Swarm Intelligence (2025) 19:333-360
https://doi.org/10.1007/s11721-025-00251-4

®

Check for
updates

Decentralised construction of a global coordinate system
in a large swarm of minimalistic robots

Michal Pluhacek’? - Simon Garnier® - Andreagiovanni Reina*>%7

Received: 29 July 2024 / Accepted: 23 June 2025 / Published online: 18 July 2025
© The Author(s) 2025

Abstract

Collective intelligence and autonomy of robot swarms can be improved by enabling indi-
vidual robots to become aware that they are the constituent parts of a larger whole and to
identify their role within the swarm. In this study, we present an algorithm to enable posi-
tional self-awareness in a swarm of minimalistic, error-prone, stationary robots which can
only locally broadcast messages and estimate the distance from their neighbours. Despite
being unable to measure the bearing of incoming messages, the robots running our algo-
rithm can calculate their position within a swarm deployed in a regular formation. We
show through experiments with up to 200 Kilobot robots that such positional self-aware-
ness can be employed by the robots to create a shared coordinate system and dynamically
self-assign location-dependent tasks. Our solution has fewer requirements than state-of-
the-art algorithms and includes collective noise-filtering mechanisms. Therefore, it has an
extended range of robotic platforms on which it can run. All robots are interchangeable,
run the same code, and do not need any prior knowledge. Through our algorithm, robots
reach collective synchronisation and autonomously become aware of the swarm’s spatial
configuration and their position within it.

Keywords Self-localisation - Swarm robotics - Kilobots - Positional awareness -
Minimalistic robotics

P< Andreagiovanni Reina
andreagiovanni.reina@gmail.com

Michal Pluhacek
michal.pluhacek @agh.edu.pl

Simon Garnier

garnier @njit.edu

Center of Excellence in Artificial Intelligence, AGH University of Krakow, Krakow, Poland
Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic

Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA

Centre for the Advanced Study of Collective Behaviour, Universitit Konstanz, Konstanz, Germany

Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz,
Germany

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
7 Sheffield Robotics, University of Sheffield, Sheffield, UK

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-025-00251-4&domain=pdf

334 Swarm Intelligence (2025) 19:333-360

1 Introduction

Coordination in natural and artificial collective systems is, fundamentally, a spatiotemporal
problem. For two or more agents to coordinate their work, each must have a sense, even
if imperfect, of when and where others’ actions have taken place relative to its individ-
ual frame of reference. For instance, flocking in birds or schooling in fish is only possible
if each individual can quickly adjust their movement (a spatiotemporal attribute) to the
movements of their immediate neighbours (another spatiotemporal attribute). Even in fixed
groups of interacting agents, for instance, a network of sensors and actuators in a build-
ing, the topology (spatial) and timing (temporal) of the interactions will determine the type
(e.g., synchronisation, oscillation) and the quality of the collective coordination.

In the context of swarm robotics (Hamann, 2018), a field of research studying the coor-
dination of large groups of simple autonomous robots, the temporal aspect of coordination
is relatively easy to solve. Indeed, the microprocessors that control the behaviour of the
robots are, essentially, clocks. They provide each robot with an internal temporal frame of
reference against which it can log the events that it perceives from its environment. While
individual robot clocks may drift over time, effective decentralised methods from the wire-
less sensor network literature have been developed to maintain synchronisation across the
group (Sivrikaya & Yener, 2004). The spatial aspect, that is, where an event happens rela-
tive to a focal individual, is, however, less straightforward. Traditionally, it is solved using
either an external frame of reference (e.g., a Global Positioning System) or implementing
a “mental” mapping mechanism within the robot’s controller (Pritsker, 1984). The former
is usually very precise, but GPS signals are not always accessible to the robotic agents
(e.g., when they are blocked by obstacles) and their use runs somewhat contrary to the full-
autonomy goal of swarm robotics. The latter provides increased autonomy to the robotic
swarm but requires significant processing power and memory storage, which may not be
available on small or microscopic robotic agents.

Here, we propose an alternative approach using a fully decentralised mechanism that
can be implemented in autonomous robots with limited capabilities. In particular, our
approach allows a group of robots to build a global coordinate system without requiring
external reference information, preset origin, or predetermined roles for the robotic agents.
It is designed to work on any robotic platform, even with minimal, undirected communica-
tion abilities and noisy distance sensors. The proposed algorithm relies on the assumption
that the robot swarm is deployed in a regular formation, either a rectangular or hexagonal
lattice, which are formations particularly convenient for storing, charging, and transporting
large swarms of robots. To demonstrate the feasibility of our approach, we implemented
it using the well-known, minimalist Kilobot platform (Rubenstein et al., 2014a). We also
show that it scales up to large robotic swarms by performing validation experiments with
up to 200 real and 1000 simulated Kilobot units. Our approach is also potentially applica-
ble to the domain of wireless sensor networks (Yick et al., 2008) because our robots do not
move, they only locally exchange asynchronous messages with each other, acting as static
interactive autonomous sensors.

The rest of the manuscript will be organised as follows. First, we will give a general
description of our approach and compare it with existing approaches in the literature,
with a focus on minimalist robots (Sect. 2). In particular, we will highlight the strengths
and limitations of our approach with respect to the existing ones. Then, we will provide a
detailed description of the proposed algorithm and its implementation in the Kilobot plat-
form (Sect. 3). This will be followed by a description of the results of multiple experiments

@ Springer

Swarm Intelligence (2025) 19:333-360 335

with real and simulated Kilobot swarms demonstrating the capabilities and scalability of
the approach (Sect. 4), before we offer our conclusions on the possibilities that it offers and
on directions for future studies (Sect. 5).

2 Previous work

Through our algorithm, robots can autonomously self-localise within a group and dynami-
cally self-assign roles depending on their position. The algorithm works under the assump-
tion that the robots are organised in a regular formation—either a rectangular or hexago-
nal lattice, as illustrated by the two examples in Fig. 1—and that they remain stationary
throughout the execution. Having the robots organised in such regular formations can be
particularly convenient for logistics reasons. Indeed, robots are normally stored, charged,
transported, and deployed in regular formations: squared and rectangular lattices simplify
the working logistics and hexagonal lattices maximise the packing density of robots with
circular bodies. In addition to simplifying the transport and deployment logistics, having
robots in regular formations can be a requirement for the successful execution of the col-
lective task, for instance, the coherent motion of multi-robot aggregates (Pratissoli et al.,
2019, 2023) and light pattern display (Alhafnawi et al., 2020). In these works, spatiotem-
poral coordination was achieved by manually providing the robots with information about
their relative position within the formation. Our algorithm, by enabling the robots to self-
localise, increases the system’s autonomy.

There are other studies that proposed decentralised algorithms for the construction of
coordinate systems and self-localisation in robot swarms. Our solution is able to work
with fewer requirements and on simpler robots than state-of-the-art methods. In particular,
there are a few decentralised algorithms (Beal et al., 2013; Sahin et al., 2002; Guo et al.,
2011; Coppola et al., 2019; Mathews et al., 2017; Wang & Rubenstein, 2021; Batra et al.,
2022; Li et al., 2018; Klingner et al., 2019; Jones & Hauert, 2025) that allow each robot

a) 5 x 5 rectangular lattice b) 4 x 3 X 4 hexagonal lattice

Fig.1 Two Kilobot swarms organised in two regular formations with two different topologies. In both
cases, the robots by running the Routine R1 (Sect. 3.2) are able to identify their neighbourhood on the two
distinct regular lattices and compute their position group, i.e., CORNER position displayed with a red light,
BORDER position with a blue light in (a) and a magenta light in (b), and MIDDLE position with a green
light in (a) and a cyan light in (b)

@ Springer

336 Swarm Intelligence (2025) 19:333-360

to compute its relative positioning with respect to the rest of the swarm through the use of
distance and directional information about neighbours—i.e., each robot is able to know the
relative location of other robots nearby—and in some cases of a global reference orienta-
tion (e.g., a compass). On the one hand, our algorithm can work on simpler robots only
equipped with noisy distance sensors and transceivers for local broadcasting of small mes-
sages. Therefore, with our solution, neighbours’ bearing is not needed, making its imple-
mentation on Kilobots and other minimalist robotic platforms possible. On the other hand,
our solution requires the deployment of the robots in a regular formation while the robots
could operate in arbitrary arrangements in the studies cited above, as long as the robots
could communicate with each other.

Previous studies that implemented coordinate system construction on Kilobot swarms
(hence using robots without bearing sensors) also required the robot to be deployed in
a regular formation, in their case in a hexagonal lattice (Rubenstein et al., 2014b; Gauci
et al., 2018). However, in their case, a subset of the robots ran a different code than the rest
of the swarm and needed a precise initial placement to form the coordinate system origin
and axes orientation. Another study has shown that the requirement of a regular formation
can be removed by including a sizeable neighbourhood (minimum average of 15 neigh-
bours), yet still requiring a subset of the robots to run a different code and have a precise
initial placement (Nagpal et al., 2003). In our swarm, all robots run identical code and
do not need any pre-configuration. Every robot can be replaced with any other and their
relative position interchanged without compromising the collective behaviour. Addition-
ally, our algorithm executes simpler mathematical operations than the previous methods by
Rubenstein et al. (2014b), Gauci et al. (2018) and Nagpal et al. (2003), which can be better
suited for minimal computing devices.

In summary, there is a trade-off in the requirements to run algorithms for the self-organ-
ised construction of a coordinate system. Previous works require more sensing capabilities
(i.e., bearing sensors) or a subset of robots with special pre-configuration (i.e., different
programs and precise placement) but can have fewer constraints on the deployment config-
uration of the robots. Our algorithm has reduced sensing and robot configuration require-
ments because it leverages the knowledge of the regular lattice configuration of the robots,
which is one of the key requirements for our algorithm.

