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 A B S T R A C T

In the pharmaceutical manufacturing industry, continuous production methods have been recognised as pro-
viding several benefits compared to traditional batch production. These benefits include increased flexibility, 
higher product output, enhanced quality assurance through better monitoring techniques, and more consistent 
distribution of Active Pharmaceutical Ingredients (APIs). Despite these clear advantages, there is a lack of 
research focused on the simultaneous optimisation of multiple sub-processes in continuous manufacturing. 
This study explores the optimisation processes of continuous pharmaceutical production, explicitly targeting the 
production of mefenamic acid using wet milling (WM) and mixed-suspension mixed-product removal (MSMPR). 
We employ data-driven evolutionary optimisation algorithms to address these many-objective optimisation 
problems (MaOPs). High-fidelity model-generated data generated via the General Process Modelling System 
(gPROMS) is subsequently utilised to develop simpler surrogate models based on the Radial Basis Function 
Neural Network (RBFNN). This enables very fast simulations, suitable for use with computationally intensive 
machine learning algorithms. Utilising evolutionary optimisation algorithms, these models are used for model-
based process optimisation. The efficacy of the MaOP approach is evaluated using a range of numeric and 
visual optimisation performance indicators. Our findings underscore the viability of integrating high-fidelity 
and surrogate models to discern functional relationships between dependent variables (objective functions) and 
independent variables (decision variables), providing a robust framework for process optimisation within the 
pharmaceutical domain. The approximated solutions are, on average, 58% better than the solutions obtained 
from Latin hypercube sampling. The chosen optimal solutions can form the basis of parameter setting in 
upcoming experimental campaigns. The significance of this work is in the demonstration, for the first time, of 
a many-objective optimisation framework for continuous pharmaceuticals production using simple surrogate 
models derived from high fidelity simulations using Machine Learning.
1. Introduction

In pharmaceutical production, the traditional approach has been 
batch-based manufacturing. This method entails processing a set
amount of input materials in stages to produce the final drug product. 
Quality controls are implemented at each stage of processing, as well 
as at the end of production. This mode of production strictly adheres 
to predefined processing parameters, making mid-process adjustments 
difficult. As a result, if a batch fails to meet quality standards, it can 
lead to production delays and increased costs (Andersson and Zacché, 
2019).

Continuous Manufacturing (CM) has emerged to address these chal-
lenges. CM, as opposed to its batch-based counterpart, possesses a more 
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agile supply chain with lower residence time in the manufacturing 
process, which offers numerous advantages, including faster, more 
cost-effective scaling from lab scale to commercial production. This 
approach also facilitates rapid response to drug shortages and can 
support personalised medicine (Badman et al., 2019; Ierapetritou et al., 
2016; Lee et al., 2015).

Still, CM is not yet widely used, due to strict process rules and 
challenges with the necessary real-time quality checks in ongoing pro-
cesses (Hyer et al., 2024; Markarian, 2022). The ICH Quality Guidelines 
provide a series of standards developed by the International Council 
for Harmonisation of Technical Requirements for Pharmaceuticals for 
Human Use (ICH), focusing on the quality aspects of pharmaceutical 
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Fig. 1. Generation-based surrogate model management.

product development, manufacturing, and control and ensuring that 
medicines are safe, effective, and of high quality through aligning 
technical standards across countries (Anon, 2023).

Underpinning the transition to CM is the Quality by Design (QbD) 
paradigm. This approach emphasises understanding and controlling 
critical factors, such as raw material properties and production fa-
cilities, that influence product quality. Embracing QbD means em-
ploying a systematic methodology that incorporates analytical and 
risk-management techniques during the drug design, development, and 
manufacturing phases. Within this paradigm, the input determinants 
(independent variables) define the process outcomes (dependent vari-
ables) in functional terms.

In the proposed work, data-driven process modelling and optimi-
sation is used to systematically address these challenges. This typ-
ically includes multivariate modelling methods, multi-objective and 
many-objective optimisation, quality assessment, as well as support 
for decision-making (visualisation, performance analyses) (Kim et al., 
2024, 2023; Sagmeister et al., 2023). Fig.  1 displays the overall process 
flow of generation-based surrogate model management.

Data-driven optimisation presents a multidisciplinary approach to 
eliciting meaningful insights from complex, often noisy, and unstruc-
tured data. It encompasses the development of models and constraint 
functions derived from empirical data acquired through physical ex-
periments and real-world observations, as well as computational and 
numerical simulations. A primary challenge in data-driven optimisa-
tion is addressing the inherent complexities of the data itself. For 
example, such data may exhibit heterogeneity, be affected by noise, 
undergo dynamic changes, or be either overly sparse or voluminous. 
Certain optimisation problems further add to this challenge, when the 
assessment of objectives or constraints requires resource-intensive pro-
cedures, such as costly physical experiments or intensive computational 
simulations. Notably, simulation-based optimisation, which might rely 
on techniques like computational fluid dynamics (CFD) and General 
Process Modelling System (gPROMS), can be time-consuming, with 
evaluations spanning from minutes to hours. Surrogate models can be 
established to mirror process knowledge, as simpler versions of high 
fidelity models. This can be achieved with Machine Learning, via the 
use of appropriate data to train. Surrogate models can then enable 
the optimisation of pharmaceutical processes, validate optimal solu-
tions, and guide consequential operational decisions—instead of using 
high-fidelity models, which would deem the use of computationally 
expensive algorithms infeasible or impractical.

Surrogate models are simplified approximations of more complex 
processes. Knowing the extrapolation and interpolation properties of 
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these models is critical to their effective application. Interpolation 
refers to the prediction of outputs within the range of observed data 
used to train the surrogate model. Extrapolation involves making pre-
dictions beyond the range of the training data. While interpolation 
offers more reliability, extrapolation should be approached cautiously 
due to inherent uncertainties and limitations (He et al., 2023; Kim et al., 
2023).

