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Summary

Late Pleistocene hippo fossils (Hippopotamus amphibius) from Europe have generally been associated
with the last interglacial period (Eemian, 129 to 115 thousand years ago [ka])'™. As a widely-accepted
indicator species for temperate climate conditions, it was assumed they went extinct with the onset
of the last glacial (Weichselian) around 115 ka%®°. Their origin and relationships to extant African
common hippos and the exact age of their extinction in central Europe, however, remain unclear. We
here address these questions using an integrated approach applied to hippos from the Upper Rhine
Graben in central Europe. By sequencing the paleogenome of a European hippo, we reveal its close
genetic links to modern hippos from Africa. Six additional partial mitochondrial genomes confirm that
European representatives were part of the same, once widespread species that is today restricted to
sub-Saharan Africa. Surprisingly, radiocarbon dating show that hippos were present in central Europe
during the middle Weichselian (a period spanning from earlier than 47 ka until ~31 ka), i.e., well into
the last glacial. Similar radiocarbon dates for woolly mammoth and woolly rhino fossils from the same
sites imply short-term alternation of faunas during this period. Despite the paleogenome’s low
coverage, we are able to confidently estimate its genome-wide diversity by recalibrating the
sequencing quality scores and assessing post-mortem damage. The low genome-wide diversity
recovered suggests that it belonged to a small, isolated population. Overall, our combined data implies
that hippos inhabited the Upper Rhine Graben refugium during temperate phases of the middle
Weichselian.
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Results and discussion

The Middle and Late Pleistocene of Europe was dominated by alternating glacial and interglacial
periods®. A particularly exotic element of the European interglacial fauna were the hippopotami?.
Hippos colonized Europe from Africa in multiple waves, probably by multiple species of the genus
Hippopotamus, including the common hippo (H. amphibius) that is today restricted to sub-Saharan
Africa’%°. During their maximal geographic distribution in Europe, hippos ranged from the British Isles
in the northwest to the Iberian and Italian peninsula in the south®. Their presence in the fossil record
generally implies temperate conditions with denser vegetation and open water bodies. Hence, it is a
widely accepted indicator species for interglacial periods™. Accordingly, it is generally assumed that
both its peak prevalence and maximal geographic distribution in Late Pleistocene Europe coincides
with the Eemian interglacial between 129 ka and 115 ka ago (corresponding to marine oxygen isotope
stage (MIS) 5e27*8). The onset of cooling at the beginning of the subsequent last glaciation (Weichselian
glaciation; 115 ka to 11.7 ka; corresponding to MIS 5d-2), consequently led to unfavorable conditions
resulting in its extinction in western and central Europe®°. Their origin and relationships to extant
African common hippos and the exact age of their extinction in central Europe, however, still remain
unclear as, beyond morphological identification, only few detailed analyses have been performed on
Late Pleistocene hippos, and ancient DNA data are notably absent for this species.

Close genetic links between Late Pleistocene European and extant African hippos

We subjected 19 hippo specimens from fossil localities in the Upper Rhine Graben in southwestern
Germany to paleogenetic analysis (Figure 1A, Table S1). The Upper Rhine Graben represents the
eastern-most boundary of Hippopotamus’ Late Pleistocene distribution in central Europe®®. The long
history of quarrying activities in the sandy-gravelly deposits (Mannheim formation!!, see STAR
Methods for further details) unearthed numerous fossils of large mammal remains from the Late
Pleistocene. As these deposits include representatives from both interglacial as well as glacial fauna,
they have traditionally been interpreted as preserving the transition between the Eemian interglacial
and the early Weichselian glacial (MIS4) in central Europe™*!*14 and thus as evidence supporting the
hypothesis that hippos went extinct at the end of the Eemian interglacial. Out of 19 analyzed samples,
one (NK37 from the gravel pit Eich; Table S1) yielded a higher proportion of endogenous DNA and was
sequenced to ~0.5x genomic coverage to elucidate phylogenetic relationships between Pleistocene
European and extant African common hippos. Post-mortem damage patterns support the authenticity
of ancient mapped reads (Figure S1). A Maximum Likelihood phylogenetic reconstruction, based on
3,085 concatenated 5kbp genomic windows sufficiently covered by paleogenetic data, places the
Upper Rhine Graben hippo sample NK37 closer to the two extant African common hippos (ACH1, ACH2)
than to the extant West African pygmy hippo (Choeropsis liberiensis), which was inferred as a distantly
related outgroup (Figure 1B). However, the exact placement of NK37 in regard to the African common
hippo specimens is unclear. The concatenated data set as well as 44% of window trees place NK37 as
sister lineage to both ACH1 and ACH2 but 38% and 18% of window trees support a closer relationship
of NK37 to ACH1 or ACH2, respectively (i.e., sample NK37 inside African common hippos, Figure 1B).
This is further supported by D-statistics (Z = -5.77) that imply a closer relationship of sample NK37 to
ACH1 than to ACH2. The discordance could stem from incomplete lineage sorting combined with
phylogeographic structure in the ancestral African population. Alternatively, it could be the result of
admixture between different hippo lineages in Africa or Europe.

