
the word “SWARM” shifted by two columns. The video of the full experiment is available at https://​youtu.​
be/​S4s6f​pWZvMM and in the supplementary online material (Video 3)

https://youtu.be/S4s6fpWZvMM
https://youtu.be/S4s6fpWZvMM
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Robustness to robot failures. We study the robustness of the system to individual 
robot failures. In particular, we consider the impact of the breakdown of one or more 
robots which become irresponsive and stop communicating with their neighbours. We 
simulate the breakdown by physically removing the robot from the lattice. Depending 
on the moment of the breakdown and the location of the broken robot, the impact on the 
system is different.

A failing robot can compromise the execution of routines R1 and R2 when it is located 
in a corner or on the border of the lattice. Robots in these locations play critical roles in 
the information gossiping through the swarm. In contrast, as discussed below, failures of 
robots in the middle of the lattice typically have limited or no impact on the successful 
execution of the three routines. Assuming pb to be the breakdown probability per robot, we 
can quantify the probability of a catastrophic event (i.e., full system failure) as the prob-
ability that a robot in the corner or edge of the lattice breaks. This probability increases 
with the swarm size N. For example, assuming a square lattice with layout 

√

N ×
√

N , the 
system failure probability is

In Fig.  10(a), we report the scaling of this curve for four values of pb ∈ {0.01, 0.005,   
0.001,  0.0001} . When pb is relatively high, e.g., pb = 1% of the robots are likely to fail, 
large systems have a high probability of not functioning. For instance, for such a high value 
of pb , the probability of whole system failure exceeds 50% when the swarm size is greater 
than approximately 333 robots. Therefore, additional information recovery routines should 
be considered before deploying the algorithm to such contexts. Instead, when the probabil-
ity that a robot fails in pb is low (e.g., pb = 0.01% ), also large swarms (e.g., N = 104 ) are 
likely to complete the process without fatal disruptions.

The predictions of Fig. 10(a) are only valid when the breakdown happens before the end 
of routine R2. Failures that happen after completion of routine R2, i.e., when the robots 
computed their coordinates, do not have any impact on the other robots during the routine 

(2)1 − (1 − pb)
4(−1+

√

N).

Fig. 9   Temporal scaling in the execution of Routines R1 and R2. The plots show the aggregated data (box-
plot) and individual datapoints (red markers) of 10 robot experiments for each grid size (indicated on the 
x-axis). The text on the top of each plot indicates the measured time. Note that the swarm size on the hori-
zontal axis is in logarithmic scale. The competition time of scales well with increasing swarm size and the 
variance is relatively low, except a few occasional runs
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R3. Hence, our analysis is only relevant to failures happening before the beginning of rou-
tine R1 or after the execution of R1 but before the start of R2. As reported in Fig. 9, the 
execution of R1 and R2 is particularly quick, thus limiting the likelihood of breakdowns 
during their execution.

When the breakdown is prior to the start of routine R1 (i.e., at the beginning of the 
process), the robots adjacent to a failing robot located in the middle of the lattice com-
pute their relative position incorrectly, as they have fewer neighbours than they should. 
This type of failure is visualised in Fig. 10(b), where we report colour-coded results of 
the coordinate assignment at the end of routine R2. As Fig. 10(b) shows, the breakdown 
of one middle robot negatively impacts the robots in its proximity which incorrectly 
compute their coordinates, yet the disruption remains localised and does not compro-
mise the entire grid. When the breakdown of one or two middle robots happens after the 
completion of R1 and before the beginning of R2, it has no effect on the other robots. 
We run a set of robot experiments to test these conditions; see Video 4 in the supple-
mentary online material. However, when more than two adjacent robots break down, 
depending on their spatial configuration, they can affect the computation of other robots 
in their neighbourhood. If three failed robots form an L-shape or lie along a diagonal 
(see Video 4 in the supplementary online material), the rest of the swarm remains unaf-
fected. In contrast, when three adjacent robots in a straight line break down, two neigh-
bouring robots incorrectly compute one of their coordinates.