3 Self-organised construction of a coordinate system
In order to build a shared coordinate system, the robots run a sequence of three Routines:

R1. Neighbourhood construction
R2. Coordinate system construction
R3. Synchronised dynamic role assignment

Each routine is composed of sub-routines that we describe in detail in this section. Fig-
ure 2 gives an overview of the full process. Our three routines are designed to be run by
each robot comprising the swarm. Every robot runs identical code, therefore, there is no
requirement to pre-assign roles before deployment and any robot can replace any other.
Despite the robots relying solely on local and error-prone communication, the execution
of routines R1 and R2 allows the swarm to build a global-level coordinate system and ena-
bles every robot to self-localise within the shared coordinate system. Such capabilities can,

@ Springer

Swarm Intelligence (2025) 19:333-360 337

Routine (R1): Neighborhood identification

Sub-routine (SR 1a) Locally Unique IDs Sub-routine (SR 1b) Neighborhood list creation
Specific requirements: Specific requirements:
e Communication. e Locally unique IDs (SR 1a).
Output: Output:
e Each robot has locally unique ID. e Each robots has a list of its neighbors .
Sub-routine (SR 1c) Relative position identification Routine R1 output:

Specific requirements:
e Locally unique IDs (SR 1a) and neighborhood
list (SR 1b).
e Robots physically organized in a regular lattice.
Output:
e Each robot is aware of its relative position in
the lattice (e.g. corner, border or inside).
Routine (R2): Global coordinate system

Sub-routine (SR 2a) Axes origin and direction Sub-routine (SR 2b) Lattice dimensions measurement
Specific requirements: Specific requirements:

e Neighborhood identified (R1). e Axes origin and direction (SR 2a)

e Coordinate system rules specified. e Robots physically organized in a rectangular lattice.
Output: Output:

e The swarm selects which robot is located at the e Edge robots count the axes sizes and spread the

global axes origin. information throughout the swarm.
e The swarm determines the axes orientation as Counting direction

physical directions on the lattice. CORNER?

1) .
L R I T R R R N I A I I 0

CORNER4 / Origin CORNERL
(1,1}

Sub-routine (SR 2¢) Coordinates assignment Routine R2 output:

Specific requirements:
e Lattice dimensions (SR2b)
e Coordinate system definition.

Output:
e Every robot is assigned a unique pair of (x and
y) coordinates that correspond to the global
physical position within the lattice formation.

Routine (R3): Dynamic role assignment

Sub-routine (SR 3a) Synchronized pattern Routine R3 output:
emergence

Specific requirements:
e Globally unique IDs (R2).
e Position awareness (R2).
Output:
e The swarm is able to perform any distributed
computation on a physically embedded lattice.
e The swarm is kept in sync.

Fig.2 Overview of the three routines to (R1) allow every robot to identify its lattice neighbourhood, (R2)
construct a swarm-level coordinate system, and (R3) dynamically assign roles to robots in specific positions
within the formation. All routines consist of decentralised algorithms to let the robot reach global coordina-
tion in a self-organised way. Each routine comprises one or more sub-routines (SR). The specific require-
ments for each subroutine also include requirements from previous subroutines

@ Springer

338 Swarm Intelligence (2025) 19:333-360

then, allow the robots to self-assign roles based on their position within the swarm and on a
shared time clock, as showcased with routine R3. The routines’ algorithms are presented in
a generic form and are designed to work on both rectangular and hexagonal regular lattices,
with exception of routine R2 which has been tailored to build a coordinate system on rec-
tangular lattices only. In fact, the coordinate system in rectangular and hexagonal lattices
is structurally different (Snyder et al., 1999), therefore, routine R2 needs to be designed
specifically for each type of lattice. For the purpose of this study, we show the construction
of the coordinate system (R2) in rectangular lattices only.

Before describing the three routines, we explain how the robots can maintain a time
clock synchronised among all the robots, which is a fundamental requirement for the suc-
cessful execution of our routines.

3.1 Asynchronised swarm

In our study, every robot is an autonomous entity that runs the same code and exchanges
messages with close neighbours. In several parts of the process, the transition from one
subroutine to the next one is based on a shared time clock. However, without any closed-
loop control, the independent clocks of a large number of devices can desynchronise over
time. On the contrary, implementing a communication protocol that maintains every device
in step with the same global clock at all times can require either a global orchestrator or
fast communication and large bandwidth (Sivrikaya & Yener, 2004; Li & Rus, 2006).
Therefore, in our system, we implement a hybrid solution similar to the method proposed
by Naz et al. (2016), that combines independent clocks and closed-loop synchronisation:
the robots independently measure time during limited periods and periodically exchange
synchronisation messages to reset their clocks and avoid large drift.

Individual clocks In our implementation, Kilobots are equipped with a microcontroller
that runs the robot’s control algorithm at a rate of approximately 32 Hz. The approximate
time elapsed from an event (e.g., the start of the process) can thus be measured using
the number of control loops that the robot executed (which in the Kilobot’s firmware are
expressed as kilo ticks). This approach is easy to implement and does not require
communication among the robots, however, despite calibration by the producer, the Kilo-
bots’ clocks can quickly desynchronise over time. After a few minutes, the difference can
become noticeable (i.e., one or two seconds). Therefore, in our implementation, robots use
their internal clock to estimate the time elapsed from the beginning of the current phase
of the process (e.g., a subroutine) and synchronise their internal counter at every phase
change.

Message-based synchronisation When a robot reaches the given time limit according
to its internal clock, it immediately moves to the next phase of the algorithm and broad-
casts a synchronisation message to notify its neighbours that the new phase has begun.
This message-passing strategy mirrors distributed time synchronization schemes in wire-
less sensor networks, which propagate timing information via local broadcasts rather than
relying on a single master clock (Sivrikaya & Yener, 2004; Li & Rus, 2006). In contrast
to approaches that require a global orchestrator or continuous high-rate communication
to keep all devices in lockstep, our method leverages periodic local resets: any robot that
receives a synchronisation signal will promptly transition to the next phase and relay the
message onward. As every phase is relatively short, the clock drift accumulated between
these synchronisation events remains small, consistent with prior findings that frequent
re-synchronisation bounds the divergence between node clocks (van Greunen & Rabaey,

@ Springer

Swarm Intelligence (2025) 19:333-360 339

2003). In large swarms this often results in multiple robots reaching the phase deadline
almost simultaneously (before receiving others’ signals), so synchronisation messages are
generated from multiple sources in parallel. Such a multi-source broadcast approach to
time sync is known to reduce propagation delay across the network compared to a single-
source scheme (van Greunen & Rabaey, 2003). This principle—allowing any node to act as
a time reference—has also been observed in biologically inspired algorithms (e.g., firefly
clock synchronization) and other fully-decentralized protocols (Tyrrell et al., 2006), under-
scoring the robustness of our design. Overall, our Kilobot implementation follows the same
fundamental principles as these established distributed synchronization methods (message
propagation and periodic correction) but adapts them to minimalistic robots with severely
constrained hardware. Notably, recent work in multi-robot systems has shown that even
simple, low-cost robots can achieve emergent temporal coordination through local mes-
sage exchanges (Barci§ & Bettstetter, 2020), which further situates our approach within
the broader literature on distributed time synchronisation in resource-constrained systems.
We validated this message-based scheme on swarms of up to 200 real and 1000 simulated
Kilobots, and observed that the swarm did not desynchronise over extended periods nor
accumulate any notable delay, demonstrating that classical wireless sensor network syn-
chronization principles can be successfully applied to minimalistic robot swarms.

3.2 Routine R1—neighbourhood construction

The routine Neighbourhood construction (R1) aims to enable each robot to construct a list
of its closest neighbours which can be identified with locally-unique IDs. The routine R1 is
composed of three subroutines: SR1a Locally-unique ID assignment, SR1b Neighbour list
creation, and SR 1c Relative position identification.

3.2.1 Subroutine SR1a—Ilocally-unique IDs assignment

A locally-unique ID is essential for neighbourhood construction as it allows robots to count
the number of robots in their proximity and establish one-to-one communication with each
neighbour. This subroutine is composed of two phases presented as pseudocode in Algo-
rithm 1. During the first phase, each robot generates a random ID that it draws from a
given range. In our case, the Kilobots use an 8-bit integer in the range [0255]. The robots
broadcast their randomly selected ID. Each received ID is added to a blacklist of already
used IDs. If a robot receives a message with an ID equal to its own ID, it selects a new
random ID from the same range, excluding the IDs in the blacklist. After sufficient time
has elapsed, in our case the time necessary to send about 20 messages (10 s), see line 1 of
the Algorithm 1, the subroutine moves to the second phase. In this phase, the robots aim
to remove duplicated IDs among their neighbours who may not be in direct communica-
tion with each other. However, a robot with two neighbours that use the same ID cannot
distinguish between them and this causes problems in subsequent subroutines. In this sec-
ond phase, each robot generates a new random number and repeatedly broadcasts mes-
sages containing four pieces of information: its ID, the just-generated random number, and
the ID and the random number received from one of its neighbours. Each new message
contains information about a different neighbour, iteratively selected (lines 21-22). For
each received message, the robot stores the received neighbour’s ID and the additional ran-
dom number in a list. The use of the additional random number is necessary to distinguish
between its own ID included in the neighbour’s message or the ID from another robot with

@ Springer

340 Swarm Intelligence (2025) 19:333-360

the same value. The probability of random selection of both the same ID and the same ran-
dom number reduces exponentially with the range size. For instance, for the Kilobots using
two 1-byte numbers, the probability that two robots pick the same two numbers is smaller
than 0.002%, as there are 2! possible combinations. When a robot receives a message in
which the third piece of information is equal to its ID and the fourth piece of information
is not equal to its random number, it means that there are repeated IDs (line 23). Therefore,
the robot adds its ID to the blacklist and self-assigns a new random ID. After sufficient
time has elapsed, in our case the time to send about 30 messages (15 s, line 2), the subrou-
tine SR1a terminates and the subroutine SR1b begins.

