European Journal of Pharmaceutical Sciences 210 (2025) 107102

European Journal of Pharmaceutical Sciences

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejps

Check for

Testing on continuous production of mefenamic acids—Design of experiment |
through simulation and process optimisation

Kai Eivind Wu?®>*, Cameron J. Brown ”, Murray Robertson ", Blair F. Johnston ®, Rhys Lloyd ",

George Panoutsos "

aSchool of Electrical and Electronic Engineering, University of Sheffield, Sheffield, United Kingdom
Y EPSRC Future Manufacturing Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, G1 1RD, United Kingdom

ARTICLE INFO

Keywords:

Continuous manufacturing
MSMPR

Many-objective optimisation
Machine learning

ABSTRACT

In the pharmaceutical manufacturing industry, continuous production methods have been recognised as pro-
viding several benefits compared to traditional batch production. These benefits include increased flexibility,
higher product output, enhanced quality assurance through better monitoring techniques, and more consistent
distribution of Active Pharmaceutical Ingredients (APIs). Despite these clear advantages, there is a lack of
research focused on the simultaneous optimisation of multiple sub-processes in continuous manufacturing.
This study explores the optimisation processes of continuous pharmaceutical production, explicitly targeting the
production of mefenamic acid using wet milling (WM) and mixed-suspension mixed-product removal (MSMPR).
We employ data-driven evolutionary optimisation algorithms to address these many-objective optimisation
problems (MaOPs). High-fidelity model-generated data generated via the General Process Modelling System
(gPROMS) is subsequently utilised to develop simpler surrogate models based on the Radial Basis Function
Neural Network (RBFNN). This enables very fast simulations, suitable for use with computationally intensive
machine learning algorithms. Utilising evolutionary optimisation algorithms, these models are used for model-
based process optimisation. The efficacy of the MaOP approach is evaluated using a range of numeric and
visual optimisation performance indicators. Our findings underscore the viability of integrating high-fidelity
and surrogate models to discern functional relationships between dependent variables (objective functions) and
independent variables (decision variables), providing a robust framework for process optimisation within the
pharmaceutical domain. The approximated solutions are, on average, 58% better than the solutions obtained
from Latin hypercube sampling. The chosen optimal solutions can form the basis of parameter setting in
upcoming experimental campaigns. The significance of this work is in the demonstration, for the first time, of
a many-objective optimisation framework for continuous pharmaceuticals production using simple surrogate
models derived from high fidelity simulations using Machine Learning.

1. Introduction

In pharmaceutical production, the traditional approach has been

agile supply chain with lower residence time in the manufacturing
process, which offers numerous advantages, including faster, more
cost-effective scaling from lab scale to commercial production. This

batch-based manufacturing. This method entails processing a set
amount of input materials in stages to produce the final drug product.
Quality controls are implemented at each stage of processing, as well
as at the end of production. This mode of production strictly adheres
to predefined processing parameters, making mid-process adjustments
difficult. As a result, if a batch fails to meet quality standards, it can
lead to production delays and increased costs (Andersson and Zacché,
2019).

Continuous Manufacturing (CM) has emerged to address these chal-
lenges. CM, as opposed to its batch-based counterpart, possesses a more
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approach also facilitates rapid response to drug shortages and can
support personalised medicine (Badman et al., 2019; lerapetritou et al.,
2016; Lee et al., 2015).

Still, CM is not yet widely used, due to strict process rules and
challenges with the necessary real-time quality checks in ongoing pro-
cesses (Hyer et al., 2024; Markarian, 2022). The ICH Quality Guidelines
provide a series of standards developed by the International Council
for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use (ICH), focusing on the quality aspects of pharmaceutical
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Fig. 1. Generation-based surrogate model management.

product development, manufacturing, and control and ensuring that
medicines are safe, effective, and of high quality through aligning
technical standards across countries (Anon, 2023).

Underpinning the transition to CM is the Quality by Design (QbD)
paradigm. This approach emphasises understanding and controlling
critical factors, such as raw material properties and production fa-
cilities, that influence product quality. Embracing QbD means em-
ploying a systematic methodology that incorporates analytical and
risk-management techniques during the drug design, development, and
manufacturing phases. Within this paradigm, the input determinants
(independent variables) define the process outcomes (dependent vari-
ables) in functional terms.

In the proposed work, data-driven process modelling and optimi-
sation is used to systematically address these challenges. This typ-
ically includes multivariate modelling methods, multi-objective and
many-objective optimisation, quality assessment, as well as support
for decision-making (visualisation, performance analyses) (Kim et al.,
2024, 2023; Sagmeister et al., 2023). Fig. 1 displays the overall process
flow of generation-based surrogate model management.

