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Abstract

This paper presents long-term modelling and second-by-second simulation of an autonomous microgrid
(MG), including only renewable energy sources (RESs) and a hybrid energy storage system (HESS) as
energy provider, and an electric vehicle (EV) Charge Station as a group load. The model uses forecast
data for wind speed and solar radiation to provide wind turbine (WT) and photovoltaic (PV) generated
powers, and statistical data for vehicles within a defined car park to model the EV demand. It is flexible
and can support varying several planning parameters, e.g. varying sizes of WT and PV generation as
well as various capacities of energy storage systems (ESSs). Therefore, in order to examine the impact
of variations in RESs and ESS sizes, as well as the impact of EV demand uncertainties on the
performance and efficiency of the MG, e.g. EV unmet energy, several sensitivity analyses are provided.
Based on sensitivity analysis results, one can find reasonable ranges of MG module sizes, and make a
decision for sizing of the overall system. For the case study represented here, results show that at least
one WT is required, increasing PV panels is more effective to meet the midday EV load in at the target
location, and a lower level of Li-ion ESS capacity is sufficient storage for the charging/discharging of the
EVs.

isolated  renewable  energy-based  charging

1 Introduction stations.
. . . The solution proposed here is a fully grid-
The United Kingdom (UK) government is set to independent EV charging station powered

end the sale of new petrol and diesel vehicles by
2030 and only allow the sales of zero-emissions
vehicles from 2035 to reduce transport sector
emissions [1]. Charging electric vehicles (EVs)
from electricity networks powered by renewable
energy has the potential to maximise the
decarbonisation plan for road transport. As the
number of EVs grow in the UK, the rise in charging
infrastructure is projected to increase to meet the
demand to charge these vehicles, reaching a
minimum number of 300,000 public charging
points by 2030 [2]. Nevertheless, some
challenges, like grid demand increase and
supplying EVs by fossil fuels via converting to
electrical energy, increases the importance of grid-

exclusively by renewable energy. This solution is
developed as part of Future Electric Vehicle
Energy networks supporting Renewables (FEVER)
project [3]. RES generation, such as by solar and
wind, supply EV chargers via an off-vehicle energy
store (OVES), containing at least one energy
storage technology to provide a cost-effective
alternative to a high power, high-cost grid
connection. Future publications will describe more
hybrid OVESs with multiple ESS technologies.

In design and construction of electrical systems,
e.g. the FEVER microgrid (MG), sizing of
elements, particularly large elements, has a
significant importance. On the other hand, MG
planning and element sizing studies require
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modelling of the systems. Although short-term
electrical modelling of MGs is necessary for
stability analysis, control design, and short-term
performance validation, long-term modelling
should be done for MG planning and element
sizing to cope with inter-seasonal variations in
generation, for example. In order to calculate a
long-term model of MGs, their elements/modules
should be modelled, i.e. RESs, the load demand,
and ESSs.

Renewable power output may be modelled from
weather data. Ground-based records at the site of
interest are arguably the most accurate resource.
The alternative, where these are not available, is
measurements from satellite instruments. A full
comparison is given by [4]. IEA-PVPS has
published a report providing guidance on the
choice of data provider and radiation model [5].
The algorithms which describe the conversion of
solar radiation data via the photovoltaic process to
electrical yield are covered by [6].

An explanation of how to model the power output
of a wind turbine and an example calculation is
given by [7]. Wind speed is conventionally
measured at 10 m height by meteorological
stations. Zhou et al detail the power law approach
to simulating wind speed at turbine hub height [8].
The correlation between hub-height wind speed
and wind turbine yield is modelled by power
curves provided by turbine manufacturers. A
complete review of power curve generation
methods is given in [9].

EV charging/load modelling methods and
fundamentals are reviewed in [10]. Although EV
load profiles can be modelled using empirical data
of EV fleets to study the load behaviour after EV
fleet construction [11], it is not possible for
planning studies, i.e. before fleet construction. In
[12], EV load modelling is done using distribution
functions of charging duration, charging start time,
and transaction energy for eight different EV
models, which is useful for planning and sizing
studies.

