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Abstract

®

CrossMark

Knowledge of the poloidal distribution of zonal flow (ZF) drive has been a missing yet crucial
component of both our understanding of turbulence—flow interactions and the validation of
gyrokinetic codes. We present the first analysis of the distribution of electrostatic ZF drive due
to Reynolds stress. Using gyrokinetic flux-tube simulations we examine the effect of strong
axisymmetric shaping, including elongation, triangularity, and aspect ratio, as well as up—down
asymmetric equilibria. With increased shaping, the ZF drive develops local maxima near those
of poloidal curvature, with a tendency to shift towards the so-called bad curvature side. Thus,
depending on the shaping, the nonlinear ZF drive may not peak at the outboard midplane where
the turbulent fluctuations are the strongest and where turbulence diagnostics are usually located.

Our results therefore suggest that a shaping correction must be taken into account when
extrapolating from a poloidally localized measurement to the total electrostatic ZF drive on a

flux-surface.

Keywords: ITG, zonal flows, Reynolds stress, nonlinear coupling, gyrokinetics

1. Introduction

Turbulent transport driven by the free energy of the equilib-
rium temperature and density gradients is responsible for the
majority of the radial heat and particle transport in tokamaks
and optimized stellarators [1, 2]. Fortunately, turbulence has
the ability to self-organize into meso-scale flows. These flows
are directed in the binormal direction, i.e. the flow direction is
perpendicular to both the field line and the flux surface nor-
mal vector. While they are poloidally and toroidally symmet-
ric, they cover a narrow radial zone and are thus termed zonal
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flows (ZFs). ZFs are linearly stable and therefore unable to
feed off the free energy supplied by the gradients. They do not
contribute to radial transport, but lessen the impact of the radi-
ally elongated and therefore most detrimental turbulent eddies
by shearing them apart [3, 4]. In addition to this modification
of the typical eddy length scales, ZFs also modify the turbu-
lent fluctuation power by taking energy directly out of them via
nonlinear coupling. It is the strength of this nonlinear coupling
which determines the drive of ZFs in the system.

Since ZFs are poloidally symmetric and the turbulent fluc-
tuations generally peak at the outboard midplane, this naturally
raises the question about the poloidal distribution of their non-
linear interaction. While it is the mean E x B shearing which
sustains confinement states [5] such as the high confinement
mode (H-mode) [6], ZFs can trigger a transition from the low
confinement mode (L-mode) into the H-mode by transiently
increasing the E x B shear, after receiving energy nonlinearly
from turbulent modes. This interaction takes place whenever a
radial gradient of the turbulent Reynolds stress is present [7].

© 2025 The Author(s). Published by IOP Publishing Ltd
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It has been shown experimentally that this drive increases with
heating power [8], and that the onset of confinement transitions
such as the L—H transition is directly linked to a critical drive
of ZFs [9—11]. The interpretation of such measurements which
are often taken at the outboard midplane would greatly bene-
fit from a theoretical prediction of the ZF drive envelope for
varying macroscopic equilibrium parameters, especially due
to limited diagnostic coverage. If the ZF drive at the outboard
midplane varies significantly with plasma shaping such a the-
oretical prediction renders it possible to compare and interpret
localized experimental results from discharges with different
plasma shaping.

A prior analysis for the Cyclone base case (CBC) [12],
a widely used tokamak benchmark equilibrium with circular
plasma shaping and aspect ratio A = 2.72, showed that the pol-
oidal distribution of the coupling is correlated with the turbu-
lent fluctuation level but not strictly proportional to it [13].
However, all modern tokamaks and reactor studies rely on
strong plasma shaping due to the benefits for MHD stability
[14] as well as turbulent transport [15-17]. It was recently
shown that the linear damping of ZFs varies between pos-
itive and negative triangularity (NT) [18] and that the pol-
oidal envelope of the mean E x B shearing rate changes with
plasma shaping [19]. These strong shaping effects in both mac-
roscopic and linear microscopic turbulence dynamics further
motivate a closer look at the nonlinear microscopic turbulence
dynamics and the associated nonlinear coupling responsible
for the drive of ZFs. This nonlinear interaction between turbu-
lent modes and zonal modes is described by three-wave coup-
ling and can be quantified with the help of bispectral methods
and the closely related energy transfer functions [20, 21]. A
kinetic formulation of such energy transfer functions has also
been used for the analysis of the multi-scale coupling between
ion and electron scale turbulence [22, 23]. In previous work the
qualitative dynamics of the fluid internal energy transfer has
been successfully validated at the outboard midplane between
experiments and gyrokinetic simulations [24]. Here we use
the gyrokinetic code GS2 [25, 26] to evaluate the fluid kin-
etic energy transfer along a field-line-following magnetic flux
tube. In an axisymmetric system, which we are considering
in this paper, this directly yields information about the full
poloidal distribution.

This paper is structured as follows. In section 2 we intro-
duce the shaping formalism, give a brief introduction to
gyrokinetics, and introduce the nonlinear transfer theory.
Section 3 discusses the individual and finally combined effects
of elongation, triangularity, and aspect ratio as well as up—
down asymmetry on the poloidal distribution of the ZF drive.
Transfer proxy functions are proposed and evaluated. Finally,
we conclude in section 4.

2. Methods

2.1. Equilibrium model

We aim to treat realistic plasma shaping, thereby expanding
on the CBC, the most used tokamak benchmark equilibrium,

which has circular nested flux surfaces. As in the CBC we neg-
lect collisions as well as equilibrium flow and flow shear. The
shaped flux surfaces are specified through the original Miller
parametrization of axisymmetric MHD equilibria [27],

R(¥) =Ry + rcos[¢+ 6 sind], (D
Z(9) = krsind. 2)

Here R is the major radius,  the minor radius of the simulated
flux surface, 6 the triangularity', and « the elongation. In total
the Miller equilibria are specified through nine independent
parameters which are summarized in table 1.

The flux surfaces are specified in terms of the poloidal
Miller angle ¢ which is generally different to the geometric
arctangent angle

6 () = arctan (R(g)(lg)RO) (3)

which will be used throughout this paper. We also consider
up—down asymmetric equilibria obtained by tilting the elong-
ation or triangularity in the poloidal plane. These cases require
a generalized Miller parameterization which was previously
derived and implemented in GS2 [28, 29].

2.2. Turbulence model

With validation in mind we choose the turbulence model to
be the one that is most complete while computationally feas-
ible for parameter scans: nonlinear local gyrokinetics. To this
end we use the open-source code GS2 [25, 26] which solves
the nonlinear gyrokinetic equation for both electrostatic and
electromagnetic turbulence in a flux tube.

