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Abstract

The global water sector faces unprecedented challenges from climate change, rapid urbani-
sation, and ageing infrastructure, necessitating a shift towards proactive, digital strategies.
Historically characterised as “data rich but information poor,” the sector struggles with
underutilised and siloed operational data. Traditional machine learning (ML) models have
provided a foundation for smart water management, and subsequently deep learning (DL)
approaches utilising algorithmic breakthroughs and big data have proved to be even more
powerful under the right conditions. This paper explores and reviews the transforma-
tive potential of Generative Artificial Intelligence (GenAl) and Large Language Models
(LLMs), enabling a paradigm shift towards data-centric thinking. GenAl, particularly when
augmented with Retrieval-Augmented Generation (RAG) and agentic Al, can create new
content, facilitate natural language interaction, synthesise insights from vast unstructured
data (of all types including text, images and video) and automate complex, multi-step
workflows. Focusing on the critical area of drinking water quality, we demonstrate how
these intelligent tools can move beyond reactive systems. A case study is presented which
utilises regulatory reports to mine knowledge, providing GenAl-powered chatbots for ac-
cessible insights and improved water quality event management. This approach empowers
water professionals with dynamic, trustworthy decision support, enhancing the safety and
resilience of drinking water supplies by recalling past actions, generating novel insights
and simulating response scenarios.

Keywords: hydroinformatics; artificial intelligence; machine learning; deep learning;
generative Al; data mining; decision support; drinking water quality; incident management

1. Introduction

The global water sector is navigating a period of profound transformation, driven
by the intersecting pressures of climate change, rapid urbanisation, population growth,
increasing consumer expectations and ageing infrastructure, the latter of which is not far
from being at a critical level in developed western countries such as the UK [1]. These
challenges place unprecedented strain on the management of water resources, demanding a
paradigm shift from traditional, often reactive, operational models toward more proactive,
efficient and resilient strategies. Central to this transition is the concept of digitalisation,
which promises to reshape how water utilities monitor, manage and optimise their complex
networks. However, the water sector has historically been characterised as ‘data rich but
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information poor (DRIP)’, a condition where vast amounts of operational data are collected
but remain siloed and underutilised, hindering the extraction of actionable knowledge.
Water companies are actually interested in information and knowledge, not raw data.
Knowledge comes from understanding the information about a subject, and then using it
to make decisions, form judgements/opinions or make predictions.

For decades, the discipline of hydroinformatics has sought to bridge this gap by apply-
ing computational intelligence, information technology and data science to solve complex
water management problems. Hydroinformatics is concerned with the development and
hydrological application of mathematical modelling, information technology, data science
and artificial intelligence (Al) tools. It provides computer-based decision-support systems
that are solutions for areas, such as Smart Networks for leakage management. Early data-
driven models, including Artificial Neural Networks (ANNSs), Support Vector Machines
(SVMs) and Random Forests (RFs), have been applied to various tasks such as prediction,
classification and data mining, demonstrating the value of machine learning in the water
domain [1]. These tools have provided the foundation for smarter water management,
enabling applications in leakage detection, asset condition assessment and demand fore-
casting. Yet, these model-centric approaches often depend on high-fidelity and structured
data, the scarcity of which can limit their effectiveness and scalability [2]. In addition,
they remain hard-data centric, missing extensive softer—often linguistic—sources that
embed high-value context and tacit expert knowledge which is now being lost to workforce
ageing and retirement. With the rapid development of Al tools, it has been suggested that a
paradigm shift toward more inclusive data-centric thinking and away from model-centric
approaches (based on internal computational architectures and numerical data only) is
needed in the broader water industry [3].

Deep learning (DL) sits at the convergence of large-scale datasets and advanced
machine learning methods, enabling solutions to problems that are difficult for humans
to explicitly specify or fully comprehend [4]. Its key advance is training ANNs (with
architectures that can have hundreds of layers) to discover representations in stages: models
first capture fine-grained patterns (e.g., strokes or character shapes) and then build up
to abstract concepts and classes (e.g., words or objects). This hierarchical representation
has reshaped Al over the past decade by supporting pipelines that move from raw data
to operational decisions. Widespread adoption has been propelled by data abundance,
improved model formulations and notable algorithmic progress. Such deep learning is at
the heart of revolutionary technologies such as Generative AL

The recent and rapid emergence of Generative Artificial Intelligence (GenAl), and
particularly Large Language Models (LLMs), represents a fundamental technological inflec-
tion point with the potential to empower data-centric thinking and help overcome many
traditional barriers [5]. Unlike earlier Al systems that primarily focused on quantitative
analysis and prediction, generative models are capable of creating new, original content—
including text, code, images and synthetic data—based on patterns learned from existing
information [6]. This capability, powered by architectures like the Transformer [7], allows
for human-like natural language interaction, sophisticated reasoning [8] and the synthesis
of insights from vast quantities of unstructured data, such as technical manuals, operational
logs and regulatory reports [5]. Whilst GenAl systems offer powerful capabilities, they are
prone to so-called “hallucinations,” defined as instances where the model invents details
not supported by data. Recognising this limitation is vital to mitigating risks in applied
settings, as we shall discuss. The potential of GenAl to transform knowledge-driven fields
is reshaping industries, and the water sector is now beginning to explore its applications,
with early adoption and pilot projects beginning to demonstrate the value of GenAl. Fig-
ure 1 shows the results of a comprehensive search (using OpenAlex and Crossref across
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journals, conferences, preprints, theses, etc.) in publications that mention “generative AI”
or related terms (e.g., generative models, GANs) in the context of water resources and
hydrology. The bar chart summarises the approximate counts per year (global coverage,
all publication types). In 2021, there were only a handful of such works, but by 2025 the
number had surged dramatically.
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Figure 1. Rise in publications on generative Al in water resources/hydrology (2021-2025). Data
gathered via OpenAlex/Crossref API searches (using year filters and keyword queries). 2025 is
partial (up to Q3).

A chatbot is a program (powered by ML algorithms) within an app that interacts
directly with users to help with simple tasks. ChatGPT allows the user to ask questions
in natural language, to which the chatbot responds. Platforms such as OpenAl allow the
creation of Al Assistants or specialised “GPTs” for particular domain tasks. Prompt engi-
neering is utilised to craft instructions that guide the Al to generate desired outputs. A key
enabling technology for these advanced applications is Retrieval-Augmented Generation
(RAG), which grounds an LLM’s responses in external, verified knowledge sources. By
retrieving relevant information from a utility’s internal databases or technical documents
before generating a response, RAG ensures that the Al’s output is accurate, up-to-date,
and context-specific, thereby mitigating the risk of factual errors or “hallucinations” [9].
A significant evolution in this space is the development of agentic Al, where Al systems,
or “agents,” are designed to autonomously perceive their environment, make decisions
and execute multi-step tasks to achieve specific goals [10]. This moves beyond simple
question-answering systems to create a “virtual workforce” capable of orchestrating work-
flows, providing functionality such as data analysis, report generation and even operational
control (with suitable safeguards). The concept of Al agents has been identified by Gartner
as the top strategic technology trend for 2025 and holds immense promise for orchestrating
the multifaceted operations of a smart water network. According to Futurum Group’s CIO
Insights Q2-2025 global survey—covering 204 enterprise CIOs from Fortune 500 and Global
2000 companies across 17 industry verticals—89% consider agent-based Al a strategic
priority for automation, decision-making and process orchestration [11]. Figure 2 demon-
strates the progression of Generative Al application from improved searches, to chatbots
and Al assistants, to more advanced decision support with specialised agents for tasks
and workflows.
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Figure 2. The evolution of AlI: from static search to autonomous agents.