ESSs can be modelled in several levels of detalil
and for different applications. Although voltage,
current, and state of charge (SOC) need to be
modelled via electrical relationships in short-term
studies, state of health (SOH), SOC, and
calendar/cycle ageing should be modelled through
power flow relationships in long-term studies, e.qg.
ESS sizing and system planning [13]. More
challenging topics are calendar and cycle loss
modelling, where several theoretical, empirical,
and semi-empirical [14] models have been
presented in the literature. Theoretical models
based on several complicated electro-chemical
and physical relationships, and empirical models
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requiring long periods to obtain results of several
experiments are useful for studies [15], where the
focus is on ESS modelling details. However, in MG
sizing studies, where several MG modules should
be modelled, semi-empirical [13, 14], and
validated simplified [16] models are much more
useful, where less detailed models are used based
on empirical parameters.

Sensitivity analysis is a common tool to depict
nonlinear and multivariable relationships between
important features and changeable parameters of
a system, which has been used in various
research areas of small and large-scale power
systems, e.g. stability analysis [17], controller
design, optimal planning [18], and techno-socio-
economical sizing of MGs [19]. In this paper,
sensitivity analysis is used for MG module sizing in
an isolated renewable-based EV charging station.
The first contribution of the paper is to provide
data-driven long-term annual models for WT and
PV energy generation units, and EV charging
station load demand as well as validated power-in-
power-out model for the HESS. The second
contribution is to propose details of sensitivity
analysis for making decisions around the MG
sizing, and to provide results for a real case study.

Modelling of the EV charging station MG is
discussed in Section 2. The methodology of
sensitivity analysis for MG module sizing using a
long-term model is provided in Section 3. Section
4 presents the results and relevant discussions,
and Section 5 concludes the paper.

2 EV Charging Station Microgrid
Modelling

Figure 1 Shows an energy-based schematic of the
studied MG including EV demand, i.e. an EV
charge station, wind energy generation using WTSs,
solar energy generation using PV panels, and a
hybrid ESS (HESS). An energy management and
measurement system is required to schedule
charging/discharging of HESS based on the
difference signal of generation and consumption
powers. It also uses the data to size the model
elements required for planning studies, and
provides reports required for sizing and decision
making, accordingly. This  block needs
instantaneous values of EV demand, WT and PV
generation, current SOC, maximum allowable C-
rate, and some other features of the ESS to
function.

As an example, a site for the proposed MG has
been established at a general outdoor car park in
the UK. To this end, the weather data required for
RES generation prediction is obtained at the target
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Fig. 1 An energy-based schematic of the studied MG useful in planning and sizing studies.

location in southern England, with a longitude
1.31° W and a latitude 51° N.

2.1 WT generation unit modelling

In order to calculate electrical yield, the input wind
speed data is initially scaled to hub height. Since a
relatively low wind turbine is to be employed here,
the log law is applied because it is more reliable
up to 20 m above the ground:

Uy = Uppep X In (—0) /In (22, @)

Zo

where z and z,.; are new height (m) and reference
height (m), respectively, and U, and U,,.r are
mean wind speed at the new height (m/s) and
mean wind speed at the reference height (m/s),
respectively. z,is surface roughness length (m).
Surface roughness is a value based on protrusion
of land cover e.g. grass, trees, buildings.

Calculation of wind yield i.e. power (kW) is
achieved via interpolation of the manufacturer's
power curve. The power curve is based on actual
measurements. Interpolation supplies values
which fall between measurements. Here, the
power curve of Aventa AV-7 WT is used, which
has a rated power as 6.2 kW [20].