Here we are interested in the electrostatic limit with no
equilibrium flow and flow shear. The nonlinear local gyrokin-
etic equation then reads [30]

0 s OF, s
% + (vyb+Vpy) - Vrhs + N + aTZWExm-VRw =0.
)

Here s is the species label and g; is the gyro-average of 0f;, the
fluctuating part of the full distribution function f; = Fy, + f;-
Here F; is the zeroth-order contribution and is Maxwellian,

Fos (1,€5) = oy (1) (M) " e <— Toi‘ - ) . 5)

where 1) is the toroidal magnetic flux, ng; is the equilibrium
density, Ty, the equilibrium temperature, and &, = m|v|*/2
the particle energy with particle velocity v. The fluctuating
part of the distribution function df; can be split up accord-
ing to df; = hy — (Zsedp [ Tos) Fos, Where hg is now independ-
ent of the gyro-angle coordinate, and ¢ is the leading order
fluctuation of the electrostatic potential. Thus g, = (¢fs)r =

! This definition of triangularity is related to the original definition in Miller’s
paper through § = arcsin .
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Table 1. The nine Miller parameters (marked with ) and other quantities used to define them. The columns represent the variable names in
GS2, their value for the Cyclone base case (CBC), and other values used in this work.

Name Symbol Variable Name CBC Value Other values used
minor radius and reference length a N/A 0.625 —

norm. minor radius of flux surface p=r/a rhoc 0.8 —

norm. major radius of equilibrium Ro/a rmaj 2.72 20,14

Tinverse aspect ratio of equilibrium a/Ro eps 0.37 0.5,0.71
felongation of flux surface K akappa 1.0 1.5,2.0

tradial variation of elongation Ork akappri 0.0 1-k
ttriangularity of flux surface d = arcsindy tri 0.0 +0.25,40.5,40.75
tradial variation of triangularity 0,0 tripri 0.0 /1 —62
tsafety factor q ginp 1.4 4.0

tglobal magnetic shear § shat 0.78 —

fre-scaled pressure gradient QMHD alpha_input 0.0 —

fradial variation of major radius OrRo shift 0.0 —

hs — (Zse(dp)r/Tos ) Fos, where {.)g represents a gyro-average
at constant guiding-center position R, which is related to the
particle position r via r = R+ p where p is the gyro-radius
vector.

The other terms in the gyrokinetic equation (4) are the
parallel velocity v =v-b, the guiding-center drift Vp, =
(292,)7'b x [2v{b- Vb +v] VInB] with v, =|v|—v and
the unit vector along the field b =B/B, and the gyrokinetic
nonlinearity N = (Veyp)r - VRhs with Ve p = —V(§¢) X
B/B?. Here Vg denotes the gradient operator at fixed R.

In the electrostatic limit the system is closed by Poisson’s
equation which reduces to quasi-neutrality ) Zén, =0. In
this paper we only treat ions gyrokinetically and use an
adiabatic electron model dn, = enge(6¢) — 8¢)/Toe, where the
overline denotes a field-line-average and we take ng. = ngp; and
Toe = Toi. In this case quasi-neutrality reduces to

ene

[aviene= 22 (56 ~59).

(6)

where (.), denotes the (dual) gyro-average at constant r [31].

The flux tube is centered around a chosen field line for
one poloidal turn. The perpendicular extent of the simula-
tion domain is chosen small enough that geometric quantities
and equilibrium gradients can be assumed constant through-
out, but large enough that turbulence quantities are statistic-
ally identical at the boundaries and periodic boundary condi-
tions can be used. As a result fluctuating quantities such as
the electrostatic potential are evolved in Fourier space and are
expressed as

5¢ (x7y7zat) = Zéﬁbk (Z’t) exp [l(kxx+k,\y)}7 (7)
k

where k = k,Vx + k,Vy is the perpendicular wave-vector, and
z is the parallel coordinate which we choose to be equal to the
poloidal angle, z = 6, though other definitions are possible. In
the above x and y are field-aligned radial and binormal coordin-
ates that are proportional to ¢ and the field line label «,

x=- () —4g) and y=——2(a—ap),

= (®
Borg q0

but now have units of length [32]. Here o and v are the val-
ues at the center of the flux tube, where the safety factor takes
on the value gy = g(t)o) and the minor radius is ro = r(t);
By is the on-axis magnetic field strength. The field line label
alpha is defined as a = ¢ — g6/ where 6 and ( are the poloidal
and toroidal straight-field-line angles. Due to the finite mag-
netic shear so-called twist and shift boundary conditions are
used in the parallel direction [32].

The drive for ITG turbulence is set by the fixed equilibrium
ion temperature and density gradients, specified through their
normalized scale lengths

adn a

a

Here r is the half diameter at the outboard midplane, following
the convention in tokamak gyrokinetics. For the CBC the val-
ues are a/L, = 0.81 and a/Lr = 2.49. Non-circular flux sur-
face shaping is known to yield reduced heat fluxes [15], so to
prevent our shaped cases from becoming marginal we increase
the temperature gradient drive to a/Ly = 6.0 (or even higher
where explicitly stated).

An extensive introduction to gyrokinetics as implemented
in GS2 is given in [31] and the numerical details are well
described in [33].

2.3. Obtaining the Reynolds stress

The Reynold stress drive of ZFs is contained within the con-
vective derivative of the momentum equation [7]. We there-
fore analyze the ZF drive in the fluid picture, using the fluc-
tuating electrostatic potential of the gyrokinetic simulations.
This is motivated by comparison with experiment, similar to
the approach taken in [24].

To obtain an expression for the ZF drive we follow the
method from [20]. We start by writing the momentum equation
as

ot
where we have combined the pressure gradient force, the
Lorentz force, the inter-species friction force, and the viscosity

(10)
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tensor into the general linear operator L. In the electrostatic
case these terms do not contain a nonlinearity of fluctuation
quantities, and are therefore not of importance for the nonlin-
ear drive of ZFs.

To make progress in analyzing the nonlinearity a Fourier
decomposition is required. In line with the gyrokinetic order-
ing we assume parallel wavelengths to be much longer than
perpendicular ones, k” ~ ¢k , and effectively reduce the sys-
tem to the perpendicular plane

OV

=== (Vik, -iki) Vi, + L. (11)
k;

ot

The nonlinearity now appears as a convolution which high-
lights the underlying three-wave coupling of k, k; and k;
with the selection rule k —k; = k;,. Note that compared to
[20] we express the coupling to be in wavenumber-space
rather than frequency-space. While experimental measure-
ments offer high temporal resolution but limited spatial res-
olution, the opposite tends to be the case in turbulence simu-
lations, making this the natural choice.