In summary, while the system is resilient to failures of individual robots located in 
central regions or occurring after the execution of routine R2, it remains vulnerable to 
early failures in critical positions—particularly at the corners and edges of the lattice. 
Therefore, in applications involving large swarms or environments with a non-negligi-
ble risk of hardware failure, the algorithm may require the integration of redundancy or 
recovery routines to maintain global functionality.
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Fig. 10   a The current system is vulnerable to the breaking of robots located in the corners or the edge of 
the lattice. Given different individual probabilities of a robot breaking down (i.e., becoming inactive), the 
probability that one of them is in one of the critical locations (corner, edge) increases with the swarm size 
N (on the x-axis). When robots are prone to failure, implementing recovery mechanisms on corners and 
edges is critical to enable system scaling. Computed using Eq. (2) for square lattices 

√

N ×
√

N . b Failures 
in middle robots only cause a localized error in the lattice, in the photo the robots lighted in red computed 
incorrect coordinates. All robots can compute the correct coordinates when one or more middle robots fail 
after R1, see Video 4 in the supplementary online material
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Dynamic role assignment. In Figures  6, 7, and 8, the role assignment consisted of 
displaying a repetitive cycle of light patterns. We let the swarm run these light patterns 
for several dozen minutes, and in all tested cases, the swarm never desynchronised. In 
an additional experiment, we tested a different role assignment scenario in which a sub-
set of Kilobots at given locations commenced movement and left the formation. The 
video of this experiment is available at https://​youtu.​be/​4wlst​UNpNcU and in the sup-
plementary online material (Video 5).

Summary. The robot experiments confirmed the validity of the proposed algorithm by 
consistently reaching the successful completion of all routines. In our scalability tests, we 
showed that the same identical algorithm can be employed for small grids as well as for 
large-scale experiments, in our case up to 200 real robots. In this section, we presented 
more than 100 experiments with real robots which always led to the correct assignment of 
the coordinates of every robot, except for a few cases where we intentionally deactivated 
some of the robots to simulate faults in critical positions. The speed measurements showed 
good scalability performance with the system size. The final routine of cyclic role assign-
ment has also been instrumental in validating the possibility of changing the collective 
state of the swarm in a synchronised way, even in large swarms composed of robots that 
only use local communication. Additionally, real robot experiments tested the ability of the 
algorithm to operate under variable levels of communication noise and distance measure-
ment errors, intrinsic to such simple devices. Tests with different topologies and with robot 
formations with some placement inaccuracies due to manual setup further showed the gen-
erality of the proposed approach and its robustness. The system can sustain different types 
of robot breakdowns however failure of certain robots in specific locations and at specific 
times can compromise the entire system process. Our analysis and experiments quantify 
these conditions and the probability of them to occur.

5 � Conclusion

We proposed a decentralised algorithm that enables stationary robot swarms, organised in 
a regular lattice, to collectively build a shared reference system through which every robot 
can self-localise within the group. This spatial information allows robots to compute their 
unique coordinates within the lattice and self-assign roles based on their position. Ena-
bling positional self-awareness and location-dependent task allocation in stationary robot 
swarms (e.g., those deployed in formation at startup) supports the execution of higher-level 
collective behaviours, such as coordinated motion in formation (Pratissoli et al., 2023) or 
localised computation (Beal and Viroli, 2015). Our algorithm also enables temporal coor-
dination of robots’ actions through a combination of open- and closed-loop synchronisa-
tion mechanisms. Synchronised behaviour is key to achieving effective coordination, both 
in group-living organisms (Couzin, 2018) as in artificial swarms (Trianni & Nolfi, 2009; 
Ghosh et al., 2022). We showcase our solution in a set of experiments comprising up to 
200 real robots that create synchronised dynamic light patterns.