2.2 PV generation unit modelling

The PV power output (PVyyt) has been obtained
by transforming solar irradiance into power as
follows:

va [kW] = GB XMj XMp XPpg X va: (2

where 1) is the inverter efficiency, n, is the panel
efficiency, pq is the panel dimension (m?), and Gg
is the solar irradiance on inclined surfaces
(kW/m?).

Gg has been estimated by using a solar model
developed in MATLAB. A detailed explanation of

the development of the solar model can be found
in [21] and in [22]. The input data for the model
(i.e., global horizontal solar irradiation) was
obtained through the Centre for Environmental
Data Analysis (CEDA) archive. The hourly input
data was measured at a weather station located in
London between 2012 and 2019 in kJ/m?.

2.3 EVload demand modelling

To determine the normal EV loading on the system
it is possible to examine typical travel profiles for
visitors to the selected location. In this case, the
car park opens for visitors from 10 am until 5 pm,
and this bounds when EVs can plug in and charge
at the car park. The system is modelled using 10
uncontrolled AC chargers with a power rating of 7
kW each. The daily energy load demand for
charging the EVs was calculated using the
chargers’ usage profile based on the total number
of visitors arriving at the car park each day in 2019
and the hourly visitors’ arrival profile. The model
calculates the number of EVs arriving at the car
park assuming four visitors per car arrive at the car
park, with 3% of these cars being EVs.

Visitors typically park their cars for 4 hours while
visiting the car park, used in this model as the
plug-in period for each EV if any of the 10
chargers are free when arriving at the car park.
The model assumes the average efficiency of an
EV is 4 miles per kwWh and needs to charge to
cover a total distance of 30 miles. Figure 2 shows
typical EVs behaviour at the car park and EV
charging demand for a single day.

2.4 ESS modelling

Here, a general long-term model of ESSs is used,
which is presented in detail, and is validated in
[16]. It is a power-in-power-out model including



parameters of SOC, SOH and degradation, a local
logic-based ESS management system,
charging/discharging losses, and import/export
converter losses. Scheduled power of the ESS
model, e.g. Py for the Li-ion battery shown in
Fig. 3, is obtained from the difference between the
vehicle demand and the renewable generation. It
can be either positive, meaning a load demand to
discharge the ESS, or negative, which means a
generation power to charge the ESS. When the
SOC of the HESS is between its low and high
limits, and the power demand does not lead to
exceeding the maximum allowable c-rate of the
ESS, the ESS can be charged or discharged
successfully for the given scheduled power.

The ESS model can be generalised for different
types of batteries, super-capacitors, and some
other electrical and electro-chemical ESSs without
any structural changes to the model, and only
requiring reasonable parameters for each ESS
technology. Table 1 shows the parameters for the
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Fig. 2 EVs behaviour and load demand for an example
day (20" of April).

ESS parameters Battery Super-
value (unit) capacitor
values (unit)
Nominal capacity 500 (kwh) 10 (kwh)
Initial capacity 500 (kwh) 10 (kwh)
Charging/discharging loss 3 (%) 3 (%)
Converter  import/export 3 (%) 3 (%)
loss
Maximum C-rate 1 10
SOC low limit 3 (%) 0 (%)
SOC high limit 97 (%) 100 (%)
Initial SOC 43 (%) 100 (%)
SOH loss per 1000 cycles 7 (%) 0.1 (%)
SOH calendar loss per 0.5 (%) 0.005 (%)

month

Table 1 Hybrid ESS parameters and their values used
in simulations.
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Fig. 3 Flowchart of the sensitivity analysis method used
in MG module sizing.

studied hybrid ESS including the Li-ion battery
and the super-capacitor.

A simple charging/discharging schedule is used in
the energy management system according to a
low-pass filter (LPF) performance such that slow
charges/discharges are considered for the high-
energy Li-ion battery ESS, and the high-power
supercapacitor-based ESS is responsible for fast
changes. The simulation part in Fig. 3 shows a
schematic of the energy management system and
the HESS modules inside the flowchart.