After multiplying equation (11) by Vj, then adding the
resulting expression to its conjugate, and finally taking an
ensemble average, one obtains a conservation equation for the
fluid kinetic energy

) e

+ (Re{V;Ly}). (12)

Here (.) denotes the ensemble average realized in the form of
temporal averaging (over the saturated period of the simula-
tions) due to ergodicity [34].

We make further progress by approximating the fluid velo-
city by E x B motion, V=B"'bx Vi¢ or Vx =B 'bx
ikd k. The final expression then reads

la\Vk\z
2 0Ot

> =S Tk k,0) + Re{Vili})  (13)

Here the first term on the right-hand side is the kinetic energy
transfer function,

To(k.ki,0) = B~ (Re{ (b x kdgy) - [(b x kdgy i)
-k (b X k16¢k1 )]}>

= W(k,kl) Re<5¢;€5¢k,kl(5¢kl>. (14)

The weighting factor W(k,k;) =B73[b x k-k;](b x k) -
(b xky) ensures the correct wavenumber weighting to
describe the transfer of kinetic energy. 7, thus resolves the
nonlinear transfer of (fluid) kinetic energy from the source
mode k| to the target mode k through the corresponding medi-
ator mode k; at a given point # along the flux tube. Compared
to the more well-known bicoherence, this transfer function
does not only indicate the magnitude of the coupling but also
its direction. Thus, positive (negative) values of 7, correspond
to a gain (loss) of energy in mode k through the coupling with

k; [10, 20]. For the specific analysis in this paper we define
the total drive of ZFs as

TEO) = > Tolkeky=0,kickiy,0).

ko kix,kiy

5)

The computation of 7, was implemented as a Python post-
processing tool for GS2 as part of prior work by Biggs—Fox
[13] and has now been implemented as a diagnostic to GS2,
allowing for memory efficient MPI parallelized computation
at runtime. The diagnostic has been made available in the
recently released GS2 version 8.2.0 [25].

3. Results

In the following we analyze the nonlinear transfer for isol-
ated variations in elongation, triangularity and aspect ratio,
bridging the gap from the circular shaping of the CBC to the
typical highly shaped and low aspect ratio equilibria of spher-
ical tokamaks. In a final step we combine all three shaping
parameters to obtain a typical spherical tokamak equilibrium.

3.1 Elongation

We first focus on the linear growth rate dependence on the
temperature gradient and elongation to motivate the chosen
range for the nonlinear analysis. Linear initial-value calcula-
tions were performed with GS2 for varying temperature gradi-
ent and elongation. The maximum growth rate and its corres-
ponding wavenumber for each combination are shown on the
left in figure 1.2

The results on the left in figure 1 show the known trend
that ITG turbulence is stabilized by both a lower temperature
gradient and higher elongation® [15-17]. Motivated by these
results we choose a/Lr = 6.0 to perform a three-point-scan
in elongation for the nonlinear study. We consider cases with
k € {1.0,1.5,2.0} and correspondingly vary its radial deriv-
ative with 0,k = k — 1 for a reasonable shaping penetration
estimate [27]. Although the actual radial flux-surface shaping
penetration has a non-trivial dependency on the poloidal vari-
ation of the poloidal magnetic field and the toroidal current
profile [35], the estimate used should be sufficient for the local
approach taken here. The right plot in figure 1 shows the max-
imum linear growth rate as well as the total nonlinear turbulent
activity across the a/Lr = 6.0 slice. Here we define the total
nonlinear turbulent activity as the mean fluctuations amplitude

2 Convergence was tested at the four most extreme cases, [a/Lr €
{4.0,7.0}] x [k € {1.0,2.0}], upon doubling the parallel grid and number of
trapped particles (ntheta), the energy grid (negrid), the number of passing
particles (ngauss), the simulation time (max_sim_time), as well as halving
the time step (delt) and extending the parallel domain. For further details see
appendix A.

3 The strong dependence on elongation results since temperature gradients are
specified at the midplane in standard tokamak gyrokinetic studies [16, 17].
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Figure 1. Linear and nonlinear response to varying elongation and temperature gradient. Left: The maximum linear growth rate as a
function of elongation and temperature gradient with the value of the normalized binormal wavenumber, kyp,, corresponding to the
maximum growth rate overlaid. Right: A slice through the left figure along a/Lr = 6.0. Results from nonlinear simulations with increased
temperature gradient are included for k = 2.0, showing that (x = 2.0;a/Lr = 16.0) approximately matches the total turbulent fluctuation
energy of (k = 1.0;a/Lr = 6.0). The linear growth rate is also shown to highlight the Dimits shift [12].

of the turbulent (non-zonal) E x B velocity,

(o)) = o 32 (R4R) (156 (k.0,0)).

ke ky 20
(16)

((.)) denotes temporal averaging over the saturated period of
the simulations as well as poloidal averaging. A clear Dimits
shift [12] is observed on the right in figure 1. Prior results hin-
ted at the fact that 77F may also depend on how marginal the
turbulence is [13], i.e. where it is located within the Dimits
regime. For this reason we performed additional simulations
with increased temperature gradient for x = 2.0, with the goal
of matching the turbulent activity to the modified CBC case,
and thus to isolate the effect of elongation from that of the
proximity to marginality. The right plot in figure 1 shows
that the turbulent fluctuation level at (k =2.0; a/Lr = 16.0)
approximately matches those at (x =1.0; a/Ly = 6.0).

We evaluate 7,%F(6) from equation (15) over the saturated
period of the simulations. The resulting poloidal distributions
are shown in figure 2, and mapped onto the analyzed flux sur-
face p=0.8 in figure 3. As the cross-section becomes elong-
ated, the global maximum of ZF drive at the outboard mid-
plane splits into two local maxima which are located near the
top and bottom of the equilibria. However, we also note that
they are shifted slightly outwards towards the region of so-
called bad curvature, i.e. towards the outboard midplane where
the turbulence is usually driven most strongly. The discrep-
ancy between the maximum drive and the drive at the outboard
midplane grows as elongation is increased.

In figure 4 we plot two measures of the turbulent activ-
ity against the poloidal angle. The left plot shows the pol-
oidal distribution of the (unweighted) potential fluctuation
energy, while the right plot shows the distribution of the

1.0

0.8

0.6
0.4
0.2 —_— k=1.0,a/L1=6.0
—— k=1.5,a/Lr=6.0
—— k=2.0,a/L7=6.0
0.0
0.50 0.75 1.00

zonal flow drive T2 [a.u.]

k=2.0,a/Lr=16.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25

geometric arctan 6/m

Figure 2. The poloidal distributions of the ZF drive with varying
elongation and fixed gradient (solid) and the highly elongated case
with matched fluctuation level (shaded purple).