Data-driven optimisation presents a multidisciplinary approach to
eliciting meaningful insights from complex, often noisy, and unstruc-
tured data. It encompasses the development of models and constraint
functions derived from empirical data acquired through physical ex-
periments and real-world observations, as well as computational and
numerical simulations. A primary challenge in data-driven optimisa-
tion is addressing the inherent complexities of the data itself. For
example, such data may exhibit heterogeneity, be affected by noise,
undergo dynamic changes, or be either overly sparse or voluminous.
Certain optimisation problems further add to this challenge, when the
assessment of objectives or constraints requires resource-intensive pro-
cedures, such as costly physical experiments or intensive computational
simulations. Notably, simulation-based optimisation, which might rely
on techniques like computational fluid dynamics (CFD) and General
Process Modelling System (gPROMS), can be time-consuming, with
evaluations spanning from minutes to hours. Surrogate models can be
established to mirror process knowledge, as simpler versions of high
fidelity models. This can be achieved with Machine Learning, via the
use of appropriate data to train. Surrogate models can then enable
the optimisation of pharmaceutical processes, validate optimal solu-
tions, and guide consequential operational decisions—instead of using
high-fidelity models, which would deem the use of computationally
expensive algorithms infeasible or impractical.

Surrogate models are simplified approximations of more complex
processes. Knowing the extrapolation and interpolation properties of
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these models is critical to their effective application. Interpolation
refers to the prediction of outputs within the range of observed data
used to train the surrogate model. Extrapolation involves making pre-
dictions beyond the range of the training data. While interpolation
offers more reliability, extrapolation should be approached cautiously
due to inherent uncertainties and limitations (He et al., 2023; Kim et al.,
2023).

Several very effective data-driven surrogate models have gained
widespread recognition in model-based optimisation. For example,
Polynomial Regression or Polynomial Response Surface (Queipo et al.,
2005), Multi-Layer Perceptron (Gardner and Dorling, 1998), Support
Vector Machines (Steinwart and Christmann, 2008), Decision Trees
(Rokach and Maimon, 2007), Fuzzy Rule-Based Systems (Jin, 2000),
Gaussian Process Regression Model (Emmerich et al., 2006), and
Radial-Basis-Function Neural Networks (Koziel et al., 2011).

RBFNN and other ANN models have found substantial applica-
tions in the pharmaceutical and biomedical domains. Alshafiee et al.
employed RBFNN to model the flowability of select pharmaceutical
powders, capturing relationships with the flow function coefficient
and the bulk density (Alshafiee et al., 2019). This model proved ef-
fective, especially for smaller datasets, due to its efficient training,
interpretable nodes, and structural adaptability to data (Ding et al.,
2022). Fragopoulos et al. (2020) utilised RBFNN (Radial Basis Function
Neural Network) to assess thyroid lesions, while Wang and Chen (Wang
and Chen, 2020) employed a similar approach to investigate the mech-
anism of acute toxicity. Both studies achieved commendable levels of
accuracy in their respective evaluations. Furthermore, in the realm of
chemical reactions and processes, Zhou et al. and Gbadago et al. utilised
these networks for two-component reactions and butadiene synthesis,
leveraging high-fidelity CFD models (Gbadago et al., 2021; Zhou et al.,
2017). Veldsco-Mejia et al. and Oner et al. expanded the applications to
crystallisation processes (Oner et al., 2020; Vel4sco-Mejia et al., 2016).
The former predicted crystallisation density outcomes and identified
key parameters, while the latter innovated with real-time training on
an automated laboratory crystallisation system using in-line data.

Evolutionary optimisation techniques stand distinct as gradient-
free approaches. They utilise stochastic searches to conduct functional
evaluations and implement random modifications on superior solu-
tions, resulting in improved candidates through systematic selection of
solutions. As iterations progress, the expectation is to identify the best
solutions. These are often sub-optimal, as optimality is very challenging
to be guaranteed. In contrast to traditional optimisation strategies, evo-
lutionary methodologies excel at navigating intricate problems, offering
a valuable ability to sidestep local optima in pursuit of the overarching
global optimum.

Prominent many-objective evolutionary optimisation algorithms in-
clude Non-dominate Sorting Genetic Algorithm III (Deb and Jain,
2014), Reference Vector-Based Evolutionary Algorithm (RVEA) (Cheng
et al., 2016), Knee-Driven Evolutionary Algorithm (Zhang et al., 2015),
Two-Archive Evolutionary Algorithm (Elshamy et al, 2007),
Preference-Based Algorithms (Reddy et al., 2019), Grid-Based Evolu-
tionary Algorithm (Yang et al., 2013), Corner Sort Algorithm (Wang
and Yao, 2014), and Push and Pull Search (Fan et al., 2019).

Performance metrics or indicators are vital tools for evaluating the
quality of solutions in many-objective optimisation problems (MaOPs).
They aid decision-makers in assessing the effectiveness of different
optimisation algorithms. As the number of objectives grows, these
indicators succinctly encapsulate essential information about the op-
timisation problems, ensuring accuracy. Detailed reviews on various
quality indicators can be found in established studies (Wang et al.,
2017; Audet et al., 2018). The most commonly employed performance
metric is Hypervolume (HV) (Zitzler and Thiele, 1999). HV measures
the volume of the objective space that is bounded by the set of calcu-
lated solutions and a set of reference points. A higher values (volume)
indicates a better result.
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(a) The wet milling

(b) MSMPR setup

Fig. 2. Experiment setup for wet milling (a) and MSMPR (b).