3.2.2 Subroutine SR1b—neighbour list creation

In order to create a list of its neighbours, a robot must filter incoming messages based
on the senders’ distance. In our implementation, the Kilobots exchange messages through
infrared (IR) messages and can estimate the sender distance using the IR signal strength
Rubenstein et al. (2012). In agreement with the Kilobots’ capabilities, we assume that the
robots can only rely on distances without directional information, that is robots cannot
know the relative angle of the sender, they can only know its distance.

Subroutine SR1b is composed of three phases, and its pseudocode is shown in Algo-
rithm 1. In the first phase, every robot continues, as it did during SR1a, to broadcast its
locally-unique ID. Each robot measures the distance of the incoming messages and records
the shortest distance x (erroneous values smaller than the robot body-size are discarded,
e.g., 33 mm for the Kilobots). After a threshold time, the robots start the second phase.
In our case, we combined the first phase of SR1b with the second phase of the subroutine
SR1a (line 27 of Algorithm 1), to speed up the process. Based on the shortest distance
recorded, the robot computes the maximum neighbourhood radius » which it uses to filter
the incoming messages and create the neighbour list. A robot only adds to its neighbour
list the ID of senders at a distance smaller than r. Computing the radius r as a function of
the estimated shortest distance x allows the algorithm to adapt to different spacing and grid
layouts.

Subroutine SR1b enables the robots to create their neighbour list when they are organ-
ised in the regular lattice topologies of rectangular lattices (as in Fig. 1a) and equilateral
triangular lattices, also known as hexagonal lattice (as in Fig. 1b). For the case of hexago-
nal structures, computing r is easier as all robot neighbours are at approximately the same
distance. Therefore, r can be set to r = (1 + €)x, where € < 0.5 is the proportion of toler-
able error in placement/sensing. For the case of rectangular lattices we want to identify the
Moore neighbourhood, therefore computing r is more difficult as it must include robots at
different distances: the neighbours on the diagonal are farther than the ones at the sides.
Additionally, the rectangular lattices can have different vertical and horizontal distances,
that is the lattice’s rows can be closer than the columns are, or vice versa. Given the robots’
limitations (i.e., absence of directional information), subroutine SR1b can only work with
an asymmetry between vertical and horizontal distances up to a given limit. The limit is
given by the inequality 2x > 4/x2 + 2, where x and y are the inter-robot distances on the
two dimensions (rows and columns). Assuming x <y, the inequality states that twice the
distance of one dimension should be larger than the distance on the diagonal of the rec-
tangular grid. Thus, we have the constraint that y < \/gx. If we also assume a placement/
sensing error €, the inequality becomes 2x(1 — €) > \/ (x + €x)? + (y + €)?, resulting to

@ Springer

Swarm Intelligence (2025) 19:333-360 341

xV/3e2 —10e + 3
y< ——— 1)

Ver+2e+1

Exceeding this limit of horizontal-vertical asymmetry—in either direction—would cause
robots located two hops apart along one axis of the lattice (e.g., the x-axis) to be closer than
their direct neighbours along the other (e.g., the y-axis), thereby invalidating our distance-
threshold-based method for identifying neighbours.

These two limits also constrain the range of suitable values for the distance threshold
r, which must lie between them, i.e., 2x > r > 1/x2 +y? (and similarly when account-
ing for the sensing error €), as illustrated in Fig. 3. As the horizontal-vertical asymmetry
increases, the valid range for r narrows, making precise tuning more critical, especially in
the presence of sensing noise €. The Kilobot algorithms benefit from simple computation,
thus, in our implementation, the Kilobots compute r = 1.5x + 10, a straightforward for-
mula that approximately lies midway between the two bounds of the inequality and consist-
ently performed well for both triangular and rectangular lattices (see Fig. 1).

Occasionally, it might happen that due to noise in the transceiver (especially in swarms
with small spacing between individual robots), the distance of the sender is consistently
overestimated. In such instances, messages sent by a valid neighbour are discarded because
the estimated distance is larger than r. In this case, robots may create an incomplete list of
neighbours. Even if a consistent overestimation of distance by a robot is rare, the presence
of these errors is relatively high when operating with large swarms because the probability
of these rare events occurring increases with the swarm size. Therefore, we implemented
a repairing mechanism as the third phase of the subroutine SR1b, which begins 5 s after
the start of the second phase. During this repairing phase, each robot broadcasts a mes-
sage with its ID (sender-ID) and all IDs in its neighbour list (neighbours-IDs). Each robot
checks all incoming messages (regardless of the sender’s distance) and if its ID is one of
the neighbours-IDs, it adds the sender-ID to its neighbour list. This approach reduces con-
siderably distance estimation errors which are typically asymmetric, that is only one robot
in a couple of neighbours overestimates the distance.

—2x —y2x% ~1.5x+10

x=110

2300
200
170
140
110

80

33 53 73 93 110

a) b) x=33mm ¢) x=70mm d) x=110mm

Fig. 3 In order to correctly identify the lattice neighbours (e.g., the Moore neighbourhood in a rectangular
lattice) each robot filters the incoming messages using the estimated distance of the message’s sender (sub-
routine SR1b). The filtering threshold » must be within two limits, illustrated in the figures by the yellow
and blue lines, for the case of noiseless measurements and positions. The limits become more stringent
when we consider placement or measurement errors, as discussed in the text. a In our implementation, the
Kilobots use a simple equation (green line) that lays approximately in the middle of the two limit lines. The
panels b—d show how the focal robot, in the centre, scales its threshold r, green line, when inter-robot spac-
ing increases

@ Springer

342 Swarm Intelligence (2025) 19:333-360

Algorithm 1 Subroutines SR1a and SR1b: Locally-unique IDs assignment and neighbour
list creation

1: Set time_limit; = 300 > Algorithm parameter (approx. 10s)

2: Set time_limita = 800 > Algorithm parameter (approx. 25s)

3: Set time_limits = 1600 > Algorithm parameter (approx. 53s)

4: Set min_msg-distance = 255 > Minimum distance variable

5: Set i = 1 > Iterator

6: Set neighbours_count = 0 > Initialisation of counter for neighbours

7: Set my_id = Random() > Select random ID from allowed range

8: Set my_msg = {my_id} > Set the content my outgoing message my_msg

9: for each message my received do

10: Set received_id = my[1] > Store the ID of my neighbour

11: Set msg_distance = distance_estimate(my) > Compute the distance of my neighbour

12: if kilo_ticks < time_limit; then

13: Add received_id to black_list

14: if received_id == my_id then > 1st phase of SR1la

. PR

15: Set my_id = random() ¢ black_list > Select random ID from allowed range
excluding black-listed IDs

16: Set Tm = {my-id} > Update the content of my outgoing message

17: end if

18: end if

19: if kilo_ticks > time_limit; AND kilo_ticks < time_limits then > 2nd phase of SR1la
20: Add received_id to id_list

21: Set my_msg = {my_id, id_list[i]}

22: Set i++; > Iterate throughout the received ids stored in the id_list
23: if my_id € m, then

24: Add my_id to black_list

25: Set MY_ID = Random() ¢ black_list

26: end if

27: if msg_distance < min_msg_distance AND msg_distance > robot_body_length then
28: Set min_msg_distance = msg_distance > Store the minimum distance value
29: end if

30: end if

31: if kilo_ticks > time_limita AND kilo_ticks < time_limits then > 2nd phase of SR1b
32: if received_id ¢ neighbours_list then > Avoid double counting
33: if msg-distance < 1.5- min_msg-distance+10 then > Distance smaller than r
34: Add received_id to neighbours_list> Store neighbour’s ID in neighbours list
35: Set neighbours_count++

36: end if

37: end if

38: end if

39: end for

3.2.3 Subroutine SR1c—position group identification

Once the neighbour list is created, subroutine SR1c enables every robot to determine its
position group in the lattice (Algorithm 2). Each robot broadcasts messages indicating its
ID and the number of neighbours in its list. Once the robots have collected the information
regarding the number of neighbours from every neighbour, they use it to determine their
own position in the lattice. We consider three possible position groups: CORNER, BOR-
DER, and MIDDLE, as illustrated with colour-coded positions in Fig. 1. The robot is posi-
tioned on the CORNER of the lattice if it has fewer neighbours than any of its neighbours

@ Springer

Swarm Intelligence (2025) 19:333-360 343

(line 17 of Algorithm 2). The robot is positioned in the MIDDLE if its number of neigh-
bours is the largest of its neighbourhood (line 23). The robot is positioned on the BOR-
DER of the lattice in all other cases (line 20, i.e., it has neighbours with a higher number
of neighbours and it has not fewer neighbours than any of its neighbours). Note that for a
known regular topology, this procedure can be simplified as the position in the formation
can be derived directly from the number of identified neighbours (e.g., in a rectangular
topology the CORNER has 3 neighbours, the BORDER has 5 neighbours, and MIDDLE
has 8 neighbours). However, subroutine SR1c, and more generally routine R1, does not
require the robots to know the lattice topology in advance. On the contrary, during SR1c,
the robots can self-deduce the regular topology they are part of by using the neighbour
counts.