Using enrichment by hybridization capture and stringent sequence calling methods, we additionally
recovered partial mitogenomes for six Upper Rhine Graben specimens (completeness ranging from
15% to 78%; Table S1). Authenticity of ancient reads is again supported by post-mortem damage



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125

126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

patterns (Figure S1). Maximum Likelihood and Bayesian phylogenetic reconstructions suggest that Late
Pleistocene hippos from the Upper Rhine Graben are closely related and form a monophyletic lineage
that falls within the mitochondrial diversity of extant African common hippos (Figure 1C, Figure S2).
An approximately unbiased test, however, cannot exclude (p = 0.131) a position outside extant African
common hippos (similar to the main topology in the nuclear concatenation analysis above). Thus, the
exact branching order at the beginning of the H. amphibius divergence cannot unambiguously be
resolved. The close genetic link of Pleistocene hippos from the Upper Rhine Graben to extant African
common hippos is also supported by haplotype networks based on a larger, continent-wide sample of
mitochondrial cytB (854nt) and control region sequences® (927nt; Figure S2). In all networks,
Pleistocene hippos from the Upper Rhine Graben share haplotypes with specimens mostly known from
eastern and south-eastern Africa. Mitochondrial distance among contemporary African common
hippos from different regions in Africa is likewise larger than between Pleistocene hippos and some
extant east African hippo lineages. These results show that these Late Pleistocene hippos from Europe
do not form a divergent lineage but were part of the once widely-distributed common hippo that is
now confined to sub-Saharan Africa.

Middle Weichselian presence of hippos in central Europe

Given that their Eemian provenance is solely based on the assumption that hippos are indicative for
interglacial conditions in Europe, we next evaluated the age of fossil specimens from the Upper Rhine
Graben gravel pits by radiocarbon dating. Samples were collected from deeper layers within each bone
to mitigate any bias due to the potential presence of conservatory chemicals that may have been used
to treat the surface of fossil specimens for preservation (systematically tested previously®).
Additionally, Fourier transform infra-red (FTIR) spectroscopy indicates that the collagen spectra closely
resemble those of reference collagen, suggesting good preservation and purity (Figure S3). 28 out of
32 fossil hippo specimens selected for *C analysis yielded enough collagen to be dated successfully.
The analysis resulted in calibrated dates from the dating limit of 249 cal ka to as young as 31 cal ka
(Figure 2, Table S2). Repeated dating for two samples (including in a second lab) confirmed their young
age (Figure 2). Although exact calendar ages have to be interpreted carefully in this time period, our
results suggest that hippos were — in contrast to previous assumptions — present in central Europe
during MIS3, i.e. well into the middle of the last glacial period (middle Weichselian), similar to straight-
tusked elephants'”!8, For comparison, 15 fossils of woolly mammoth (Mammuthus primigenius) and
woolly rhino (Coelodonta antiquitatis) from the same or geographically close localities in the Upper
Rhine Graben were subjected to C analysis, too. Their estimated dates similarly range between 47
and 31 cal ka and there is no temporal separation between them and hippos (Figure 2, Table S2). To
test this further, enamel-based amino acid geochronology was undertaken on three hippo specimens
from Eich. The results are not inconsistent with a post-Eemian age for the hippos; however, assigning
a definitive MIS3 age is not possible due to the lower temporal resolution of this method for this period
(see STAR Methods, Figure S3). Besides hippos, Upper Rhine Graben gravel pits also yielded several
other species usually associated with temperate (i.e., interglacial) conditions but without any
taphonomic differences to fossils from cold-adapted species that could indicate large-scale temporal
differences (e.g., Eemian vs. MIS3; see STAR methods, Figure S3). This interpretation fits with the
absence of sediment layers of Eemian age in the Upper Rhine Graben (see STAR Methods). Together,
the dating analyses suggest that, during MIS3, hippos either were broadly contemporaneous with large
mammals generally accepted as cold-adapted or, more likely, that hippos and woolly
mammoths/rhinos may have cyclically alternated in the Upper Rhine Graben on a short temporal scale
not resolvable by our data. This would imply repeated short-term colonization of the Upper Rhine
Graben by hippos, for instance during interstadials (although our radiocarbon dating results do not
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allow assignment of the hippo fossils to precise interstadials). In either case, Late Pleistocene fossil
localities in the Upper Rhine Graben seem not to preserve the Eemian interglacial — Weichselian glacial
transition.

While hippo presence in central Europe during MIS3 might be surprising, it is not implausible or
unlikely. The middle Weichselian is known for its interstadial complex, which includes multiple short
interstadial phases resulting in the stagnation of inland ice shield growth®2!, The published pollen
record from the Upper Rhine Graben and surrounding lower mountain regions shows evidence of
plants indicative of temperate, partly forested conditions during MIS3 interstadials?>?°. To provide
further support for this, we obtained radiocarbon dates of fossil wood pieces from gravel pits
geographically close to those the hippo samples originated from. The dates confirm the presence of
cold- (pine) and temperate-associated (oak) tree species in the Upper Rhine Graben during MIS3 (Table
S2). Previous analyses from sediments and invertebrate remains similarly suggest multiple warm
phases during this period3®33 Altogether, the Upper Rhine Graben offered a localized microclimate
during several phases of MIS3 that was favorable for sheltering species that require more temperate
conditions with relatively mild temperatures. These conditions would have been sufficient to prevent
the complete freezing of water bodies and to provide enough vegetation cover for foraging hippos
(and likely other temperate-associated species) also during winter. The Upper Rhine Graben might
represent the easternmost region with such climate conditions that were suitable for hippo survival
and potentially the only one in central Europe during MIS3, as hippos did not spread farther to the east
during the Late Pleistocene®*8, At the end of MIS3, interstadials were much less common and the lack
of interstadials at the transition to the last glacial maximum?®®2! likely led to the final extinction of
hippos from central Europe.

