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Abstract 

This paper presents long-term modelling and second-by-second simulation of an autonomous microgrid 
(MG), including only renewable energy sources (RESs) and a hybrid energy storage system (HESS) as 
energy provider, and an electric vehicle (EV) Charge Station as a group load. The model uses forecast 
data for wind speed and solar radiation to provide wind turbine (WT) and photovoltaic (PV) generated 
powers, and statistical data for vehicles within a defined car park to model the EV demand. It is flexible 
and can support varying several planning parameters, e.g. varying sizes of WT and PV generation as 
well as various capacities of energy storage systems (ESSs). Therefore, in order to examine the impact 
of variations in RESs and ESS sizes, as well as the impact of EV demand uncertainties on the 
performance and efficiency of the MG, e.g. EV unmet energy, several sensitivity analyses are provided. 
Based on sensitivity analysis results, one can find reasonable ranges of MG module sizes, and make a 
decision for sizing of the overall system. For the case study represented here, results show that at least 
one WT is required, increasing PV panels is more effective to meet the midday EV load in at the target 
location, and a lower level of Li-ion ESS capacity is sufficient storage for the charging/discharging of the 
EVs. 

 

1 Introduction 

The United Kingdom (UK) government is set to 
end the sale of new petrol and diesel vehicles by 
2030 and only allow the sales of zero-emissions 
vehicles from 2035 to reduce transport sector 
emissions [1]. Charging electric vehicles (EVs) 
from electricity networks powered by renewable 
energy has the potential to maximise the 
decarbonisation plan for road transport. As the 
number of EVs grow in the UK, the rise in charging 
infrastructure is projected to increase to meet the 
demand to charge these vehicles, reaching a 
minimum number of 300,000 public charging 
points by 2030 [2]. Nevertheless, some 
challenges, like grid demand increase and 
supplying EVs by fossil fuels via converting to 
electrical energy, increases the importance of grid-

isolated renewable energy-based charging 
stations. 

The solution proposed here is a fully grid-
independent EV charging station powered 
exclusively by renewable energy. This solution is 
developed as part of Future Electric Vehicle 
Energy networks supporting Renewables (FEVER) 
project [3]. RES generation, such as by solar and 
wind, supply EV chargers via an off-vehicle energy 
store (OVES), containing at least one energy 
storage technology to provide a cost-effective 
alternative to a high power, high-cost grid 
connection. Future publications will describe more 
hybrid OVESs with multiple ESS technologies.  

In design and construction of electrical systems, 
e.g. the FEVER microgrid (MG), sizing of 
elements, particularly large elements, has a 
significant importance. On the other hand, MG 
planning and element sizing studies require 
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modelling of the systems. Although short-term 
electrical modelling of MGs is necessary for 
stability analysis, control design, and short-term 
performance validation, long-term modelling 
should be done for MG planning and element 
sizing to cope with inter-seasonal variations in 
generation, for example. In order to calculate a 
long-term model of MGs, their elements/modules 
should be modelled, i.e. RESs, the load demand, 
and ESSs. 

Renewable power output may be modelled from 
weather data. Ground-based records at the site of 
interest are arguably the most accurate resource. 
The alternative, where these are not available, is 
measurements from satellite instruments. A full 
comparison is given by [4]. IEA-PVPS has 
published a report providing guidance on the 
choice of data provider and radiation model [5]. 
The algorithms which describe the conversion of 
solar radiation data via the photovoltaic process to 
electrical yield are covered by [6]. 

An explanation of how to model the power output 
of a wind turbine and an example calculation is 
given by [7]. Wind speed is conventionally 
measured at 10 m height by meteorological 
stations.  Zhou et al detail the power law approach 
to simulating wind speed at turbine hub height [8]. 
The correlation between hub-height wind speed 
and wind turbine yield is modelled by power 
curves provided by turbine manufacturers. A 
complete review of power curve generation 
methods is given in [9]. 

