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Abstract—Large-scale battery energy storage systems (BESS)
are drawing the attention of researchers as numbers installed
globally is rising rapidly. Like single cells, the battery states,
most importantly state of charge (SOC) and state of health
(SOH) of BESSs are essential for their operation. However,
for large-scale battery systems, the data granularity, accuracy
and quality are limited compared with the cell-level. To achieve
accurate state estimation of battery systems the selection of data
used for processing is essential. In this paper, it is shown that
how to evaluate and select system-level data for SOC and SOH
estimation. These methods are expected to be used for other
BESS:s.

Index Terms—Battery System, State of Charge, State of health,
Data selection, Invalid Data.

I. INTRODUCTION

The number of electrical grid-connected Battery energy
storage systems (BESS) has been growing significantly over
the last 5 years and play a crucial role in managing the electri-
cal grid where more renewable resources generate clean, but
variable, electricity. State estimation, mainly state of charge
(SOC) and state of health (SOH) of a BESS are critical for its
operations.

The authors of this paper have proposed using Kalman
filter (KF) methods, and a total least-square method (TLS) to
estimate system SOC and capacity of large-scale BESS using
system-level data in [1]. In this paper these algorithms are
demonstrated using a real-world 2MW/IMWh grid-connected
battery. Applying cell-level state estimation techniques and a
cell-level battery equivalent circuit model to system-level data,
accurate SOC and capacity estimation results are achieved.
For SOC estimation, the authors proposed a multi-level dual
Sigma point Kalman filter (DSPKF) method [2] with its
parameters tuned by a genetic algorithm (GA) [3], using
either a cell-level or system-level OCV-SOC relationship [1],
cell-level equivalent circuit parameters, system-level current
and terminal voltage, and a battery equivalent circuit model,
for BESS SOC estimation. For capacity (SOH) estimation,
system-level current and SOC are inputs of the TLS algorithm
[4].

To overcome the limitations of using real-world system-
level data, where data granularity, accuracy and quality are
limited compared with commonly presented cell-level data,
data-cleansing and data-selection techniques are detailed in
this paper. The paper first demonstrates the impact of invalid
data for SOC estimation accuracy and how to solve this

Fig. 1: Photographs of the WESS (left) and single LTO cell
(right).

problem, after which, it shows how the quality of data affects
SOH estimation accuracy and how to select datasets for
improved accuracy.

A. Willenhall Energy Storage System

The large-scale battery system studied in this project is
the Willenhall Energy Storage System (WESS) operated by
the University of Sheffield (UK) which was commissioned in
2016, it has a maximum power of 2MW and a capacity of
1600 Ah (1 MWh). There are 21,120 Toshiba Lithium Titanate
Oxide (LTO) cells [5] in this system and each of them has
a nominal capacity of 20 Ah. The system is connected to
the national electrical grid at 11kV and is used as a research
platform for energy trading and providing frequency response
services [6]. Fig. 1 shows the photographs of the system
and a sample cell. The system is embedded with a Battery
Management System (BMS) that provides SOC estimation
based on the OCV-SOC relationship and Coulomb counting,
which can be used as a reference for KF based SOC estimation
and one of the inputs of the TLS algorithm.

B. Battery system SOC estimation using Kalman filter methods

A wide variety of SOC estimation algorithms have been
developed in the literature [7]. Among them, KF methods
were first proposed for battery cell SOC estimation in [8], [9],
by using battery OCV-SOC relationship, terminal voltage and
current. The author proposed extended KF and Sigma point
Kalman filter [2], [10] successively for battery applications
since batteries are non-linear systems. Battery equivalent cir-
cuit parameters are variables, so SOC results can be more
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Fig. 2: Equivalent circuit model of WESS [1].

accurate if a second KF is used to estimate these parameters.
Therefore, the dual extended Kalman filter (DEKF) and the
DSPKEF that have such two filters in parallel are recommended.
DSPKEF as the state-of-art of the KF family is used in [1]. For
LTO cells, a 1-RC equivalent circuit model is considered to be
efficient and sufficient for SOC estimation according to [11].
The model is shown in Fig. 2 and it is also used for system-
level SOC estimation. By understanding the internal structures
of a battery system (topology of the cells connected to form
the battery), the system-level OCV-SOC relationship and ECM
parameters, the main difference from the cell-level estimations,
can be calculated. Provided with system-level data, cell-level
results, the cell-level model, and equations in [1], a DSPKF
SOC estimation that is more accurate than the BMS SOC can
be obtained.

C. Battery system capacity estimation using total-least square
method

A range of SOH or capacity estimation algorithms have been
proposed at the cell-level [12]. Least-square based algorithms,
which are relatively simple to implement, can be used to
estimate battery capacity, as detailed in [4]. The heart of this
algorithm is to use the relationship between the variation of
SOC and current integration, which is shown in the equation
below:

2 _nI(r
/ D) 4~ soc(n) - soc) )
where 7 represents the Coulombic efficiency and assumed
to be 100% [13], I the charge or discharge current where
discharge current is defined to be positive, and Q is the
capacity value for calculation.