A small population colonized the Upper Rhine Graben

Radiocarbon ages of the fossil hippos allowed us to further trace the origin of these late-surviving
hippos from the Upper Rhine Graben. We performed Bayesian temporal calibration with the
mitogenome dataset, associated tip dates and two tree prior models that both have been shown to
best accommodate for mixed inter- and intraspecific sampling®*. Using a Bayesian skyline coalescence
tree prior, the basal node within African-European H. amphibius was dated to 834 ka (95% highest
posterior density [HPD] 380 ka-1.6 million years ago; Figure 1C). The earliest coalescence among hippos
from the Upper Rhine Graben was estimated to 228 ka (95% HPD 96-400 ka). Applying a Birth-Death
tree prior resulted in similar median values for the respective node ages (948 ka and 242 ka,
respectively) but broader HPDs (Figure S2). These divergence dates were also similar when only the
three Upper Rhine Graben samples with higher mitogenome completeness (>60%) were included
(Figure S2). The basal coalescence within H. amphibius broadly coincides with a period of initial
intraspecific diversification and geographic expansion in the African common hippo as previously
shown by molecular and paleontological evidence®*™%, The coalescence among Late Pleistocene hippos
from the Upper Rhine Graben provides a genetic proxy for the colonization and expansion in Europe.
The temporal range of this node fits with the oldest putative fossils of H. amphibius in Europe from
Middle Pleistocene deposits in Italy dating to ~450 ka or younger®441 Hippos spread across western
and central Europe during subsequent interglacial periods, probably using larger Rhéne and Rhine
rivers as major routes of dispersal*?. Their presence in central and western Europe during the
Holsteinian and Aveley interglacials, however, is disputed and a definitive fossil record of H. amphibius
did not emerge before the Eemian®*. Whether hippos were also present in the Upper Rhine Graben
and central Europe in general during the cold periods of the early Weichselian (MIS4) remains unknown
but seems unlikely given the near lack of interstadials between 60 and 70 ka?!. Nevertheless, hippo
fossils dating to MIS4 (and potentially younger) are known from the Iberian®® and Italian peninsulas®®,
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which might have been the source for the Upper Rhine Graben population in central Europe during the
middle Weichselian (MIS3). Eemian and middle Weichselian presence of hippos in western and central
Europe thus likely represent different expansion events from southern European refugial areas.

This colonization of the Upper Rhine Graben in central Europe during MIS3 then likely imported the
deep mitogenetic lineages (>200ka) from longer persisting source populations in southern Europe.
Such patterns of genetically divergent lineages in close spatial and temporal proximity resemble those
seen in other Late Pleistocene mammals in central and western Europe, such as giant deer, woolly
rhinoceros and mammoth**¢, and might be the result of periodical colonization of central Europe®’.
We further evaluated the genetic status of this late colonizing population by inferring genome-wide
diversity in the NK37 paleogenome. Based on post-mortem damage patterns and X chromosome-
based recalibration, heterozygosity (8) was estimated in 1Mb windows across all autosomes for the
nuclear dataset above (Figure S1). Despite the low coverage (0.47x) of the Upper Rhine Graben sample
NK37, heterozygosity estimates were robust even when down-sampled to 0.1x coverage (Figure 3).
Estimates in the sample NK37 (Omean = 0.00121) and the West African pygmy hippo WPH1 (Bmean =
0.000843) are considerably lower than in the two African common hippos (ACH1 Bmean = 0.00486; ACH2
Bmean = 0.00431). Extant West African pygmy hippos are today restricted to the Upper Guinea Forest of
western Africa and are fragmented into isolated populations®. The similarly low genome-wide
heterozygosity estimated from the sample NK37 thus suggests that hippos from the Upper Rhine
Graben also represented a small, isolated population®*->%,

Conclusion

Middle and Late Pleistocene climate fluctuations resulted in fundamental changes of the environment
and its inhabiting large mammal fauna>'%%2, Glacial and interglacial faunas alternately colonized this
area during favorable climate conditions from their core areas in north-eastern and southern Europe,
respectively, when climate conditions were favorable for them. Nevertheless, neither the timing of
colonization and extinction in central Europe nor the phylogenetic relationships to their African
relatives could be resolved until now for Late Pleistocene hippos, although they were assumed to be
the prime indicator of interglacial conditions.

Here we approached this issue by combining paleogenomics with radiocarbon dating of putative
Eemian hippos from the Upper Rhine Graben. These turned out to be part of the previously much more
widely distributed extant African common hippo, although genome-wide data for more Pleistocene
European as well as extant African common hippos will be needed to disentangle their complex
relationships. Contrary to the traditionally accepted view, our newly dated bone remains reveal that
hippos did not disappear in central Europe at the end of the Eemian as previously thought. A small
population instead recolonized the central European Upper Rhine Graben during MIS3, likely from
southern Europe. We thus could show that interstadial phases provided a temperate refugium allowing
an (at least temporary) immigration of hippos (and likely other interglacial elements) in the middle of
the last glacial period. Overall, the late presence of hippos in the Upper Rhine Graben suggests that
fossils from other putative Eemian sites should be re-analyzed as well to evaluate if this species also
survived into the last glacial elsewhere in western and central Europe (e.g., the Netherlands®3).
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Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled
by the lead contact, Patrick Arnold (patrickarnold@uni-potsdam.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

e All raw sequencing data produced in this study data have been deposited at NCBI GenBank as
BioProject PRINA1105865 and are publicly available as of the date of publication. All amino acid
data from this study have been deposited at the NOAA repository and are publicly available as of
the date of publication (https://www.ncei.noaa.gov/pub/data/paleo/aar/). For the purpose of
open access, a Creative Commons Attribution (CC BY) license is applied to any Author Accepted
Manuscript version arising from this submission.

e This paper does not report original code.

e Any additional information required to reanalyze the data reported in this paper is available from
the lead contact upon request.
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Figure titles and legends

WPH1
ACH2
ACH1
NK37
[WPH1
twph2
ACH2 €
—EACH3 Em
o
achs Osg
ST
—ACH4  §
L—aAcH1 <
. HGImEpp g
092 x= NK14 5(/1
: g3
*L Meng19 g_%
L Meng18 g’g
o %
NK47 85
P
NK37
V7 . . .
“ 3 2 1 0

million years

Figure 1 Geographic origin and phylogenetic relationships of fossil hippos from the Upper Rhine
Graben.