Visualisation plays a pivotal role in decision-making for Pareto
Front (PF) approximations. The Pareto Front represents a set of op-
timal solutions in multi-objective optimisation where improving one
objective worsens another. A conflict of interest arises when competing
objectives, such as cost vs. quality, require trade-offs. Decision-makers
must choose a balanced solution based on priorities. It not only aids
decision-makers in their interactive search for optimised solutions but
also offers a means to compare the efficiencies of different optimisation
algorithms. Factors such as dominance relationships, convergence, and
diversity of approximations from different algorithms can be visually
analysed (Deb and Jain, 2014; Filipic and Tusar, 2016). Filipi¢ and
Tusar (Filipic and Tusar, 2016) have summarised nine desired proper-
ties for an effective high-dimensional visualisation method. The method
should show dominant relations between PF approximation sets, PF
shape, and objective range, PF distribution, to maintain robustness,
scalability, simplicity, and uniqueness and handle large and multiple
data sets.

In continuous pharmaceutical manufacturing optimisation, the chal-
lenge often lies in discerning the relationships between a plethora of
objectives and decision variables. Notably, this task becomes more
arduous when the process involves multiple outputs. High-dimensional
many-objective optimisation techniques must be used in these situa-
tions, which leads to the creation of a Pareto front (Wu and Panoutsos,
2021b,a).

In this paper, the focus is on Wet milling (WM) and mixed-
suspension mixed-product removal (MSMPR). A typical experimental
setup for these two processes is shown in Fig. 2; an example detailed
description for these processes can be found in Urwin (2023). In this
paper, the research work focuses on part of a preparation study for an
upcoming experimental campaign. The hypothesis, and scope, of this
research is to test if the proposed framework is suitable to capture the
process behaviour sufficiently (in terms of modelling) to enable many-
objective optimisation using machine learning. The main contributions
of this paper are:

» Development of a surrogate data-driven model of the nonlinear
continuous WM and MSMPR processes using machine learning

(RBFNN), using process data generated from high-fidelity nu-
merical simulations for the continuous production of mefenamic
acid.

» Development of a many-objective optimisation framework for
the WM and MSMPR processes, to identify optimal production
conditions based on several objectives.

+ Demonstration of a decision-making framework based on high-
dimensional visualisation methods for optimal solutions.

2. Material and methods

The section discusses in more detail the methodologies utilised in
the current work, namely the data generation using the high-fidelity
simulations, the creation of the surrogate model, the many-objective
optimisation algorithm and the optimisation performance indicators.

2.1. High fidelity simulations - gPROMS

gPROMS as a simulation platform for processes can be very com-
putationally expensive, primarily due to the intensive computation
required for solving systems of differential equations (Wu and Nauta,
2022).

Simpler surrogate models established based on data obtained from
high-fidelity models, such as gPROMS, may effectively reduce the
computational cost by replacing the high-fidelity but computationally
expensive simulations of gPROMS so that the iterative process of design
optimisation is significantly sped up. The feasibility of optimisation is
thus improved in that a large number of evaluations to converge to a
solution is made possible - a crucial bottleneck for many computation-
ally intensive optimisation algorithms that rely on multiple iterations
of model simulations.

The data for the mefenamic acid case study was generated using
gPROMS Formulated Products, a powerful simulation tool renowned
for its high fidelity in representing complex processes. This software
serves as a convenient platform for data generation, offering a more
efficient alternative to conducting numerous physical experiments. This
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Output layer

Fig. 3. A schematic view of the principal layout of an RBFNN.

approach substantially reduces the costs associated with data collection
and significantly accelerates the process.

However, employing the high-fidelity model directly in optimisation
poses practical challenges. This is primarily due to the considerable
time required for functional evaluations and the need for tens of thou-
sands of such evaluations (such as, in evolutionary optimisation). To
overcome this challenge, we utilise the high-fidelity model to generate
precise input and output data, only for inputs and outputs of interest.
We then develop (train, using machine learning) surrogate models,
which require significantly less time to evaluate.

2.2. Radial basis function neural network

In this research, we use the Radial Basis Function Neural Net-
work (RBFNN) to capture the continuous manufacturing process. While
many different machine learning structures could be used here, the
RBFNN has universal approximation capability, as well as offers fast
learning and forward prediction. Notably, it also offers the advantage
of expedited training due to its inherent avoidance of local minima
challenges (Lin et al.,, 2020). The RBFNN is a feed-forward neural
network structure characterised by three layers: the input layer, a
hidden layer, and an output layer. The hidden and output layers include
the network’s trainable parameters. The activation functions (hidden
layer) are defined by a multi-dimensional Gaussian function (Radial
Basis), where the standard deviation and the centre of the function
serve as a trainable parameter. Back-propagation is used to find the
best weights for the final model, with the loss function comprising
of the model error(between the predicted output and simulated target
values) (AlAlaween et al., 2017).