EV charging/load modelling methods and 
fundamentals are reviewed in [10]. Although EV 
load profiles can be modelled using empirical data 
of EV fleets to study the load behaviour after EV 
fleet construction [11], it is not possible for 
planning studies, i.e. before fleet construction. In 
[12], EV load modelling is done using distribution 
functions of charging duration, charging start time, 
and transaction energy for eight different EV 
models, which is useful for planning and sizing 
studies. 

ESSs can be modelled in several levels of detail 
and for different applications. Although voltage, 
current, and state of charge (SOC) need to be 
modelled via electrical relationships in short-term 
studies, state of health (SOH), SOC, and 
calendar/cycle ageing should be modelled through 
power flow relationships in long-term studies, e.g. 
ESS sizing and system planning [13]. More 
challenging topics are calendar and cycle loss 
modelling, where several theoretical, empirical, 
and semi-empirical [14] models have been 
presented in the literature. Theoretical models 
based on several complicated electro-chemical 
and physical relationships, and empirical models 

requiring long periods to obtain results of several 
experiments are useful for studies [15], where the 
focus is on ESS modelling details. However, in MG 
sizing studies, where several MG modules should 
be modelled, semi-empirical [13, 14], and 
validated simplified [16] models are much more 
useful, where less detailed models are used based 
on empirical parameters.    

Sensitivity analysis is a common tool to depict 
nonlinear and multivariable relationships between 
important features and changeable parameters of 
a system, which has been used in various 
research areas of small and large-scale power 
systems, e.g. stability analysis [17], controller 
design, optimal planning [18], and techno-socio-
economical sizing of MGs [19]. In this paper, 
sensitivity analysis is used for MG module sizing in 
an isolated renewable-based EV charging station. 
The first contribution of the paper is to provide 
data-driven long-term annual models for WT and 
PV energy generation units, and EV charging 
station load demand as well as validated power-in-
power-out model for the HESS. The second 
contribution is to propose details of sensitivity 
analysis for making decisions around the MG 
sizing, and to provide results for a real case study.  

Modelling of the EV charging station MG is 
discussed in Section 2. The methodology of 
sensitivity analysis for MG module sizing using a 
long-term model is provided in Section 3. Section 
4 presents the results and relevant discussions, 
and Section 5 concludes the paper.     
 

2 EV Charging Station Microgrid 
Modelling 

Figure 1 Shows an energy-based schematic of the 
studied MG including EV demand, i.e. an EV 
charge station, wind energy generation using WTs, 
solar energy generation using PV panels, and a 
hybrid ESS (HESS). An energy management and 
measurement system is required to schedule 
charging/discharging of HESS based on the 
difference signal of generation and consumption 
powers. It also uses the data to size the model 
elements required for planning studies, and 
provides reports required for sizing and decision 
making, accordingly. This block needs 
instantaneous values of EV demand, WT and PV 
generation, current SOC, maximum allowable C-
rate, and some other features of the ESS to 
function.  

As an example, a site for the proposed MG has 
been established at a general outdoor car park in 
the UK. To this end, the weather data required for 
RES generation prediction is obtained at the target  
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Fig. 1 An energy-based schematic of the studied MG useful in planning and sizing studies. 

location in southern England, with a longitude 
1.31° W and a latitude 51° N. 

2.1  WT generation unit modelling 

In order to calculate electrical yield, the input wind 
speed data is initially scaled to hub height. Since a 
relatively low wind turbine is to be employed here, 
the log law is applied because it is more reliable 
up to 20 m above the ground: 

𝑈𝑧 = 𝑈𝑧,𝑟𝑒𝑓 × ln (
𝑧

𝑧0
) /ln⁡(

𝑧𝑟𝑒𝑓

𝑧0
), (1) 

where 𝑧 and 𝑧𝑟𝑒𝑓 are new height (m) and reference 
height (m), respectively, and 𝑈𝑧 and 𝑈𝑧,𝑟𝑒𝑓 are 
mean wind speed at the new height (m/s) and 
mean wind speed at the reference height (m/s), 
respectively. 𝑧0⁡is surface roughness length (m). 
Surface roughness is a value based on protrusion 
of land cover e.g. grass, trees, buildings. 