A) Location of gravel pits in the Upper Rhine Graben in southwestern Germany where the analyzed
fossils of hippos, mammoths and woolly rhinos have been unearthed (red dots): 1 Gimbsheim/Eich, 2
GroR-Rohrheim, 3 Bobenheim-Roxheim. Black pentagons indicate major cities: B Basel, F Frankfurt, M
Mainz, S Strasbourg. Scale: 100km in total. B) Nuclear phylogeny based on 3,085 genomic windows
(with uniform branch lengths) including a single ancient sample (NK37) from the Upper Rhine Graben.
Maximum Likelihood tree from concatenated data set in black (100% bootstrap support), densitree
visualization of incongruence among window trees in blue (with uniform branch lengths). C) Calibrated
Bayesian phylogeny of mitochondrial genomes from Late Pleistocene Upper Rhine Graben (URG)
hippos, extant African common hippos (ACH) and extant West African pygmy hippos (WPH) using a
Bayesian skyline coalescent tree prior. Node support (Posterior Probability) is >0.99 for all nodes
except those indicated differently or marked with an asterisk (<0.75).

See also Figure S1-S2 and Table S1.
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Figure 2 Temporal distribution of radiocarbon-dated fossil hippos, mammoths and woolly rhinos
from the Upper Rhine Graben.

Probability distributions of radiocarbon dates for fossil hippos (Hippopotamus, red), woolly mammoths
(Mammuthus, gray) and woolly rhinos (Coelodonta, blue). Repeated estimates for two hippo
specimens (NK47 and NK24) in orange. Estimates for eight additional hippos were beyond the limit of
radiocarbon dating (>49 ka). Blue lines mark the boundaries of marine oxygen isotope stages (MIS).

See also Figure S3 and Table S2.
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Figure 3 Genome-wide heterozygosity (8) across different genomic coverage.

Estimates for one African common hippo (ACH1), one West African pygmy hippo (WPH1) and Upper
Rhine Graben sample NK37. Step-wise down-sampling of genomic coverage from original data (left) to
as low as 0.1X. Results suggest estimates to be robust even down to 0.1x coverage.

See also Figure S1 and Table S1.
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STAR Methods

Experimental model and subject details

Origin of samples and taphonomy

The faunal remains originate from gravel pits in Eich, Gimbsheim and Bobenheim-Roxheim (all
Rheinland-Pfalz), and near GroRR-Rohrheim (Hessen) in the Upper Rhine Graben of southwestern
Germany (Figure 1). Today, the majority of remains are housed in the "Reis Collection" (Klaus Reis,
Deidesheim), which comprises about 15,000 remains collected prior to 1984. Since 2016, the collection
has been archived in the Reiss-Engelhorn Museen in Mannheim®*. Additional faunal remains of this
study originate from other museums and collections (Tables S1-S2). Besides hippos, the faunal
assemblages of these sites in the Upper Rhine Graben include several ‘interglacial’ and ‘intermediate’
elements (sensu von Koenigswald'?), including Panthera spelaea (cave lion), Palaeoloxodon (Elephas)
antiquus (straight-tusked elephant), Equus sp. (wild horse), Sus scrofa (wild boar), Bos primigenius
(aurochs), Bubalus murrensis (water buffalo), Cervus elaphus (red deer), Capreolus capreolus (roe
deer), Megaloceros giganteus (giant deer), Dama dama (fallow deer), Alces alces (elk), Stephanorhinus
hemitoechus (steppe rhinoceros), and Stephanorhinus kirchbergensis (forest rhinoceros). No
systematic bias regarding breakage, completeness and rolling is observable between hippo and other
‘interglacial’ species versus woolly mammoth/woolly rhino and other glacial species (Figure S3).

Geological setting and stratigraphy

The Upper Rhine Graben (Figure 1) is one of the most important rift systems in Europe and offers an
outstanding sediment trap where a continuous accumulation and preservation of fossils is
documented from the Eocene to the Holocene®'. The long history of quarrying activities in the sandy-
gravelly Upper Rhine Graben deposits (Mannheim formation) unearthed numerous fossils of large
mammal remains from the Late Pleistocene. Over the last two decades, our understanding of the
Mannheim formation has been revised. The Upper Rhine Graben is a south-southwest to north-
northeast striking rift structure that is part of the European Cenozoic Rift System extending from the
Mediterranean Sea to the Lower Rhine Embayment®. The Upper Rhine Graben can be divided into two
parts: a southern part from Basel to Karlsruhe and a northern part from Karlsruhe to Mainz. The
differences between the two parts are lateral internal rift-structures with different subsidence. Since
the River Rhine acted as the only drainage system that connected the Alps with the North Sea, the
Upper Rhine Graben acts as a major sediment trap. Therefore, the Upper Rhine Graben offers unique
potential for a continuous sediment accumulation and preservation. Continuous subsidence permitted
the accumulation of about 300 m of Quaternary sediments in the area west of Heidelberg, the so-
called "Heidelberg basin"®®. In the northern Upper Rhine Graben, the upper Quaternary sediments,
sand and gravel deposits alternate with clay layers in between. Aiming to provide a better
understanding of the geological evolution of the northern Upper Rhine Graben (especially the
Heidelberg basin), and its control by climate change and tectonics, and for the correlation of alpine
and north European glacial evolution, the Heidelberg Basin Drilling Project was initiated in 2002°7. The
investigations are primarily based on three newly cored boreholes drilled from 2002 until 2008.