Several very effective data-driven surrogate models have gained 
widespread recognition in model-based optimisation. For example, 
Polynomial Regression or Polynomial Response Surface (Queipo et al., 
2005), Multi-Layer Perceptron (Gardner and Dorling, 1998), Support 
Vector Machines (Steinwart and Christmann, 2008), Decision Trees 
(Rokach and Maimon, 2007), Fuzzy Rule-Based Systems (Jin, 2000), 
Gaussian Process Regression Model (Emmerich et al., 2006), and
Radial-Basis-Function Neural Networks (Koziel et al., 2011).

RBFNN and other ANN models have found substantial applica-
tions in the pharmaceutical and biomedical domains. Alshafiee et al. 
employed RBFNN to model the flowability of select pharmaceutical 
powders, capturing relationships with the flow function coefficient 
and the bulk density (Alshafiee et al., 2019). This model proved ef-
fective, especially for smaller datasets, due to its efficient training, 
interpretable nodes, and structural adaptability to data (Ding et al., 
2022).  Fragopoulos et al. (2020) utilised RBFNN (Radial Basis Function 
Neural Network) to assess thyroid lesions, while Wang and Chen (Wang 
and Chen, 2020) employed a similar approach to investigate the mech-
anism of acute toxicity. Both studies achieved commendable levels of 
accuracy in their respective evaluations. Furthermore, in the realm of 
chemical reactions and processes, Zhou et al. and Gbadago et al. utilised 
these networks for two-component reactions and butadiene synthesis, 
leveraging high-fidelity CFD models (Gbadago et al., 2021; Zhou et al., 
2017). Velásco-Mejía et al. and Öner et al. expanded the applications to 
crystallisation processes (Öner et al., 2020; Velásco-Mejía et al., 2016). 
The former predicted crystallisation density outcomes and identified 
key parameters, while the latter innovated with real-time training on 
an automated laboratory crystallisation system using in-line data.

Evolutionary optimisation techniques stand distinct as gradient-
free approaches. They utilise stochastic searches to conduct functional 
evaluations and implement random modifications on superior solu-
tions, resulting in improved candidates through systematic selection of 
solutions. As iterations progress, the expectation is to identify the best 
solutions. These are often sub-optimal, as optimality is very challenging 
to be guaranteed. In contrast to traditional optimisation strategies, evo-
lutionary methodologies excel at navigating intricate problems, offering 
a valuable ability to sidestep local optima in pursuit of the overarching 
global optimum.

Prominent many-objective evolutionary optimisation algorithms in-
clude Non-dominate Sorting Genetic Algorithm III (Deb and Jain, 
2014), Reference Vector-Based Evolutionary Algorithm (RVEA) (Cheng 
et al., 2016), Knee-Driven Evolutionary Algorithm (Zhang et al., 2015), 
Two-Archive Evolutionary Algorithm (Elshamy et al., 2007),
Preference-Based Algorithms (Reddy et al., 2019), Grid-Based Evolu-
tionary Algorithm (Yang et al., 2013), Corner Sort Algorithm (Wang 
and Yao, 2014), and Push and Pull Search (Fan et al., 2019).

Performance metrics or indicators are vital tools for evaluating the 
quality of solutions in many-objective optimisation problems (MaOPs). 
They aid decision-makers in assessing the effectiveness of different 
optimisation algorithms. As the number of objectives grows, these 
indicators succinctly encapsulate essential information about the op-
timisation problems, ensuring accuracy. Detailed reviews on various 
quality indicators can be found in established studies (Wang et al., 
2017; Audet et al., 2018). The most commonly employed performance 
metric is Hypervolume (HV) (Zitzler and Thiele, 1999). HV measures 
the volume of the objective space that is bounded by the set of calcu-
lated solutions and a set of reference points. A higher values (volume) 
indicates a better result.
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Fig. 2. Experiment setup for wet milling (a) and MSMPR (b).
Visualisation plays a pivotal role in decision-making for Pareto 
Front (PF) approximations. The Pareto Front represents a set of op-
timal solutions in multi-objective optimisation where improving one 
objective worsens another. A conflict of interest arises when competing 
objectives, such as cost vs. quality, require trade-offs. Decision-makers 
must choose a balanced solution based on priorities. It not only aids 
decision-makers in their interactive search for optimised solutions but 
also offers a means to compare the efficiencies of different optimisation 
algorithms. Factors such as dominance relationships, convergence, and 
diversity of approximations from different algorithms can be visually 
analysed (Deb and Jain, 2014; Filipic and Tusar, 2016). Filipič and 
Tušar (Filipic and Tusar, 2016) have summarised nine desired proper-
ties for an effective high-dimensional visualisation method. The method 
should show dominant relations between PF approximation sets, PF 
shape, and objective range, PF distribution, to maintain robustness, 
scalability, simplicity, and uniqueness and handle large and multiple 
data sets.

In continuous pharmaceutical manufacturing optimisation, the chal-
lenge often lies in discerning the relationships between a plethora of 
objectives and decision variables. Notably, this task becomes more 
arduous when the process involves multiple outputs. High-dimensional 
many-objective optimisation techniques must be used in these situa-
tions, which leads to the creation of a Pareto front (Wu and Panoutsos, 
2021b,a).

In this paper, the focus is on Wet milling (WM) and mixed-
suspension mixed-product removal (MSMPR). A typical experimental 
setup for these two processes is shown in Fig.  2; an example detailed 
description for these processes can be found in Urwin (2023). In this 
paper, the research work focuses on part of a preparation study for an 
upcoming experimental campaign. The hypothesis, and scope, of this 
research is to test if the proposed framework is suitable to capture the 
process behaviour sufficiently (in terms of modelling) to enable many-
objective optimisation using machine learning. The main contributions 
of this paper are:

• Development of a surrogate data-driven model of the nonlinear 
continuous WM and MSMPR processes using machine learning 
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(RBFNN), using process data generated from high-fidelity nu-
merical simulations for the continuous production of mefenamic 
acid.