2.5 Overall Microgrid Modelling

After modelling the MG modules separately, they
may be configured into the entire MG system. The
simulation part in Fig. 3 shows the connections
between different modules of the MG. According to
the ESS/HESS model assumptions, the load
demand is considered as positive, and the RES
generation is denoted with negative values. The



RES generation power, P, is the sum of the WT
generation power, P,; and the PV generation
power, P,,. From this, it is possible to calculate the
difference between the RES generation power and
the EV demand power, P,,,, as follows:

Per,gen (t) = Py (£) — Been(t). (3)
where F,, 4., is the generation error power. When
its value is positive, it means the generation is not
enough, and its negative value implies more
generation power than the EV demand power.
Assuming charging/discharging power of the
HESS, P,.s, Oone can write the instantaneous
power balance of the MG, as follows:

Per,load ® = Per,gen(t) + Press (). (4)
where P, 1044 iS the load error power. A positive
value of the P, ;,,q means EV demand power is
not met, and a negative value of the P 544
means excess RES power neither consumed by
the EV load nor stored in the HESS. Note that
Pness In EQ. (4) has positive values during
discharging the HESS, and negative values during
charging the HESS. The HESS power, P, IS
obtained according to energy management system
calculations for the HESS scheduled power,

Phess,sch-

The HESS scheduled power and the generation
error power, i.e. Pyessscn @nd Py 40n, are the same
values (see Fig. 3). However, the generation error
power and its equivalent energy are the actual
power and energy signals, but the HESS
scheduled power and its equivalent energy are
control signals which are used in the energy
management system. Note that the HESS
scheduled energy and the generation error energy
can be easily calculated by integrating Ppessscn
and P, 4., With respect to time.

Figure 4 shows the annual power profile of
Pressscn, Where it is divided into two parts, i.e
positive values as discharging power, PES .,
required for supplying remainder of the EV
demand, and negative values as the charging
power, P,fgsslsch, to store the excess RES power.
The energy management system can be modelled
as follows:

Pb,sch(t) = Glpf(s) X Press,sch ®), (4a)
Psc,sch(t) = (1 - Glpf(s)) X Phess,sch(t)v (4b)
where Py p(t) and Ps.s-n(t) are the scheduled
powers of the Li-ion battery and super-capacitor,
respectively. G;,r(s) is the LPF transfer function
with w, as the cut of frequency as follows:

Glpf(s) = Sf:)f- (%)

Finally, one can calculate the HESS power,
according to the output powers of each ESSs as
follows:

Phess,(t) = Pb,ex ®+ Psc,ex(t)- (6)
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Fig. 4 Annual power profile of demand and generation
difference as the HESS scheduled power (positive
amounts for demand after subtracting the RES power
and negative amounts for excess power of the RESs.

3 Sensitivity Analysis for MG

Module Sizing

In the sensitivity analysis approach, there are two
important concepts including a changeable
parameter and an analysable variable. A
changeable parameter is one of the parameters of
the model, which is required to be changed to see
the impact of these changes on the system
performance. The performance is usually
assessed using an (a few) output variable(s),
which are valuable to be analysed, and can be
called analysable variables. In this section, it is
explained how the sensitivity analysis method is
used to show the relationships between
changeable parameters and analysable variables,
which are important for module sizing. Since the
analysable variables are selected to be different
energy concepts in the MG, they are explained
before the sensitivity analysis procedure.

3.1 Important energy concepts in MG
sizing

MG sizing and planning require long-term

calculations, where energy signals are more

appropriate than power signals due to their
cumulative  feature  with respect to the
instantaneous power signals. Energy demand of
the EV chargers, available RES energies, and
HESS scheduled energy are the most important
energy concepts to allow HESS scheduling by the
energy management system. These can be
obtained by integrating P, (t), Py (t), Py (t), and
Ppess,in With respect to time.