After exploring the digital transformation of the water sector and some of the latest
work in GenAl, this paper focuses on a critical, high-stakes application area within the
water sector: the management of drinking water quality. The provision of safe, clean
water is a paramount public health responsibility, and incidents such as contamination
events, discolouration or microbiological failures require rapid and effective decision-
making to protect consumers and comply with strict regulatory standards. We then explore
how LLMs, RAG and agentic Al can develop in the future to create a new generation of
intelligent tools. These tools will not only recall past actions but also generate novel insights,
simulate response scenarios, draft communications and orchestrate complex, multi-step
workflows. Through a discussion of the state of the art and a case study focused on a
GenAl-powered chatbot for water quality incident management, this paper explores and
reviews the transformative potential of GenAl and LLMs to overcome barriers in the water
sector. We demonstrate how these intelligent tools can move beyond reactive systems to
enhance decision support in drinking water quality. The paper concludes by presenting
a forward-looking roadmap for an Al-augmented future where water professionals are
empowered with dynamic, intelligent and trustworthy decision support systems to ensure
the safety and resilience of our drinking water supplies.

2. Background: Digital Transformation and AI in the Water Sector

Terms like the “Fourth Industrial Revolution” and the “Second Machine Age” have
become shorthand for the sweeping digital transformation across manufacturing, public
services and utilities such as water. As digitalisation reshapes daily operations, organ-
isations must redesign workflows to ingest, integrate and act on new data streams. By
rethinking processes around data, value can be created end-to-end rather than in silos.
In the water sector, these technologies promise meaningful improvements in reliability,
efficiency and customer outcomes. Recent analyses suggest that, by 2030, digital transfor-
mation technologies, especially Al and platform-based business models, could generate
nearly US$20 trillion in additional global economic value [12], with as much as 70% of the
new value created over the next decade being digitally enabled [13].

High-fidelity data is the building block for this transformation. Innovations such
as PipeBots are designed to provide this necessary data by enabling a shift from limited,
fixed-location (Eulerian) sensing to pervasive, Lagrangian (mobile) sensing within buried
pipe networks, generating potentially massive volumes of real-time information [14]. This
increased data frequency and geo-distribution provide the granularity required to produce
actionable information, thereby enabling the development of site-specific, continually up-



Water 2025, 17, 3260

50f24

dated predictive models that support a move from reactive to truly proactive maintenance
and system performance management. These virtual representations of water systems or
“digital twins” of water assets (computational replicas of networks, plants and catchments)
can provide operational awareness and near-real-time views of hydraulics and water qual-
ity. With continuous sensing and model updates, they can boost efficiency, strengthen
resilience, reduce leakage and enable predictive maintenance rather than reactive fixes.
More broadly, “digital water” lays the groundwork for utilities to embed data science into
everyday practice and to turn dispersed data into coordinated, real-world decisions across
the entire system.

In the UK, the infrastructure (pipe networks) for delivering clean drinking water is
ageing and deteriorating and, for the water sector in particular, we live off a legacy of
past over-engineering. Water utilities are increasingly moving from traditional, reactive
operational models toward more proactive, efficient and data-driven strategies. This shift,
often termed digital transformation, involves integrating advanced technologies like the
Internet of Things (IoT), cloud computing and artificial intelligence (AI) to turn massive
volumes of data into actionable knowledge. Water utilities collect vast amounts of data
from sources like SCADA systems, GIS databases, asset records and customer contacts.
However, this data often remains in isolated “silos,” stored in different formats across
separate platforms, which hinders integrated analysis and decision-making. It has been
estimated that some water utilities might use as little as 10% of the data they collect,
highlighting a significant gap between data availability and its application. The journey
toward a smarter water sector has been marked by the evolution of data-driven modelling
techniques, not just collecting more data, but integrating it and applying advanced analytics
to extract meaningful patterns and insights. To date, most digital efforts have centred on
hard numerical data (SCADA time series, network telemetry, etc.), often leaving out text-
based operational evidence. Emerging GenAI/LLM/MLLM tools can now parse and align
unstructured text and other inputs with the hard numeric data, extracting entities and
events with provenance so decisions are richer, faster and more auditable.

For decades, researchers and utilities have applied machine learning (ML) models
to address specific challenges. These “model-centric” approaches focused on leveraging
algorithms to find patterns in historical data. Areas include the following:

e Prediction and forecasting: Artificial Neural Networks (ANNSs), Support Vector Ma-
chines (SVMs) and Random Forests have been widely used for tasks like water demand
forecasting, water quality prediction and stream flow forecasting.

e C(Classification and anomaly detection: These models are also used for classification
tasks, such as identifying pipes at high risk of failure or detecting anomalies in sensor
data that could indicate a leak or contamination event.

e  Asset management: In asset management, Al has been used for automated condition
assessment. For example, computer vision combined with ML methods like Ran-
dom Forest has been successfully applied to analyse CCTV footage of sewer pipes,
automatically detecting faults like cracks and displaced joints with high accuracy [15].

The recent explosion in data volume, driven by the proliferation of IoT sensors and
smart meters, has fuelled the adoption of deep learning [4], a subfield of ML that uses
multi-layered neural networks [16,17]. Key architectures include the following:

e  Convolutional Neural Networks (CNNs) are adept at capturing spatial patterns, mak-
ing them ideal for analysing geospatial data like satellite imagery for land use classifi-
cation or the remote sensing of water bodies.

e  Recurrent Neural Networks (RNNs), and particularly their advanced variant Long
Short-Term Memory (LSTM), are designed to handle sequential data, making them
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state-of-the-art for time-series forecasting of hydrological variables like rainfall, stream
flow and water demand.

e  Hybrid Models: researchers are increasingly creating hybrid models that combine the
strengths of different architectures. A CNN-LSTM model, for instance, can use CNN
layers to extract spatial features from weather maps and LSTM layers to model the
temporal evolution of a flood event.

While the aforementioned DL models primarily focus on analysis and prediction, the
recent emergence of GenAl and Large Language Models (LLMs) represents a new paradigm.
GenAI models, particularly LLMs like GPT-5 and Large Multimodal Models (MLLMs) that
can process images and text, data, images and video are capable of creating seemingly
new, original content (based on learned patterns) to help augment researchers’ productivity
and to help uncover patterns that were not previously recognised. This capability will
transform how the water sector can address data scarcity, manage knowledge and interact
with complex systems.

Applications range from enhancing operational efficiency [18] and predictive main-
tenance to improving customer engagement and knowledge management [5]. For in-
stance, Multimodal Large Language Models (MLLMSs) can unlock vast amounts of domain
knowledge trapped in physical archives by accurately transcribing handwritten notes
and complex forms from legacy documents [19]. This is particularly valuable for creating
comprehensive historical records to train AI models for detecting rare events like pipeline
leaks or water quality anomalies. GenAl is reshaping traditional engineering by enabling
intuitive, natural language interactions with complex systems. LLMs can assist in gener-
ating solutions, analysing data or writing code and can be supplemented with technical
manuals or integrated with analytical tools, providing context-specific information for
knowledge management for areas such as asset management, predictive maintenance and
demand management [20].