• Development of a many-objective optimisation framework for 
the WM and MSMPR processes, to identify optimal production 
conditions based on several objectives.

• Demonstration of a decision-making framework based on high-
dimensional visualisation methods for optimal solutions.

2. Material and methods

The section discusses in more detail the methodologies utilised in 
the current work, namely the data generation using the high-fidelity 
simulations, the creation of the surrogate model, the many-objective 
optimisation algorithm and the optimisation performance indicators.

2.1. High fidelity simulations - gPROMS

gPROMS as a simulation platform for processes can be very com-
putationally expensive, primarily due to the intensive computation 
required for solving systems of differential equations (Wu and Nauta, 
2022).

Simpler surrogate models established based on data obtained from 
high-fidelity models, such as gPROMS, may effectively reduce the 
computational cost by replacing the high-fidelity but computationally 
expensive simulations of gPROMS so that the iterative process of design 
optimisation is significantly sped up. The feasibility of optimisation is 
thus improved in that a large number of evaluations to converge to a 
solution is made possible - a crucial bottleneck for many computation-
ally intensive optimisation algorithms that rely on multiple iterations 
of model simulations.

The data for the mefenamic acid case study was generated using 
gPROMS Formulated Products, a powerful simulation tool renowned 
for its high fidelity in representing complex processes. This software 
serves as a convenient platform for data generation, offering a more 
efficient alternative to conducting numerous physical experiments. This 
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Fig. 3. A schematic view of the principal layout of an RBFNN.
approach substantially reduces the costs associated with data collection 
and significantly accelerates the process.

However, employing the high-fidelity model directly in optimisation 
poses practical challenges. This is primarily due to the considerable 
time required for functional evaluations and the need for tens of thou-
sands of such evaluations (such as, in evolutionary optimisation). To 
overcome this challenge, we utilise the high-fidelity model to generate 
precise input and output data, only for inputs and outputs of interest. 
We then develop (train, using machine learning) surrogate models, 
which require significantly less time to evaluate.

2.2. Radial basis function neural network

In this research, we use the Radial Basis Function Neural Net-
work (RBFNN) to capture the continuous manufacturing process. While 
many different machine learning structures could be used here, the 
RBFNN has universal approximation capability, as well as offers fast 
learning and forward prediction. Notably, it also offers the advantage 
of expedited training due to its inherent avoidance of local minima 
challenges (Lin et al., 2020). The RBFNN is a feed-forward neural 
network structure characterised by three layers: the input layer, a 
hidden layer, and an output layer. The hidden and output layers include 
the network’s trainable parameters. The activation functions (hidden 
layer) are defined by a multi-dimensional Gaussian function (Radial 
Basis), where the standard deviation and the centre of the function 
serve as a trainable parameter. Back-propagation is used to find the 
best weights for the final model, with the loss function comprising 
of the model error(between the predicted output and simulated target 
values) (AlAlaween et al., 2017).

Fig.  3 illustrates the network structure for an RBFNN, where N
represents the input vector’s dimension (training data) and K signifies 
the dimension of the hidden layer.

To obtain the model parameters of an RBFNN, a typical training 
process consists of two distinct steps. In the initial step, unsuper-
vised learning is employed, often utilising the K-means algorithm, to 
ascertain the critical parameters associated with the radial basis func-
tions. These parameters encompass the determination of the number 
of hidden layers denoted as ‘𝐾 ’ and the calculation of the spread 
denoted as 𝜎. Subsequently, in the second step, a supervised approach 
is implemented, focusing on the minimisation of modelling errors. This 
stage is instrumental in learning the weights that connect the hidden 
layers with the output layers. It is important to note that the neuron 
functions within the output layer operate in a linear fashion.

In this study, we employ a three-layer RBF neural network to 
construct surrogate models for various output functions. The RBFNN, 
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characterised by a Gaussian activation function, is mathematically 
formulated as follows (Rubio-Solis and Panoutsos, 2015): 

𝑓 (𝒙) =
𝐾
∑

𝑖=1
𝜔𝑖

𝐽
∑

𝑗=1
𝑒𝑥𝑝(− 1

2𝜎2
‖

‖

‖

𝑥𝑗 − 𝑐𝑖
‖

‖

‖

2

2
) +𝑤0 (1)

in this expression 𝒙 is the input vector and 𝑓 the output of the RBF 
neural network. 𝐾 is the number of hidden neurons and 𝑤𝑖 is the 
output weight relating to the 𝑖𝑡ℎ hidden neuron and the output neuron; 
𝑤0 is the constant bias for the output layer; 𝐽 denotes the number of 
training data points; 𝑐𝑖 is the centre of the Gaussian function for the 𝑖th 
hidden neuron; 𝜎 is the width parameter for each radial basis function; 
‖

‖

‖

𝑥𝑗 − 𝑐𝑖
‖

‖

‖

2

2
 is the Euclidean distance of an input vector to its RBF centre.

‖

‖

‖

𝑥𝑗 − 𝑐𝑖
‖

‖

‖

2

2
=

𝑁
∑

𝑛−1

√

(𝑥𝑛,𝑗 − 𝑐𝑖)2 (2)

In Eq.  (2), the parameters 𝑐𝑖 and 𝜎 representing the centre and 
shared width of the Gaussian functions are established as initial con-
ditions using simulated training data before training the weights 𝜔𝑖 in 
the RBF Neural Network. This initial phase involves grouping training 
data into clusters, from which the values for 𝑐𝑖 and 𝜎 are determined 
for each cluster 𝑖 within the range of ‘𝑖 ∈ (𝑖,… , 𝐾)’. It is worth noting 
that the number of clusters equals the number of RBF functions. In the 
context of this study, clustering and model training is performed using 
the computational framework described in Rubio-Solis and Panoutsos 
(2016) and Rubio-Solis et al. (2018).