Algorithm 2 Subroutine SR1c: Position group identification

1: Set my-msg = {my-id,neighbours_count} > Set the content of my outgoing message
2: Set maz_count = 0 > Internal variable
3: Set min_count = 255 > Internal variable
4: for each message m; received do

5: Set received_id= my[1]

6: if number of neighbours with unknown neighbours_count > 0 then

7 if received_id € neighbours then

8: Set received_neighbour_count= my[2]

9: if received_neighbour_count < min_count then

10: Set min_count = recetved_neighbour_count

11: end if

12: if received_neighbour_count > maz_count then

13: Set maz_count = received_neighbour_count

14: end if

15: end if

16: end if

17: if neighbours_count < min_count then

18: Set my_position=CORNER

19: end if
20: if neighbours_count > min_count AND neighbours_count < maz_count then

21: Set my_position=BORDER

22: end if

23: if neighbours_count==maz_count then

24: Set my_position=MIDDLE

25: end if

26: end for

3.3 Routine R2—coordinate system construction

Routine R2 enables the swarm to create a global coordinate system in which every robot
self-localises by computing its 2-dimensional coordinates within the lattice. This routine
requires the completion of routine R1 by which robots know the locally-unique IDs of
their neighbours and know their position group in the lattice (i.e., CORNER, BORDER,
or MIDDLE). This routine has been designed for rectangular lattices, however, our sub-
routines can be potentially extended to different protocols for building global coordinate
systems (possibly in dimensions higher than two) for different lattice topologies, e.g., hex-
agonal (Snyder et al., 1999). For the rectangular lattice, the 2D coordinates are computed

@ Springer

344 Swarm Intelligence (2025) 19:333-360

with respect to the x and y axes which correspond to two orthogonal edges of the rectangle
(that are randomly chosen in subroutine SR2a). The coordinates start from value (1,1) at
the origin (a robot in a corner of the lattice) and indicate the discrete positional values for
every robot in the lattice.

3.3.1 Subroutine SR2a—axes origin and direction

Through subroutine SR2a, one of the four corners is randomly selected as the axes’ ori-
gin (Algorithm 3). At the beginning of this subroutine, every CORNER selects a random
number, and the CORNER that selected the smallest number is selected as the axes’ ori-
gin. Because the four CORNER robots are not in direct communication range, all robots
cooperate in the communication by spreading the corners’ random numbers throughout
the lattice. In order to minimise bandwidth usage and speed up the information spreading,
every robot only relays the lowest random number that it has received so far and ignores
any other higher number (lines 19-21). The CORNER robots also stop broadcasting their
random number once they receive a message with a number lower than their own (line 16).
After sufficient time, which we estimate as the time necessary to send 25 messages (about
13 s), we assume that the message representing the lowest random number of one COR-
NER robot has reached all other CORNERs. The CORNER robot that has not received any
lower random number, then, takes on the role of origin of the axes and sets its coordinates
to (x,y)=(1,1).

In order to minimise the probability that two random numbers have the same value,
the random number should be uniformly drawn from the largest range possible. For exam-
ple, in our implementation, the Kilobots can exchange messages with a 9-byte payload (72
bits). Therefore, the CORNER computes its random number in the range [0,27%]. Using
such a large range, the probability of two identical 9-byte sequences being generated in two
CORNER robots is negligible.

Once the axes’ origin CORNER robot is selected, it is possible to determine the axes’
orientation by assigning coordinates to its neighbours. The axes’ orientation is also ran-
domly determined, this time using information already locally available (from SR1a).
The CORNER robot assigns to the BORDER node with the lowest locally-unique ID
the coordinate (x,y)=(2,1) and to the BORDER node with the highest ID the coordinate
(x,y)=(1,2). As a result, both the origin and orientation of the coordinate system are ran-
dom and self-emergent in every run. This operation terminates subroutine SR2a and ena-
bles the start of subroutine SR2b.

@ Springer

Swarm Intelligence (2025) 19:333-360 345

Algorithm 3 Sub-routine SR2a: Axes origin and direction

1: Set time_limity = 400 > Algorithm parameter (approx. 13s)
2: Set coord = {0,0} > Coordinates pair
3: Set lower_id_border = 0 > Internal variable
4: Set origin = FALSE > Internal variable
5: Set start_time= kilo_ticks > Current value of kilobot internal clock
6: if my_position == CORNER then

7 Set origin = TRUE

8: Set my_random_num = Random()

9: Set my_-msg = my_random_num

10: end if

11: for each message i, received do

12: if kilo_ticks < start_time + time_limits then

13: if my_position == CORNER then

14: if my[1] <my_random_num then

15: Set origin = FALSE

16: Set my_-msg = 0

17: end if

18: else

19: if my[1] < min_received_IDs[1] then
20: Set my-msg§ = iy,
21: end if
22: end if
23: else
24: if origin==1 then
25: Set coord = {1,1}
26: Set lower_id_border = ID of border node among neighbours with lower ID value.
27: Set my-msy = {my-id,1,1,lower_id_border}
28: end if
29: if my_position == BORDER AND my[2] == 1 AND my[3] == 1 then
30: if my[4]==my.id then

—

31: Set coord = {2,1}
32: else
33: Set coord = {1,2}
34: end if
35: end if
36: end if
37: end for

3.3.2 Subroutine SR2b—Ilattice dimension measurement

The subroutine SR2b enables the swarm to compute collectively the dimension of the two
axes and gives information to the border robots on their position with respect to these axes.
Knowing the axes’ dimensions also allows every robot to measure the size of the swarm, a
quantity that is typically hard to compute with decentralised algorithms (Saha et al., 2021;
Ganesh et al., 2007).

Once the axes’ origin has been selected (SR2a), the first BORDER robot on the
x-axis, that is the robot with coordinates (x,y)=(2,1), starts the subroutine SR2b. The
robot initialises a counter variable with the value 2 and sends this value throughout the
lattice border; at each message hop, the next border robot increases the count by one and
relays the message, as displayed in Fig. 4. These messages are flagged with a specific
header denoting the border-count subroutine SR2b. These messages are composed of

@ Springer

346 Swarm Intelligence (2025) 19:333-360

Counting direction

GeiERe —— CORNER2

T T S

1,2} {221
0\" ‘g\/{Z,l)
\"‘#‘#QQO!OQ‘QO‘Q&O““*/
CORNER4 / Origin CORNER1
@1 e

Fig.4 Image of the border counting process (subroutine SR2b) in a swarm of 200 Kilobots. The robots on
the borders of the 25 x 8 lattice light up when they receive the border-count message during the execution
of subroutine SR2b. In this way, it is possible to see the message travelling throughout the lattice edges. In
the bottom-left corner, there is the robot at the axes’ origin, (x,y)=(1,1), and its neighbours display different
colours to signal their coordinates as discussed in subroutine SR2a

four values (in addition to the header); one value is the border count that is increased at
each step, while the other three values are initialised to zero and will be edited by the
CORNER robots. The algorithmic implementation for this process is shown in Algo-
rithm 4 and indicates that every BORDER robot that did not receive a border-count
message yet accepts the message, adds one to the counter, and broadcasts the new value.
Three additional rules are necessary for computing correctly the lattice edge dimen-
sion. The first additional rule regards BORDER robots that are adjacent to a CORNER
robot and received their first message from another BORDER robot. These robots must
use a special header in their border-count message. Messages with such special header
are only read by CORNER robots so that the other BORDER robot on the diagonal
(which did not receive any border-count message yet) will ignore the message and wait
for the CORNER robot to send its border-count message with the updated value. The
second additional rule requires the CORNER robots to append further information to
the border-count message. They include information about their local count that they
store in the first zero value composing the message. Therefore the border-count mes-
sage maintains as separate pieces of information the local count of the three corners tra-
versed during the multi-hop spreading. The third additional rule prevents the execution
of the counting in both directions. The rule only applies to the robots with coordinates
(x,y)=(1,1) and (x,y)=(1,2); these two robots ignore any border-count message with a
count value lower than three. This process ends when the count has travelled around the
whole border of the lattice; this happens when a valid border-count message is transmit-
ted to the axes’ origin. This process is independent of timers and can scale to any grid
size larger than or equal to 3 X 3.

Once the origin robot receives the total border count, the total count information and
the local counts of the CORNER robots are spread throughout the border in the same
direction as before until the message is returned to the origin once again. At this point,
all BORDER and CORNER robots know the lattice size (total border count and corners’
local counts) and their position on the border with respect to the axes’ origin (their local
count value). The robots can use this information to compute the swarm size and will
subsequently use it to compute their coordinates in subroutine SR2c.

@ Springer

Swarm Intelligence (2025) 19:333-360 347

Algorithm 4 Sub-routine SR2b: Lattice dimensions measurement

1: Set mycount =0 > Local variable for lattice dimension counting

2: if coord == {1,1} then

3: Set my_count = 1

4: end if

5: if coord == {2,1} then

6: Set my_count = 2

7: end if

8: Set my_msg = {my_id,my_count}

9: for each message m, received do

10: if my_position == BORDER AND my_count == 0 AND my[2] > 1 AND coord #
{1,2} then

11: Set my_count = my[2] + 1

12: Set my_msy = {my_id, my_count}

13: end if

14: if coord == {1,2} AND my_count == 0 AND my[2] > 3 then

15: Set my_count = my[2] + 1

16: Set my_ms¢ = {my_id, my_count}

17: end if

18: if origin == 1 AND my[2] > 3 then

19: Send sync signal for next phase

20: end if

21: end for

3.3.3 Subroutine SR2c—coordinates assignment

Through subroutine SR2c, every robot computes its two coordinates and becomes aware of
its position within the full formation. In subroutine SR2c, robots employ the information
gathered in SR2b and incrementally assign coordinates, commencing from the edges of the
lattice and moving inwards.

Corner and borders. The corner at the origin already has its coordinates, assigned dur-
ing subroutine SR2a, (x,y)=(1,1). The other three CORNER and all the BORDER robots
use the information exchanged in the border-count messages in SR2b to set their coordi-
nates. The border-count messages contain ordered information on the local count of the
three corners encountered during the multi-hop count on the border. We label as C1, C2,
and C3, the local counts of the first, second, and third corners encountered during the bor-
der-count process (see Fig. 4). The CORNERs and the BORDERs then assign their coor-
dinates through Algorithm 5, where my_count is the local count of the robot running the
algorithm and coord its coordinates.