E x B fluctuation energy. Since the total fluctuation energy
was established in figure 1 we now show the normalized dis-
tributions to highlight their poloidal structure. We note that
for k =2.0 with a/Ly = 6.0 the poloidal structure of the E x
B fluctuations resembles that of 7.2 from figures 2 and 3.
However, as the temperature gradient is increased, this similar-
ity disappears and returns to a more ballooning-like structure,
whereas the structure of the nonlinear ZF drive keeps its pol-
oidal shape throughout the Dimits regime as shown in figure 2.
The same effect is also observed for the electrostatic potential
fluctuations in figure 4, albeit less pronounced.

3.2. Triangularity

Most axisymmetric plasma shaping used today features both
significant elongation and triangularity. Whereas traditionally
triangularity has mostly been positive, i.e. with the nose of the
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Figure 3. The poloidal distributions of the ZF drive mapped onto the poloidal cross-section for fixed temperature gradient a/Lr = 6.0. Each

case has been normalized independently, so absolute values of 77" should not be compared between different equilibria. The radial width of
the colored region is for illustrative purposes only. Left: Cyclone base case (CBC). Center: Elongation x = 1.5. Right: Elongation x = 2.0.
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Figure 4. The poloidal distributions of the mean fluctuations for varying elongation and fixed gradient (solid), and for the highly elongated

case with matched fluctuation level (shaded). Left: Electrostatic potent

triangle pointing radially outwards, recently there has been a
significant interest in NT [36]. Hence we include both posit-
ive triangularity (PT) and NT. Different from the variation of
pure elongation we find that the turbulent fluctuations and heat
flux do not depend as strongly on pure triangularity, figure 5.
Motivated by this and figure 2, which showed that the variation
of T7F seems to be more strongly impacted by the shaping
than by the proximity to marginality, we keep the temperature
gradient constant at a/Ly = 6.0 throughout the triangularity
scan.

Figure 6 shows the poloidal variation of 7.2 for dif-
ferent values of triangularity in the range between § €
[—0.75,40.75], where its radial variation is varied according
to [27]

19l
or

]

V1=

Two cross-section plots for § = +0.5 are shown in figure 7
with 77F overlaid on the analyzed flux surface p=0.8. As

a7

ial fluctuations. Right: E x B velocity fluctuations.

was the case for elongation, 7'vZF obtains local maxima close to
those of poloidal curvature. For PT this includes the outboard
midplane as a global maximum, with local maxima near the
other two maxima of poloidal curvature. For NT, despite the
curvature maximum at the inboard midplane, no local max-
imum of 7.7F is observed there. This is not surprising given
that it is also the location of ‘best’ curvature. Further, no local
maximum is found at the outboard midplane either. Finally, we
observe that the fall off in 7,%F near its local maxima occurs
faster for higher absolute values of triangularity.

The poloidal distributions of the turbulent fluctuations are
shown in figure 8. For all values of triangularity the fluctu-
ations generally peak on the outboard side, as expected. We
notice that the E x B distributions develop a weak local min-
imum at the outboard midplane for § < 0. This effect is only
seen for one of the NT cases in the potential fluctuations, and
appears much weaker than in the E x B distributions.

We also note that while the fluctuations of the potential
obtain their global minimum at the inboard midplane, the
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E x B velocity fluctuations.

E x B fluctuations can obtain a local maximum at this loca-
tion. This local maximum is stronger the more negative the
triangularity. Most importantly, however, as was the case for
elongated equilibria in section 3.1, the envelopes of fluctu-
ations show a distinctly different distribution from that of 7,%*
in figures 6 and 7.

3.3. Aspect ratio

Aspect ratio alone has very little effect for circularly shaped
cross-sections and therefore we do not show the results here.
The general shape of the ZF drive does not change. The drive
envelope merely becomes slightly wider at a small aspect ratio
of A=1.4 compared to A =2.72 for the CBC, even when the
effect of marginality is taken out by selecting the temperat-
ure gradient which matches the fluctuation level of the CBC.
The poloidal distributions of the fluctuations are insensitive to
aspect ratio alone.

3.4. Spherical tokamak shaping

Finally, we analyze the ZF drive for a typical equilibrium of
a spherical tokamak like MAST-Upgrade. The results presen-
ted in the prior sections raise the question whether synergistic
effects exist with combined shaping parameters. We use typ-
ical MAST-Upgrade values of A=1.4, k=2.0, and §=0.5
[37, 38]*. Since these shaping parameters are all of stabiliz-
ing nature we raise the temperature gradient to a/Ly = 18 to
achieve similar fluctuation levels as for the other cases. Note
that as before in the case of pure elongation, the chosen gradi-
ent, while large, ensures that we isolate the effect of the shap-
ing rather than including additional effects based on the prox-
imity to marginality. While linear studies of NT in STs predict
detrimental transport from electromagnetic turbulence at the

4 MAST-Upgrade equilibria also feature significant squareness which requires
areformulation of the Miller equations [39] and is thus neglected in this paper
for simplicity.

power plant scale [40], it is nonetheless a valuable parameter
space for validation and physics exploration of ST plasmas.
Recently, the first ELM-free NT plasmas were successfully
demonstrated on MAST-Upgrade [41]. For these reasons we
also include the NT case here.

Figure 9 shows the results for spherical tokamaks equilib-
ria with PT (top row) and NT (bottom row). Within each row,
the left plot shows the distributions of both the ZF drive as
well as the measures of the turbulent fluctuations, whereas
the right plot shows the ZF drive mapped onto the relevant
flux surface. For the PT case, similar to the cases of pure PT
from section 3.2, local maxima of the drive occur at the top
and bottom of the equilibrium where the poloidal curvature
peaks. However, now no local maximum is observed at the
outboard midplane as was the case for pure triangularity at
standard aspect ratio. Instead, the transfer at the outboard mid-
plane now represents a local minimum. We note that the pol-
oidal curvature at the outboard midplane is now reduced due to
the high elongation. Figure 10 shows that this effect is already
observed at standard aspect ratio when PT and elongation are
combined, suggesting that the effect of elongation on the drive
distribution is stronger than that of triangularity. We note that
the drive at the outboard midplane in figure 10 is not lowered
as much as at small aspect ratio (figure 9 top), leading us to the
conclusion that the additional reduction is due to lower aspect
ratio.