2.3. Many-objective optimisation

This section outlines the Non-dominated Sorting Genetic Algorithm 
III (NSGA-III), one of the most popular gradient-free multiobjective op-
timisation algorithms. The NSGA-III algorithm in our case study serves 
as a key tool for conducting many-objective optimisation analyses, 
which aligns with the requirements of the mefenamic acid case study 
(many-objective, as opposed to multiobjective, refers to cases where 
greater than three objectives need to addressed simultaneously). The 
NSGA-III (Deb and Jain, 2014) algorithm follows a similar evolutionary 
computation framework to that of NSGA-II, encompassing initialisation, 
crossover, and mutation phases to generate an offspring population 
from the existing population. Where it distinguishes itself from NSGA-
II is in the environmental selection process, as NSGA-III introduces 
the utilisation of a predefined set of widely and uniformly distributed 
reference points within the objective space. These reference points play 
a pivotal role in the selection process, thus enhancing diversity among 
the solutions.
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Fig. 4. A 2D schematic view shows the rotation of reference vectors by 𝛽, where the sum of included angles is minimised to attain the minimal sum of net avertence angles.
2.4. Optimisation performance evaluation

A shortfall of heuristic and meta-heuristic optimisation algorithms 
is that while they can be very efficient and effective, understanding 
their performance can pose a significant challenge. This is because 
convergence analyses, and optimality guarantees cannot be derived in 
a straightforward fashion, as in the case for gradient-based methods. 
Therefore, there are numerous computational techniques developed for 
the post-hoc analysis of the performance of such algorithms and the 
quality of solutions (Riquelme et al., 2015). These techniques include 
numerical metrics of performance, as well as visualisation methods. 
Such methods are not trivial to develop, when considering the number 
of dimensions involved (e.g. visualisation of solution grouping in n
dimensions, when n is high (which is the case for many-objective 
optimisation).

Hypervolume
Hypervolume (HV) (Zitzler and Thiele, 1999) serves as a metric 

for quantifying the volume within the objective space defined by the 
candidate solutions to a reference point. Typically, the Nadir point 
is selected as the reference, which is determined by combining the 
worst values across all objective functions present within the Pareto 
front. In the context of this metric, a higher value is indicative of 
a more desirable outcome (higher coverage of the solution space). 
While simple, this is one of the most commonly used measures of 
performance.

Inverse Ratio of Net Avertence angle
The inverse Ratio of Net Avertence angle (IRNA) (Wu and Panout-

sos, 2021a) is classified as a unary diversity metric. The construction 
of this metric involves the use of reference vectors, with the aim 
of minimising the sum of the included angles. This minimisation is 
accomplished by systematically rotating the reference vector system in 
all dimensions, optimising the spatial angle for each rotation, which 
is shown in Fig.  4. This process removes possible systematic bias in 
assessing solutions, giving the solution set the highest possible diversity 
score. The process of evaluating diversity involves first identifying 
candidate solutions within an approximation set.

2.5. Visualisation methods

Visualisation methods (Filipič and Tušar, 2018), typically aim to 
provide an effective visual method for portraying solutions – the Pareto 
front – in multiple dimensions.
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2.5.1. ProD
ProD (Projections on Reference Vector versus Distances) method, 

as described in  Wu and Panoutsos (2021b), is designed to present 
Pareto front (PF) approximations through a combination of projections 
(Pro) onto reference vectors and distances (D) to those same reference 
vectors. In this context, a vector connects a nominal Ideal point and a 
nominal Nadir point based on the available non-dominated PF approx-
imations. Fig. 5 shows a schematic view of the principle of ProD. The 
projection 𝑟∥ is given as: 

𝑟∥ = [𝑓1, 𝑓2,… , 𝑓𝑚] ∗
𝑅𝑉
|𝑅𝑉 |

(3)

in which 𝑚 is the number of objective functions, and 𝑅𝑉  is the reference 
vector that is defined as: 
𝑅𝑉 = 𝐹𝑁 − 𝐹𝐼 (4)

in which 𝐹𝑁  is the vector of the nadir point and 𝐹𝐼  is the vector of the 
ideal point. The ideal point is an auxiliary point with the least values of 
each objective function among PF approximations as coordinates, while 
the nadir point, on the contrary, consists of coordinates of the largest 
of each objective.

The following expression represents the distance to the reference 
vector: 

𝑟⟂ = sin 𝜃 ∗
√

𝑓 2
1 + 𝑓 2

2 +⋯ + 𝑓 2
𝑚 (5)

where angle 𝜃 between the vector of candidate solution and reference 
vector is calculated by 

𝜃 = cos−1
[𝑓1, 𝑓2,… , 𝑓𝑚] ∗ 𝑅𝑉

√

𝑓 2
1 + 𝑓 2

2 +⋯ + 𝑓 2
𝑚 ∗ |𝑅𝑉 |

(6)

ProD possesses a number of preferred properties of a visualisation 
method, i.e., display dominance relation, PF shape, objective range, 
PF distribution, robustness, handling large sets, handling multiple sets, 
scalability, simplicity, and uniqueness.

2.5.2. Parallel coordinates
Parallel Coordinates (Inselberg, 2009) is a visualisation method 

that projects high-dimensional vectors onto a two-dimensional space. It 
achieves this by using m equally spaced parallel axes, where m corre-
sponds to the number of objective functions. Vectors are represented as 
poly-lines, connecting points on each axis according to their component 
values. This approach offers a simple, scalable solution for visualising 
multi-dimensional data, with no loss of information during the mapping 
process, however, it can be challenging to interpret for high complexity 
problems.
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Fig. 5. A schematic view of ProD in 2D (a) spaces and view in 3D (b) spaces.
Fig. 6. The main portion of the mefenamic acid manufacturing process is shown, where the solid square boxes are the two major processing steps decision-makers are interested 
in optimisation.
3. Mefenamic acid production

Mefenamic acid, a commonly used non-steroidal anti-inflammatory 
drug for alleviating moderate pain, is the focus of this study. This en-
tails the wet milling and crystallisation of mefenamic acid, as illustrated 
in Fig.  6(a).