Some of the more recent academic research that demonstrates the possibilities of
GenAl are the following:

e A powerful application of GenAl is in creating high-fidelity synthetic data to augment
limited real-world datasets, which is crucial for training robust Al models. This is a
crucial benefit over conventional statistical methods when high-fidelity data is scarce.
A study directly compared deep generative models (CTGAN, TVAE and CopulaGAN)
with a classical Gaussian-copula approach for synthetic water quality data and found
the GenAl methods yielded better downstream model performance [21]. A generative
Al approach was developed for spatiotemporal imputation and demand prediction
in water distribution systems, exploiting sensor data to reconstruct missing data and
improve forecasting accuracy [22]. Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have been used to generate realistic time-series
data for water demand, synthetic acoustic signals for leak detection and patterns of
water quality parameters to train anomaly detection systems. A recent study explored
using LLMs to generate synthetic hydrological data (e.g., daily rainfall and reservoir
levels) by providing prompts engineered with key statistical properties from a real
dataset. Models trained on the augmented dataset showed improved forecasting
accuracy [23]. Training generative tools like VAEs, GANs and diffusion models on
digital twin data facilitates data augmentation, enabling the creation of high-fidelity
synthetic water consumption samples which are already labelled to train supervised
learning models. These models can further simulate different scenarios, including
shifts in water demand, infrastructure failures or severe weather conditions [24].

e A multi-agent LLM framework has been presented to automate water-distribution op-
timisation [25]. An Orchestrating Agent coordinates knowledge, modelling (EPANET)
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and coding agents for hydraulic model calibration and pump-operation optimisation.
Tested on Net2 and Anytown, the coding agent performed most accurately across
both benchmarks; natural-language reasoning lacked numerical precision, while tool
integration improved reliability.

e  Projects like WaterER and DRACO are creating standardised benchmarks to rigor-
ously evaluate the performance of different LLMs (e.g., GPT-4, Gemini and Llama)
on domain-specific tasks. The Drinking Water and Wastewater Cognitive assistant
(DRACO) initiative [26] released a dataset for benchmarking open- and closed-source
models and found that state-of-the-art open-weight models can match, and some-
times outperform, proprietary systems, which is promising for utilities seeking secure,
on-premise deployments.

e  Researchers can use LLMs to perform Al-driven literature mapping. For example,
using an LLM and geocoding on 310,000 hydrology papers (1980-2023), a study
mapped basin trends, collaborations, and hotspots [27]. Research has surged since the
1990s, shifting from groundwater/nutrients toward climate change and ecohydrology.
Activity concentrates in North America and Europe, with rising China/South Asia
attention but persistent gaps in extreme-rainfall regions.

e  HydroSuite-Al is an LLM-enhanced web application that generates code snippets and
answers questions related to open-source hydrological libraries, lowering the entry
barriers for researchers and practitioners in the field without extensive programming
expertise [9].

e A vastrepository of knowledge in the water sector remains locked in non-machine-
readable legacy documents like handwritten maintenance logs, scanned reports and
old maps. Traditional Optical Character Recognition (OCR) engines like Tesseract
struggle with so called “dark data,” especially with complex layouts and handwriting.
A case study on Danish water utility documents demonstrated that a Multimodal
Large Language Model (MLLM), Qwen-VL, dramatically outperformed Tesseract [18].
The MLLM reduced the word error rate by nearly nine-fold, accurately transcribing
handwritten notes and correctly interpreting complex forms in a zero-shot setting.

3. Drinking Water Quality AI Analytics
3.1. Overview

The imperative to deliver safe, clean drinking water and manage wastewater ef-
fectively places water quality management at the forefront of the global water sector’s
priorities. A US study recorded 7.15 million water-borne illnesses annually, with > 600 k
emergency department visits, 118 k hospitalisations, 6630 deaths and an annual economic
cost of $3.33 billion [28]. Water quality is a multifaceted issue, influenced by an increasing
array of pollutants, including micro-pollutants and trace contaminants (such as PFAS).
Managing these threats is central to public health and environmental quality. Monitor-
ing is inherently expensive and labour-intensive, spanning the entire water cycle from
wastewater resource recovery facilities and combined sewer overflows (CSOs) to rivers,
lakes and oceans. Many variables crucial for process optimisation, such as microbial activ-
ity, cannot be directly measured, necessitating inference from indirect measurements and
domain knowledge. Moreover, water quality is often subjected to multiple stressors (e.g.,
climate change, land use and management practices) that can exert complex synergistic
and antagonistic effects, making prediction and management challenging.

Water quality in the UK’s approximately 1500 water treatment works is well under-
stood. The challenge is to monitor water quality in the ~300,000 km of pipe in the UK
distribution network. Water quality data in the distribution network is obtained from man-
ual sampling, portable water quality monitors and a relatively small but growing number
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of fixed water quality monitors. Customers and regulators are demanding ever greater
water quality; however, water utilities are unable to deliver because they have inadequate
data and understanding or insights into what is happening in their networks. This critical
domain is fraught with complexities on the operational management side, stemming from
DRIP [1], the presence of legacy systems, disparate and siloed data sources (e.g., SCADA,
GIS, IoT sensors and asset management databases) and varied data formats, often resulting
in information silos, limiting real-time monitoring and hindering effective decision-making.
Beyond the data layer, water systems function as high-surface-area physical, chemical
and biological reactors, where interacting processes (mixing, adsorption/desorption, re-
dox transformations, corrosion and scaling, biofilm growth and sloughing, pathogen
die-off /regrowth and natural organic matter dynamics) evolve across multiple spatial and
temporal scales. The data fragmentation and process uncertainty create an operational
environment where situational awareness is partial, model confidence can be fragile and
risk-informed decisions must be made under persistent uncertainty. Network water quality
data such as temperature, turbidity, conductivity, pH, etc. is still collected inconsistently
and with limited automation. As performance improves and whole-life costs drop, quality
sensors could provide routine operational signals and become as ubiquitous as flow meters.
For now, analytics remain underdeveloped because real-time water quality monitoring is
only sparsely deployed across distribution networks [29,30]. Currently, data/information
access is often limited to secure remote platforms only at the premises of the service provider
or data generator or on non-standard and expensive portable platforms. Furthermore,
critical contextual information, such as the physical and topological relationships between
measurements, often remains in human-interpretable formats (e.g., SCADA synoptics)
rather than machine-readable ones. Mobile sensing platforms, including robots and drones,
could be game changing for providing intelligence for applications, including interpretation
and mission planning [14].

3.2. Traditional Machine Learning and Deep Learning in Water Quality

In recent decades, data-driven models, particularly those based on machine learning
and deep learning, have been deployed to address specific water quality challenges. These
approaches aim to map inputs to outputs (for hard numerical data) without necessarily
modelling the underlying physical processes in detail [31].

A range of application areas have been explored, many centring on prediction/forecasting,
in the sphere of anomaly detection and for data mining. For water quality parameter pre-
diction, early ANNs were applied to water quality modelling [32]. More recently, an
LSTM-based encoder-decoder model has also been shown to predict water quality vari-
ables with satisfactory accuracy after data denoising [33]. Further advancements include
hybrid encoder-decoder BiLSTM models with attention mechanisms, which outperform
state-of-the-art algorithms by efficiently handling noise, capturing long-term correlations,
and performing dimensionality reduction [34]. Other techniques such as ensemble decision
tree ML algorithms have been applied, including for predicting low chlorine events [35].