Calculation of wind yield i.e. power (kW) is 
achieved via interpolation of the manufacturer’s 
power curve. The power curve is based on actual 
measurements. Interpolation supplies values 
which fall between measurements. Here, the 
power curve of Aventa AV-7 WT is used, which 
has a rated power as 6.2 kW [20].  

2.2  PV generation unit modelling 

The PV power output (PVOUT) has been obtained 
by transforming solar irradiance into power as 
follows: 
Ppv⁡[kW] = Gβ × ηi ⁡× ηp ⁡× pd ⁡× Npv, (2) 

where ηi is the inverter efficiency, ηp is the panel 
efficiency, pd is the panel dimension (m2), and Gβ 
is the solar irradiance on inclined surfaces 
(kW/m2).  

Gβ has been estimated by using a solar model 
developed in MATLAB. A detailed explanation of 

the development of the solar model can be found 
in [21] and in [22]. The input data for the model 
(i.e., global horizontal solar irradiation) was 
obtained through the Centre for Environmental 
Data Analysis (CEDA) archive. The hourly input 
data was measured at a weather station located in 
London between 2012 and 2019 in kJ/m2. 

2.3  EV load demand modelling 

To determine the normal EV loading on the system 
it is possible to examine typical travel profiles for 
visitors to the selected location. In this case, the 
car park opens for visitors from 10 am until 5 pm, 
and this bounds when EVs can plug in and charge 
at the car park. The system is modelled using 10 
uncontrolled AC chargers with a power rating of 7 
kW each. The daily energy load demand for 
charging the EVs was calculated using the 
chargers’ usage profile based on the total number 
of visitors arriving at the car park each day in 2019 
and the hourly visitors’ arrival profile. The model 
calculates the number of EVs arriving at the car 
park assuming four visitors per car arrive at the car 
park, with 3% of these cars being EVs.  

Visitors typically park their cars for 4 hours while 
visiting the car park, used in this model as the 
plug-in period for each EV if any of the 10 
chargers are free when arriving at the car park. 
The model assumes the average efficiency of an 
EV is 4 miles per kWh and needs to charge to 
cover a total distance of 30 miles. Figure 2 shows 
typical EVs behaviour at the car park and EV 
charging demand for a single day. 

2.4  ESS modelling 

Here, a general long-term model of ESSs is used, 
which is presented in detail, and is validated in 
[16]. It is a power-in-power-out model including 
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parameters of SOC, SOH and degradation, a local 
logic-based ESS management system, 
charging/discharging losses, and import/export 
converter losses. Scheduled power of the ESS 
model, e.g. Pb,sch for the Li-ion battery shown in 
Fig. 3, is obtained from the difference between the 
vehicle demand and the renewable generation. It 
can be either positive, meaning a load demand to 
discharge the ESS, or negative, which means a 
generation power to charge the ESS. When the 
SOC of the HESS is between its low and high 
limits, and the power demand does not lead to 
exceeding the maximum allowable c-rate of the 
ESS, the ESS can be charged or discharged 
successfully for the given scheduled power.  

The ESS model can be generalised for different 
types of batteries, super-capacitors, and some 
other electrical and electro-chemical ESSs without 
any structural changes to the model, and only 
requiring reasonable parameters for each ESS 
technology. Table 1 shows the parameters for the 

 
Fig. 2 EVs behaviour and load demand for an example 

day (20th of April). 

 

ESS parameters Battery 
value (unit) 

Super-
capacitor 
values (unit) 

Nominal capacity 500 (kWh) 10 (kWh) 
Initial capacity 500 (kWh) 10 (kWh) 
Charging/discharging loss 3 (%) 3 (%) 
Converter import/export 
loss 

3 (%) 3 (%) 

Maximum C-rate 1 10 
SOC low limit 3 (%) 0 (%) 
SOC high limit 97 (%) 100 (%) 
Initial SOC 43 (%) 100 (%) 
SOH loss per 1000 cycles 7 (%) 0.1 (%) 
SOH calendar loss per 
month 

0.5 (%) 0.005 (%) 

Table 1 Hybrid ESS parameters and their values used 
in simulations. 