The process commences with the wet milling of raw material, in 
the form of a seed, to obtain a specific particle size. Subsequently, the 
concentrated slurry derived from the wet milling step undergoes further 
processing. This involves dilution, achieved by blending the slurry with 
known compositions to attain a specified concentration, within the 
framework of mixed-suspension mixed-product removal (MSMPR) as 
illustrated in Fig.  6(b).

The continuous crystallisation test bed is employed to crystallise 
various active pharmaceutical ingredients (APIs) as a pivotal aspect of 
the manufacturing process.
6 
Fig.  6(b) illustrates the specific segment of the mefenamic acid 
manufacturing process that serves as the primary focus of this study. 
Within this context, the primary objective of the decision-makers is to 
identify and optimise the operational conditions specifically related to 
the wet milling process and the crystallisation (MSMPR) that maximise 
a number of production/product objectives.

3.1. Decision variables, objective functions and constraints

Fig.  6(b) demonstrates the presence of four key outputs as of interest 
in our case study, as outlined in Table  1. This table also provides a 
comprehensive list of the inputs that play a pivotal role in the wet 
milling and crystallisation processes.

In Table  1, we present the primary outputs prioritised by decision-
makers and their corresponding input parameters.
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Table 1
List of inputs and output for the mefenamic process.
 Inputs Description  
 - Mefenamic acid (Feed) (𝑥1) - Amount of acid added to the Feed.  
 - Pump flow rate (Feed) (𝑥2) - Pump flow rate in Feed.  
 - Mefenamic acid (Seed) (𝑥3) - Amount of acid added to the Seed.  
 - Pump flow rate (Seed) (𝑥4) - Pump flow rate in the Seed.  
 - Wet mill speed (𝑥5) - Rotating speed of the wet mill.  
 - MSMPR vessel temperature - Temperature in 5 vessels during the 
  (𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10)  continuous manufacturing process  
 - Stirring rate for all stages (𝑥11) - Speed of stirring in 5-stage MSMPR  
 Outputs  
 - MSMPR_5_D90 (𝑓1) - A size metric which represents the  
  particle size 90% of particles are  
  smaller than.  
 - Span (𝑓2) - The width of the particle size  
  distribution.  
 - Solid recovered (𝑓3) - Percentage of the input mefenamic  
  acid produced as solid crystals.  
 - MSMPR_5_Solid_g_h (𝑓4) - The flow rate of mefenamic acid as  
  solid crystals at steady state.  

Table 2
Number of solutions generated and max. number of iterations.
 Number of objectives 4  
 Number of decision variables 11  
 Number of repeated tests 24  
 Number of optimised solutions 4,000  
 Maximum number of evaluations 100,000 

Table 3
The linear correlation coefficients between the inputs and the outputs for the mefenamic 
acid case study.
 𝑓1 𝑓2 𝑓3 𝑓4  
 𝑥1 0.011 −0.071 0.131 −0.016 
 𝑥2 0.216 0.083 −0.037 1  
 𝑥3 −0.469 0.166 0.276 0  
 𝑥4 −0.288 0.312 −0.162 0  
 𝑥5 −0.592 0.009 0.004 0  
 𝑥6 −0.22 −0.302 −0.157 0  
 𝑥7 −0.326 −0.523 −0.288 0  
 𝑥8 −0.236 −0.423 −0.354 0  
 𝑥9 −0.184 −0.349 −0.468 0  
 𝑥10 −0.071 −0.027 −0.887 0  
 𝑥11 −0.151 −0.081 0.029 0  

4. Data acquisition, surrogate modelling and parameter settings 
for optimisation

This section encompasses the data acquisition, including the
methodology for sampling the synthetic experimental data, and the 
analysis of the dependencies between the input variables and output 
functions (feature selection), towards the selection of the inputs for 
the surrogate model and the subsequent process optimisation (see
Table  2).

4.1. Simulations and data sampling

A full factorial (symmetric design of experiments) high-fidelity sim-
ulation is run, yielding 100,000 samples. A smaller set, consisting of 
4000 samples is randomly chosen, for the purpose of training the 
surrogate model. 50% of the samples are selected randomly for the 
surrogate model training and the rest 50% samples are used as the 
hold-out set for the purpose of model cross-validation. This process is 
repeated several times (24) to help establishing statistical measures of 
robustness for the model training.
7 
4.2. Feature selection

In our study, the inclusion of an input variable in the formulation 
of a surrogate model for the output is confirmed based on its linear 
correlation coefficient with the output variable, relying on the assump-
tion that the input–output relationships resemble linear behaviours; the 
Pearson correlation coefficient is used for this purpose.

Table  3 presents the correlation coefficients between the inputs and 
outputs. As an initial criterion, we employ a threshold of ±0.1 to assess 
the level of correlation between variables. Inputs that exhibit correla-
tions meeting or exceeding this threshold are considered for inclusion 
in the surrogate modelling of the target functions. To account for strong 
nonlinear input–output relationships (Pearson correlation coefficient 
may fail to identify these), a wrapper feature selection approach (Jović 
et al., 2015) is used, whereby the Machine Learning model itself is 
used to interrogate the relevance of the inputs. The details of these 
dependencies are outlined in Table  3.

The correlated inputs and outputs are:
𝑓1(𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥11)
𝑓2(𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9)
𝑓3(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11)
𝑓4(𝑥2)

Note: 𝑥5 is found to be important for 𝑓2 in the later modelling work.