In contamination event detection, ML and DL models are widely used for water quality
anomaly detection, addressing point, contextual and collective anomalies [31,36-38]. Most
data-driven methods suffer drawbacks associated with high computational cost and an
imbalanced anomalous-to-normal data ratio, resulting in high false positive rates and poor
handling of missing data [23].

Remote sensing data enables ML to serve as an efficient alternative to traditional
manual laboratory analysis, offering real-time detection feedback which is crucial for rapid
contamination detection [22]. Computer vision techniques are also being employed for
tasks such as algal bloom monitoring. Efforts are directed towards using advanced image
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description mechanisms to detect and analyse water pollution sources, facilitating prompt
intervention and mitigation measures [39].

Self-organising maps (SOMs), a form of unsupervised Artificial Neural Network
(ANN) [40], have been applied in data mining for data visualisation and knowledge dis-
covery for water quality. These have been demonstrated for clustering of water quality,
hydraulic modelling and asset data over multiple DMAs [41], in relating water quality and
age in drinking water [42] and in exploring the rate of discolouration material accumulation
in drinking water [43]. Other approaches to data-driven visualisation/mapping and cluster
analysis include using k-means (typically with Euclidean distance), hierarchical clustering,
distribution models (such as the expectation-maximisation algorithm), fuzzy clustering and
density-based models, e.g., DBSCAN and Sammon’s projection [44]. Work has also devel-
oped techniques to explore correlations (using semblance analysis) between water quality
and hydraulic data streams in order to assess asset deterioration and performance [29].

3.3. Generative Al for Enhanced Water Quality Modelling

The advent of GenAl, LLMs and MLLMs offers a paradigm shift in how water quality
challenges can be addressed, moving beyond mere analysis and prediction to content
creation, advanced knowledge management and robust decision support. Crucially, ap-
proaches once confined to hard numerical data can now unlock and integrate “softer”
evidence: operator logs, maintenance tickets, customer contacts, images/video and expert
narratives via LLM-driven extraction and linking. This multimodal fusion strengthens
signal detection and root-cause hypotheses by aligning qualitative cues with quantitative
trends, reducing silos and improving interpretability. In practice, provenance tracking and
uncertainty annotations helps keep the softer insights auditable while enhancing the value
of the hard data. Some of the more recent academic research that applies GenAl in a potable
water quality context are the following:

e  Synthetic data generation to address scarcity. One of the significant limitations of tra-
ditional ML /DL models in water quality is the difficulty in obtaining large amounts of
high-fidelity, domain-specific data, especially for rare events like contamination. Gen-
erative Adversarial Networks (GANSs) are proving useful for creating synthetic data
that mimics real measurements, thereby augmenting sparse datasets and improving
model robustness [33].

e Contamination detection. A case study involved a novel GAN architecture that
generated expected normal water quality patterns across multiple monitoring sites
in China’s Yantian network. By comparing real measurements against these GAN-
generated baseline patterns, the system effectively detected contamination events,
demonstrating the model’s capability to capture complex spatiotemporal relationships
with high detection performance and low false alarm rates [45].

e  Multimodal monitoring and visualisation. MLLMs (e.g., GPT-4 Vision, Gemini, LLaVA
and QWEN-VL) are being evaluated for hydrological applications such as water
pollution management, demonstrating exceptional proficiency in interpreting visual
data for water quality assessments. These models can integrate visual and textual data
for real-time monitoring and analysis, enabling dynamic, real-time visualisations of
complex water quality scenarios, including potential contaminant spread patterns [46].

e  Al-assisted information retrieval. LLMs are being integrated into platforms to enable
conversational queries about operational data. For instance, Klir’s “Boots” chatbot,
powered by ChatGPT, can summarise lab results, flag anomalies in water quality
readings and assist with report generation to regulators by drawing on the utility’s
secure internal database [47].
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e Al assistants for professionals. LLMs can serve as “water expert models” to assist
professionals by answering questions, summarising compliance documents (enhanced
decision support) and generating reports or code [48,49]. The WaterER benchmark
suite has evaluated LLMs (e.g., GPT-4, Gemini and Llama3) for their ability to perform
water engineering and research tasks, demonstrating their proficiency in generating
precise research gaps for papers on “contaminants and related water quality moni-
toring and assessment” and creating appropriate titles for drinking water treatment
research. It is expected that the field of hydrology can benefit from LLMs, by address-
ing various challenges within physical processes [50]. WaterGPT is a domain-adapted
Large Language Model for hydrology [51]. The authors curated hydrology corpora,
performed incremental pretraining, supervised fine-tuning and enabled multimodal
inputs. WaterGPT supports knowledge-based Q&A, hydrological analysis and de-
cision support across water resources tasks, showing improved performance versus
general LLMs on domain benchmarks and case studies reported. Another perspec-
tive on customising general LLMs into domain-adapted “WaterGPTs” for water and
wastewater management appears in [52]. The authors outline methods (including
prompt engineering, knowledge and tool augmentation and fine-tuning), discuss
dataset curation and ethics and propose benchmarking tasks and evaluation suites. A
roadmap highlights reliability, safety and practical use cases across stakeholders.

In summary, Al, particularly with the advancements in generative models, is rapidly
transforming water quality analytics (and the water sector in general). From synthetic
data generation and advanced knowledge management to enhanced decision support and
real-time monitoring, these technologies offer unprecedented opportunities. However,
navigating the challenges related to data quality, explainability, ethical governance and
workforce development will be crucial to fully realise Al's potential in ensuring the safety
and sustainability of water resources.

4. Case Study: Drinking Water Quality Event Management
4.1. Scope

Drinking water quality is consistently ranked as the top service priority for water
companies. Water treatment is consistently produced to a high standard; however, that
quality can be compromised during prolonged transit through extensive, ageing and
deteriorating distribution networks. Treated water undergoes various changes whilst
travelling through the ageing distribution system infrastructure and a link exists between
the age of distributed water, persistent sporadic bacteriological failures and poor water
quality. In drinking water supply systems, when a hazard occurs from water treatment
works to consumers’ taps, it is considered an event. Events do occasionally occur and can
be aesthetic, chemical and microbiological failures. Every water company in England and
Wales must inform the Drinking Water Inspectorate (DWI) of all events that have affected,
or are likely to affect, drinking water quality, sufficiency of supplies and where there may
be a risk to health. If quality fails, actions will be flagged for consideration and certain
sampling types will be required (3.52 million tests were conducted in England in 2022).
For example, in 2023, a total of 533 events were reported to the DWI and by 2024 this had
increased to 556 overall events, with 55% of these water quality events reported outside of
the control of the water company [53]. The DWI evaluates the companies’ responses to the
most significant events on an annual basis via documentary reporting. Existing solutions
to the problem of tackling water quality events in water supply systems typically involve
manual analysis of graphs and charts and following designated procedures and performing
evaluation in conference calls where necessary. Priority will depend on the issue, so that
when a non-critical event occurs a control centre operator would look at a set of criteria and
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procedures (see Figure 3 for an example of the life cycle of an event caused by a burst main).
These approaches are insular to each individual water company with varying types of
procedures, working practices and response plans. This process is time-consuming, prone
to human error and unlikely to optimally utilise past learning.