The NT case at the bottom in figure 9 shows the same qualit-
ative shape of T2 as for pure NT at A = 2.72 (figure 6), though
with an even stronger reduction of the ZF drive at the out-
board midplane. Whereas pure NT with § = —0.5 at A =2.72
showed a reduction to ~ 60% of its maximum value at the
outboard midplane, the drive at the outboard midplane here
is reduced to ~ 30% of its maximum value.

3.5. Up—-down asymmetry

The shaping cases considered thus far all retain up—down
symmetry which describes the mirror symmetry of the flux
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the CBC fluctuation energy for pure elongation (see figure 1). The ZF drive mapped onto the flux surface is shown on the right.

surfaces across the midplane. Breaking up—down symmetry
has strong implications, especially in the case considered
here where the equilibrium toroidal flow and flow shear are
assumed to vanish. In this case turbulent fluctuations are

unable to transport toroidal angular momentum radially for
up—down symmetric equilibria due to a symmetry of the
gyrokinetic equation [42]. The radial momentum flux from
above the midplane cancels with the one from below. Hence,
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Figure 11. The poloidal distribution of zonal flow drive, turbulent fluctuations, and angular momentum transport for up—down asymmetry
from tilting of Miller equilibria. For each we show results for positive and negative tilt angle to highlight the expected symmetry across
0 =0. Top row: tilted elongation. Middle row: tilted positive triangularity. Bottom row: tilted negative triangularity. (Tilted elongation is

evaluated at a/Lr = 16.0 and titled triangularity at a/Lr = 6).

rotation and rotation shear cannot be intrinsically generated
from an initial stationary equilibrium. However, strongly up—
down asymmetric equilibria, as considered in this subsection,
are able to transport toroidal angular momentum even in the
absence of externally driven flow and flow shear [42].

A straightforward method of introducing up—down asym-
metry is by tilting the Miller equilibria in the poloidal plane.
This allows the equilibria to be expressed with generalized
Miller equations which are implemented in GS2 [28, 29]. The
two additional equilibrium parameters are 6,, and 65 which
describe the poloidal tilt angle of elongation and triangular-
ity, respectively. We note that up—down asymmetric equilibria

which can be described by a single tilt angle, and thus retain
a mirror symmetry in the poloidal plane, are a special case of
up—down asymmetry since for small scale shaping (i.e. high
Fourier mode shaping as opposed to the large scale, small
Fourier mode shaping used here) the gyrokinetic equation pos-
sesses another symmetry which results in only small changes
to the turbulent transport of momentum and energy [43].
Figure 11 shows the results for tilted elongation (0, =
+7/4), as well as tilted positive and NT (65 = £7/8). The
broken symmetry of the flux-surface shape also breaks the
symmetry of both the turbulent fluctuations and ZF drive.
However, as expected with no flow or flow shear, both
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are symmetric with respect to the sign of the tilt angle.
Figure 11(top row) shows that the tilting of the elongated equi-
libria removes one of the two maxima and instead introduces a
wider region of nearly constant transfer of ~ 25% of the max-
imum value. Similarly, the tilting of PT, shown in the middle
row of figure 11, breaks the symmetry between the two local
maxima, favoring the one at a larger major radius. The bot-
tom row shows that the tilting of NT introduces only a small
asymmetry between the two maxima.

Each plot also shows the poloidal distribution of the
radial flux of the perpendicular component of toroidal angu-
lar momentum, J_’lb(ﬁ) (called es_mom_flux_perp_dist in
GS2), as well as its poloidal average. Most of the poloidal
structure cancels and the net flux is much lower than the local
maxima of the momentum flux. We also observe that ﬂf’tb
shows no clear correlation with 7,”F—in fact the locations
where 7%F obtains maxima are often close to flux reversal
points where the momentum flux locally vanishes. While the
symmetry of both 7,7%(¢) and 7¢"°(9) is broken, the poloidal
locations where perpendicular momentum is most strongly
driven do not correspond to the locations where it is locally
most strongly transported between flux surfaces, at least in the
tilted cases considered here.

In experiments the symmetry of the gyrokinetic equation
is usually broken due to non-zero equilibrium flow and flow
shear as well as some amount of up—down asymmetric shap-
ing. We have seen that the ZF drive is sensitive to this sym-
metry. We can therefore expect the ZF drive in experiments
not only to peak away from the midplane, but asymmetrically
S0.

3.6. Transfer contributions

Additional insight into the origins of the observed poloidal ZF
drive structure can be gained by omitting part of the summa-
tion in equation (15). Hence we define straightforwardly

T 0. k) = Y Ty (kesky = 0,k1y, kiy, 0)

kl.wklv

TVZF (e?klx) = Z 7; (kxaky = Oaklxaklya 9) )
ke ,kiy

T (O, kiy) = > T (keyky = 0, ki, iy, 60)
ko kix

such that 777(0) =7, 7”°(6,k;) and analogously for
T.75(0,k1;) and T7F(6,ki,). These modified transfer func-
tions give spectrally resolved information of the poloidal
distribution of the ZF drive. As such 7,2F(6,k,) shows how
the poloidal distribution of drive varies for ZFs of varying
radial extent, whereas 7,7F(6,ki,) and T,7F(6,k;,) highlight
which turbulent scales transfer their energy to ZFs at each
poloidal location. Here we analyze the equilibrium with pure
elongation at standard aspect ratio from section 3.1 (A =2.72;
k=2.0;0=0.0; a/Lr = 6.0).
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Figure 12 shows 7,75(0,k,,), giving information on which
binormal eddy size is exchanging energy with ZFs at each pol-
oidal location. The two local maxima near the top and bot-
tom of the equilibrium, |f| ~ 0.5, from figures 2 and 3, now
appear as two separate lobes in the 0-k;,-space. These extend
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from 0.1 < kiyp; S 0.5 and feature a tilt, such that the drive
furthest away from the midplane stems from the largest binor-
mal source eddies. The drive towards the outboard midplane,
away from the lobes, is broadly distributed in wavenumber
space. We also note that on the inboard side two lobes appear
with small negative energy exchange, i.e. where energy from
ZFs is locally transferred back to the turbulence. These lobes
are, however, small in comparison to the main lobes which
drive ZFs.