By working on various research boreholes in the northern Upper Rhine Graben, a new
lithostratigraphic concept could be developed for the Pliocene and Pleistocene sediments of the
northern Upper Rhine Graben®®. Four formations could be defined*’. The Mannheim Formation
completes this lithological sequence. It has a Middle to Late Pleistocene age and mostly starts with a
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coarse sediment pulse. Several fluvial aggradation cycles follow. Fine-grained floodplain or overbank
deposits are often not preserved. Mass deposits of gravel, cobbles, blocks, and diamictons occur at the
graben boundaries and at the entry of the Neckar River into the Upper Rhine Graben. The thickness of
the Mannheim Formation varies between a few meters and up to 60 m in the subsidence center of the
Heidelberg Basin. The heavy mineral fraction of the fine sands within the Mannheim Formation is
characterized by an alpine spectrum with unstable heavy minerals such as garnet, epidote, green
hornblende, and alterite. This spectrum also dominates local inputs with stable heavy minerals such as
zircon, tourmaline, and rutile. A luminescence age on sediments from a core in Kronau about 20 km
south of Heidelberg, outside the Heidelberg Basin, at the transition from the Ludwigshafen to the
Mannheim Formation, shows an age of 470 * 41ka, which is correlated with MIS 12°°. In this location,
ages correlated with MIS 10, 8, 6, 4, and 2 were also dated. Thus, up to six accumulation phases could
be shown for Kronau. However, this interpretation is based on only a few dates and must be validated
with  further luminescence dating. Nevertheless, these datings correspond well with
magnetostratigraphic studies®®, according to which the Ludwigshafen and Mannheim Formations can
be assigned to the normally polarized Brunhes Chron. In recent decades, a large number of research
boreholes have been drilled in the northern Upper Rhine Graben?¢, several of them allowing better
interpretation of the younger sediments and their respective layers. Various boreholes have also been
palynologically analyzed. So far, no sediments from the Eemian period were identified'*¢2, Data from
optically stimulated luminescence (OLS) dating confirm the lack of Eemian sediments in the Mannheim
Formation of the Upper Rhine Graben®*%4, The upper 33m of sediment cores (fitting with the maximum
dredging limit in gravel pits) were deposited during the last glacial period (Weichselian, <60 ka),
according to OSL dating®3.

Method details

Radiocarbon dating

Radiocarbon dating was performed at the radiocarbon laboratory of the Curt-Engelhorn-Center
Archaeometry (CEZA) in Manheim® by extracting collagen according to a modified Longin extraction®
from hippopotamus bone and tooth samples as described in detail in Lindauer et al.’’. The
pretreatment typically starts by applying organic solvents to remove varnish that was applied to most
of the bone material for conservation purposes by the collectors, followed by an acid step to remove
carbonates, a base step to remove soluble humic acids, and a final acid step to remove any newly
accumulated atmospheric contaminating carbon dioxide. The sample was then gelatinized in
hydrochloric acid at pH 3 at 60 °C for 20 hours. The remaining solid material was then removed using
an Ezee - Filter (Elkay) before ultrafiltration (Vivaspin Turbo 15) of the collagen to remove short-
chained contamination. The sample was then freeze-dried, combusted in an elemental analyzer
(MicroCube, Elementar) and graphitized to elemental carbon using in-house or commercially available
graphitization systems (AGE3, lonPlus). The graphite was then pressed into a target and measured in
a MICADAS-type accelerator mass spectrometer system (AMS). The results were fractionation-
corrected (to 86'3C=-25 per mil) using the 8%C values measured at the AMS. The conventional
radiocarbon dates were calibrated using the calibration curve IntCal2020% and the software OxCal
4.4%,

The impact of conservation chemicals of unknown composition with which the fossil specimens have
been treated in historical time has been systematically evaluated previously by the authors®®.
Additional samples from the Reis collection for which suitable amounts of varnish could be collected
were tested here. We removed the upper bone layers and dated the varnish of samples NK37 (hippo;



416
417
418
419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436

437
438
439
440

441

442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

MAMS-47983) and NK25 (cave lion; MAMS-47982) to conventional **C ages of 30,011 + 150 and 36,928
+ 262 years BP, respectively. Those results are comparable to the previously published date for the
varnish of NK34 (muskox; MAMS-39641) with a conventional *C age of 30,958 +- 203 years BP. For
varnish contamination to significantly affect the *C age of the bone material, the varnish chemicals
would need to survive the sample pre-treatment, particularly the ultrafiltration step, in large quantities
while still producing collagen of good condition. However, since all datable samples yielded visibly
identifiable collagen with good collagen yields of above 1% up to 10%, we conclude that only negligible
amounts of varnish (if any) might have remained in the extract. In the three samples tested, **C dates
were always different between varnish and cleaned bone. This indicates significant removal of varnish
contamination, especially considering the fact that a number of samples produced infinite *C ages.