Response to Burst Main Scenario

Investigation Resolution Communication  Recovery and
e and ' Post-Incident
ot t Repairing main and Updating customers Acti
Crews dispatched to ontainmen restonng} water and stakeholders ctions
locate and isolate Assessing quality Monitoring and
the burst discolouration and ensuring compliance
potential

contamination
Figure 3. Phases dealing with a significant water quality event.

4.2. ACQUIRE Project

The ACQUIRE project [54] utilises and exploits DWI reports regarding water quality
events submitted by water companies to mine the complex knowledge and derive under-
standing from the information buried within it. These reports form a valuable resource that
can be explored and exploited for improved understanding, evaluation and learning for
incident management solutions. By data mining many previous water quality event reports,
valuable insights into the water quality events can be obtained, facilitating better responses
by effectively providing a “triage” view of typical actions from sector-wide responses. This
leads to better water quality management, reduced risks, improved regulatory compliance,
enhanced customer satisfaction and water industry reputation.

Previous work [55] presented a prototype and findings on how water companies
could deal more effectively with drinking water quality events by using information
from previous incidents. It explored the use of case-based reasoning (CBR), as a useful
tool for providing diagnosis and solutions which can be used for the interpretation of,
and guidance on, water quality incidents in water distribution systems. CBR is a classic
knowledge-based Al technique that relies on the reuse of past experience. Similar problems
from the past have similar solutions and therefore deriving solutions to new problems
can be effectively addressed by reusing (and adapting) past solutions. While promising,
the early CBR prototype was limited by the need for expert scoring of every DWI finding;
a limited historical case base; and a complex user interface which restricted its usage to
expert or academic users. A subsequent study [56] expanded this foundation by creating
a comprehensive database of over 2300 historical events from 14 years of DWI reports
and used deep learning models to automate the sentiment scoring of regulatory outcomes.
Further, LLMs were used to create Al assistant “chatbots” to provide accessible insights.
Using GenAl can generate decision support insights, aiding efficient repair and response
strategies and enhance emergency response in water systems by simulating novel scenarios
beyond historical data, thereby improving readiness and adaptive capacity. But it is
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important to underscore the need for water professionals to blend Al knowledge with
engineering principles [20].

4.3. RAG for Generic Response Plan

LLMs can be both commercial / proprietary (examples: GPT 5.1 (OpenAl), Claude 4.5
(Anthropic), Gemini 2.5 (Google DeepMind) and Grok 4 (xAl)) and open source (examples:
Llama 3.3 (Meta), DeepSeek V3.2-Exp and Mistral 7B v0.3). There are various benchmarks
for rating the models, with various research groups deciding which benchmarks are suitable,
so in practice the choice of model is application-dependent. A number of open source and
rapidly developing GenAl delivery platforms and LLMs were used to build and deploy Al
Assistant bots with the RAG concept of tuning on appropriate documents (see Figure 4).
The RAG approach grounds the LLM’s responses in factual, up-to-date information, with
a curated and high-provenance document corpus and carefully constructed prompts,
mitigating the risk of “hallucinations” [5,57]. RAG enhances the results achieved in both
accuracy and reliability by retrieving information from trusted sources. For example, the
prompt fed to the LLM can be enhanced with more up-to-date or technical information.
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Figure 4. RAG workflow for application.

The system differs fundamentally from a standard, general purpose LLM such as
off-the-shelf ChatGPT due to its specialised methodology, using RAG that strictly grounds
generation in a curated corpus of DWI regulatory reports. Rather than relying on a general
model’s latent knowledge, every answer is carefully prompted to retrieve from high-
provenance and versioned DWI sources, allowing audit trails. This architecture improves
factual fidelity, trustworthiness and explainability, all essential for regulated decision
support. Outputs are aligned to UK regulatory language and practices, improving local
relevance and compliance in incident rooms and post-event reviews. Generic response
plans are assembled by retrieving previously effective interventions and mapping them to
current context, thereby accelerating safe and consistent decision-making.
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Compared to manual analysis, these approaches offer several significant improve-
ments. Firstly, they enable rapid identification of previously effective interventions for a
given unfolding incident, as well as those to be avoided, providing valuable insights for
control rooms and water quality scientists. They also aggregate and present actionable
information for response plans, improving decision-making and response effectiveness.
Furthermore, the tools can facilitate strategic data mining and provide inter-industry learn-
ing (including for the training of new staff). They could particularly benefit smaller water
companies by providing whole-industry learning and helping to gradually refine response
plans over time. Also, there are many water quality events that are not large enough to be
reported (in 2024, there were a total of 70,507 consumer contacts in England regarding the
acceptability of drinking water—up 12% since 2022), however, that companies must still
address through good decision-making. Change needs to be cross-sector, by encouraging
industry learning, promoting resilience and informing impact plans [19,58,59]. Event re-
sponse is often challenged by the rarity of such events, which limits organisational learning,
and the gradual loss of institutional knowledge as experienced personnel retire [19]. A
notable challenge is the loss of “institutional memory” and ensuring that the best possible
practice is being effectively shared across the sector [1]. Since the reports are public, origi-
nating from all companies, they are effectively “open data,” engendering data sharing and
alleviating fears about data security and confidentiality by creating a transparent supply
chain of datasets for analysts. Figure 5 shows an example of generating a response plan
using RAG. A detailed sixteen-phase plan is produced starting with part 1 —Immediate
Incident Response.

Hil Please briefly describe the water quality incident type and cause

S

For a Cryptosporidium incident caused by a possible faulty valve affecting a reservoir
supplying approximately 40,000 residents, a structured generic response plan based on best
practices and lessons learned from historical incidents reported to the Drinking Water
Inspectorate (DWI) would include the following actions:

1. Immediate Incident Response
« Isolate the affected reservoir by removing it from supply to prevent further
distribution of potentially contaminated water.
» Bypass the reservoir if possible to maintain supply continuity.

» Increase chlorine residuals in the distribution system to provide additional
disinfection.

« Issue a Boil Water Notice (BWN) or Do Not Drink Notice promptly to all affected

consumers, with clear communication on the reason and expected duration.

« Provide alternative water supplies such as hottled water or water bowsers,

Describe the incident type and cause >

Developed by ACQUIRE

Figure 5. Using the Al assistant to generate a response plan.

GenAl tools using such structured data with RAG can improve water quality manage-
ment and help the water sector become more efficient and cost-effective, while protecting
public health. LLMs can be fine-tuned as powerful query and reporting tools in water
sector operations by capturing institutional knowledge.



Water 2025, 17, 3260

14 of 24

4.4. Results and Findings

The implementation of the ACQUIRE AI Assistant for Response Plans within a real-
world UK water company provided empirical grounding and concrete evidence demonstrat-
ing how a domain-adapted GenAl system differs functionally from a standard, generalised
LLM system. Unlike a general chatbot system, ACQUIRE is enhanced using RAG to mine
knowledge specifically from regulatory reports, steered by focused prompts and offering
trustworthy, sector-aligned decision support for critical water quality events. Three months
of feedback collected from a control room yielded specific insights into its unique benefits
in a local operational context.