4.3. Surrogate model structure and training

In the context of the RBFNN model structure, there is one tunable 
(learnable) hyperparameter, relating to the number of neurons in the 
hidden layer—denoted as 𝑀 . Furthermore, there are two additional 
hyperparameters relating to the RBF activation functions; these are 
the widths and centres of the radial basis functions, represented as 𝝈
and 𝒄; these are vectors with the same dimension as the input layer 
(one width and one centre for each input feature). To start the model 
training process, 𝑀 , 𝝈 and 𝒄 are established via data clustering. 𝝈
and 𝒄 are further tuned, as part of the main model training part (also 
referred to in the literature as parametric model optimisation). The loss 
function in the Machine Learning framework is the Root Mean Square 
Error, using the error calculation between the model predicted and 
actual (simulated in our case) outputs. For model validation purposes, 
other statistical measures are used too, to ensure good model training 
and avoidance of overfitting; 𝑅2 as well as Mean Absolute Error are 
used in the cross-validation process. Cross-validation includes holding 
out of the training process a portion of the data, and monitoring the 
performance in the hold-out sample set. Model training results are 
shown in Section 5.1.

4.4. Many-objective process optimisation framework

The MaOP algorithm used in this work is NSGA-III (Deb and Jain, 
2014). The aim is to identify a Pareto Front which includes all non-
dominated solutions for the optimisation task. The specific algorithm 
in our work is adopted from PlatEMO (Tian et al., 2017) with some 
modifications. NSGA-III can be used to solve many-objective optimisa-
tion problems, as in the mefenamic acid case study (a four-objective 
function optimisation problem). The quality metrics described in Sec-
tion 2.4, Hypervolume (HV) and Inverse Ratio of Net Avertence Angle 
(IRNA), are utilised to support the analyses of the optimisation results.

The optimisation algorithm was set up as shown in Table  3; for the 
rest of the parameters set in the algorithm default values were used as 
in PlatEMO version 4.2 (Tian et al., 2017).

Box constraints were established, i.e., minimum and maximum 
allowed values for the inputs and outputs; these are listed in Table  4.
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Table 4
The box constraints of the inputs and the outputs for the mefenamic acid.
 Input/constraints Max Min Interval  
 Mefenamic acid (Feed, 𝑥1) 45 35 1  
 Pump flow rate (Feed, 𝑥2) 20 10 1  
 Mefenamic acid (Seed, 𝑥3) 6 2 0.1  
 Pump flow rate (Seed, 𝑥4) 1.5 0.5 0.1  
 Wet mill speed (𝑥5) 11,000 5,500 100  
 MSMPR vessel 1 temperature (𝑥6) 55 35 1  
 MSMPR vessel 2 temperature (𝑥7) 55 35 1  
 MSMPR vessel 3 temperature (𝑥8) 50 30 1  
 MSMPR vessel 4 temperature (𝑥9) 45 25 1  
 MSMPR vessel 5 temperature (𝑥10) 35 15 1  
 Stirring rate for all stages (𝑥11) 600 200 1  
 Output/constraints Max Min Goal  
 MSMPR_5_D90 (𝑓1) 326 10 =120  
 Span (𝑓2) 2.1 0.285 Minimise 
 Solid recovered (𝑓3) 56 (%) 27(%) Maximise 
 MSMPR_5_Solid_g_h (𝑓4) 19.3 9.55 Maximise 

Table 5
Hidden layer structure for each objective function.
 Objective function Number of neurons, 𝑀 
 𝑓1 400  
 𝑓2 800  
 𝑓3 300  
 𝑓4 8  

5. Results

In this section, we present the outcomes of the surrogate modelling 
and optimisation results. These results are conveyed through various 
forms, including model fitness plots, Pareto Fronts plots shown in both 
the objective space and the decision space, as scatter plots, parallel 
coordinates plots, and Prod plots. Furthermore, we numerically assess 
the coverage of the Pareto Front approximations within the objective 
space, using HV and IRNA.

5.1. RBFNN surrogate model training results

The structural optimisation of the hidden layer, as described in 
Section 2.2, yields a number of hidden neurons, 𝑀 , that is different 
for each objective function (output); this is shown in Table  5. For the 
parametric optimisation of the surrogate model (model training) the 
two hyperparameters of the RBFNN, 𝝈, and 𝒄 are learned from the data 
using back-propagation. The cross-validation process, helps establish-
ing hyperparameters while at the same time avoiding overfitting. This 
is achieved by monitoring the performance on the hold-out dataset, 
and selecting a model that offers a balanced performance between
training and validation. For example, evidence of overfitting, would be 
a very good training performance with a poor validation performance 
(i.e. poor generalisation). The measures of model performance (accu-
racy) in terms of RMSE, MAE and 𝑅2 are calculated for both the training 
and validation data to enable comparisons and analyses.

To assess the efficacy of the modelling, we compare between the 
simulated outputs and the predicted ones. These are outlined in Fig.  7, 
which includes fitness plots for both training and validation sets.

From visual observation (which is later on confirmed numerically, 
see Table  6) there overall fit appears to be satisfactory and there is 
no evidence of overfitting (significant differences between training and 
validation). One can observe that the data for 𝑓4 is very sparse com-
pared to the other objective functions and are locally concentrated. 𝑓4
is a much simpler objective compared to the other objective functions 
and it also varies linearly with 𝑥2.

The root mean square error (RMSE), the mean absolute error (MAE) 
and 𝑅2 for the surrogate models are calculated and shown in Table 
6. The RMSE and MAE values of the modelled objective functions 
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Table 6
RMSE, MAE and 𝑅2 for the objective function of the mefenamic acid case study.
 𝑓1 𝑓2 𝑓3 𝑓4  
 RMSE 0.0214 0.0184 0.0241 0.0066 
 MAE 0.0167 0.0129 0.0182 0.0052 
 𝑅2 0.9696 0.9405 0.9820 0.9997 

are generally within 3% compared to the targeted values from that 
predicted by gPROMS, while 𝑅2 values are generally higher than 0.94. 
The model performance is thus satisfactory.

5.2. Pareto front in parallel coordinates

It is challenging to visualise the Pareto Front for more than three 
objectives (dimensions). Possible methods that can be used are parallel 
coordinates and ProD. Fig.  8 displays the Pareto front of the mefenamic 
acid optimisation study, depicted in parallel coordinates. All the objec-
tive functions have been displayed with non-normalised and normalised 
values, which, in this case, use their respective upper- and lower-level 
limits so that the terms are displayed in their relative amounts (a 
quantity varies between 0 and 1).