Dividing the system-level current integration and SOC vari-
ation data into a number of segments, using the TLS equations
detailed in [4] recursively, battery system capacity can be
calculated.

II. INVALID DATA PROBLEM OF SOC ESTIMATION

The data of the WESS is sometimes invalid, meaning that
during these periods the current, voltage and BMS SOC are
shown as zeros. This can cause a problem that the KF that is

estimating SOC or SOH diverges when the voltage and current
values read as zero and continue for sustained period. The
reasons for invalid data are as follows:
e A problem of data connection but the battery is still
operating.
o The data connection working but the battery is offline
(disconnected from the grid and BMS off).
o Both the data connection and the battery are offline.
During the invalid data periods, the EKF and DSPKF
algorithms’ accuracy is impacted since the invalid data periods
start, to be shown in Fig. 3 and Fig. 4. Therefore, making sure
the algorithm is able to converge after invalid data is the aim
of this work.

A. Methodology

The methods in the literature for invalid data input to a KF
mostly concern control and communication, and they often
treat the invalid data as a Bernoulli process [14] (a finite or
infinite sequence of binary random variables). As it is evident
that the data of the WESS does not follow a Bernoulli process,
methods should be tried using some empirical knowledge.
There are several methods that could solve this problem:

o Use the previous sample point to fill the invalid sample
points;

o Pause the KF algorithm, use the last estimation and
resume estimating once valid data is received again;

o Limit the estimated SOC values, as the actual SOC values
must be between 0% and 100%, to avoid divergence;

o Apply curve fitting using previous sample points to
predict the SOC values during the invalid data period.

B. Results

SOC estimation results showing the impact of invalid data
and the effectiveness of invalid-data techniques are shown
in Fig. 3 and Fig. 4. In Fig. 3 (a), there are several invalid
data periods in this profile, but each one was relatively short.
The DEKF diverged since the first invalid data period as the
estimation started to be minus, and it did not converge again
after that as there are no estimates on the figure (which means
the estimates of SOC are not within the range of 0% and
100%). In (b), it can been seen that the effects of invalid data
are smaller for the DSPKEF, but still result in some divergence,
and the SOC estimation did not converge after invalid data
periods because the weight filter that estimates parameters
diverged.

In Fig. 4 (a) and (b), and Fig. 5 (a), the SOC estimation
results match well with the BMS SOC, without the effects
of invalid data. This is because one of the first two methods
is used, together with method three (limiting the SOC). The
reason of using one of the first two methods is that they
have the same effects to the filter and it can be seen that
results in Fig. 4 (a) and Fig. 5 (a) are very similar. If the
data starts with invalid data, the SOC estimation should be set
as an arbitrary value between 0% and 100% because neither
previous estimation or previous data points are available.
Using method three (limit SOC range) only is effective but



Fig. 4: SOC estimation results after using previous data during invalid-data periods (a) DEKF SOC and (b) DSPKF SOC.
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Fig. 3: SOC estimation results affected by invalid data (a) DEKF SOC and (b) DSPKF SOC.
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Fig. 5: DEKF invalid-data results with other methods (a) pause the algorithm and (b) curve fitting.
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it needs more time to converge after invalid-data periods than
the previous methods. This also applies to other circumstances
when the calculated SOC is not in this range, which may
be due to some very rare erroneous data where there is a
time jump after restarting the BESS, the SOC value should
be forced back to the reasonable range stated above to avoid
further divergence.

The curve fitting method was tried too with SOC limitation
using DEKF. The results in Fig. 5 (b) show that the filter
still diverges and will exceed the boundaries without SOC
limitation. The reason it can converge after the very long
time of invalid data is because the SOC is bounded so that
any values that larger than 100% are forced to be 100%.
The computation time of the algorithm using the curve fitting
method is longer than the first two methods due to increased
number of calculations. This is exaggerated when there is a
very long period of invalid data.

C. Summary

The main problem to solve is that the KF diverges when
invalid data happens (both voltage and current values received
are 0) if no methods are used, and it may not be able to
converge again after the invalid data. It has been shown that
Kalman filtering can converge well after the invalid data using
the simplest methods. In addition, the length and frequency of
the invalid data period do not affect the results of the simple
methods. These methods can eliminate the effects of invalid
data easily because of the excellent convergence ability of the
KF, as long as the previous SOC estimation is forced to be
within the reasonable range, i.e., not being negative or larger
than 100%.

In conclusion, there are two effective steps to make sure
the KF remains converged 1) using the previous data simply
when the data is invalid, or maintain the last SOC estimation
before invalid data occurs 2) bounding the SOC. The DEKF
and DSPKF SOC estimation algorithms are running online (in
real-time) for the WESS and have shown robust results against
invalid data.

III. DATA-SELECTION FOR ONLINE BATTERY SYSTEM
CAPACITY ESTIMATION

The TLS algorithm has been used successfully on the
system-level capacity estimation as shown in [1]. In the paper,
the authors have enumerated the criteria of data that should
be chosen in order to maximise capacity estimation accuracy.
This data-selection is possible due to the fact that a battery’s
capacity is not fast-changing and therefore the time between
estimates can be large. In this paper, more details, i.e., the
essence and methodology of data-selection for online battery
system state estimation are shown.