Fig. 3 illustrates the network structure for an RBFNN, where N
represents the input vector’s dimension (training data) and K signifies
the dimension of the hidden layer.

To obtain the model parameters of an RBFNN, a typical training
process consists of two distinct steps. In the initial step, unsuper-
vised learning is employed, often utilising the K-means algorithm, to
ascertain the critical parameters associated with the radial basis func-
tions. These parameters encompass the determination of the number
of hidden layers denoted as ‘K’ and the calculation of the spread
denoted as ¢. Subsequently, in the second step, a supervised approach
is implemented, focusing on the minimisation of modelling errors. This
stage is instrumental in learning the weights that connect the hidden
layers with the output layers. It is important to note that the neuron
functions within the output layer operate in a linear fashion.

In this study, we employ a three-layer RBF neural network to
construct surrogate models for various output functions. The RBFNN,

characterised by a Gaussian activation function, is mathematically
formulated as follows (Rubio-Solis and Panoutsos, 2015):

K J . )
f(x) = Za)i Z exp(—ﬁ ij —¢ Hz) + wy (@)
=1 =1

in this expression x is the input vector and f the output of the RBF
neural network. K is the number of hidden neurons and w; is the
output weight relating to the i’42 hidden neuron and the output neuron;
wy is the constant bias for the output layer; J denotes the number of
training data points; ¢; is the centre of the Gaussian function for the ith
hidden neuron; ¢ is the width parameter for each radial basis function;

2
”x =G ”2 is the Euclidean distance of an input vector to its RBF centre.

”xj—c,-|z=i\/(xn,j—c,-)2 @
n—1

In Eq. (2), the parameters ¢; and o representing the centre and
shared width of the Gaussian functions are established as initial con-
ditions using simulated training data before training the weights w; in
the RBF Neural Network. This initial phase involves grouping training
data into clusters, from which the values for ¢; and ¢ are determined
for each cluster / within the range of ‘i € (i, ..., K)’. It is worth noting
that the number of clusters equals the number of RBF functions. In the
context of this study, clustering and model training is performed using
the computational framework described in Rubio-Solis and Panoutsos
(2016) and Rubio-Solis et al. (2018).

2.3. Many-objective optimisation

This section outlines the Non-dominated Sorting Genetic Algorithm
III (NSGA-III), one of the most popular gradient-free multiobjective op-
timisation algorithms. The NSGA-III algorithm in our case study serves
as a key tool for conducting many-objective optimisation analyses,
which aligns with the requirements of the mefenamic acid case study
(many-objective, as opposed to multiobjective, refers to cases where
greater than three objectives need to addressed simultaneously). The
NSGA-III (Deb and Jain, 2014) algorithm follows a similar evolutionary
computation framework to that of NSGA-II, encompassing initialisation,
crossover, and mutation phases to generate an offspring population
from the existing population. Where it distinguishes itself from NSGA-
II is in the environmental selection process, as NSGA-III introduces
the utilisation of a predefined set of widely and uniformly distributed
reference points within the objective space. These reference points play
a pivotal role in the selection process, thus enhancing diversity among
the solutions.
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Fig. 4. A 2D schematic view shows the rotation of reference vectors by g, where the sum of included angles is minimised to attain the minimal sum of net avertence angles.

2.4. Optimisation performance evaluation

A shortfall of heuristic and meta-heuristic optimisation algorithms
is that while they can be very efficient and effective, understanding
their performance can pose a significant challenge. This is because
convergence analyses, and optimality guarantees cannot be derived in
a straightforward fashion, as in the case for gradient-based methods.
Therefore, there are numerous computational techniques developed for
the post-hoc analysis of the performance of such algorithms and the
quality of solutions (Riquelme et al., 2015). These techniques include
numerical metrics of performance, as well as visualisation methods.
Such methods are not trivial to develop, when considering the number
of dimensions involved (e.g. visualisation of solution grouping in n
dimensions, when n is high (which is the case for many-objective
optimisation).

Hypervolume

Hypervolume (HV) (Zitzler and Thiele, 1999) serves as a metric
for quantifying the volume within the objective space defined by the
candidate solutions to a reference point. Typically, the Nadir point
is selected as the reference, which is determined by combining the
worst values across all objective functions present within the Pareto
front. In the context of this metric, a higher value is indicative of
a more desirable outcome (higher coverage of the solution space).
While simple, this is one of the most commonly used measures of
performance.

Inverse Ratio of Net Avertence angle

The inverse Ratio of Net Avertence angle (IRNA) (Wu and Panout-
sos, 2021a) is classified as a unary diversity metric. The construction
of this metric involves the use of reference vectors, with the aim
of minimising the sum of the included angles. This minimisation is
accomplished by systematically rotating the reference vector system in
all dimensions, optimising the spatial angle for each rotation, which
is shown in Fig. 4. This process removes possible systematic bias in
assessing solutions, giving the solution set the highest possible diversity
score. The process of evaluating diversity involves first identifying
candidate solutions within an approximation set.