Figure 5 shows annual energy profiles of the EV
demand, one WT, 40 PV panels, and the HESS
scheduled energy. The negative amount of the
HESS scheduled energy shows that the available
energy of the RESs is enough to meet the load



demand if the generation and consumption times
have enough overlap. However, both the EV
demand in the car park and the RES generations
have stochastic behaviours. Therefore, a negative
HESS scheduled energy indicates enough excess
RES energy generated to be able to charge the
ESSs after supplying the vehicle charging load.

After scheduling the HESS, Ppqs5(t) and Py 1pqq (t)
are important power signals. They include both
positive and negative values as explained in
Section 2.5, thereby these amounts should be
separated before integrating them to calculate
meaningful energy concepts as follows:

Whess,su = fpijess(t) dt, (7a)
Whess,st = fPh_ess () dt, (7b)
Wepum = fPe+r,load (t) dt, E;g;

Wgen,nst = fPe_r,load (t) dt!
where + and - denote positive and negative
amounts, respectively. Wypesss IS the energy
supplied by the HESS, W, IS the stored
energy in the HESS, W,,,, is the total EV
demand unmet energy, and W, s is the total
excess generated energy of the RESs, which is
not possible to be stored and/or consumed.

Although all these energy concepts are important
in the MG sizing and planning, the HESS
scheduled energy and the required energy to be
supplied by HESS before scheduling the HESS,
and energy supplied by the HESS and the EV
demand unmet energy after scheduling the HESS
are selected as analysable variables in the
sensitivity analysis. Note that the required energy
to be supplied by the HESS is calculated by
integrating P{LS, o, With respect to time.
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Fig. 5 Annual energy profiles of the EV demand, the
WT, the PV panels, and the HESS scheduled energy.

3.2 Sensitivity analysis approach

Since the number of WT, number of PV panels,
and ESS capacity need to be determined in the
MG sizing, these are selected as changeable
parameters. EV proportion is also selected as a
changeable parameter to see the impact of EV
demand fluctuations on the MG performance.
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Furthermore, as mentioned in the previous
subsection, the HESS scheduled energy, the
required energy to be supplied by the HESS, the
energy supplied by the HESS, and the EV unmet
energy are selected as analysable variables.

Figure 3 shows a flowchart diagram of the
sensitivity analysis method used for the MG
module sizing. Each changeable parameter
includes a vector of a range of reasonable values.
For each value, relevant parameters and variables
in the MG model are updated, then the MG model
is simulated second by second for the studied year
and corresponding input data. The analysable
outputs are calculated for each value, and after
completing the process for all changeable
parameter values, they will be drawn against the
changeable parameter values.

4 Results and Discussion

The base case parameters used in simulations
include 1 WT, 40 PV panels, and characteristics
represented in Table 1 for the HESS. The area of
the chosen PV panels is 1.67 m2, ni and np are
assumed to be 78% and 12%, respectively.
Moreover, EV proportion, number of EV chargers,
the charger rated power, average EV park time,
and EV average travel distance are assumed to be
3 %, 10, 7 kW, 4 h, and 48 km, respectively.

4.1 Sensitivity analysis for WT generation
unit sizing

Figure 6 shows sensitivity analysis results for the
number of wind turbines, between 0 and 3. As
shown in Fig. 6(a), the HESS scheduled energy
considerably increases in a negative direction with
the increasing number of WTs. However, the
energy required to be supplied by the HESS,
shown by blue bars in Fig. 6(b), does not show a
large decrease, which means a lot of the
generated WT power is at different times from EV
power demand. The orange bars show the total
energy supplied by the HESS, which shows a
large increase. Nevertheless, the EV unmet
energy, shown by yellow bars, does not become
zero even using three WTs. This is because the
power profile of the EV demand and WT
generation do not match. Therefore, having one
WT is a reasonable choice, as the increase in the
number of wind turbines from 0 to 1 gives a large
decrease on the EV unmet energy, whilst a higher
number of WTs may neither be technically
reasonable nor cost-effective, as there are
diminishing returns when considering the EV
unmet energy.