The tool’s most significant benefit lay in supporting inexperienced staff with limited
operational understanding, acting as a functional roadmap or starting point. During an
incident caused by a storm, the tool proved particularly helpful for new personnel when a
less experienced incident manager faced complications involving treatment failures and
power issues. The ACQUIRE tool was used to immediately put high-level initial actions on
the manager’s radar, facilitating the incident management team'’s discussion on mitigation
strategies, including alternative water, communications strategy and water quality testing.
Conversely, experienced incident response managers utilised the tool in an augmentation
capacity, running “in the background” to double-check potential actions and compare them
against their own initial responses. This application highlighted ACQUIRE’s ability to pro-
vide recommendations that might otherwise have been overlooked by highly experienced
personnel, such as during the planning for a sewage treatment works (STW) shutdown.

Methodologically, ACQUIRE proved valuable in streamlining the maintenance of
physical documents, specifically feeding its recommendations into the revision of incident
response plans (which are kept as hard copies). It was used to update generic response
plans for incidents like a “burst drinking water main” and “water treatment works incident
response plans”. This included systematically outlining both immediate considerations
(e.g., locating the burst, isolating the section and assessing water quality impact) and
secondary considerations (e.g., notifying regulators, managing road closures and assessing
resilience). Empirical feedback further confirmed that, while the basic response plan was
“good,” it lacked value for experienced individuals whose actions were already planned
or underway. The core value of ACQUIRE in the local context is providing a reliable,
regulatory-aligned skeletal structure or action plan based on aggregated institutional
knowledge, which can then be elaborated upon by other systems or human experts as
needed, confirming its unique function as a domain-specific decision support foundation.

5. Discussion
5.1. Context

A key Al development is the distinction between generative Al and agentic AL. While
generative Al functions as a sophisticated pattern-matching and completion system, agentic
Al marks a fundamental evolution. Agentic Al systems operate with a degree of autonomy,
capable of setting goals, formulating strategies and adapting their approach. This makes
agentic AI more akin to a proactive colleague than a reactive assistant. For instance,
while GenAI might answer a specific query on optimal chlorine dosing levels based on
historical data, an agentic Al could proactively monitor water quality sensors for emerging
risks, forecast potential KPI breaches, recommend pre-emptive set-point adjustments and
schedule maintenance interventions. Human-in-the-loop (HITL) and human-on-the-loop
(HOTL) approaches represent crucial safeguards as Al autonomy increases, especially
in the regulated environment of water quality management. These paradigms ensure
accountability, transparency and ethical alignment—by reserving human oversight (HITL)
or supervisory control (HOTL), balancing efficiency with responsibility. For example, if
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a traditional Al tool were to raise a burst alert based on abnormal flow signatures to the
control room, a GenAl could then synthesise telemetry and customer contact data to narrow
down the location and an agentic Al could then also recommend practical next steps, such
as identifying repair materials required, team mobilisation options and traffic management
considerations (all pending human approval).

Al is evolving beyond simple tools to become “agentic colleagues”, capable of process-
ing low-level tasks, anticipating next steps in workflows and collaborating. Operationally,
agentic Al fosters “smarter scale,” enabling smaller teams to achieve significant output
by dramatically increasing efficiency, rather than just growing the headcount (empow-
ering humans to shift from manual tasks to higher-value work, whilst Al agents handle
repetitive duties).

Virtual employees of the future may possess corporate roles and network access with
greater autonomy than current task-specific agents. This evolution necessitates that or-
ganisations fundamentally rethink cybersecurity strategies and access management to
accommodate Al identities operating across multiple corporate systems. In industries
like water management, agentic Al could optimise energy usage, manage networks and
predict maintenance needs all with minimal (HITL), or potentially without, human inter-
vention (HOTL).

The water sector is notoriously slow and resistant to adopt new technologies, partly
due to existing ossified workflows. Coupled with an adverse data sharing culture, in-
novation adoption can be extremely slow and incremental. Further, despite the current
buzz, Al technology can be perceived as a “threat to jobs” (as with all sectors). Water
utilities are beginning to deploy LLM-powered chatbots to provide customers with instant,
context-aware support and engagement and to equip internal teams with tools that can
quickly summarise compliance documents or retrieve maintenance procedures. Major
industry bodies, including the American Water Works Association (AWWA) and the Wa-
ter Environment Federation (WEF), have initiated research to establish best practices for
GenAl, signalling a sector-wide move toward adoption. Forward-looking water utilities,
including those in the UK, the EU and North America, have started piloting generative Al
and LLM solutions in real operations. A notable case is DC Water (Washington, D.C.’s water
utility) which has actively encouraged its staff to use tools like ChatGPT for daily tasks
such as writing reports, coding and analysing data, establishing an internal community of
practice to explore GenAl’s potential. They have also applied them for improving customer
engagement (e.g., chatbots for customer queries). This underscores that large utilities
are beginning to deploy LLMs as knowledge management and decision support tools
internally, albeit with cautious governance. Some utilities are also exploring custom LLMs,
training smaller models on internal reports, maintenance logs and design manuals, so that
staff can query these via chatbot and instantly retrieve answers with context, saving staff
time on tedious tasks. In essence, the technical trend is towards hybrid systems: pairing
LLMs with structured data sources, or combining physics-based models with generative
ML, to leverage the strengths of both (under human oversight).

A white paper [60] published by the UK Water Partnership (UKWP) highlights how
Al is poised to revolutionise the water industry and describes several real-world AI/GenAl
use cases being developed. It highlights that, if Al is pointed at unstructured data without
first improving the dataset standard, spurious results will likely follow. They recommend
only pointing LLMs at curated data—Dby considering “fine-tuning” capabilities, i.e., by a
human resource that is capable of training models appropriately.

In 2025, UK Water Industry Research (UKWIR) launched an Al-powered search tool
using a customised large-language model (Llama) trained on their own library of reports to
provide contextual search and generative Al summaries specific to water research [61]. The
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UKWIR's tool is hosted onsite and trained exclusively on UKWIR’s own library of reports
and tools.

5.2. Roadmap

Figure 6 provides a high-level roadmap for considering when to deploy GenAl in
real-world applications in the water sector.

Generative Al Deployment Roadmap

Scaling & Future
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Expanding Al
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Figure 6. Roadmap for GenAl adoption in the water industry.

Key areas:

e Foundations and governance. Foundations and governance provide the strategic
bedrock for GenAl deployment in the water sector. Establishing a clear business
case is essential, ensuring that investment delivers measurable benefits in efficiency,
resilience or customer service. Alignment with regulators safeguards compliance,
while ethical frameworks address bias, fairness and transparency. Building trust in
Al requires proactive communication and embedding responsible Al practices from
the outset. Crucially, success rests on positioning Al as a partner to human expertise,
enabling collaboration rather than substitution.

e Data and infrastructure. Data readiness entails ensuring quality, availability and
interoperability across diverse sources such as SCADA, GIS and asset management
systems [62]. Establishing targeted governance frameworks, focused on specific use
cases, supports compliance without stifling innovation. Cloud, edge or hybrid archi-
tectures must be evaluated for scalability, latency and resilience, with cybersecurity
protections built into every layer. With so much data available, it can be overwhelming
to identify the most valuable insights for decisions. If data is machine-readable in
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knowledge repositories then humans can be Al assisted to be more productive and
effective. By addressing data fragmentation and prioritising metadata and standards,
utilities can build robust pipelines that allow Al to process, contextualise and integrate
operational data into actionable intelligence.