2.5. Visualisation methods

Visualisation methods (Filipi¢ and Tusar, 2018), typically aim to
provide an effective visual method for portraying solutions - the Pareto
front — in multiple dimensions.

2.5.1. ProD
ProD (Projections on Reference Vector versus Distances) method,

as described in Wu and Panoutsos (2021b), is designed to present
Pareto front (PF) approximations through a combination of projections
(Pro) onto reference vectors and distances (D) to those same reference
vectors. In this context, a vector connects a nominal Ideal point and a
nominal Nadir point based on the available non-dominated PF approx-
imations. Fig. 5 shows a schematic view of the principle of ProD. The
projection r is given as:
L RV

|RV|
in which m is the number of objective functions, and RV is the reference
vector that is defined as:

r = f s ful 3

RV =Fy-F 4

in which Fy is the vector of the nadir point and F; is the vector of the
ideal point. The ideal point is an auxiliary point with the least values of
each objective function among PF approximations as coordinates, while
the nadir point, on the contrary, consists of coordinates of the largest
of each objective.

The following expression represents the distance to the reference
vector:

rl:sine*\/m )

where angle 6 between the vector of candidate solution and reference
vector is calculated by

1 [f1s fases fm]l * RV

AP+ 2+ + [ |RV]

ProD possesses a number of preferred properties of a visualisation
method, i.e., display dominance relation, PF shape, objective range,
PF distribution, robustness, handling large sets, handling multiple sets,
scalability, simplicity, and uniqueness.

(6)

6 = cos™

2.5.2. Parallel coordinates

Parallel Coordinates (Inselberg, 2009) is a visualisation method
that projects high-dimensional vectors onto a two-dimensional space. It
achieves this by using m equally spaced parallel axes, where m corre-
sponds to the number of objective functions. Vectors are represented as
poly-lines, connecting points on each axis according to their component
values. This approach offers a simple, scalable solution for visualising
multi-dimensional data, with no loss of information during the mapping
process, however, it can be challenging to interpret for high complexity
problems.
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Fig. 6. The main portion of the mefenamic acid manufacturing process is shown, where the solid square boxes are the two major processing steps decision-makers are interested

in optimisation.

3. Mefenamic acid production

Mefenamic acid, a commonly used non-steroidal anti-inflammatory
drug for alleviating moderate pain, is the focus of this study. This en-
tails the wet milling and crystallisation of mefenamic acid, as illustrated
in Fig. 6(a).

The process commences with the wet milling of raw material, in
the form of a seed, to obtain a specific particle size. Subsequently, the
concentrated slurry derived from the wet milling step undergoes further
processing. This involves dilution, achieved by blending the slurry with
known compositions to attain a specified concentration, within the
framework of mixed-suspension mixed-product removal (MSMPR) as
illustrated in Fig. 6(b).

The continuous crystallisation test bed is employed to crystallise
various active pharmaceutical ingredients (APIs) as a pivotal aspect of
the manufacturing process.

Fig. 6(b) illustrates the specific segment of the mefenamic acid
manufacturing process that serves as the primary focus of this study.
Within this context, the primary objective of the decision-makers is to
identify and optimise the operational conditions specifically related to
the wet milling process and the crystallisation (MSMPR) that maximise
a number of production/product objectives.

3.1. Decision variables, objective functions and constraints

Fig. 6(b) demonstrates the presence of four key outputs as of interest
in our case study, as outlined in Table 1. This table also provides a
comprehensive list of the inputs that play a pivotal role in the wet
milling and crystallisation processes.

In Table 1, we present the primary outputs prioritised by decision-
makers and their corresponding input parameters.
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Table 1
List of inputs and output for the mefenamic process.

Inputs Description

- Amount of acid added to the Feed.

- Pump flow rate in Feed.

- Amount of acid added to the Seed.

- Pump flow rate in the Seed.

- Rotating speed of the wet mill.

- Temperature in 5 vessels during the
continuous manufacturing process

- Speed of stirring in 5-stage MSMPR

- Mefenamic acid (Feed) (x,)

- Pump flow rate (Feed) (x,)

- Mefenamic acid (Seed) (x;)

- Pump flow rate (Seed) (x,)

- Wet mill speed (x5)

- MSMPR vessel temperature
(Xg> X7, Xg5 X9, X10)

- Stirring rate for all stages (x,,)

Outputs
- MSMPR_5_.D90 (f,)

- A size metric which represents the
particle size 90% of particles are
smaller than.

- The width of the particle size
distribution.

- Percentage of the input mefenamic
acid produced as solid crystals.

- Span (f,)
- Solid recovered (f3)

- The flow rate of mefenamic acid as
solid crystals at steady state.