To ensure the accuracy of dating, the two hippo samples with most material left underwent repeated
14C testing (Figure 2) at CEZA and the radiocarbon laboratory of ETH Zurich, Switzerland, using the same
protocol as above. For NK47, both results (measured at CEZA) show reasonable consistency despite
not being identical within their margins of error, yielding conventional **C ages of 29,398 +- 117 and
28,690 +- 90 years BP, respectively. NK24 was dated twice at CEZA and once at ETH Zurich, with greater
variability compared to NK47. While the CEZA results for NK24 are relatively close to each other
(43,833 + 484 years BP and 45,060 + 230 years BP, respectively), the ETH Zurich result is even notably
younger (37,975 + 550 years BP). Nevertheless, all dating repetitions confirm the MIS3 age of the hippo
fossils. Additional FTIR spectral analysis was conducted on a Spotlight 200i system (PerkinElmer,
Waltham MA, USA) at the ETH laboratory for the sample prepared there following Haijdas et al.”®
(Figure S3).

Fossil wood pieces were not covered by lacquer or varnish. They underwent a standard ABA (acid-
base-acid) pretreatment with 2M hydrochloric acid (HCI) and 4% sodiumhydroxid (NaOH) followed by
2M HCl again to remove limestone and soluble humic acids’. Subsequent steps for graphitization and
measurement were the same as described for bone above.

Amino acid geochronology

Three hippo tooth enamel samples from Eich, Upper Rhine Graben, and seven from Barrington, Britain
for comparison (Figure S3, Table S2) were prepared using established protocols for intra-crystalline
protein analysis of enamel’l. Enamel chips were mechanically cleaned to remove adhesive residues
and non-enamel dental tissues, then powdered and subjected to a 72-hour bleach treatment to isolate
the closed-system protein fraction. Each sample was divided into two subsamples: one was analyzed
for free amino acids (FAA), while the other was hydrolyzed to determine total hydrolysable amino acids
(THAA). Samples were demineralized in HCI before the pH was raised with KOH and the solution
centrifuged, producing a biphasic separation; the supernatant was extracted, dried via centrifugal
evaporation, and rehydrated in an internal standard. Samples were analyzed in preparative duplicate
by reverse-phase high-performance liquid chromatography, with standards and blanks run alongside.
Due to deamination during hydrolysis, aspartic acid and asparagine were recorded together as Asx,
and glutamic acid and glutamine as Glx. Racemization ratios of Asx, Glx, phenylalanine, and alanine
were used to construct intra-crystalline protein decomposition (IcPD) profiles, exploiting their
differential racemization rates for temporal resolution. Comparison of FAA and THAA D/L values were
used to assess the extent of closed-system behavior, with significant divergence suggesting possible
contamination or diagenetic alteration. To date, no hippopotamus enamel from Germany has been
analyzed for its intra-crystalline protein decomposition (IcPD). Consequently, the hippo enamel from
Eich has been compared with an established enamel chronology for elephantids (Palaeoloxodon and
Mammuthus) from Britain’?, as well as a smaller set of British hippo enamel specimens attributed to
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the Eemian based on the pollen assemblage, optical spin luminescence dates and opercula-based
amino acid racemization dating”>’. The attribution of H. amphibius remains to MIS5e sites in Britain
is therefore likely more robust than on the European mainland, owing to Britain’s isolation””78,

Differences in the underlying protein sequences between taxa lead to consistently different rates of
racemization, limiting direct comparison across species’?. The IcPD values of the Eich hippo enamel
were therefore also compared to hippo enamel from a British site (Barrington beds) correlated with
the Eemian. As racemization rates are temperature-dependent, regions that experienced a
significantly different integrated temperature history will exhibit different rates of IcPD. However,
recent opercula-based dating shows that there is only a slight difference in IcPD between last
interglacial sites in Britain and near the Upper Rhine Graben® (as no interglacial sediments are directly
available from the Upper Rhine Graben), suggesting that the even-slower racemizing enamel from
Britain is likely to be comparable to parts of south-western Germany in terms of racemization behavior.
As racemization values from the Eich hippo specimens are similar to those of British hippos (Figure S3),
a comparison is between both geographic regions is valid (within the limitation of taxon-specific
differences). When compared to the larger British elephantid time series dataset, the IcPF values of
the Eich hippo enamel fall between those samples from MIS4/3 and MIS53 (Eemian), although closer
to the former (Figure S3). However, because of the slow rates of racemization in enamel, the
confidence intervals of IcPD for MIS4/3 elephantids are relatively large and partially overlap with those
of MIS5e elephantids; this is likely to also apply to hippos. Therefore, a post-Eemian age for the Eich
hippo samples is possible but cannot currently be confirmed by amino acid racemization dating alone
due to the lower temporal resolution of this enamel-based method for this period.

Ancient DNA laboratory methods

All pre-amplification steps were carried out in the dedicated ancient DNA facilities at the University of
Potsdam, including negative controls for both extraction and library preparation. In a first round of
screening, ~50 mg of bone powder per sample were collected using a Dremel Fortiflex (9100-21) and
a 2.4- to 2.8-mm-diameter drill bit. DNA was extracted following a protocol optimized for highly
fragmented DNA®. A total amount of 13 ng of DNA for each extract was initially treated with USER
enzyme for 15 minutes at 37° C (modified from Meyer et al.8!) to remove uracil residues resulting from
cytosine deamination. The USER-treated extracts were then converted into single stranded libraries
using the protocol described in Gansauge et al.82, The resulting libraries were then amplified and dual-
indexed. PCR cycles for amplification were determined in advance using qPCR analysis of the
unamplified library. Concentration and length distribution were determined using Qubit 2.0 and 2200
TapeStation (Agilent Technologies), respectively. The single-stranded libraries were sequenced on an
lllumina NextSeq500 system® at the University of Potsdam in 75bp single-end mode for five to 20
million reads. A single sample (NK37) yielded sufficient endogenous DNA to sequence its (non-
enriched) library for 3 billion reads on an lllumina NovaSeq6000 system at the ScilifeLab, Stockholm,
in 100bp paired-end mode. Libraries were additionally enriched for mitochondrial DNA by two rounds
of in-solution hybridization capture using the Arbor Biosciences MyBaits kit according to the
manufacturer’s instructions (Manual v4.01, April 2018). Enrichment capture baits were designed based
on the mitochondrial reference genome of the African common hippo (Genbank: NC_000889.1).
Enriched libraries were amplified following the amplification steps used in Taron et al.8* and then
sequenced again on an Illlumina NextSeq500 system at the University of Potsdam in 75bp single-end
mode.
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Quantification and statistical analysis