Model development and deployment. Generative Al is emerging as a “game changer”
by democratising access to complex Al tools through natural language interactions,
enabling intuitive communication with complex systems and reducing the steep
learning curve associated with traditional software and advanced analytics [19]. Model
development involves the systematic selection, adaptation and validation of generative
Al tools for water applications. Choosing between commercial and open-source Large
Language Models requires balancing transparency, licencing and support. Fine-tuning
models with sector-specific documentation enhances contextual accuracy. RAG offers
an effective mechanism to reduce hallucinations and ground outputs in verified
sources. Rigorous benchmarking and validation ensure robustness and reliability,
while modular deployment strategies—whether on-premises, cloud-based or via
APIs—facilitate integration into operational workflows and maintain flexibility as
foundation models evolve.

Use-cases and applications. The true value of GenAl lies in its application to prior-
ity use cases that deliver tangible benefits. When considering GenAl, keep an open
mind—it is not all about chat functions. For example, Al can be incorporated into
reporting/dashboard tools or to explore how automation and agentic Al could be
used to enhance business processes and decision-making. In water quality monitor-
ing, Al can synthesise laboratory data, regulatory limits and historical trends to flag
emerging risks. Asset management and predictive maintenance are strengthened
by analysing sensor data to anticipate failures and optimise investment. Customer
service can be enhanced through Al-enabled chatbots that provide clear responses to
queries. Furthermore, regulatory compliance activities benefit from automated report
generation, structured audit trails and streamlined document retrieval, collectively
driving efficiency, transparency and resilience.

Human-in-the-loop. HITL/HOTL approaches ensure that Al deployment remains
guided by expert judgement and domain-specific oversight. Rather than replacing op-
erators, GenAl functions as a co-pilot, augmenting their capacity to interpret complex
datasets and make informed decisions. Structured frameworks for human oversight
safeguard against errors and reinforce accountability. Developing hybrid expertise,
engineers proficient in both water systems and Al, will enable organisations to crit-
ically assess outputs. Fusion skills, particularly judgement integration, support the
evaluation of Al suggestions for trustworthiness and relevance, ensuring that GenAl
systems complement, rather than supplant, human analytical and ethical capabilities.
This collaborative intelligence, where human ingenuity combines with Al systems,
consistently outperforms either humans or machines working alone and helps address
and mitigate job fears as human engineering experience is still essential.

Change and adoption. Successful GenAl integration demands comprehensive change
and adoption strategies. Users need to be involved in the process as the process: it
should be about what people need from Al, not the technology itself. Integration and
change management are key to ensuring any new Al solution is properly adopted
and embedded in processes. Stakeholder engagement spanning regulators, operators
and customers can foster legitimacy and confidence. Upskilling programmes in Al
literacy will equip staff to use tools effectively, reducing resistance and building
organisational trust. Building systems that excel at preserving institutional knowledge
by processing historical records and creating accessible repositories of operational
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expertise is particularly valuable during workforce transitions. Change management
must also address cultural concerns, including fears of redundancy or technological
disruption, by framing Al as an enabler of higher-order and more productive work.
Incremental adoption through pilots builds confidence and delivers demonstrable
value, while embedding Al into business processes requires strong leadership to
champion innovation and sustain momentum across the organisation.

e  Scaling and future outlook. Scaling GenAl from pilots to sector-wide adoption requires
careful planning and sustained monitoring. Early projects should focus on quick
wins, delivering measurable improvements that secure organisational confidence.
Continuous retraining and adaptation are necessary to maintain accuracy, particularly
as new foundation models and regulatory requirements emerge. Over time, adoption
can progress from reactive generative tools towards agentic Al systems capable of
autonomous goal-setting and adaptive strategy.

5.3. Challenges

Generative Al is poised to play an expanding role in the water industry, but its
successful widespread adoption will require navigating several challenges and innovating
in key areas. Challenges relate not only to technical feasibility but also to regulatory, ethical
and environmental considerations. Addressing these issues will be essential for ensuring
that Al fulfils its potential as a transformative force in water management.

A primary challenge lies in the development of domain-specific models. While the
prospect of water-focused foundational models trained on regulations, design standards
and operational datasets is compelling, progress is hindered by data scarcity and fragmenta-
tion. The localisation issue, particularly the under-representation of non-English documents
and local operational contexts, directly contributes to Al model bias and regional inequity
in Al performance. Models trained predominantly on data and standards from specific re-
gions may struggle to generalise effectively when deployed in diverse global water systems.
This problem is compounded by the inconsistency in quality standards across utilities and
geographical areas. Such variation critically impacts data labelling, as the definition of
acceptable water quality or a system anomaly may differ by region, preventing the creation
of standardised, high-quality labelled datasets. Consequently, these inconsistencies also
undermine model validation and benchmarking processes, making it difficult to rigorously
compare Al performance or ensure that a model meeting compliance standards in one
regulatory environment is trustworthy in another. Collaborative data-sharing initiatives,
such as the EU’s WATERVERSE platform [63], alongside standardisation efforts, will be
crucial to enable the creation of robust and representative training corpora. Without such
measures, model bias and limited generalisability remain persistent risks.

The application of generative Al for real-time decision support further illustrates the
promise and complexity of this technological shift. Embedding models into treatment plant
controls or distribution network monitoring could enable the predictive optimisation of dos-
ing regimes, emergency response and adaptive network management. However, scalability
and reliability are critical barriers: models must function across city-wide sensor networks
without sacrificing speed or accuracy. Moreover, the conservatism of the water sector,
rooted in its public health responsibilities, demands rigorous validation. HITP/HOTL
oversight will remain indispensable until automated systems demonstrate consistent trust-
worthiness. Governance through this oversight can be retained while automation executes
guard-railed, pre-approved actions, with post-action audit trails to build trust and expand
autonomy over time. Moving beyond alarm-driven operations, GenAl enables proactive
management: forecasting emerging risks, recommending pre-emptive set-point adjust-
ments and scheduling interventions before KPIs drift toward a breach. In a proactive mode,
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digital twins and prescriptive analytics could continually simulate “what-if” scenarios,
ranking interventions by impact on compliance risk, resilience and costs.

Closely tied to these technical hurdles is the issue of explainability and trust. The black-
box nature of many Al systems, particularly ANNSs, is a long-standing issue. The opacity
of deep learning systems poses difficulties in regulated environments, where transparency
and accountability are essential. Explainable Al techniques will therefore play a pivotal
role in translating complex model outputs into interpretable insights, enabling experts to
validate predictions, trace contaminant pathways and design appropriate interventions.
The absence of interpretability risks undermining regulatory approval, operator confidence
and public trust.

The ethical, social and regulatory dimensions of Al adoption further complicate
implementation. A secure regulatory environment is crucial, as legal grey areas and
ethical quandaries regarding data breaches, copyright infringement or DEI rules can lead
to cautious industries like the water sector to adopt a “wait-and-see” approach. Data
privacy, accountability for Al-driven outcomes and the prevention of inequitable service
allocation are pressing concerns. If training data embeds structural biases, Al systems may
inadvertently prioritise certain communities exacerbating disparities. Regulators are likely
to introduce new requirements, including auditability, certification and ethical guidelines
for Al deployment in critical water services. Proactive governance frameworks will be
necessary to align innovation with principles of equity and safety.