Figures 13 and 14 show the poloidal distributions in radial
wavenumber space, 7,25 (0, ki) and T7¥(0,k,), respectively.
Figure 13 shows which radial eddy size is responsible for the
drive at each poloidal location. We note that the drive towards
the outboard midplane takes place across a relatively narrow
range 0.3 < ki,p; < 0.9. In contrast the drive near the top and
bottom of the equilibrium extends to higher wavenumbers,
with strong drive up to kj,p; ~ 1.6. The distinct poloidal struc-
ture from figures 2 and 3 is therefore also present at many
of the individual scales. Figure 14 shows which zonal modes
(differentiated by their different radial scales) receive energy
at each poloidal location. A similar structure as in figure 13
appears. However only ZFs with ki,p; < 1.1 receive signific-
ant energy. As in figure 13, the drive at the outboard mid-
plane is more localized in wavenumber space to kip; ~ 0.5,
whereas a wider range of zonal structures receive energy near
the top and bottom of the equilibrium, resulting in the local
maxima of the total drive in these locations.

3.7 How does geometry and curvature affect the ZF drive
distribution?

The overarching and striking result from the previous sections
is the influence of curvature on the ZF drive. Visually in the
mapping of the drive on the poloidal cross-section, drive max-
ima appear near those of poloidal curvature with a tendency to
be shifted towards the bad curvature side.

One way in which curvature enters the turbulence dynam-
ics is through the field line curvature K, = b - Vb, which can
naturally be decomposed into its normal component &,
n -k and its geodesic component k, = (b x n) - k. Here n =
V) /|Vp| is the flux surface normal [44]. For linear ITG phys-
ics it is not the normal curvature but the so-called (magnetic)
drift curvature which describes the strength of the curvature
drive and distinguishes regions of good and bad curvature. For
modes with zero radial wavenumber, which are usually the
most strongly driven ones, its poloidal variation is given by

kgx B~' (b x Va) - k. (18)
Note that this is equal to the a-component of the curvature
drift. Geodesic curvature can impact the linear [45, 46] and
nonlinear damping [47] of ZFs. Other geometric quantit-
ies which enter the gyrokinetic equation and thus affect the
turbulence are the field strength B, and the metric com-
ponents g¥¥ = |Vy|?, g¥* =V -Va, g** = |Val®. The
geodesic curvature is equal to the radial component of the
magnetic drift. Since we consider electrostatic equilibria, the

a-components of the curvature and grad-B drift are also
identical. All six independent geometric quantities and the
surface curvatures are shown alongside 7,%F in figure 15.
The surface curvatures, the toroidal curvature x; and poloidal
curvature xp, were calculated analytically from the Miller
equilibrium equations (see appendix D). We confirm the pre-
vious observation that ZF drive maxima are near those of
poloidal curvature. While none of the geometric quantities
appear directly correlated with the ZF drive, the drift curvature
kg features a similar structure on the outboard side. The
drift curvature can be varied without changing the poloidal
curvature by modifying the safety factor. To understand why
we note that (1) if V¢ and Va were exactly orthogonal,
the drift curvature would correspond to the normal curvature,
and (2) that the normal curvature is related to the principle
curvatures via [48, theorem 42.1]

Fon = k1 (cOSE)” + Ky (sin€)?, (19)
where & =arctan(1/g) is the pitch angle, i.e. the angle
between the field line and the toroidal direction. From this
we conclude that the coupling between the drift curvature and
the poloidal curvature can be reduced by decreasing the pitch
angle &, i.e. by increasing the safety factor q.

In figure 16 the results for the CBC safety factor g=1.4
are compared to those with increased safety factor of g =4.
Indeed, the drift curvature now follows mostly the toroidal
curvature and therefore only exhibits a very weak variation on
the outboard side. The ZF drive, while somewhat weakened,
still features its characteristic structure.

We conclude from this that none of the geometric quantit-
ies appear to be able to explain the geometric variation of the
ZF drive individually. Gaining further insight into how exactly
geometry affects the poloidal distribution of the ZF drive is a
non-trivial exercise due to the inherently nonlinear nature of
the dynamics, and is therefore outside the scope of this work.

Despite this, the poloidal curvature, while lacking a phys-
ical explanation at this point, does appear to be a good indic-
ator for the general structure, and we shall use this observation
to test simple transfer proxies in the next section.

3.71. Transfer proxies.  Given the observations from the pre-
vious sections that the ZF drive is influenced both by pol-
oidal curvature and turbulent activity we test the quality of
a simple proxy function of the form (8|vgxp|?) * |k2|. Since
this proxy still relies on the nonlinear results and would there-
fore not offer any meaningfully faster evaluation than 7,2F
itself, we also test the linear proxy of [ (k)| « |,|. Here
|plinear (kmax) | represents the linear mode envelope at the final
time stefJ of the corresponding linear simulation for the most
unstable mode. The results for many of the presented cases are
shown in figure 17. Both proxies recreate the qualitative shape
of the ZF drive distribution and the location of local maxima
reasonably well. Often the proxies are too strongly influenced
by the curvature information. This is especially the case for
the nonlinear proxy.
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4. Summary and discussion

In this paper we presented the first analysis of the poloidal vari-
ation of ZF drive for strong axisymmetric shaping described
by Miller equilibria. We first examined the separate influence
of the three major shaping parameters: aspect ratio, elonga-
tion, and triangularity. Compared to circular plasma shaping
where the drive of ZFs obtains a single maximum at the out-
board midplane, this maximum splits as elongation is intro-
duced. Two local maxima develop near the locations of max-
imum poloidal curvature and tend to be shifted towards the bad
curvature side.

The analysis of triangularity shows a clear asymmetry for
the sign of triangularity. PT develops one global maximum
at the outboard midplane with two local maxima at the two
inner corners of the triangle. NT develops two local maxima

at the outer corners but shows negligible drive at the inner
corner, where the potential fluctuations are also minimal.
Typical spherical tokamak equilibria with low aspect ratio,
high elongation, and high triangularity showed strong drive
near the top and bottom of the equilibrium. The transfer at
the outboard midplane is shown to be small in comparison,
approaching inboard midplane levels. We identified this to be
due to the dominant effect of elongation over triangularity.
We also showed that the Reynolds stress becomes up—down
asymmetric for up—down asymmetric equilibria created by tilt-
ing of elongated or triangular equilibria. This is relevant for
experiments where the up—down symmetry of the gyrokinetic
equation is usually broken by equilibrium flow and flow shear
as well as shaping. An asymmetric poloidal distribution of the
Reynolds stress which peaks away from the midplane can be
expected in realistic plasma shaping.