- MSMPR_5_Solid_g h (f,)

Table 2

Number of solutions generated and max. number of iterations.
Number of objectives 4
Number of decision variables 11
Number of repeated tests 24
Number of optimised solutions 4,000

Maximum number of evaluations 100,000

Table 3
The linear correlation coefficients between the inputs and the outputs for the mefenamic
acid case study.

fi S f3 fa
X, 0.011 -0.071 0.131 ~0.016
x, 0.216 0.083 -0.037 1
x5 —0.469 0.166 0.276 0
X —0.288 0.312 ~0.162 0
x5 ~0.592 0.009 0.004 0
X6 ~0.22 ~0.302 ~0.157 0
X, ~0.326 -0.523 -0.288 0
g ~0.236 -0.423 ~0.354 0
X, —0.184 ~0.349 ~0.468 0
X10 —0.071 ~0.027 ~0.887 0
X1 ~0.151 -0.081 0.029 0

4. Data acquisition, surrogate modelling and parameter settings
for optimisation

This section encompasses the data acquisition, including the
methodology for sampling the synthetic experimental data, and the
analysis of the dependencies between the input variables and output
functions (feature selection), towards the selection of the inputs for
the surrogate model and the subsequent process optimisation (see
Table 2).

4.1. Simulations and data sampling

A full factorial (symmetric design of experiments) high-fidelity sim-
ulation is run, yielding 100,000 samples. A smaller set, consisting of
4000 samples is randomly chosen, for the purpose of training the
surrogate model. 50% of the samples are selected randomly for the
surrogate model training and the rest 50% samples are used as the
hold-out set for the purpose of model cross-validation. This process is
repeated several times (24) to help establishing statistical measures of
robustness for the model training.

European Journal of Pharmaceutical Sciences 210 (2025) 107102

4.2. Feature selection

In our study, the inclusion of an input variable in the formulation
of a surrogate model for the output is confirmed based on its linear
correlation coefficient with the output variable, relying on the assump-
tion that the input-output relationships resemble linear behaviours; the
Pearson correlation coefficient is used for this purpose.

Table 3 presents the correlation coefficients between the inputs and
outputs. As an initial criterion, we employ a threshold of +0.1 to assess
the level of correlation between variables. Inputs that exhibit correla-
tions meeting or exceeding this threshold are considered for inclusion
in the surrogate modelling of the target functions. To account for strong
nonlinear input-output relationships (Pearson correlation coefficient
may fail to identify these), a wrapper feature selection approach (Jovic
et al.,, 2015) is used, whereby the Machine Learning model itself is
used to interrogate the relevance of the inputs. The details of these
dependencies are outlined in Table 3.

The correlated inputs and outputs are:

J1(xa, %3, X4, X5, X6, X7, X3, X9, X1 1)

f2(x3, x4, X5, X6, X7, X3, X9)

S3(x1, X9, X3, X4, X5, X5 X7, X3, X9, X105 X11)

Ja(x2)

Note: x5 is found to be important for f, in the later modelling work.

4.3. Surrogate model structure and training

In the context of the RBFNN model structure, there is one tunable
(learnable) hyperparameter, relating to the number of neurons in the
hidden layer—denoted as M. Furthermore, there are two additional
hyperparameters relating to the RBF activation functions; these are
the widths and centres of the radial basis functions, represented as o
and c; these are vectors with the same dimension as the input layer
(one width and one centre for each input feature). To start the model
training process, M, ¢ and c¢ are established via data clustering. o
and c are further tuned, as part of the main model training part (also
referred to in the literature as parametric model optimisation). The loss
function in the Machine Learning framework is the Root Mean Square
Error, using the error calculation between the model predicted and
actual (simulated in our case) outputs. For model validation purposes,
other statistical measures are used too, to ensure good model training
and avoidance of overfitting; R?> as well as Mean Absolute Error are
used in the cross-validation process. Cross-validation includes holding
out of the training process a portion of the data, and monitoring the
performance in the hold-out sample set. Model training results are
shown in Section 5.1.

4.4. Many-objective process optimisation framework

The MaOP algorithm used in this work is NSGA-III (Deb and Jain,
2014). The aim is to identify a Pareto Front which includes all non-
dominated solutions for the optimisation task. The specific algorithm
in our work is adopted from PlatEMO (Tian et al., 2017) with some
modifications. NSGA-III can be used to solve many-objective optimisa-
tion problems, as in the mefenamic acid case study (a four-objective
function optimisation problem). The quality metrics described in Sec-
tion 2.4, Hypervolume (HV) and Inverse Ratio of Net Avertence Angle
(IRNA), are utilised to support the analyses of the optimisation results.

The optimisation algorithm was set up as shown in Table 3; for the
rest of the parameters set in the algorithm default values were used as
in PlatEMO version 4.2 (Tian et al., 2017).