@ Springer

348 Swarm Intelligence (2025) 19:333-360

Algorithm 5 Part of subroutine SR2c: Coordinates assignment for CORNER and BOR-
DER robots

1: if my_position == CORNER OR my_position == BORDER then
2: if my_count < C1 then

3: Set coord = {my-count, 1}

4: end if

5: if my-count > C1 AND my_count < C2 then

6: Set coord = {C1, my_count — C1+ 1}

7 end if

8: if my_count > C2 AND my_count < C3 then

9: Set coord = {C1 + C2 — my_count,C2 — C1 + 1}
10: end if

11: if my_count > C3 then

12: Set coord = {1,C2 4+ C3 — C1 — my_count + 1}
13: end if

14: end if

Middle robots. The MIDDLE robots—which are not on the edge of the lattice—assign
their two coordinates independently using information locally broadcast by their neigh-
bours. Once any robot self-assigns its coordinates, it broadcasts its values to its neigh-
bours. Each robot locally stores the coordinates of its neighbours and once it receives the
coordinates with three consecutive values on one axis, it self-assigns the middle value on
that axis. For instance, a robot i that receives the coordinates from neighbours j, k, and
w with values (x;,y;) = (3,7), (%, y,) = (4,7), and (x,,.,y,,) = (5,7), will set its coordinate
x = 4. Similarly, when a robot i receives the coordinates, (xj, yj) =3,7), (x,y) = (3, 8),
and (x,,,y,,) = (5,9), will set its coordinate y = 8. This process allows every robot to self-
assign its coordinates and to become aware of both its position within the lattice and the
relative position of all its neighbours. This information can be employed for various subse-
quent tasks which exploit spatial awareness of the robots (e.g., dynamic role assignment as
a function of the robots’ position (Pratissoli et al., 2019, 2023), or exploit the swarm-level
agreement obtained with routine R2 (e.g., use the coordinates to assign globally-unique
IDs).

3.4 Routine R3—synchronised dynamic role assignment

Routine R3 consists in assigning a different role, or task, to each robot depending on its
coordinates. This operation is achieved by providing all robots with the desired action plan.
The plan indicates what is the role of every robot depending on its coordinates and how
the roles change over time. While all the robots know the full action plan in advance, each
robot only knows its role once it computes its coordinates through routine R2. Using the
synchronisation method described in Sect. 3.1, the robots can also synchronously move
to the next step of the action plan. Such a synchronous role change can be interpreted as a
change in the swarm state. Enabling swarm state changes allows the programming of robot
swarms through swarm-level finite state machines, which can simplify the design of collec-
tive behaviour, as was also suggested by previous research (Pinciroli & Beltrame, 2016).
Indeed, designing swarm robotics algorithms is complicated as the collective behaviour
must be encoded in individual robot rules and the link between swarm and robots can be
counter-intuitive. Having the possibility of defining the swarm action plan, while maintain-
ing a fully decentralised approach, can be useful.

@ Springer

Swarm Intelligence (2025) 19:333-360 349

In this study, we implemented two types of action plans that differ in how the robots
activate. In both action plans, a subset of robots in predefined locations becomes active.
In the first case, the active robots activate their motors and move out from the formation.
In the second case, the active robots light on their coloured LED and create a collective
pattern as shown in Sect. 4. In the second action plan, robot activation is periodically alter-
nated between a cycle of robot subsets with potentially different active roles (implemented
as different light colours). The repeated patterns allowed us to test the robustness of the
system (e.g., to maintain swarm-level synchronisation) during several-minute-long runs.

3.5 Complexity analysis

The complexity of our routines can be measured by computing the number of messages that each
robot is expected to receive and process. Indeed, our subroutines (see Algorithms 1-4) have a
single loop that repeats the execution of the listed operations for each received message.

The operations of every subroutine in R1 are local, with each robot only receiving
and processing messages from its neighbours and neighbours of neighbours. This num-
ber depends on the specific regular formation and robot’s communication range, for exam-
ple, in our experiments with Kilobots in a rectangular lattice, the number of local neigh-
bourhood messages was in the worst case 25. When using simple devices, messages can
get frequently lost, hence we let the robots repeat each message exchange for predefined
time periods (configured through temporal timeouts). Therefore, the algorithm complex-
ity of routine R1 remains constant and independent of the swarm size N, O(1), however it
increases linearly with longer timeout periods.

Differently, the number of messages exchanged in the subroutines of R2 depends on the
swarm size N. In particular, for a rectangular lattice n X m = N (with n > m), the complex-
ity of subroutines SR2a and SR2c scales as the diagonal of the rectangle, which in discrete
space corresponds to the longer edge n. In subroutine SR2b, the complexity scales as the
rectangle diameter. Therefore, for rectangular lattices, routine R2’s complexity is O(n), and
for a square lattice is O(\/ﬁ).

Routine R3 is based on the synchronisation procedure which can be triggered anywhere
and concurrently in multiple locations of the swarm. With relatively homogeneous internal
clocks, the message exchange remains local, however in the worst case, synch messages
need to be spread to everyone scaling as the diagonal of the rectangle, O(n), or (’)(\/ﬁ) for
square lattices.

4 Experiments

We tested the algorithms through a series of experiments in simulation and with swarms of
real robots. As indicated earlier, the chosen robotic platform is the Kilobot robot (Ruben-
stein et al., 2012, 2014a), which is a relatively simple robot that can move using vibra-
tion motors and exchange IR messages with other robots in a range of about 10 cm. The
Kilobots can also estimate the distance (but not the position) of the sender of any received
message. Finally, they can show their internal state through a coloured light-emitting diode
(LED).

@ Springer

350 Swarm Intelligence (2025) 19:333-360

The code to run our algorithm on the Kilobots is open source and available both on
Github at https://github.com/TBU-AlILab/Kilobot-self-localization and in the Zenodo
repository https://doi.org/10.5281/zenodo.14599973.

4.1 Simulations

The simulations have been performed with ARGoS (Pinciroli et al., 2012), a modular and
efficient simulator for swarm robotics (Pitonakova et al., 2018), which provides a con-
venient plugin for simulating the Kilobots (Pinciroli et al., 2018). The Kilobot-plugin for
ARGoS allows the user to implement robot code that can be transferred directly from simu-
lation to physical robots without modification, thereby facilitating both implementation and
testing.

All simulations were run with a time step of 0.1 s, using synchronous communication
among robots. No noise was introduced in sensing and communication, allowing us to
focus on evaluating the algorithm’s core logic and behaviour under ideal conditions.

Through simulation, we performed several tests, running numerous independent repeti-
tions with different random seeds for each investigated condition. We conducted tests in
experiments with up to 1000 simulated Kilobots, where we tested rectangular lattices of
different dimensions, from 3 X 3 to 40 X 25, and in each case, we varied the inter-robot
spacing, from 35 to 70 mm. In all experiments, the swarm successfully completed the pro-
cess: every robot correctly computed its coordinates and took on its expected role. Figure 5
shows four screenshots of a simulation with 10 X 10 Kilobots illustrating the four main
phases of the algorithm: neighbourhood construction (Fig. 5a), axes’ origin selection and
border counting (Fig. 5b), and assignment of the x-axis values (Fig. 5c) and of the y-axis
values (Fig. 5d).

4.2 Kilobot experiments

We also conducted a range of real-robot experiments employing up to 200 Kilobots. We
tested different grid sizes, topologies, and inter-robot spacing, as illustrated in Figures 1,
6, 7, and 8. Experiments have been conducted in three different laboratories. Small-scale
experiments, with up to 25 Kilobots, have been conducted in the Swarm Lab at the New
Jersey Institute of Technology, large-scale experiments with 64-200 robots have been con-
ducted using the Kilobot infrastructure of Sheffield Robotics (Nikolaidis et al., 2017) at the
University of Sheffield, and the experiments to quantify speed and robustness of the system
have been conducted in the A.I.Lab of the Tomas Bata University in Zlin, Czech Republic.

Scalability. Kilobot experiments tested the capability of the algorithm to run without
change in swarms of different sizes. We conducted experiments with square lattices of 5 X 5
robots (Fig. 6), 8 X 8 robots, 10 X 10 robots (Fig. 7), and 25 X 8 robots (Fig. 8). The figures
show key frames of the process, always terminating with the dynamic role assignment in
the form of light patterns that show written text. Note that the axes’ origin and orientation
are determined at run time and are randomly chosen, therefore in about half of our experi-
ments the text appeared mirrored (when the axes’ orientation is inverted the displayed text
is subject to a reflection). For ease of visualisation, we only report images and videos of
runs in which the light pattern is displayed in the same orientation as the observer.

In Fig. 6, the 25 robots have a cyclic role assignment in which they form the light pattern
N-J-I-T. The video of one experiment with 25 robots is available at https://youtu.be/RdUs_
EHRnUU and in the supplementary online material (Video 1). Figure 7 shows frames for

@ Springer

https://github.com/TBU-AILab/Kilobot-self-localization
https://doi.org/10.5281/zenodo.14599973
https://youtu.be/RdUs_EHRnUU
https://youtu.be/RdUs_EHRnUU

Swarm Intelligence (2025) 19:333-360 351
00000 0QQCQOOS 0000000000
0000000000 I3 XU XXX
00000600000 00000000Q0OCS
00000600000 0000000000
0000000000 S X X XXX X.]