All four objective functions are conflicting; see Figs.  8(a) and 8(b). 
The objective functions of the MSMPR_5_D90 (𝑓1), the Span (𝑓2, min-
imised) and the Solid Recovered (𝑓3, maximised) vary moderately 
under optimised operational conditions. The MSMPR_5_solid_g_h (𝑓4) 
changes significantly. It is recommended to the decision-makers that 
the balanced operational parameters of the MSMPR_5_D90 (𝑓1), the 
Span (𝑓2, minimised) and the Solid Recovered (𝑓3, maximised) should 
be chosen since the choice will, to a limited degree, influence the 
performance of MSMPR_5_solid_g_h (F4). The selected alternatives of 
sets of operational parameters should be verified with the high-fidelity 
model.

All the optimised solutions are good choices under specific situations. 
Prioritising 𝑓4 will decrease the quality of the drug and increase the ma-
terial waste. The decision-maker should only prioritise 𝑓4 if maximising 
production is overwhelmingly more important than other factors.

5.3. Pareto front in ProD plots

As before, before plotting in ProD, the objective functions have been 
normalised with their respective lower and upper limits. Fig.  9 displays 
the PF approximations of the mefenamic acid optimisation study in the 
ProD plot. The PF approximations are represented by the red dots. At 
the same time, the simulated outputs are shown in blue dots. It clearly 
shows that the PF approximations are located nearer to the origin 
than the simulated outputs, which means that the PF approximations 
represent better solutions compared to the simulated outputs.

Comparing the optimality of the PF approximations versus the 
simulated data, the two data sets are subject to non-dominated sorting 
operations. The result is displayed in Fig.  10. It shows that only a 
few of the simulated outputs survived the evolutionary optimisation 
process, indicating that the optimisation process has been successfully 
conducted. Still, none of the simulated output should ideally survive 
after such a non-dominated sorting manoeuvre. When it does, it usually 
indicates that the PF approximations have not been found in certain 
areas in the objective space.

5.4. Pareto optimal sets (results in decision space) in parallel coordinates

The optimal solutions in the decision space (optimal solution set) 
are displayed in parallel coordinates in Fig.  11(a), together with the 
simulated input data in Fig.  11(b). The simulated input data shows a 
regular pattern since a full factorial design has been adopted in the 
simulations. The optimal solution set data have been normalised. Dif-
ferent decision variables have unique characteristics. Some are densely 
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Fig. 7. Comparisons between the simulated and estimated objective function values. The solid line represents an exact match between the simulated and estimated output.
Fig. 8. The Pareto front of the mefenamic acid process: (a) Unnormalised and (b) normalised.
Fig. 9. The Pareto front of the mefenamic acid optimisation study in the ProD plot.
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Fig. 10. The PF approximations and the non-dominated portion of simulated output.
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Fig. 11. The Pareto optimal sets of the Mefenamic acid Case and compared with the raw input data.
Fig. 12. The Pareto optimal sets (decision variables at optimised operational conditions) of the Mefenamic acid Case after an optimisation analysis (a) and compared with the 
raw input data (b).
Fig. 13. The schematic view of evaluating the efficiency of an optimisation outcome.

populated (𝑥1, 𝑥2, 𝑥4, 𝑥6, 𝑥7, 𝑥9, 𝑥10) and extend to the whole scale. It 
is easier to select an optimal solution set for those decision variables. 
Others occupy partially (𝑥3, 𝑥5, 𝑥8, 𝑥11) the range. The final choice of 
optimal process parameters should be made in areas where the solu-
tions are densely populated. The solutions are more robust, meaning 
that any small fluctuations around the quantities would not jeopardise 
the optimality of the operations.

5.5. Pareto optimal sets (results in decision space) in ProD

The corresponding decision variable values at optimised operational 
conditions are displayed in a ProD plot in Fig.  12. Fig.  12(a) shows 
Pareto optimal sets (red dots). In contrast, they are plotted together 
with the simulated input data in Fig.  12(b), where the relative locations 
of the simulated inputs versus the Pareto optimal sets are indicated.

The optimal solutions in the decision space are relatively densely 
populated in a cluster, making choosing an ideal operational condition 
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easier. A good choice might be the centre region of this cluster, pro-
viding a robust solution. Any minor discrepancies or changes in the 
operational parameters would not stop the system from running under 
optimal conditions.

5.6. Quality of Pareto front

The evaluation of the quality of Pareto Front approximations re-
volves around two essential aspects. Firstly, we assess how closely these 
approximations align with the true Pareto Front, a criterion referred to 
as convergence. This is not possible here, as the true Pareto Front is 
not known. Secondly, we gauge the extent to which the Pareto Front is 
covered within the objective space, a measure termed diversity.

As the true Pareto Front is not known, to promote convergence, 
this study employs a rigorous approach involving multiple independent 
optimisation runs, totalling 24 runs. From these runs, the Pareto Front 
approximations are collected and subjected to non-dominated sorting, 
culminating in the formation of the final Pareto Front. This avoids
outlier runs where the algorithm fails to converge, and convergence is 
poor.

Diversity is evaluated using numeric performance indicators, no-
tably the Hyper Volume (HV) (Shang et al., 2021) and the Inverse 
Ratio of Net Avertence angle (IRNA) (Wu and Panoutsos, 2021a). These 
metrics provide insights into the distribution and coverage of the Pareto 
Front within the objective space. You can refer to Table  7 for specific 
HV and IRNA values associated with the Pareto Front approximations.