The implementation of “online” capacity estimation algo-
rithm is essential for monitoring the degradation of BESSs
during long time operation. For online estimation of the
WESS, the data is first obtained from a time-series database
(InfluxDB), followed by the TLS capacity estimation algo-
rithm.

A. Methodology

Fig. 6 shows some capacity estimation results using two
short datasets [1], where it can be seen that the estimation
accuracy differs between them. In (a), after spikes at the be-
ginning during convergence, the results are stable and close to
the reference. In (b), the errors are significantly larger and the
results fluctuate. This is because the first dataset contains large
SOC variations and the current values are mostly constant.
Whereas in (b), the dataset is from a frequency response
service, which causes small SOC variations and some large
and short spikes of current that leads to inaccurate current
integration.

According to the results shown in Fig. 6 and the authors’
other experience, a series of criteria of data are shown below
for accurate online capacity estimation [1]:

 Significant variations in SOC data are available continu-
ously, as discussed above.

o A large interval size for calculation: as the data is divided
into a number of intervals with a size of m, its value
should be large enough to make sure there are some SOC
variations for every calculation. This value is set to 500
samples for the results shown in Fig. 6.

« Sufficient data: the data points should be enough for the
algorithm to converge, since it calculates the capacity
recursively.

e No sharp, short spikes of current data: as discussed, to
avoid errors in current integration.

An algorithm for data-selection has been developed to
select the data that meet the aforementioned criteria. The data
(system-level current and SOC) is first divided into chunks
representing approximately a week of operation. Next, within
each chunk, invalid data is checked for by calculating the
change in voltage. When the voltage drops to O, an invalid
data period starts. Likewise, when it returns to within normal
operating bounds the invalid period ends. The data chunk is
then divided further by deleting the invalid data periods into
several even shorter datasets. The length of the first dataset is
checked, if it is shorter than the predefined criterion (for the
WESS this is 30000 data points, approximately half a day), it is
discarded. The algorithm then moves to check the next dataset
to ascertain whether the SOC variations are too small, i.e., the
standard deviation (STD) is smaller than the predefined value.
For similar reasons, to make sure the BESS is operating for
services, the STD of current is also checked. After that, the
data is checked for any further erroneous parts, for example,
the current value being out of bounds. If one of these criteria
is not met, the script moves to the next data chunk, until it
finds the data to represent this week. The chosen data are then
provided to the TLS algorithm introduced in I-C to generate
the capacity estimation of this week. Therefore, it is possible
that no data is chosen in a week and no capacity estimation
results are updated.

B. Results

By running the algorithm like this, the capacity estimation
results are updated every week if there is data that meets the
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Fig. 6: Capacity estimation results of (a) mixed profile (~ 9 hours) and (b) dynamic frequency response (~ 7 hours). The red
dotted lines show £1% error around the 1600 Ah assumed capacity [1].
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Fig. 7: Capacity estimation result comparison using a whole year data of 2018 (a) with data-selection techniques, (b) only deal
with invalid data and (c) use raw data.
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criteria. Fig. 7 compares capacity estimation results to show
how data-selection improves the accuracy. DSPKF SOC, that
has been shown to be more accurate than the BMS SOC, is
chosen as the input in these results. Note that the LTO cells in
the WESS are still with 100% SOH because of the excellent
cycle life of this chemistry. Therefore, the nominal capacity,
1600 Ah is considered as the actual capacity for reference.

It can be seen that if no data-selection is applied at all, only
a small fraction of results are within the 1% error borders as
shown in Fig. 7(c). Note that extremely large or small results
are not shown in the figures. After removing invalid data
periods, the results are improved and more are within the error
borders and shown in the figure of Fig. 7(b). After applying
the data-selection algorithm, the capacity estimation results
are mostly within the error borders as shown in Fig. 7(a). To
sum up, data-selection techniques ensure the accuracy of TLS
algorithms for capacity estimation of the WESS.

Fig. 8 illustrates the effects of SOC variation on one-year’s
capacity estimation results, using system-level current and the
BMS SOC. The mean capacity estimation error is calculated
as the quotient of average capacity errors in the year and
the actual capacity. In these results, only SOC variation is

different, and for comparison, other factors (m and data length)
are fixed. It can be seen that generally larger SOC variation
improves capacity estimation accuracy, but limits the number
of capacity estimation opportunities. To sum up, data-selection
techniques ensure the accuracy of TLS algorithms for capacity
estimation of the WESS.

IV. CONCLUSIONS

This paper presents a method to overcome the invalid data
problem in BESS for SOC estimation, using simple techniques
to avoid divergence of the KFs. Moreover, it demonstrates
how to evaluate the quality of current and SOC for capacity
estimation using TLS. The results using the data-selection
techniques show significant improvements of accuracy com-
pared with using the data in its raw form. A flow diagram
for data-selection for SOC and capacity estimation is shown
in Fig. 9: combining state estimation algorithms with data-
selection techniques, state estimation of BESSs with improved
accuracy using system-level data can be realised.
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