Nuclear genome phylogeny and gene flow

The nuclear data set consisted of sequencing data for one ancient sample (NK37) and three previously
published modern hippos (ACH1, ACH2, WPH1; Table S1). Adapter sequences and low-quality bases (<
Q30) were trimmed and reads shorter than 30bp removed with cutadapt 1.18%. Untrimmed reads
were discarded. Paired reads were merged with flash 1.2.11%. For NK37, only merged reads were
subsequently mapped to the West African pygmy hippo reference genome (GenBank:
GCA_023065765.1) using BWA 0.7.17% -aln with relaxed mapping parameter (-n 0.01). Reads with a
mapping quality below 30 were removed using Samtools 1.15.1%, Duplicate reads were identified
using the java program MarkDuplicatesByStartEnd.jar (https://github.com/dariober/Java-
cafe/tree/master/MarkDupsByStartEnd) and removed. For ACH1, ACH2 and WPH1, merged and
unmerged reads were mapped to the West African pygmy hippo reference genome (GenBank:
GCA_023065765.1) using BWA 0.7.17 -mem®. Duplicate reads were identified using picard 2.18.29
(http://broadinstitute.github.io/picard/). For the sliding window tree analyses, we generated
pseudohaploid sequences using random read sampling (-doFasta 1) in ANGSD 0.935%° and the following
parameter settings: -minQ 30, -minMapQ 30, -uniqueonly 1, -only_proper_pairs 0, -remove_bads 1, -
baq 2, -C 0, -explode 1, -doCounts 1, -trim 0. We ran a sliding window tree analysis® using
WindowTrees v1.0.0 (https://github.com/achimklittich/WindowTrees) in binary mode to exclude
transitions (—binary), with a missing data threshold of 50% (-N 0.5), a window size of 5kb (-w 5000)
and a gap size of 5kb between windows (-lw 5000). Topological incongruence among window trees
were visualized as densitree with the phangorn 2.5.5 package®® in R. A Maximum Likelihood tree was
computed from concatenated windows in IQTREE 2.0.3% using the Jukes-Cantor model for binary data.
To test for gene flow, D-statistics were calculated using ANGSD 0.935 (-doAbbababa), with the WPH1
as outgroup and NK37, ACH1 and ACH2 as P1, P2 and P3, respectively, and the following settings: -
doCounts 1, -uselast 1, -rmTrans (use only transversion sites), -minQ 30, -minMapQ 30, -uniqueonly 1,
-remove_bads 1, -baq 2, -setMinDepth 3. Standard errors estimation using jackknife procedure was
done on block size of 5 Mb. Z-scores >| 3| were defined as significant.

Mitochondrial phylogeny and networks

Adapter sequences and low-quality bases (< Q30) were trimmed with cutadapt 1.18. Untrimmed reads
were discarded. An individual minimum length cut-off was determined empirically for each library as
described previously®* (Table S1). Trimmed reads were subsequently mapped to the nuclear (GenBank:
GCA _023065835.1) and mitochondrial genome (GenBank: NC_000889.1) of the African hippopotamus
using BWA aln 0.7.17 with relaxed mapping parameter (-n 0.01). Reads with a mapping quality below
30 were removed using Samtools 1.15.1. Duplicate reads (reads with the same start and end
coordinates) were identified wusing the java program MarkDuplicatesByStartEnd.jar
(https://github.com/dariober/Java-cafe/tree/master/MarkDupsByStartEnd) and removed. Cytosine
deamination patterns and length distribution of resulting reads were calculated using mapDamage
2.1.0%. (Figure S1). Mitochondrial consensus sequences were called using Samtools 1.15.1 with 85%
majority rule for base calling and minimum coverage of 2x. Consensus calling was also repeated with
minimum coverage of 3x. Consensus sequences were manually checked for premature stop-codons in
aliview 1.26%. Mitogenomes of living hippos have either previously been published or were here
assembled de-novo from available sequencing data (Table S1). For the latter, paired-end sequencing
reads were trimmed with cutadapt 1.18 and assembled with NOVOPlasty 4.3.1%7 with default
parameters.
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Ancient and modern mitochondrial genomes were aligned using MAFFT v7.310%,. Poorly-aligning parts
of the D-loop were removed from the alignment resulting in a total alignment length of 16,126 bp. The
optimal set of partitions and substitution models under the Bayesian information criterion from all
possible combinations of rRNAs, tRNAs and the individual codon positions of protein coding genes was
determined using ModelFinder®® as implemented in IQTREE 2.0.3. A Maximum Likelihood phylogenetic
tree with 1000 ultrafast bootstrap'® replications was reconstructed in IQTREE 2.0.3 from the resulting
three partition scheme. Results of the phylogenetic reconstruction were consistent using different
minimum coverage limits for consensus calling (Figure S2). All subsequent analyses were therefore
done with consensus mitogenome sequences with minimum coverage of 2x. The Maximum Likelihood
reconstruction was rerun but with constraining Upper Rhine Graben hippos to fall outside all extant
African common hippos. The likelihood of both trees (Upper Rhine Graben hippos outside or inside
African common hippos) were then compared using the approximately unbiased test'®! as
implemented in IQTREE 2.0.3. We additionally used two larger datasets from partial mitochondrial
sequences in order to capture the genetic diversity of the extant African common hippo®. The first
dataset contains 854 bp of cytochrome b from 23 individuals (GenBank: KR005049-KR005071). The
second dataset contains 929 bp of tRNA-Pro, the control region and tRNA-Phe from 66 individuals
(GenBank: KR004948-KR005044). Respective sequences from Upper Rhine Graben hippos (if
preserved) were added to the datasets and minimum-spanning haplotype networks were
reconstructed in PopArt 1.7 (Figure S2).