4.2 Sensitivity analysis for PV generation
unit sizing

Figure 7 shows sensitivity analysis results for PV
panel number changeable between 0 and 50. By
increasing the PV panel number, the HESS
scheduled power, shown in Fig. 7(a), increases in
negative values but in smaller steps with respect
to the effect of a change in the number of WT. This
increases the flexibility of the MG sizing. Figure
7(b) shows 3.35 MWh decrease, 2.95 MWh
increase, and 6.3 MWh decrease in the required
energy to be supplied by HESS, the HESS energy
supplied, and the EV unmet energy, respectively.
The EV unmet energy is considerably decreased
by both increasing the PV generated power
directly used to charge vehicles and increasing the
charging/discharging of the HESS indirectly. It may
be due to a better match between the solar power
generation profile and the EV power demand
profile when compared with the WT power profile.
Therefore, increasing the PV panel number to
improve the MG performance is more reasonable

and provides better ‘fine tuning’ of the
characteristics that is seen by increasing WTs.
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4.3 Sensitivity analysis for ESS sizing

In this section, the sensitivity analysis is done for
the Li-ion battery nominal capacity from 100 kWh
to 600 kWh when the super-capacitor is
disconnected. Since, the changeable parameter
makes changes only on the output side of the
HESS, the HESS input side energies do not
change, e.g., the HESS scheduled energy and the
required energy to be supplied by the ESS. Figure
8 shows an exponential behaviour for both the



energy supplied by the HESS and the EV unmet
energy.

In fact, they will be saturated for high amounts of
the nominal capacity. Increasing the nominal
capacity above 400 kWh does not lead to a
significant decrease in the EV unmet energy.
Therefore, the best size of the ESS should be in
the lower band of the selected nominal capacity
values.

4.4 Sensitivity analysis to study EV
uncertainty

Since the number of EVs and their arrival time are
stochastic, the load demand causes an uncertainty
in long-term studies. Figure 9 shows required
energy to be supplied by HESS, energy supplied
by the HESS, and the EV unmet energy for
different EV proportions as a metric of
uncertainties. The MG needs more energy to be
provided by the HESS when the EV proportion
increases. However, RESs and the HESS sizes
are assumed constant, which results in saturation
of the total energy supplied by the HESS, and a
linear increase in the EV unmet energy. In order to
have a robust sizing approach, uncertainties
should be included in sizing processes. In addition,
a narrower band of uncertainties can be obtained
by improving the model through adding details
about the uncertain parameters as much as
possible.

T T T T T T T

30 - | Required energy to be supplied by HESS

[ Total energy supplied by HESS
[ EV unmetenergy

25

%)
S
T

15~

Energy (MWh)

1 3 5 7 9 11 13 15
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Fig. 9 Required energy to be supplied by HESS, energy
supplied by the HESS, and EV unmet energy for
different EV proportions.

5 Conclusion

Sensitivity analysis is a powerful, and at the same
time simple, tool to inspect linear/nonlinear
relationships between important features and
effective parameters of a system. Here, it was
employed on a long-term model of an electric
vehicle charging station microgrid, composed of
renewable energy generation resources, and a
hybrid energy storage. Although having two or
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three wind turbines with 6.2 kW rated power
results in very low EV unmet energy, the decrease
with respect to having one wind turbine is not
significant enough to encourage stakeholders to
pay two to three times the cost of a single wind
turbine. In fact, as a more flexible solution, such
small amounts of EV unmet energies can be
provided by increasing the number of solar panels.
Furthermore, the results show that a nominal
capacity in the range 100 kWh-200 kWh is the
most suitable choice for the Li-ion battery pack, as
increasing the nominal capacity above this level
leads to a negligible decrease in the EV unmet
energy, which is both technically and economically
undesirable. In order to have a robust approach to
microgrid module sizing, uncertainties, e.g. electric
vehicle number, should be taken into account.
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