 
Fig. 3 Flowchart of the sensitivity analysis method used 
in MG module sizing. 

 studied hybrid ESS including the Li-ion battery 
and the super-capacitor.    

A simple charging/discharging schedule is used in 
the energy management system according to a 
low-pass filter (LPF) performance such that slow 
charges/discharges are considered for the high-
energy Li-ion battery ESS, and the high-power 
supercapacitor-based ESS is responsible for fast 
changes. The simulation part in Fig. 3 shows a 
schematic of the energy management system and 
the HESS modules inside the flowchart. 

2.5  Overall Microgrid Modelling 

After modelling the MG modules separately, they 
may be configured into the entire MG system. The 
simulation part in Fig. 3 shows the connections 
between different modules of the MG. According to 
the ESS/HESS model assumptions, the load 
demand is considered as positive, and the RES 
generation is denoted with negative values. The 
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RES generation power, 𝑃𝑟𝑒𝑠, is the sum of the WT 
generation power, 𝑃𝑤𝑡 and the PV generation 
power, 𝑃𝑝𝑣. From this, it is possible to calculate the 
difference between the RES generation power and 
the EV demand power, 𝑃𝑒𝑣, as follows:  
𝑃𝑒𝑟,𝑔𝑒𝑛(𝑡) = 𝑃𝑒𝑣(𝑡) − 𝑃𝑟𝑒𝑛(𝑡). (3) 

where 𝑃𝑒𝑟,𝑔𝑒𝑛 is the generation error power. When 
its value is positive, it means the generation is not 
enough, and its negative value implies more 
generation power than the EV demand power. 
Assuming charging/discharging power of the 
HESS, 𝑃ℎ𝑒𝑠𝑠, one can write the instantaneous 
power balance of the MG, as follows: 
𝑃𝑒𝑟,𝑙𝑜𝑎𝑑(𝑡) = 𝑃𝑒𝑟,𝑔𝑒𝑛(𝑡) + 𝑃ℎ𝑒𝑠𝑠(𝑡). (4) 

where 𝑃𝑒𝑟,𝑙𝑜𝑎𝑑 is the load error power. A positive 
value of the 𝑃𝑒𝑟,𝑙𝑜𝑎𝑑 means EV demand power is 
not met, and a negative value of the 𝑃𝑒𝑟,𝑙𝑜𝑎𝑑 
means excess RES power neither consumed by 
the EV load nor stored in the HESS. Note that 
𝑃ℎ𝑒𝑠𝑠 in Eq. (4) has positive values during 
discharging the HESS, and negative values during 
charging the HESS. The HESS power, 𝑃ℎ𝑒𝑠𝑠, is 
obtained according to energy management system 
calculations for the HESS scheduled power, 
𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ. 

The HESS scheduled power and the generation 
error power, i.e. 𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ and 𝑃𝑒𝑟,𝑔𝑒𝑛, are the same 
values (see Fig. 3). However, the generation error 
power and its equivalent energy are the actual 
power and energy signals, but the HESS 
scheduled power and its equivalent energy are 
control signals which are used in the energy 
management system. Note that the HESS 
scheduled energy and the generation error energy 
can be easily calculated by integrating 𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ 
and 𝑃𝑒𝑟,𝑔𝑒𝑛 with respect to time.  

Figure 4 shows the annual power profile of 
𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ, where it is divided into two parts, i.e 
positive values as discharging power, 𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ

𝑑𝑖𝑠 , 
required for supplying remainder of the EV 
demand, and negative values as the charging 
power, 𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ

𝑐ℎ , to store the excess RES power. 
The energy management system can be modelled 
as follows: 
 𝑃𝑏,𝑠𝑐ℎ(𝑡) = 𝐺𝑙𝑝𝑓(𝑠) × 𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ(𝑡), 

𝑃𝑠𝑐,𝑠𝑐ℎ(𝑡) = (1 − 𝐺𝑙𝑝𝑓(𝑠)) × 𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ(𝑡), 