Box constraints were established, i.e., minimum and maximum
allowed values for the inputs and outputs; these are listed in Table 4.
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Table 4 Table 6

The box constraints of the inputs and the outputs for the mefenamic acid. RMSE, MAE and R? for the objective function of the mefenamic acid case study.
Input/constraints Max Min Interval b fr f3 n
Mefenamic acid (Feed, x;) 45 35 1 RMSE 0.0214 0.0184 0.0241 0.0066
Pump flow rate (Feed, x,) 20 10 1 MAE 0.0167 0.0129 0.0182 0.0052
Mefenamic acid (Seed, x;) 6 2 0.1 RrR? 0.9696 0.9405 0.9820 0.9997
Pump flow rate (Seed, x,) 1.5 0.5 0.1
Wet mill speed (xs) 11,000 5,500 100
MSMPR vessel 1 temperature (x4) 55 35 1
x:xii Vesse: i :emperaium EX7; 23 23 1 are generally within 3% compared to the targeted values from that

vesse emperature (xg . . 2 .

MSMPR vessel 4 temperature (x,) 45 25 1 predicted by gPROMS, w.hlle R va.lues are generally higher than 0.94.
MSMPR vessel 5 temperature (x,y) 35 15 1 The model performance is thus satisfactory.
Stirring rate for all stages (x;;) 600 200 1
Output/constraints Max Min Goal 5.2. Pareto front in parallel coordinates
MSMPR_5_D90 (f,) 326 10 =120
Span (f,) 2.1 0.285 Minimise It is challenging to visualise the Pareto Front for more than three
Solid recovered (f3) 56 (%) 27(%) Maximise objectives (dimensions). Possible methods that can be used are parallel
MSMPR 5 Solid g h (/,) 19.3 9.55 Maximise coordinates and ProD. Fig. 8 displays the Pareto front of the mefenamic

Table 5
Hidden layer structure for each objective function.

Objective function Number of neurons, M

i 400
f> 800
f3 300
fa 8

5. Results

In this section, we present the outcomes of the surrogate modelling
and optimisation results. These results are conveyed through various
forms, including model fitness plots, Pareto Fronts plots shown in both
the objective space and the decision space, as scatter plots, parallel
coordinates plots, and Prod plots. Furthermore, we numerically assess
the coverage of the Pareto Front approximations within the objective
space, using HV and IRNA.

5.1. RBFNN surrogate model training results

The structural optimisation of the hidden layer, as described in
Section 2.2, yields a number of hidden neurons, M, that is different
for each objective function (output); this is shown in Table 5. For the
parametric optimisation of the surrogate model (model training) the
two hyperparameters of the RBFNN, o, and ¢ are learned from the data
using back-propagation. The cross-validation process, helps establish-
ing hyperparameters while at the same time avoiding overfitting. This
is achieved by monitoring the performance on the hold-out dataset,
and selecting a model that offers a balanced performance between
training and validation. For example, evidence of overfitting, would be
a very good training performance with a poor validation performance
(i.e. poor generalisation). The measures of model performance (accu-
racy) in terms of RMSE, MAE and R? are calculated for both the training
and validation data to enable comparisons and analyses.

To assess the efficacy of the modelling, we compare between the
simulated outputs and the predicted ones. These are outlined in Fig. 7,
which includes fitness plots for both training and validation sets.

From visual observation (which is later on confirmed numerically,
see Table 6) there overall fit appears to be satisfactory and there is
no evidence of overfitting (significant differences between training and
validation). One can observe that the data for f, is very sparse com-
pared to the other objective functions and are locally concentrated. f,
is a much simpler objective compared to the other objective functions
and it also varies linearly with x,.

The root mean square error (RMSE), the mean absolute error (MAE)
and R? for the surrogate models are calculated and shown in Table
6. The RMSE and MAE values of the modelled objective functions

acid optimisation study, depicted in parallel coordinates. All the objec-
tive functions have been displayed with non-normalised and normalised
values, which, in this case, use their respective upper- and lower-level
limits so that the terms are displayed in their relative amounts (a
quantity varies between 0 and 1).

All four objective functions are conflicting; see Figs. 8(a) and 8(b).
The objective functions of the MSMPR_5 D90 (f;), the Span (f,, min-
imised) and the Solid Recovered (f;, maximised) vary moderately
under optimised operational conditions. The MSMPR_5_solid_g_h (f,)
changes significantly. It is recommended to the decision-makers that
the balanced operational parameters of the MSMPR_5.D90 (f,), the
Span (f,, minimised) and the Solid Recovered (3, maximised) should
be chosen since the choice will, to a limited degree, influence the
performance of MSMPR 5 solid_g h (F4). The selected alternatives of
sets of operational parameters should be verified with the high-fidelity
model.

All the optimised solutions are good choices under specific situations.
Prioritising f, will decrease the quality of the drug and increase the ma-
terial waste. The decision-maker should only prioritise f, if maximising
production is overwhelmingly more important than other factors.

5.3. Pareto front in ProD plots

As before, before plotting in ProD, the objective functions have been
normalised with their respective lower and upper limits. Fig. 9 displays
the PF approximations of the mefenamic acid optimisation study in the
ProD plot. The PF approximations are represented by the red dots. At
the same time, the simulated outputs are shown in blue dots. It clearly
shows that the PF approximations are located nearer to the origin
than the simulated outputs, which means that the PF approximations
represent better solutions compared to the simulated outputs.