Another emerging issue is the resource efficiency of Al systems themselves. Training
and running large generative models consume substantial energy and water, particularly for
cooling data centres. Estimates suggest that individual queries to state-of-the-art models al-
ready entail measurable water use, raising questions of sustainability. Adopting “green Al”
principles (such as energy-efficient architectures, solar-powered data centres and intelligent
scheduling of computation) will be vital for reconciling Al’s benefits with environmental
stewardship. There are even opportunities for innovation at the water-compute nexus, for
example, through utilities hosting edge infrastructure cooled by treated wastewater.

Equally important are the human and workforce dimensions. Generative Al is unlikely
to replace water professionals, but it will augment their roles by automating routine tasks
and providing decision support. This shift will require significant upskilling and a cultural
reframing of Al from threat to collaborator. Structured training programmes, integration of
Al into engineering curricula and communities of practice will be essential in preparing the
workforce for collaborative intelligence environments.

6. Conclusions and Future Work

The water sector is currently undergoing a period of profound digital transformation,
driven by intersecting pressures from climate change, urbanisation and ageing infrastruc-
ture. Traditional data-driven methods, including machine learning (ML) and deep learning
(DL), have provided necessary foundations for smart water management, particularly
in prediction and forecasting. These conventional models, however, are fundamentally
model-centric and often constrained by the scarcity of high-fidelity, structured data.

Although the digital uptake is increasing, the sector’s conservative approach means
it still lags other industries in integrating smart technologies. Two key persistent sector-
specific challenges are the persistence of siloed and underutilised operational data and the
gradual loss of institutional knowledge as experienced personnel retire. This paper argues
that the recent emergence of Generative Al (GenAl), Large Language Models (LLMs) and
Retrieval-Augmented Generation (RAG) represents a paradigm shift toward data-centric
thinking, moving beyond the limitations of model-centric approaches. By tapping into
data assets, an accessible repository of aggregated institutional memory can be created
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that transcends the boundaries of individual utilities, promoting cross-sector learning and
resilience. GenAl unlocks vital “softer” evidence, including operator logs and customer
contacts, through multimodal fusion of inputs like text, images and video. This integration
strengthens root-cause hypotheses and provides richer, faster and more auditable insights
for decision support.

The proposed roadmap provides a high-level plan for GenAl adoption across seven
key areas, including governance, data infrastructure and rigorous model deployment.
This strategy emphasises aligning investments with regulatory compliance and using
RAG to ensure accuracy and reduce hallucinations. Crucially, the plan guides the sector’s
evolution from reactive generative tools toward agentic Al systems capable of autonomous
goal-setting and adaptive strategy over time. Scaling these systems requires navigating
significant challenges related to data, governance and skills. In a sector characterised
by public health responsibilities, adopting human-in-the-loop (HITL) and human-on-the-
loop (HOTL) oversight remains indispensable to ensure accountability, transparency and
consistent trustworthiness. This supervisory control paradigm can guide the safe expansion
of Al autonomy, allowing automation to execute pre-approved actions while reserving
human judgement for critical decision points.

The case study provides concrete evidence of the practical value derived from the
LLM/RAG application. The findings confirm the successful mining of complex knowledge
from DWI reports to generate accessible and trustworthy decision support for water quality
events. Key empirical insights include the following:

1. Support for inexperienced staff: The ACQUIRE tool proved most beneficial to new
and inexperienced staff with limited operational understanding, serving as an effec-
tive roadmap. During a storm incident, for example, the tool helped a less experienced
incident manager immediately identify high-level initial actions necessary for manag-
ing treatment failures and power issues, spanning alternative water provision and
communications strategies.

2. Augmentation for experts: For experienced incident response managers, the tool
functioned in an augmentation capacity, running in the background to double-check
potential actions and validate their initial responses, demonstrating its value even to
highly experienced personnel for decision support.

3.  Regulatory alignment and document streamlining: The GenAl-derived outputs
proved reliable enough to be actively fed into the internal revision of hard-copy
incident response plans for generic events like a “burst drinking water main” and
“water treatment works incident response plans”. This capability highlights that the
system effectively provides a reliable, regulatory-aligned skeletal structure or action
plan based on aggregated institutional knowledge. Specific examples of outputs in-
cluded systematically outlining both immediate considerations (e.g., locating the burst
and isolating the section) and secondary considerations (e.g., notifying regulators and
assessing resilience).

The practical application confirmed that the system’s primary strength in the local
context is providing a reliable knowledge foundation. Furthermore, the use of GenAlI/RAG,
which is focused on leveraging aggregated public data (DWI reports), helps water companies
address the high volume of smaller water quality events that limit organisational learning.

The water sector is not generally at the forefront of the technology adoption curve
and thus not often seen as an attractive industry when compared to other cutting-edge
industries for data science professionals. With Al becoming more prevalent across indus-
tries, there is a growing need to make it broadly available, accessible and applicable to
engineers and scientists with varying specialisations. Engineers, not just data scientists,
will drive the experimentation and adoption of Al in water industry applications. The
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complexity of larger datasets, embedded applications and bigger development teams will
drive solution providers towards interoperability, greater collaboration, reduced reliance
on IT departments and higher productivity workflows. The key to realising these benefits
will be addressing the challenges head-on: ensuring data quality, upskilling the workforce,
maintaining ethical guardrails and sharing successes and failures openly across the water
community. With thoughtful implementation, generative Al and LLMs could become
invaluable tools in building a more resilient, efficient and smart water future.

The water sector is at a pivotal moment. Innovators are disrupting the old business
models and there is little place for complacency in the water industry, with threats such as
decentralised and distributed technology arising. Disruptive innovation can be beneficial.
The evolution from traditional data analytics to the sophisticated capabilities of generative
and agentic Al offers unprecedented opportunities to build more resilient, efficient and
sustainable water systems. Realising this future will require a concerted effort to address the
foundational challenges of data, skills and governance, fostering a collaborative ecosystem
where technology enhances, rather than replaces, human expertise.

Looking forward, the water sector’s adoption of Al is evolving beyond reactive
generative tools toward agentic Al Strategic integration of Al will move beyond the
hype cycle, driving innovation in business models and operational practices. The rise
in agentic Al promises more autonomous workflows, capable of proactively managing
networks and responding dynamically to changing conditions.

Other future work will focus on developing domain-specific foundational models to
overcome data scarcity and fragmentation as well as HITL/HOTL oversight and explain-
able Al techniques to address trust and accountability in regulated environments.

Synthetic data generation offers a solution to the scarcity of high-fidelity training
datasets, particularly for rare events. As enterprise Al becomes increasingly democratised
through open-source initiatives, accessibility and adaptability will improve, reducing
barriers to adoption across organisations of varying sizes.

In parallel, adaptive organisational cultures will be required to sustain these inno-
vations. Institutions must embrace continuous learning, experimentation and regulatory
engagement to safely integrate AL Transparency, accountability and ethical safeguards will
remain foundational to ensuring public confidence in Al-enhanced water services.

Ultimately, realising the full potential of Al in water management hinges on cultivating
a collaborative intelligence environment. This requires developing hybrid expertise through
water professionals skilled in engineering principles and Al literacy, to critically assess
and integrate Al outputs. By prioritising ethical governance, continuous upskilling and
transparent deployment practices, GenAl and LLMs can move from novel applications to
become trusted and indispensable collaborators/co-pilots in advancing the safety, efficiency
and resilience of global drinking water supplies.
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