(4a) 
(4b) 

where 𝑃𝑏,𝑠𝑐ℎ(𝑡) and 𝑃𝑠𝑐,𝑠𝑐ℎ(𝑡) are the scheduled 
powers of the Li-ion battery and super-capacitor, 
respectively. 𝐺𝑙𝑝𝑓(𝑠) is the LPF transfer function 
with 𝜔𝑐 as the cut of frequency as follows: 

 

𝐺𝑙𝑝𝑓(𝑠) =
𝜔𝑐

𝑠+𝜔𝑐
. (5) 

Finally, one can calculate the HESS power, 
according to the output powers of each ESSs as 
follows: 
𝑃ℎ𝑒𝑠𝑠,(𝑡) = 𝑃𝑏,𝑒𝑥(𝑡) + 𝑃𝑠𝑐,𝑒𝑥(𝑡). (6) 

 
Fig. 4 Annual power profile of demand and generation 
difference as the HESS scheduled power (positive 
amounts for demand after subtracting the RES power 
and negative amounts for excess power of the RESs. 

3 Sensitivity Analysis for MG 
Module Sizing  

In the sensitivity analysis approach, there are two 
important concepts including a changeable 
parameter and an analysable variable. A 
changeable parameter is one of the parameters of 
the model, which is required to be changed to see 
the impact of these changes on the system 
performance. The performance is usually 
assessed using an (a few) output variable(s), 
which are valuable to be analysed, and can be 
called analysable variables. In this section, it is 
explained how the sensitivity analysis method is 
used to show the relationships between 
changeable parameters and analysable variables, 
which are important for module sizing. Since the 
analysable variables are selected to be different 
energy concepts in the MG, they are explained 
before the sensitivity analysis procedure. 

3.1  Important energy concepts in MG 
sizing  

MG sizing and planning require long-term 
calculations, where energy signals are more 
appropriate than power signals due to their 
cumulative feature with respect to the 
instantaneous power signals. Energy demand of 
the EV chargers, available RES energies, and 
HESS scheduled energy are the most important 
energy concepts to allow HESS scheduling by the 
energy management system. These can be 
obtained by integrating 𝑃𝑒𝑣(𝑡), 𝑃𝑤𝑡(𝑡), 𝑃𝑝𝑣(𝑡), and 
𝑃ℎ𝑒𝑠𝑠,𝑖𝑛 with respect to time.  

Figure 5 shows annual energy profiles of the EV 
demand, one WT, 40 PV panels, and the HESS 
scheduled energy. The negative amount of the 
HESS scheduled energy shows that the available 
energy of the RESs is enough to meet the load 
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demand if the generation and consumption times 
have enough overlap. However, both the EV 
demand in the car park and the RES generations 
have stochastic behaviours. Therefore, a negative 
HESS scheduled energy indicates enough excess 
RES energy generated to be able to charge the 
ESSs after supplying the vehicle charging load.      

After scheduling the HESS, 𝑃ℎ𝑒𝑠𝑠(𝑡) and 𝑃𝑒𝑟,𝑙𝑜𝑎𝑑(𝑡) 
are important power signals. They include both 
positive and negative values as explained in 
Section 2.5, thereby these amounts should be 
separated before integrating them to calculate 
meaningful energy concepts as follows:    
𝑊ℎ𝑒𝑠𝑠,𝑠𝑢 = ∫𝑃ℎ𝑒𝑠𝑠

+ (𝑡) 𝑑𝑡, 

𝑊ℎ𝑒𝑠𝑠,𝑠𝑡 = ∫𝑃ℎ𝑒𝑠𝑠
− (𝑡) 𝑑𝑡, 

𝑊𝑒𝑣,𝑢𝑚 = ∫𝑃𝑒𝑟,𝑙𝑜𝑎𝑑
+ (𝑡) 𝑑𝑡, 

𝑊𝑔𝑒𝑛,𝑛𝑠𝑡 = ∫𝑃𝑒𝑟,𝑙𝑜𝑎𝑑
− (𝑡) 𝑑𝑡, 

(7a) 
(7b) 
(7c) 
(7d) 

where + and – denote positive and negative 
amounts, respectively. 𝑊ℎ𝑒𝑠𝑠,𝑠𝑢 is the energy 
supplied by the HESS, 𝑊ℎ𝑒𝑠𝑠,𝑠𝑡 is the stored 
energy in the HESS, 𝑊𝑒𝑣,𝑢𝑚 is the total EV 
demand unmet energy, and 𝑊𝑔𝑒𝑛,𝑛𝑠𝑡 is the total 
excess generated energy of the RESs, which is 
not possible to be stored and/or consumed.  