—0000000000 — 0000000000 —
0000000000 0000000000
00000600000 I XXX XXX X.J
00000600000 0000000000
00000 0O0OOCSO 000060000060
a) Position group identified (SR1c) b) Lattice dimension measured (SR2b)
0000000000 0000000000
0000000000 0000000000
00000600000 0000000000
00000600000 S XXX XXX
0000000000 0000000000

—0000000000 0000000000 —
0000000000 0000000000
0000060000690 0000000000
00000600000 0000000000
000060000060 0000000000

c) Colour display based on x-axis coordinates d) Colour display based on y-axis coordinates

Fig.5 Four key screenshots from an ARGoS simulation with 100 Kilobots. Panel a shows the completion
of subroutines SR1c where robots in the three position groups CORNER, BORDER, and MIDDLE light up
with colours red, blue, and green, respectively; thus, reproducing the results obtained with real Kilobots in
Fig. 1a. Panel b shows the completion of subroutine SR2b with the axes’ origin in the bottom left corner,
and the robots on the borders that have received the border-count message have their white light on, analo-
gous to Fig. 4. In panels ¢ and d, the robots self-assigned roles (routine R3) depending on their x-axis and
y-axis coordinates, respectively. The coordinate-based colours are only based on five colours, which there-
fore are repeated twice in the 10 X 5 lattice

Fig.6 25 Kilobots in a square 5 X 5 lattice self-assign roles in synchrony with each other. They form a
repetitive cycle of light patterns displaying the letters N-J-I-T

a swarm of 100 Kilobots in some of the key algorithm phases which terminate with the
cyclic role assignment of two light patterns forming the worlds “HE-LLO" and “WO-
RLD". The video of one of the experiments with 100 robots is available at https://youtu.
be/KlooXOOvVZsY and in the supplementary online material (Video 2). Finally, Figure 8
shows frames from experiments with the largest swarm tested, organised in a rectangular

@ Springer

https://youtu.be/KlooXOOvZsY
https://youtu.be/KlooXOOvZsY

352 Swarm Intelligence (2025) 19:333-360

"R e e

.
g o
*
* *
* *
* +
* *
* v

* ¥

* *

Fig.7 Six screenshots of an experiment with 100 Kilobots in a square 10 x 10 lattice. Panels a—d display
the same four moments as displayed in Fig. 5 with simulated robots. Panels e and f show two moments of
the synchronised dynamic role assignment (routine R3), where the robots form a repetitive cycle of light
patterns displaying the words “HE-LLO" and “WO-RLD", respectively. The video of the full experiment is
available at https://youtu.be/KlooXOOvZsY and in the supplementary online material (Video 2)

lattice sized 25 X 8. In these experiments, the cyclic role assignment displays the word
“SWARM" that alternates between two different positions in the lattice. The video of one
of the experiments with 200 robots is available at https://youtu.be/S4s6fpWZvMM and in
the supplementary online material (Video 3).

Through a series of 80 robot experiments with up to 100 robots, we also tested the speed
to complete the routines R1 and R2 and the various subroutines within. Figure 9 shows
the results of the 80 experiments, where we run 10 repetitions for each of the eight tested
lattice sizes, 3 X 3,4 X 4, ..., 10 x 10. If we consider that the the horizontal axis is in loga-
rithmic scale (as at each tick the swarm size has a quadratic increase), the scaling of the
algorithm in terms of competition time is relatively good. The speed of the process can be
potentially further optimised by tailoring the time limits of the subroutines to the specific
scenario. Anyhow, our experiments using the time limits indicated in Sect. 3 already show
a relatively quick process compared with other research experiments that used large-scale
swarms of Kilobots (Rubenstein et al., 2014b; Reina et al., 2017, 2018; Gauci et al., 2018).

Lattice topologies and inter-robot spacing. Through a set of Kilobot experiments,
we tested different topologies and spacing among robots. While routine R1 can work
on a variety of different regular lattices (as discussed in Sect. 3.2), routine R2 has been
designed for rectangular lattices only. Figure 1 shows the final stage of routine R1 in
the square and hexagonal lattices, in which the robots display with distinct colours their
position group (i.e., CORNER, BORDER, or MIDDLE). Figures 6 and 7 show square

@ Springer

https://youtu.be/S4s6fpWZvMM
https://youtu.be/KlooXOOvZsY

Swarm Intelligence (2025) 19:333-360 353

% 2eRens.
» tReETe
q"..,oe
BT L

* 0
(]
L
(N
. v
* *
* *
. L}

-

L 2 T PO
P & A

Fig.8 Six screenshots of an experiment with 200 Kilobots. Panels a—-d display the same four moments
as displayed in Figs. 5 and 7 in smaller groups. Panels e and f show two moments of the synchronised
dynamic role assignment (routine R3), where the robots form a repetitive cycle of light patterns displaying
the word “SWARM?” shifted by two columns. The video of the full experiment is available at https://youtu.
be/S4s6fpWZvMM and in the supplementary online material (Video 3)

formation with largely different spacing among robots. Finally, in the experiments of
Fig. 8, we tested a rectangular lattice (non-squared). In addition, these tests also validate
the robustness of our algorithm to misplacement errors which have been introduced by
the manual placing of the robots in the lattice formation. For example, in Fig. 7 it is pos-
sible to appreciate the visible misalignment of some of the robots on the second column

from the right, which are particularly evident when the robots have their lights turned
on.

@ Springer

https://youtu.be/S4s6fpWZvMM
https://youtu.be/S4s6fpWZvMM

354 Swarm Intelligence (2025) 19:333-360
Routines R1+R2 Routine R1 Routine R2
a) b))
50 110}

150

= 40 ryj & EI] :} é __ 100}

§ 140 3 LiJ s 2] Lyl 3 —I— N i a

8 % %) S 9 H %

- d i F El FEGEFH

s+
1200 g 10 70
1 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
Routine R2a Routine R2b Routine R2c
d) e) f)

50 50 50

40 T CP + r'w 40 40 i
3 2 [F :i: 1 3 3 S SRR TR THE S

2 30 Lf 2 30 2 30

Ezo Ezo = + CL Ezo

10| 10| <+ 10|

33 4xd 55 6x6 7x7 8x8 9x9 10x10 33 4xd 55 6x6 7x7 8x8 9x9 10x10 33 4xd 55 6x6 7x7 8x8 9x9 10x10

Fig.9 Temporal scaling in the execution of Routines R1 and R2. The plots show the aggregated data (box-
plot) and individual datapoints (red markers) of 10 robot experiments for each grid size (indicated on the
x-axis). The text on the top of each plot indicates the measured time. Note that the swarm size on the hori-
zontal axis is in logarithmic scale. The competition time of scales well with increasing swarm size and the
variance is relatively low, except a few occasional runs

Robustness to robot failures. We study the robustness of the system to individual
robot failures. In particular, we consider the impact of the breakdown of one or more
robots which become irresponsive and stop communicating with their neighbours. We
simulate the breakdown by physically removing the robot from the lattice. Depending
on the moment of the breakdown and the location of the broken robot, the impact on the
system is different.

A failing robot can compromise the execution of routines R1 and R2 when it is located
in a corner or on the border of the lattice. Robots in these locations play critical roles in
the information gossiping through the swarm. In contrast, as discussed below, failures of
robots in the middle of the lattice typically have limited or no impact on the successful
execution of the three routines. Assuming p, to be the breakdown probability per robot, we
can quantify the probability of a catastrophic event (i.e., full system failure) as the prob-
ability that a robot in the corner or edge of the lattice breaks. This probability increases
with the swarm size N. For example, assuming a square lattice with layout \/ﬁ X \/]Tl , the
system failure probability is

1= (1 = py+VV),)
In Fig. 10(a), we report the scaling of this curve for four values of p, € {0.01, 0.005,
0.001, 0.0001}. When p, is relatively high, e.g., p, = 1% of the robots are likely to fail,
large systems have a high probability of not functioning. For instance, for such a high value
of p,, the probability of whole system failure exceeds 50% when the swarm size is greater
than approximately 333 robots. Therefore, additional information recovery routines should
be considered before deploying the algorithm to such contexts. Instead, when the probabil-
ity that a robot fails in p, is low (e.g., p, = 0.01%), also large swarms (e.g., N = 10%) are
likely to complete the process without fatal disruptions.

The predictions of Fig. 10(a) are only valid when the breakdown happens before the end
of routine R2. Failures that happen after completion of routine R2, i.e., when the robots
computed their coordinates, do not have any impact on the other robots during the routine

@ Springer

Swarm Intelligence (2025) 19:333-360 355

-
o
T
L

o
@
T

Failure probability
per robot py,
* 0.0001

o
o))
T

0.001

0.005
* 0.01

<
»
T

o
(S}
>
.

Probability of system failure

o
o
;

0 2000 4000 6000 8000 10000
Number of robots N

(a) (b)

Fig. 10 a The current system is vulnerable to the breaking of robots located in the corners or the edge of
the lattice. Given different individual probabilities of a robot breaking down (i.e., becoming inactive), the
probability that one of them is in one of the critical locations (corner, edge) increases with the swarm size
N (on the x-axis). When robots are prone to failure, implementing recovery mechanisms on corners and

edges is critical to enable system scaling. Computed using Eq. (2) for square lattices \/N X \/IT/ . b Failures
in middle robots only cause a localized error in the lattice, in the photo the robots lighted in red computed
incorrect coordinates. All robots can compute the correct coordinates when one or more middle robots fail
after R1, see Video 4 in the supplementary online material

R3. Hence, our analysis is only relevant to failures happening before the beginning of rou-
tine R1 or after the execution of R1 but before the start of R2. As reported in Fig. 9, the
execution of R1 and R2 is particularly quick, thus limiting the likelihood of breakdowns
during their execution.

When the breakdown is prior to the start of routine R1 (i.e., at the beginning of the
process), the robots adjacent to a failing robot located in the middle of the lattice com-
pute their relative position incorrectly, as they have fewer neighbours than they should.
This type of failure is visualised in Fig. 10(b), where we report colour-coded results of
the coordinate assignment at the end of routine R2. As Fig. 10(b) shows, the breakdown
of one middle robot negatively impacts the robots in its proximity which incorrectly
compute their coordinates, yet the disruption remains localised and does not compro-
mise the entire grid. When the breakdown of one or two middle robots happens after the
completion of R1 and before the beginning of R2, it has no effect on the other robots.
We run a set of robot experiments to test these conditions; see Video 4 in the supple-
mentary online material. However, when more than two adjacent robots break down,
depending on their spatial configuration, they can affect the computation of other robots
in their neighbourhood. If three failed robots form an L-shape or lie along a diagonal
(see Video 4 in the supplementary online material), the rest of the swarm remains unaf-
fected. In contrast, when three adjacent robots in a straight line break down, two neigh-
bouring robots incorrectly compute one of their coordinates.