The maximum achievable values for both HV and IRNA metrics are 
1.0. A HV value of 0.6732 indicates relatively low diversity, and the 
same holds true for an IRNA value of 0.1303. Notably, HV is nonlinear 
as a diversity metric, meaning that its value varies nonlinearly with 
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Fig. 14. Cardinality distributions of PF optimal sets.
Table 7
The HV and IRNA values of the PF approximations and the 
simulated data.
 PF approximations The simulated data 
 HV 0.6732 0.3412  
 IRNA 0.1303 0.0033  

increasing diversity. Consequently, it can be challenging to assess the 
coverage of the Pareto front in the objective space using HV alone.

However, IRNA serves as a linear diversity metric, and its value 
increases linearly with expanding Pareto front coverage. An IRNA value 
of 0.1303 signifies that the obtained Pareto front approximation encom-
passes only around 13% of the entire four-dimensional objective space. 
This limited coverage may have two possible explanations. Firstly, 
there could be additional Pareto front approximations that the optimi-
sation process failed to discover. Secondly, it is possible that most of 
the undetected Pareto front approximations have been dominated by 
the existing ones.

Table  7 also presents the HV and IRNA values for the simulated 
data, which demonstrate significantly lower optimisation performance 
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values. These values underscore the limited coverage of the simulated 
data within the objective space, forming the foundation for surrogate 
modelling. Investigating the impact of this sparse coverage of simulated 
data on the accuracy of surrogate models could be an interesting subject 
for future research.

5.7. Evaluation of the effect of optimisation - ProD

The vertical axis of ProD, see for instance Fig.  12, indicates the 
convergence of the optimisation, i.e., how far the optimisation process 
has reached. The effect of the optimisation process can thus be assessed 
by comparing the averaged 𝑟∥ value of the obtained PF with that of the 
raw data; this principle is shown in Fig.  13.

The efficiency in an optimisation outcome or improvement in con-
vergence (IC) compared with the simulated data before optimisation: 

𝐼𝐶 =
𝑟(2)∥ − 𝑟(1)∥

𝑟(1)∥

= 0.74 − 0.47
0.47

= 0.58 (7)

where: 𝑟(1) =
∑𝑁1

𝑗=1 𝑟
(1)
∥,𝑗 = 0.47 𝑟(2) =

∑𝑁1
𝑗=1 𝑟

(1)
∥,𝑗 = 0.74
∥ 𝑁1 ∥ 𝑁1
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Fig. 15. The recommended chosen solutions for further experimental testing.

Table 8
The chosen decision/objective function values obtained for further testing while 𝑥2=20 
𝑥3=6 𝑥5=11000 𝑥7=55 𝑥8=50 𝑥11=600 are common.
 Solution No. 𝑥1 𝑥4 𝑥6 𝑥9 𝑥10 𝑓1 𝑓2 𝑓3 𝑓4  
 1 35 0.75 35 25 25 111 0.813 44.4 19.2 
 2 45 0.75 35 25 25 111 0.997 47.2 19.2 
 3 35 1.50 35 25 25 64 0.529 43.8 19.2 
 4 35 0.75 39 45 25 120 1.171 42.4 19.2 
 5 45 0.75 39 45 25 120 1.392 47.2 19.2 
 6 35 0.75 35 25 35 111 0.535 38.1 19.2 
 7 45 0.75 35 25 35 111 0.748 42.4 19.2 
 8 35 1.50 35 25 35 63 0.185 37.4 19.2 
 9 45 1.50 35 25 35 63 0.353 41.0 19.2 
 10 45 1.50 39 25 35 57 0.373 41.0 19.2 
 11 35 0.75 39 45 35 120 1.144 35.1 19.2 

5.8. Choice of solutions for further experimental testing

After determining the PF optimal sets, their cardinality distributions 
are calculated and arranged by dividing an input variable into 20 equal 
parts and counting the number of solutions that occurred in each part. 
(A similar technique to Kernel Density Estimation (KDE)). The result 
of totalling 11 scatter plots is depicted in Fig.  14. Then, the most 
frequent occurring decision variable values are identified and marked 
in red circles. By randomly combining these solutions, 64 potentially PF 
optimal sets are identified. They are then used in the surrogate models 
yielding multiple objective function sets. The final optimal solutions 
are found using non-dominant sorting on these sets with all previously 
found PF approximations. The outcomes are plotted in ProD in Fig. 
15. Here, the red dots signify the 64 generated solutions, and the 
green dots show the targeting PF solutions among them, while the blue 
dots indicate the PF solutions from previous optimisation efforts. The 
corresponding PF optimal sets (corresponding to the green dots) are 
listed in Table  8 and can be targeted in a new experimental campaign.

6. Summary and conclusions

This study focuses on the process optimisation of mefenamic acid 
production based on simulated data from a high-fidelity model,
gPROMS software. For the first time, a many-objective framework is 
considered, and to enable this a computationally fast surrogate model 
of the process has been developed with via the use of Machine Learning. 
The following conclusions are made based on the analysis performed:
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• Using the process simulations via high-fidelity models (gPROMS) 
and simpler surrogate models based on Machine Learning to 
estimate the functional relationships of wet milling and MSMPR 
processes is feasible for process optimisation purposes;

• The Radial Basis Function Neural Network is an effective and 
modelling tool for the current study, for regression—this is used 
to establish a number of surrogate models of high accuracy in 
terms of low root mean square error, mean absolute error, and 
𝑅2 value.

• The model parameters are found at which the differences between 
modelling errors (𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 or 𝑅2) of training and validation 
offer a good balance, hence no overfitting and good generalisation 
properties.

• A clear Pareto Front surface is obtained. The corresponding de-
cision variables under optimal conditions are located in clus-
ters, making choosing the optimal operational conditions more 
accessible.

• The current approach identifies the critical factors in the continu-
ous manufacturing process of mefenamic acids, in the form of raw 
material properties and production governing parameters, that 
influence the efficiency of production and product quality. Within 
this paradigm, the input determinants (independent variables) 
define the process outcomes (dependent variables) in functional 
terms. A systematic methodology is developed that incorporates 
analytical and risk-management considerations during the drug 
design, development, and manufacturing phases.
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