Plasma Phys. Control. Fusion 67 (2025) 115022

T M Schuett et al

A=272,k=1.0,6=0.0,a/lr=6.0

A=272,k=15,6=0.0,a/Lt=6.0

A=272,k=2.0,6=0.0,a/Ly=16.0

1.01

0.8 1

0.6 1

0.4

0.2

0.01

0.0 0.5 1.0

-1.0

A=1.4,k=20,6=-0.5,a/Lt=18.0

-1.0 0.0 1.0

1.0 A

ZF
Tv

proxy-NL = (|6Ve x 5]?) * |Ka|

0.6 1

I proxy-L = |¢Iinear| * |K2|
(|6VEx 5|2
i
|¢ lnear(k;naX)l

—K>

A=272,k=2.0,6,= +n/4,6=0.0,a/L1=16.0

0.8

0.4

0.2

0.0

-1.0 -0.5 0.0 0.5 1.0

A=272,k=1.0,6=+0.5 a/ly=6.0

(e)

-1.0 -0.5 0.0 0.5 1.0

A=14,k=20,6= +0.5,a/Lly=18.0

1.0

(f)
0.8

— 0.61

=

L 0.4

0.29

0.0

1.09

0.8

0.6 q

0.4

0.2

7/

0.01

1.0 1
0.8
0.6

0.4 4

| 2

(h)

|-

-0.5 0.0 0.5
geometric arctan 6/m

-1.0

-0.5 0.0 0.5
geometric arctan 6/n

-1.0 1.0

-0.5 0.0 0.5 1.0

geometric arctan 6/n

-1.0

Figure 17. A proxy for 7;2F based on linear quantities in green and one based on the nonlinear fluctuation envelope in orange. The

contributing quantities are shown in light dashed lines. The configurations are (a) ‘CBC’, (b) ‘slightly-elongated-CBC’, (c)
‘elongated-CBC’, (d) ‘NT-CBC’, (e) ‘PT-CBC’, (f) ‘elongated-NT-ST’, (g) ‘tilted-elongation’, (h) ‘elongated-PT-ST’.

These results have important implications for the experi-
mental interpretation of ZF drive measurements which are typ-
ically performed at the outboard midplane. First, extrapolation
from this limited range to a global phenomenon must consider
the clear distinction between turbulence power and ZF drive
distribution, especially in strongly shaped plasmas. Second,
relative changes in the drive at the midplane between experi-
ments may not be indicative of the change in the total ZF drive
in cases where the plasma shape also changed. However, the
ZF drive envelopes and proxies thereof presented in this paper
could be used to get a fairly inexpensive estimate for the total
drive from a single poloidal (e.g. midplane) measurement and
could thus render a comparison between experiments with dif-
ferent shaping possible again.

Given these results one wonders about the underlying phys-
ical mechanism which results in strong nonlinear coupling at
the locations of locally maximal poloidal curvature. Recent
work showed that the poloidal variation of the mean E x B
shearing rate also exhibits bifurcations when the shaping is
changed from circular to non-zero triangularity [19]. Based
on the observed asymmetry in the shearing rate for different
upper and lower triangularity, it was suggested that this asym-
metry about the outboard midplane could also be present in
the Reynolds stress. We note, however, that our study does not

feature a background flow shear, but rather an asymmetry in
the Reynolds stress is observed purely based on how geometry
itself affects the nonlinear turbulence dynamics. Prior to a con-
finement transition a strong background flow shear might be
absent. Further, it is worth noting that the tilt angle of the tur-
bulent eddies, and thus the Reynolds stress, must not be pro-
portional to the equilibrium shearing rate since shearing could
transition poloidally from a regime where it mostly tilts and
elongates turbulent eddies into one where it breaks them apart
into smaller ones.

It is not clear whether our observed splitting of the max-
ima, e.g. for elongation, is caused by a relative increase of the
drive near the top and bottom of the device or by a relative
decrease at the outboard midplane, or by both. To answer this
question the kinetic energy transfer must be normalized to the
mean ZF fluctuation level and then be compared between dif-
ferent simulations. However, the ZF level is observed to be
sensitive to changes in the flux surface shaping, likely due to
small changes in numerical dissipation. For some cases the
ZF level is only observed to be quasi-stationary, rendering
such a normalization difficult to realize. Thus, such a com-
parison requires a more careful analysis of the mechanisms
which affect the mean ZF level and is outside the scope of this

paper.
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The perhaps unexpected sensitivity of the ZF drive envel-
ope raises many new questions. These include the effect of
electromagnetic instabilities, the poloidal variation of the cor-
responding Maxwell stress, and the net effect on ZF gener-
ation when taken in combination with the Reynolds stress.
This is particularly relevant for the spherical tokamak equi-
libria presented here since future spherical tokamaks such as
STEP [49] aim to operate at high plasma beta to leverage one
of the key benefits of small aspect ratio. The experimentally
driven development of alternative confinement regimes in
such equilibria requires knowledge of the full electromagnetic
ZF drive envelope. One might also wonder how or if the
presented results change for higher fidelity gyrokinetic simula-
tions which include gyrokinetic electrons or collisions. Other
interesting questions include other symmetry breaking mech-
anisms of the gyrokinetic system such as non-zero equilibrium
flow and flow shear even for up—down symmetric shaping [42]
which is known to shift the ballooning angle away from the
outboard midplane. Finally, given the observed sensitivity to
geometric details one wonders how the drive of ZFs behaves in
stellarator equilibria where smaller scale changes of the geo-
metric quantities are ubiquitous. Efforts to explore these aven-
ues have been initiated.
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Appendix A. Linear resolution

For the linear results shown in this paper we use a min-
imum of Ny =ntheta =192 parallel grid points per pol-
oidal turn, over Npoloiqal = 3 (nperiod = 2) poloidal turns.
The velocity resolution is given by Ny = 113 (ngauss
8) and N. = negrid = 32. The time step is At =0.15a/vy,.
Convergence was checked for the most strongly shaped cases
within each shaping domain. Simulations were considered
converged when there were no visible variations in the growth
rate spectra y(k,) upon doubling the parallel grid and number

of trapped particles (ntheta), the energy grid (negrid), the
number of passing particles (ngauss), the simulation time
(max_sim_time), as well as halving the time step (delt)
and extending the parallel domain. The binormal wavenum-
ber is scanned in the range 0.1 < kyp; < 1.0, ensuring that the
binormal wavenumber with the maximum growth rate is cap-
tured. Simulations are performed for zero ballooning angle
0y =0 and quantities of the fastest growing mode within the
chosen k,-range are shown for each case.