In summary, while the system is resilient to failures of individual robots located in
central regions or occurring after the execution of routine R2, it remains vulnerable to
early failures in critical positions—particularly at the corners and edges of the lattice.
Therefore, in applications involving large swarms or environments with a non-negligi-
ble risk of hardware failure, the algorithm may require the integration of redundancy or
recovery routines to maintain global functionality.

@ Springer

356 Swarm Intelligence (2025) 19:333-360

Dynamic role assignment. In Figures 6, 7, and 8, the role assignment consisted of
displaying a repetitive cycle of light patterns. We let the swarm run these light patterns
for several dozen minutes, and in all tested cases, the swarm never desynchronised. In
an additional experiment, we tested a different role assignment scenario in which a sub-
set of Kilobots at given locations commenced movement and left the formation. The
video of this experiment is available at https://youtu.be/4wlstUNpNcU and in the sup-
plementary online material (Video 5).

Summary. The robot experiments confirmed the validity of the proposed algorithm by
consistently reaching the successful completion of all routines. In our scalability tests, we
showed that the same identical algorithm can be employed for small grids as well as for
large-scale experiments, in our case up to 200 real robots. In this section, we presented
more than 100 experiments with real robots which always led to the correct assignment of
the coordinates of every robot, except for a few cases where we intentionally deactivated
some of the robots to simulate faults in critical positions. The speed measurements showed
good scalability performance with the system size. The final routine of cyclic role assign-
ment has also been instrumental in validating the possibility of changing the collective
state of the swarm in a synchronised way, even in large swarms composed of robots that
only use local communication. Additionally, real robot experiments tested the ability of the
algorithm to operate under variable levels of communication noise and distance measure-
ment errors, intrinsic to such simple devices. Tests with different topologies and with robot
formations with some placement inaccuracies due to manual setup further showed the gen-
erality of the proposed approach and its robustness. The system can sustain different types
of robot breakdowns however failure of certain robots in specific locations and at specific
times can compromise the entire system process. Our analysis and experiments quantify
these conditions and the probability of them to occur.

5 Conclusion

We proposed a decentralised algorithm that enables stationary robot swarms, organised in
a regular lattice, to collectively build a shared reference system through which every robot
can self-localise within the group. This spatial information allows robots to compute their
unique coordinates within the lattice and self-assign roles based on their position. Ena-
bling positional self-awareness and location-dependent task allocation in stationary robot
swarms (e.g., those deployed in formation at startup) supports the execution of higher-level
collective behaviours, such as coordinated motion in formation (Pratissoli et al., 2023) or
localised computation (Beal and Viroli, 2015). Our algorithm also enables temporal coor-
dination of robots’ actions through a combination of open- and closed-loop synchronisa-
tion mechanisms. Synchronised behaviour is key to achieving effective coordination, both
in group-living organisms (Couzin, 2018) as in artificial swarms (Trianni & Nolfi, 2009;
Ghosh et al., 2022). We showcase our solution in a set of experiments comprising up to
200 real robots that create synchronised dynamic light patterns.

The main distinguishing aspect of our approach compared to previous solutions is the
possibility of constructing a shared swarm-level coordinate system with swarms of mini-
malistic robots, which are unable to measure the bearing of other robots. Our algorithms
can run on robots capable only of basic computation, broadcasting small messages, and
making noise-prone estimations of the distance of nearby robots. In contrast, most previous

@ Springer

https://youtu.be/4wlstUNpNcU

Swarm Intelligence (2025) 19:333-360 357

work could only achieve decentralised self-localisation through more complex robots
equipped with range-and-bearing sensors (Beal et al., 2013; Sahin et al., 2002; Guo et al.,
2011; Coppola et al., 2019; Mathews et al., 2017; Wang & Rubenstein, 2021; Batra et al.,
2022; Li et al., 2018; Klingner et al., 2019). Algorithms for minimalistic platforms have
higher portability, due to fewer robot requirements, and can, therefore, be used in a wider
range of applications. We implemented our algorithm on swarms of up to 200 real Kilobot
robots, a reference platform for minimalistic collective robotics.

While our algorithm does not require the ability to detect the bearing of incoming mes-
sages, it assumes the robot swarm is initially deployed in formation, creating a regular lat-
tice (e.g., a rectangular lattice). The algorithm can thus exploit the regularity of the lattice
and its geometric properties to compute the relative location and bearing of each neigh-
bour. This assumption is generally not needed in the previously cited algorithms that rely
on robots equipped with range-and-bearing sensing. Our solution trades robot simplicity
for the need for a predefined spatial arrangement; as discussed in Sect. 3.2.3, the robots do
not need to know their formation a priori, but can instead deduce the lattice topology online
through subroutine SR1c, distinguishing between rectangular and hexagonal lattices. The
deployment of large-scale swarms in regular lattices is motivated by the customary prac-
tices of storing, charging, and transporting robots organised in such regular formations.
This constraint is also in line with previous studies on collective robotics that required the
deployment of the robot swarm in a regular lattice (Rubenstein et al., 2014b; Gauci et al.,
2018; Slavkov et al., 2018; Pratissoli et al., 2019, 2023). Some of these works also ran
self-localisation algorithms on Kilobots without using bearing information on messages;
however, unlike our approach, they required the use of a small set of robots with specific
locations and algorithms to act as ‘coordinate seeds’ (Rubenstein et al., 2014b; Gauci et al.,
2018). A further advantage of our algorithm is the absence of predefined roles; instead,
robots are able to self-determine their role and position at runtime. All robots run the same
code and can be freely interchanged. While the current algorithm is limited to a few regular
lattices, future research could explore how our approach might be extended to other regular
lattices, to irregular formations, and to higher dimensions. For example, we anticipate that
minor changes could enable our routines to operate in swarms in three dimensions, organ-
ised in monoclinic and orthorhombic Bravais lattices, making the framework applicable
and relevant to the recent 3D modular self-assembling robotic platforms e.g., Nisser et al.
(2022), Bray & Grof3 (2023).

This study takes a practical approach, demonstrating the feasibility of running our algo-
rithm on Kilobot swarms across a variety of conditions, lattice formations, and swarm
sizes. Experimental results confirm that the algorithm performs reliably on simple, error-
prone robotic platforms. To improve robustness, we incorporated several mechanisms
to compensate for individual errors and enable the swarm to reach global coordination.
However, future work should aim to enhance the algorithm’s resiliency by incorporating
mechanisms that prevent collective failure when robots fail at critical locations within the
lattice (e.g., those at the coordinates’ origin or along the boundaries). While we have dem-
onstrated that the swarm remains functional despite random failures of robots in the centre
of the formation, our results show that failures at the border or corners can impair system
performance. Developing strategies to detect and compensate for such failures is essen-
tial to strengthening system robustness, eliminating single points of failure, and enabling
higher levels of collective fault tolerance. Another promising direction for future research
is to apply the algorithm to swarms of robots moving in regular lattice formations, such
as robotic sheets composed of self-propelled autonomous modules, as explored in (Pratis-
soli et al., 2023). Ultimately, enabling reliable spatiotemporal awareness in minimalistic

@ Springer

358 Swarm Intelligence (2025) 19:333-360

swarms provides a foundational capability on which more advanced, self-organised and
coordinated swarm behaviours can be built.

Supplementary Information The supplementary online material with all videos of our robot experiments
is available at https://doi.org/10.1007/s11721-025-00251-4.

Acknowledgements The authors thank James A.R. Marshall for granting access to Sheffield Robotics’s
infrastructure for Kilobot experimentation and Michael Port for technical assistance during the experiments.

Author contributions All authors conceived the original idea. M.P. designed the algorithm and conducted
the experiments. All authors analysed the results and wrote the article.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by OP
VVV project International Mobility of Researchers of TBU in Zlin project no. CZ.02.2.69/0.0/0.0/16_02
7/0008464 and further by program “Excellence initiative—research university” for the AGH University
in Krakow as well as the ARTIQ project: UMO-2021/01/2/ST6/00004 and ARTIQ/0004/2021. A. Reina
acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy—EXC 2117-422037984. S. Garnier acknowledges support from the
National Science Foundation under grant no. #EF-2222418.

Data availibility The code to run our algorithm on the Kilobots is open source and available at https://doi.
org/10.5281/zenodo.14599973 and on Github at https://github.com/TBU-AILab/Kilobot-self-localization.

Declarations
Conflict of interest The authors declare that they have no conflict of interest.
Consent for publication The authors give their consent for publication.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alhafnawi, M., Hauert, S., & O’Dowd, P. (2020). Robotic canvas: Interactive painting onto robot
swarms. Artificial Life Conference Proceedings, 32, 163-170.

Barci§, A., & Bettstetter, C. (2020). Sandsbots: Robots that sync and swarm. [EEE Access, 8,
218752-218764.

Batra, S., Klingner, J., & Correll, N. (2022). Augmented reality for human-swarm interaction in a
swarm-robotic chemistry simulation. Artificial Life and Robotics, 27(2), 407-415. https://doi.org/
10.1007/s10015-022-00763-w

Beal, J., & Viroli, M. (2015). Space-time programming. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 373(2046), 20140220.

Beal, J., Dulman, S., Usbeck, K., Viroli, M., & Correll, N. (2013). Organizing the aggregate: Languages
for spatial computing. In: Formal and Practical Aspects of Domain-Specific Languages: Recent
Developments, 1GI Global, pp 436-501.