The main distinguishing aspect of our approach compared to previous solutions is the 
possibility of constructing a shared swarm-level coordinate system with swarms of mini-
malistic robots, which are unable to measure the bearing of other robots. Our algorithms 
can run on robots capable only of basic computation, broadcasting small messages, and 
making noise-prone estimations of the distance of nearby robots. In contrast, most previous 

https://youtu.be/4wlstUNpNcU
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work could only achieve decentralised self-localisation through more complex robots 
equipped with range-and-bearing sensors (Beal et al., 2013; Sahin et al., 2002; Guo et al., 
2011; Coppola et al., 2019; Mathews et al., 2017; Wang & Rubenstein, 2021; Batra et al., 
2022; Li et al., 2018; Klingner et al., 2019). Algorithms for minimalistic platforms have 
higher portability, due to fewer robot requirements, and can, therefore, be used in a wider 
range of applications. We implemented our algorithm on swarms of up to 200 real Kilobot 
robots, a reference platform for minimalistic collective robotics.

While our algorithm does not require the ability to detect the bearing of incoming mes-
sages, it assumes the robot swarm is initially deployed in formation, creating a regular lat-
tice (e.g., a rectangular lattice). The algorithm can thus exploit the regularity of the lattice 
and its geometric properties to compute the relative location and bearing of each neigh-
bour. This assumption is generally not needed in the previously cited algorithms that rely 
on robots equipped with range-and-bearing sensing. Our solution trades robot simplicity 
for the need for a predefined spatial arrangement; as discussed in Sect. 3.2.3, the robots do 
not need to know their formation a priori, but can instead deduce the lattice topology online 
through subroutine SR1c, distinguishing between rectangular and hexagonal lattices. The 
deployment of large-scale swarms in regular lattices is motivated by the customary prac-
tices of storing, charging, and transporting robots organised in such regular formations. 
This constraint is also in line with previous studies on collective robotics that required the 
deployment of the robot swarm in a regular lattice (Rubenstein et al., 2014b; Gauci et al., 
2018; Slavkov et  al., 2018; Pratissoli et  al., 2019, 2023). Some of these works also ran 
self-localisation algorithms on Kilobots without using bearing information on messages; 
however, unlike our approach, they required the use of a small set of robots with specific 
locations and algorithms to act as ‘coordinate seeds’ (Rubenstein et al., 2014b; Gauci et al., 
2018). A further advantage of our algorithm is the absence of predefined roles; instead, 
robots are able to self-determine their role and position at runtime. All robots run the same 
code and can be freely interchanged. While the current algorithm is limited to a few regular 
lattices, future research could explore how our approach might be extended to other regular 
lattices, to irregular formations, and to higher dimensions. For example, we anticipate that 
minor changes could enable our routines to operate in swarms in three dimensions, organ-
ised in monoclinic and orthorhombic Bravais lattices, making the framework applicable 
and relevant to the recent 3D modular self-assembling robotic platforms e.g., Nisser et al. 
(2022), Bray & Groß (2023).

This study takes a practical approach, demonstrating the feasibility of running our algo-
rithm on Kilobot swarms across a variety of conditions, lattice formations, and swarm 
sizes. Experimental results confirm that the algorithm performs reliably on simple, error-
prone robotic platforms. To improve robustness, we incorporated several mechanisms 
to compensate for individual errors and enable the swarm to reach global coordination. 
However, future work should aim to enhance the algorithm’s resiliency by incorporating 
mechanisms that prevent collective failure when robots fail at critical locations within the 
lattice (e.g., those at the coordinates’ origin or along the boundaries). While we have dem-
onstrated that the swarm remains functional despite random failures of robots in the centre 
of the formation, our results show that failures at the border or corners can impair system 
performance. Developing strategies to detect and compensate for such failures is essen-
tial to strengthening system robustness, eliminating single points of failure, and enabling 
higher levels of collective fault tolerance. Another promising direction for future research 
is to apply the algorithm to swarms of robots moving in regular lattice formations, such 
as robotic sheets composed of self-propelled autonomous modules, as explored in (Pratis-
soli et  al., 2023). Ultimately, enabling reliable spatiotemporal awareness in minimalistic 
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swarms provides a foundational capability on which more advanced, self-organised and 
coordinated swarm behaviours can be built.

Supplementary Information  The supplementary online material with all videos of our robot experiments 
is available at https://​doi.​org/​10.​1007/​s11721-​025-​00251-4.
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