Although all these energy concepts are important 
in the MG sizing and planning, the HESS 
scheduled energy and the required energy to be 
supplied by HESS before scheduling the HESS, 
and energy supplied by the HESS and the EV 
demand unmet energy after scheduling the HESS 
are selected as analysable variables in the 
sensitivity analysis. Note that the required energy 
to be supplied by the HESS is calculated by 
integrating 𝑃ℎ𝑒𝑠𝑠,𝑠𝑐ℎ

𝑑𝑖𝑠  with respect to time. 

 
Fig. 5 Annual energy profiles of the EV demand, the 
WT, the PV panels, and the HESS scheduled energy. 
 

3.2 Sensitivity analysis approach  

Since the number of WT, number of PV panels, 
and ESS capacity need to be determined in the 
MG sizing, these are selected as changeable 
parameters. EV proportion is also selected as a 
changeable parameter to see the impact of EV 
demand fluctuations on the MG performance. 

Furthermore, as mentioned in the previous 
subsection, the HESS scheduled energy, the 
required energy to be supplied by the HESS, the 
energy supplied by the HESS, and the EV unmet 
energy are selected as analysable variables.     

Figure 3 shows a flowchart diagram of the 
sensitivity analysis method used for the MG 
module sizing. Each changeable parameter 
includes a vector of a range of reasonable values. 
For each value, relevant parameters and variables 
in the MG model are updated, then the MG model 
is simulated second by second for the studied year 
and corresponding input data. The analysable 
outputs are calculated for each value, and after 
completing the process for all changeable 
parameter values, they will be drawn against the 
changeable parameter values. 

4 Results and Discussion 

The base case parameters used in simulations 
include 1 WT, 40 PV panels, and characteristics 
represented in Table 1 for the HESS. The area of 
the chosen PV panels is 1.67 m2, ηi and ηp are 
assumed to be 78% and 12%, respectively. 
Moreover, EV proportion, number of EV chargers, 
the charger rated power, average EV park time, 
and EV average travel distance are assumed to be 
3 %, 10, 7 kW, 4 h, and 48 km, respectively.   

4.1  Sensitivity analysis for WT generation 
unit sizing 

Figure 6 shows sensitivity analysis results for the 
number of wind turbines, between 0 and 3. As 
shown in Fig. 6(a), the HESS scheduled energy 
considerably increases in a negative direction with 
the increasing number of WTs. However, the 
energy required to be supplied by the HESS, 
shown by blue bars in Fig. 6(b), does not show a 
large decrease, which means a lot of the 
generated WT power is at different times from EV 
power demand. The orange bars show the total 
energy supplied by the HESS, which shows a 
large increase. Nevertheless, the EV unmet 
energy, shown by yellow bars, does not become 
zero even using three WTs. This is because the 
power profile of the EV demand and WT 
generation do not match. Therefore, having one 
WT is a reasonable choice, as the increase in the 
number of wind turbines from 0 to 1 gives a large 
decrease on the EV unmet energy, whilst a higher 
number of WTs may neither be technically 
reasonable nor cost-effective, as there are 
diminishing returns when considering the EV 
unmet energy.    