Bray, E., & GroB, R. (2023). Recent developments in self-assembling multi-robot systems. Current
Robotics Reports, 4(4), 101-116. https://doi.org/10.1007/s43154-023-00106-y

@ Springer

https://doi.org/10.1007/s11721-025-00251-4
https://doi.org/10.5281/zenodo.14599973
https://doi.org/10.5281/zenodo.14599973
https://github.com/TBU-AILab/Kilobot-self-localization
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10015-022-00763-w
https://doi.org/10.1007/s10015-022-00763-w
https://doi.org/10.1007/s43154-023-00106-y

Swarm Intelligence (2025) 19:333-360 359

Coppola, M., Guo, J., Gill, E., & de Croon, G. C. (2019). Provable self-organizing pattern formation by
a swarm of robots with limited knowledge. Swarm Intelligence, 13(1), 59-94.

Couzin, I. D. (2018). Synchronization: The key to effective communication in animal collectives. Trends
in Cognitive Sciences, 22(10), 844-846.

Ganesh, A. J., Kermarrec, A. M., Le Merrer, E., & Massoulié, L. (2007). Peer counting and sampling in
overlay networks based on random walks. Distributed Computing, 20(4), 267-278.

Gauci, M., Nagpal, R., & Rubenstein, M. (2018). Programmable self-disassembly for shape formation
in large-scale robot collectives. Distributed Autonomous Robotic Systems (DARS 2016): The 13th
International Symposium, SPAR (Vol. 6, pp. 573-586). Cham, Switzerland: Springer.

Ghosh, D., Frasca, M., Rizzo, A., Majhi, S., Rakshit, S., Alfaro-Bittner, K., & Boccaletti, S. (2022). The
synchronized dynamics of time-varying networks. Physics Reports, 949, 1-63.

Greunen van, J., & Rabaey, J. (2003). Lightweight time synchronization for sensor networks. In: Pro-
ceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications,
Association for Computing Machinery, New York, NY, USA, WSNA 03, p 11-19.

Guo, H., Meng, Y., & Jin, Y. (2011). Swarm robot pattern formation using a morphogenetic multi-cel-
lular based self-organizing algorithm. In: 2011 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp 3205-3210.

Hamann, H. (2018). Swarm Robotics: A Formal Approach. Cham, Switzerland: Springer International
Publishing.

Jones, S., & Hauert, S. (2025). Distributed spatial awareness for robot swarms. In: Distributed Autonomous
Robotic Systems (DARS 2024): The 17th International Symposium, SPAR, Springer, Cham, Switzer-
land, in press.

Klingner, J., Ahmed, N., & Correll, N. (2019). Fault-tolerant covariance intersection for localizing robot
swarms. Robotics and Autonomous Systems, 122, Article 103306. https://doi.org/10.1016/j.robot.2019.
103306

Li, Q., & Rus, D. (2006). Global clock synchronization in sensor networks. IEEE Transactions on Comput-
ers, 55(2), 214-226. https://doi.org/10.1109/TC.2006.25

Li, Y., Klingner, J., & Correll, N. (2018). Distributed camouflage for swarm robotics and smart materials.
Autonomous Robots, 42(8), 1635-1650. https://doi.org/10.1007/s10514-018-9717-6

Mathews, N., Christensen, A. L., O’Grady, R., Mondada, F., & Dorigo, M. (2017). Mergeable nervous sys-
tems for robots. Nature Communications 8(1).

Nagpal, R., Shrobe, H., & Bachrach, J. (2003). Organizing a global coordinate system from local informa-
tion on an ad hoc sensor network. In: Information Processing in Sensor Networks (IPSN 2003), LNCS,
2634, Springer, Berlin, Heidelberg, pp 333-348.

Naz, A., Piranda, B., Goldstein, S. C., & Bourgeois, J. (2016). A time synchronization protocol for modu-
lar robots. In: 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP), IEEE, pp 109-118.

Nikolaidis, E., Sabo, C., Marshal, J. A. R., & Reina, A. (2017). Characterisation and upgrade of the com-
munication between overhead controllers and Kilobots. Tech Rep: White Rose Research Online.

Nisser, M., Cheng, L., Makaram, Y., Suzuki, R., & Mueller, S. (2022). ElectroVoxel: Electromagnetically
actuated pivoting for scalable modular self-reconfigurable robots. In: 2022 International Conference
on Robotics and Automation (ICRA), pp 4254-4260.

Pinciroli, C., & Beltrame, G. (2016). Swarm-oriented programming of distributed robot networks. /EEE
Computer, 49(12), 32-41.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di
Caro, G., Ducatelle, F., Birattari, M., Gambardella, L. M., & Dorigo, M. (2012). ARGoS: A modular,
parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271-295.

Pinciroli, C., Talamali, M. S., Reina, A., Marshall, J. A. R., Trianni, V. (2018). Simulating Kilobots within
ARGoOS: Models and experimental validation. In: International Conference on Swarm Intelligence
(ANTS), Springer, LNCS 11172, pp 176-187.

Pitonakova, L., Giuliani, M., Pipe, A., & Winfield, A. (2018). Feature and Performance Comparison of the
V-REP, Gazebo and ARGoS Robot Simulators. In: Towards Autonomous Robotic Systems (TAROS),
Springer International Publishing, Cham, LNCS, 10965, pp 357-368.

Pratissoli, F., Reina, A., Kaszubowski Lopes, Y., Sabattini, L., & Gross, R. (2019). A soft-bodied modular
reconfigurable robotic system composed of interconnected Kilobots. In: Proceedings of the 2019 IEEE
International Symposium on Multi-Robot and Multi-Agent Systems (MRS 2019), IEEE, pp 50-52.

Pratissoli, F., Reina, A., Kaszubowski Lopes, Y., Pinciroli, C., Miyauchi, G., Sabattini, L., & Gross, R.
(2023). Coherent movement of error-prone individuals through mechanical coupling. Nature Commu-
nications, 14 (4063). https://doi.org/10.1038/s41467-023-39660-6

Pritsker, A. A. B. (1984). Introduction to Simulation and SLAM II. Halsted Press.

@ Springer

https://doi.org/10.1016/j.robot.2019.103306
https://doi.org/10.1016/j.robot.2019.103306
https://doi.org/10.1109/TC.2006.25
https://doi.org/10.1007/s10514-018-9717-6
https://doi.org/10.1038/s41467-023-39660-6

360 Swarm Intelligence (2025) 19:333-360

Reina, A., Cope, A. J., Nikolaidis, E., Marshall, J. A. R., & Sabo, C. (2017). ARK: Augmented reality for
Kilobots. IEEE Robotics and Automation Letters, 2(3), 1755-1761.

Reina, A., Bose, T., Trianni, V., & Marshall, J. A. R. (2018). Effects of spatiality on value-sensitive deci-
sions made by robot swarms. In: Distributed Autonomous Robotic Systems (DARS 2016): The 13th
International Symposium, SPAR, vol 6, Springer, Cham, Switzerland, pp 461-473.

Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective
behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp
3293-3298.

Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., & Nagpal, R. (2014). Kilobot: A low cost robot with scal-
able operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7), 966-975.

Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm.
Science, 345(6198), 795-799.

Saha, A., Marshall, J. A. R., & Reina, A. (2021). Memory and communication efficient algorithm for decen-
tralized counting of nodes in networks. PLoS ONE, 16(11), Article €0259736.

Sahin, E., Labella, T. H., Trianni, V., Deneubourg, J. L., Rasse, P., Floreano, D., Gambardella, L., Mondada,
F., Nolfi, S., & Dorigo, M. (2002). SWARM-BOT: Pattern formation in a swarm of self-assembling
mobile robots. IEEE International Conference on Systems, Man and Cybernetics, IEEE Press, 4, 1-6.

Sivrikaya, F., & Yener, B. (2004). Time synchronization in sensor networks: A survey. /[EEE Network,
18(4), 45-50. https://doi.org/10.1109/MNET.2004.1316761

Slavkov, 1., Carrillo-Zapata, D., Carranza, N., Diego, X., Jansson, F., Kaandorp, J., Hauert, S., & Sharpe, J.
(2018). Morphogenesis in robot swarms. Science Robotics 3(25).

Snyder, W. E., Qi, H., & Sander, W. A. (1999). Coordinate system for hexagonal pixels. Proceedings of
SPIE, Medical Imaging, SPIE publications, San Diego, CA, United States, 3661, 716-727.

Trianni, V., & Nolfi, S. (2009). Self-organizing sync in a robotic swarm: A dynamical system view. [EEE
Transactions on Evolutionary Computation, 13(4), 722-741.

Tyrrell, A., Auer, G., & Bettstetter, C. (2006). Fireflies as role models for synchronization in ad hoc net-
works. In: 2006 1st Bio-Inspired Models of Network, Information and Computing Systems, pp 1-7.
Wang, H., & Rubenstein, M. (2021). Decentralized localization in homogeneous swarms considering real-

world non-idealities. IEEE Robotics and Automation Letters, 6(4), 6765-6772.

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer networks, 52(12),

2292-2330.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1109/MNET.2004.1316761

	Decentralised construction of a global coordinate system in a large swarm of minimalistic robots
	Abstract
	1 Introduction
	2 Previous work
	3 Self-organised construction of a coordinate system
	3.1 A synchronised swarm
	3.2 Routine R1—neighbourhood construction
	3.2.1 Subroutine SR1a—locally-unique IDs assignment
	3.2.2 Subroutine SR1b—neighbour list creation
	3.2.3 Subroutine SR1c—position group identification

	3.3 Routine R2—coordinate system construction
	3.3.1 Subroutine SR2a—axes origin and direction
	3.3.2 Subroutine SR2b—lattice dimension measurement
	3.3.3 Subroutine SR2c—coordinates assignment

	3.4 Routine R3—synchronised dynamic role assignment
	3.5 Complexity analysis

	4 Experiments
	4.1 Simulations
	4.2 Kilobot experiments

	5 Conclusion
	Acknowledgements
	References