Time-calibrated Bayesian analysis

To estimate the divergence time among late Pleistocene hippos from the Upper Rhine Graben as well
as to extant African common hippos, a time-calibrated Bayesian analysis was performed in BEAST
2.7.2'%3 using the same alighment and partition scheme as for the Maximum Likelihood phylogenetic
reconstruction above. Pleistocene samples in the alignment were fixed at their above calibrated
radiocarbon dates. Samples dated to beyond the radiocarbon limits (>49 ka) were fixed to 59 ka as
their presence in the Upper Rhine Graben during MIS4 is unlikely given the near lack of interstadials
before 60 ka?!. The divergence between H. amphibius and C. liberiensis was set to 8.1 Ma (normal
distribution prior with a mean of 8.1 Ma and a standard deviation of 310 ka) as node calibration
following previous estimates®1%, The analysis was run using a Bayesian skyline coalescent tree prior
and lognormal relaxed clock models for each partition. As population structuring among and within
species may violate the assumptions of the Bayesian skyline coalescent model, the divergence dating
analysis was replicated using a Birth-Death speciation tree prior. Both tree prior models, however,
have been shown to best accommodate for mixed inter- and intraspecific sampling®*. The MCMC chain
was run for 50 million generations. Convergence and adequate sampling (ESS > 200) of all parameters
were verified in Tracer 1.5.0.52%, The first 10% of trees were removed as burn-in, and the maximum
clade credibility trees obtained from the posterior sample, with node heights scaled to the median of
the posterior sample, using TreeAnnotator 2.7.1.

Genomic-wide heterozygosity analysis

Nuclear data sets including NK37, ACH1, ACH2 and WPH1 were processed with the Gaia part of the
ATLASY pipeline (bitbucket.org/wegmannlab/atlas-pipeline, commit f3db9e3). For sample NK37, the
analysis was restricted to the first mates since most reads did not have a second mate. Reads were
trimmed using TrimGalore 0.6.7 (github.com/FelixKrueger/TrimGalore) with no quality filter and a
length filter of 30. Reads were subsequently aligned to the African common hippo reference genome
(GenBank: GCA_023065835.1) using BWA-mem 0.7.17. Reads with a mapping quality below 30,
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unmapped and, in the case of paired-end sequencing data, unpaired reads were removed with
samtools 1.9. Duplicate reads were marked using MarkDuplicates in picard 2.26.11
(http://broadinstitute.github.io/picard/). After filtering, a total of 1’845’041’892, 499'769’'574,
720°280°245 and 30'909’422 sequencing reads were retained for ACH1, ACH2, WPH1 and NK37,
respectively, which resulted in respective average coverages of 39.7x, 75.7x, 42.7x and 0.476x. As
expected for ancient samples sequenced with single strand libraries, the sequencing data NK37
showed clear patterns of post-mortem damage at both the 5’ and 3’ end (Figure S1). Heterozygosity
(8) was estimated from genotype likelihoods as outlined in Kousathanas et al.’%® and implemented in
ATLAS!® pipeline (bitbucket.org/wegmannlab/atlas, commit flec7fd), using the functions
estimateErrors and theta. In brief, this approach first estimates post-mortem damage patterns and
sequencing error rates, which are then used to calculate accurate genotype likelihoods. From these,
heterozygosity is subsequently inferred as the rate 8 = 2Tp under Felsenstein’s substitution model®,
Error rates were modeled using the following covariates: quality score, position in thread, mapping
quality, fragment length and context (i.e. the previous base sequenced). The model was inferred from
all sequence data on the X chromosome assuming no heterozygosity as all samples were males. 6 was
then inferred in 458 5Mb windows along all autosomes. Given their high sequencing quality, diversity
estimation in modern samples (ACH1, ACH2, WPH1) were not affected by post-mortem damage and X
chromosome-based recalibration (Figure S1). In contrast, they strongly reduce diversity
overestimation in NK37 (Figure S1). To confirm the accuracy of the inferred post-mortem damage
patterns and sequencing error rates, and consequently of diversity estimates, 8 was also inferred from
sequencing data down-sampled to 0.5x,0.2x, 0.1x and 0.05x using the task theta with the option --
probs. Under accurate estimates of post-mortem damage patterns and sequencing error rates, the
diversity estimates are expected to be rather insensitive to the sequencing depth. In case of over- or
underestimated sequencing errors, however, the diversity is expected to be under or overestimated,
respectively, at low depth. Inferred values of 8 indeed were robust against down-sampling (at least as
low as 0.1x; Figure 3), suggesting that post-mortem damage patterns are sequencing error rates, and
that consequently genetic diversity was inferred with high accuracy.

Supplemental information

Document S1: Figures S1-S3

Table S1. Statistics and results of paleogenetic analysis, related to Figures 1, 3 and S1-S2 and STAR
Methods

Table S2. Results of radiocarbon dating and amino acid racemization chronology, related to Figures
2 and S3 and STAR Methods
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