Whess,sch = -8.78 MWh

Wwt = -22.47 MWh

Wev = 20.75 MWh

Wpv = -7.05 MWh

Energy 

demand

Available 

energy
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4.2  Sensitivity analysis for PV generation 
unit sizing 

Figure 7 shows sensitivity analysis results for PV 
panel number changeable between 0 and 50. By 
increasing the PV panel number, the HESS 
scheduled power, shown in Fig. 7(a), increases in 
negative values but in smaller steps with respect 
to the effect of a change in the number of WT. This 
increases the flexibility of the MG sizing. Figure 
7(b) shows 3.35 MWh decrease, 2.95 MWh 
increase, and 6.3 MWh decrease in the required 
energy to be supplied by HESS, the HESS energy 
supplied, and the EV unmet energy, respectively. 
The EV unmet energy is considerably decreased 
by both increasing the PV generated power 
directly used to charge vehicles and increasing the 
charging/discharging of the HESS indirectly. It may 
be due to a better match between the solar power 
generation profile and the EV power demand 
profile when compared with the WT power profile. 
Therefore, increasing the PV panel number to 
improve the MG performance is more reasonable 
and provides better ‘fine tuning’ of the 
characteristics that is seen by increasing WTs.   

 

 

Fig. 6 Sensitivity analysis results of the WT number: (a) 
net input energy to the HESS, (b) required energy to be 
supplied by HESS, energy supplied by the HESS, and 
EV unmet energy. 

 
Fig. 7 Sensitivity analysis results of the PV panel 
number: (a) net input energy to the HESS, (b) required 
energy to be supplied by HESS, energy supplied by the 
HESS, and EV unmet energy. 

 

 
Fig. 8 Sensitivity analysis results of the ESS nominal 
capacity including required energy to be supplied by 
HESS, energy supplied by the HESS, and EV unmet 
energy. 

4.3  Sensitivity analysis for ESS sizing 

In this section, the sensitivity analysis is done for 
the Li-ion battery nominal capacity from 100 kWh 
to 600 kWh when the super-capacitor is 
disconnected. Since, the changeable parameter 
makes changes only on the output side of the 
HESS, the HESS input side energies do not 
change, e.g., the HESS scheduled energy and the 
required energy to be supplied by the ESS. Figure 
8 shows an exponential behaviour for both the 
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energy supplied by the HESS and the EV unmet 
energy.  

In fact, they will be saturated for high amounts of 
the nominal capacity. Increasing the nominal 
capacity above 400 kWh does not lead to a 
significant decrease in the EV unmet energy. 
Therefore, the best size of the ESS should be in 
the lower band of the selected nominal capacity 
values.    

4.4  Sensitivity analysis to study EV 
uncertainty 

Since the number of EVs and their arrival time are 
stochastic, the load demand causes an uncertainty 
in long-term studies. Figure 9 shows required 
energy to be supplied by HESS, energy supplied 
by the HESS, and the EV unmet energy for 
different EV proportions as a metric of 
uncertainties. The MG needs more energy to be 
provided by the HESS when the EV proportion 
increases. However, RESs and the HESS sizes 
are assumed constant, which results in saturation 
of the total energy supplied by the HESS, and a 
linear increase in the EV unmet energy. In order to 
have a robust sizing approach, uncertainties 
should be included in sizing processes. In addition, 
a narrower band of uncertainties can be obtained 
by improving the model through adding details 
about the uncertain parameters as much as 
possible.    

 
Fig. 9 Required energy to be supplied by HESS, energy 
supplied by the HESS, and EV unmet energy for 
different EV proportions. 

5 Conclusion 

Sensitivity analysis is a powerful, and at the same 
time simple, tool to inspect linear/nonlinear 
relationships between important features and 
effective parameters of a system. Here, it was 
employed on a long-term model of an electric 
vehicle charging station microgrid, composed of 
renewable energy generation resources, and a 
hybrid energy storage. Although having two or 

three wind turbines with 6.2 kW rated power 
results in very low EV unmet energy, the decrease 
with respect to having one wind turbine is not 
significant enough to encourage stakeholders to 
pay two to three times the cost of a single wind 
turbine. In fact, as a more flexible solution, such 
small amounts of EV unmet energies can be 
provided by increasing the number of solar panels. 
Furthermore, the results show that a nominal 
capacity in the range 100 kWh-200 kWh is the 
most suitable choice for the Li-ion battery pack, as 
increasing the nominal capacity above this level 
leads to a negligible decrease in the EV unmet 
energy, which is both technically and economically 
undesirable. In order to have a robust approach to 
microgrid module sizing, uncertainties, e.g. electric 
vehicle number, should be taken into account.           
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