Appendix B. Nonlinear resolution

Noting that the radial length of the simulation box is quantized
for finite magnetic shear [32], we use an approximately square
simulation box with L, = 125.66p; (y0O = -0.05) and L, =
128.20p; (jtwist = 5), and with minimum resolutions N, =
nx = 128 and N, = ny = 64. These resolutions correspond to
a perpendicular grid spacing of Ax = 1.01p; and Ay = 0.99p;.
After de-aliasing with the 3/2 rule [51, 52], the radial and
binormal wavenumbers are resolved in the range —2.058 <
kypr <2.058 and 0.0 <k,p, < 1.05 with grid cell sizes of
Akypy ~ Akyp, ~ 0.05. The minimum parallel resolution used
is Ng = ntheta = 32. The minimum velocity space resolution
is Ny =47 (npassing = 15) and N, = negrid = 16, where
A = ps /€, is the trapping parameter with the magnetic moment
ps = mgv’ /(2B). The required resolutions were determined
by checking that the heat flux, the spectra of the electrostatic
potential, and the poloidal zonal flow (ZF) drive envelope do
not change meaningfully for a 50% increase in any of the grid
resolution or under halving of the cf1 parameter.

Appendix C. Nonlinear coupling convergence

Along with the heat flux and fluctuation spectra, the conver-
gence of the 7,7F was also checked both against doubling in
any of the grid resolutions and halving of the cf1 parameter
at the most extreme cases within each shaping domain (not
shown).

The nonlinear convergence with respect to the number of
realizations (time points) was checked by calculating cumulat-
ive ensemble averages. The results for three somewhat arbit-
rarily selected poloidal locations are shown on the left in
figure C1. For time points ¢ 2 500a/v,;, the changes are < 5%,
showing sufficient convergence. Note that the time stepping
did not change during this phase such that spacing in ¢ is rep-
resentative of spacing in realizations.

To check that the distributions are stationary and not dom-
inated by individual large scale events 7,%F is averaged over
disjoint intervals of length fiperva = 250 a/vin (Nintervar = 800
time points) within the saturated period of the simulations.
Figure C1 shows that this criterion is satisfied as virtually no
variations in the poloidal distributions are visible between the
disjoint intervals.
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Figure C1. Convergence of nonlinear coupling for 7;2F. Left: kinetic energy transfer to zonal flows calculated with cumulative averages

within the saturated phase to test the convergence of the nonlinear coupling at three selected poloidal locations. Each curve is normalized to
its final value since the differences of the final state were established in figure 8. Right: zonal flow drive 7;2F averaged over disjoint intervals
of length finterval = 250a /vy, within the saturated period of the simulations. The case shown here is A =2.72; k= 1.0; 6 = +0.5; a/Lr = 6.0.

Appendix D. Analytic expressions for principal
curvatures in Miller equilibria

If the coordinate curves on a surface are lines of curvatures,
as is the case for an axisymmetric torus’, then the principle
curvatures are given by

m:% and @:bﬁ7 D.1)
oo 800
where
8ap = Xq " X3 (D.2)
are the coefficients of the first fundamental form and
bog =Xap M (D.3)

are the coefficients of the second fundamental form [48]. Here

Xp X Xg

— 2776 (D.4)
X X Xg

is the surface normal and the partial derivatives of the position
vector X(6, ¢) are defined through [48]

0*x
0adB’

Xoq = —

OJa

and X,g = (D.5)

5 This becomes apparent from the fact that 840 = byo = 0[48, theorem 41.3,
see also section 43].

and o, 8 € {¢,0}. For up-down symmetric Miller equilibria
the position vector is given by

R(6)cos (9)
x(0,9) = | R(0)sin(s) |, (D.6)
Z(0)
R(6) =Ry +rcos(0+dsin(h)), (D.7)
Z(0) = krsin(0), (D.8)

where § = arcsindy;. The calculation to obtain «; and k, is
simple but tedious and has therefore been performed with a
computer algebra system (Mathematica 12). The final result
is given by the expressions

(D.9)

for the toroidal curvature, where

(0,0) =2kKcos(0),
(0,0) =c(0,0) (rcos(dsin(0) +0) + Ro) ,

c(0,9) = {52 +2K%+ (52 + 21{2) cos (26) — %52 cos (29sin(0))

a
b

— 6% cos (2(8sin (0) +0)) — %52 cos (20sin (0) 4 40)
+46cos(0) — 25 cos (20sin (0) + 0)

1/2
—24 cos (20 sin (0) + 36) — 2cos (2 (dsin(8) + 6)) +2} )
(D.10)
and the poloidal curvature is given by
d(9,¢)
0,¢0) = D.11
/432( 7¢) 6(0,¢)7 ( )
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Figure D1. Comparison of the poloidal distributions of the principal curvatures from the analytic formulae (red) and the numerical
calculation from the general three-dimensional codes SIMSOPT & VMEC (blue). (a) Shows a comparison for the toroidal curvature ; and (b)
for the poloidal curvature x,. Here A =2.72, k =2.0, 6 = 0.0, and r/a = 0.8.

where

d(07¢) = Hf(97¢)7

1(0,¢) = (352 + 8) cos (3sin (8)) + 85 (0, ¢),
g(0,6) =4cos (0 —dsin(60))

+ dcos (20 — sin (0)) + 8cos (dsin () + )
+ 3dcos (dsin (0) + 260) + 4 cos (dsin (0) + 36)
+ dcos(dsin(0) +40),

e(0,0) =2rh(6,9)k(6,9),

h(0.6) = [4 (8 +25) cos(26) — 21(0,6) + 165 cos(6)] v

1(6,0) = —26° — 4K> + 67 cos(2Jsin(6))
+ 8> cos(28sin(0) + 40) +2 (62 + 2) cos(2(3sin(6) + 0))
+4dcos(20sin(8) 4 6) + 45 cos(20sin(0) + 36) — 4,

k(6, ) = cos’(¢) sin® (sin(0) + 0) (5 cos(0) + 1)
+ sin®(¢) sin® (8 sin(6) 4 0) (5 cos(8) + 1)
+ k% cos’(6).

(D.12)

These equations are stated for completeness but are cumber-
some and do not give particular insight. However, we notice
that in the circular limit where x = 1.0 and 6 =0 we recover
the known formulae for the circular torus [48, p 135]

cos (6)

rcos(0) + Ry (©.13)

1
K1 and Ky =+-—.
r

The surface curvatures for the up—down asymmetric cases
were obtained analogously by replacing equations (D.7)
and (D.8) with the equations for the tilted Miller equilibria
from [28, 29].

In figure DI we show a comparison between the ana-
Iytic result and the one computed numerically by the gen-
eral three-dimensional codes VMEC [53] and SIMSOPT [54].
Excellent agreement between both can be seen for both «
and kK».
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