Comparing the optimality of the PF approximations versus the
simulated data, the two data sets are subject to non-dominated sorting
operations. The result is displayed in Fig. 10. It shows that only a
few of the simulated outputs survived the evolutionary optimisation
process, indicating that the optimisation process has been successfully
conducted. Still, none of the simulated output should ideally survive
after such a non-dominated sorting manoeuvre. When it does, it usually
indicates that the PF approximations have not been found in certain
areas in the objective space.

5.4. Pareto optimal sets (results in decision space) in parallel coordinates

The optimal solutions in the decision space (optimal solution set)
are displayed in parallel coordinates in Fig. 11(a), together with the
simulated input data in Fig. 11(b). The simulated input data shows a
regular pattern since a full factorial design has been adopted in the
simulations. The optimal solution set data have been normalised. Dif-
ferent decision variables have unique characteristics. Some are densely
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Fig. 7. Comparisons between the simulated and estimated objective function values. The solid line represents an exact match between the simulated and estimated output.

08

7|

0.6

04

0.2

300

250

N
8
8

150

simulated outputs

2
5

50

0 50 100 150 200 250 300 350
estimated outputs

(a) The comparison between the simulated and
predicted values of fi.

50

simulated outputs

30

25 3‘0 3‘5 A‘O 4‘5 5‘0 5‘5 6‘0
estimated outputs

(¢) The Comparison between the simulated and

estimated function values of f3

function value

nth objective

(a) Unnormalised

European Journal of Pharmaceutical Sciences 210 (2025) 107102

>

simulated outputs
®

0 05 1 15 2 25
estimated outputs

(b) The Comparison between the simulated and
estimated function values of fo

20

simulated outputs
=

N

8 1‘0 1‘2 1‘4 1‘6 1‘5 2‘0
estimated outputs

(d) The Comparison between the simulated and

estimated function values of fi

function value

nth objective

(b) Normalised

Fig. 8. The Pareto front of the mefenamic acid process: (a) Unnormalised and (b) normalised.

*  simulated outputs
- PF approximations

0.2 0.4 0.6 0.8 1
T

Fig. 9. The Pareto front of the mefenamic acid optimisation study in the ProD plot.

ProD Plot
1.1
+  simulated outputs .
1 - PF approximations - }
0.9
0.8
o7
0.6
0.5
0.4
0.3
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

TL

Fig. 10. The PF approximations and the non-dominated portion of simulated output.

0.9



K.E. Wu et al.

decision value

nth decision

(a) The Pareto optimal sets

European Journal of Pharmaceutical Sciences 210 (2025) 107102

il
/ S'.W‘

decision value

nth decision

(b) The input data

Fig. 11. The Pareto optimal sets of the Mefenamic acid Case and compared with the raw input data.

(a) Pareto optimal sets

35

T oee W, - © PF optimal set
3 i simulated input

(b) Pareto optimal sets and the simulated input

Fig. 12. The Pareto optimal sets (decision variables at optimised operational conditions) of the Mefenamic acid Case after an optimisation analysis (a) and compared with the

raw input data (b).

1
1
1 o® © NZ
rII(Z) ——————— T . oo g - ion of th
N, eiee (1,1 ° Average position of the
° : . : ’ original data (1)
@ ° (]
LI =@t esssoEEsEn : “““ Average position of the
®e 1) 1) |
hawgiivnl i optimised data/PF (2)
1 |
: : N, the amount of data of group 1
' L
rl(l) T'JEZ) L N, the amount of data of group 2

Fig. 13. The schematic view of evaluating the efficiency of an optimisation outcome.

populated (x;, x5, x4, Xg, X7, Xg, X1o) and extend to the whole scale. It
is easier to select an optimal solution set for those decision variables.
Others occupy partially (x3, x5, xg, x;;) the range. The final choice of
optimal process parameters should be made in areas where the solu-
tions are densely populated. The solutions are more robust, meaning
that any small fluctuations around the quantities would not jeopardise
the optimality of the operations.

5.5. Pareto optimal sets (results in decision space) in ProD

The corresponding decision variable values at optimised operational
conditions are displayed in a ProD plot in Fig. 12. Fig. 12(a) shows
Pareto optimal sets (red dots). In contrast, they are plotted together
with the simulated input data in Fig. 12(b), where the relative locations
of the simulated inputs versus the Pareto optimal sets are indicated.

The optimal solutions in the decision space are relatively densely
populated in a cluster, making choosing an ideal operational condition

10

easier. A good choice might be the centre region of this cluster, pro-
viding a robust solution. Any minor discrepancies or changes in the
operational parameters would not stop the system from running under
optimal conditions.

5.6. Quality of Pareto front

The evaluation of the quality of Pareto Front approximations re-
volves around two essential aspects. Firstly, we assess how closely these
approximations align with the true Pareto Front, a criterion referred to
as convergence. This is not possible here, as the true Pareto Front is
not known. Secondly, we gauge the extent to which the Pareto Front is
covered within the objective space, a measure termed diversity.

As the true Pareto Front is not known, to promote convergence,
this study employs a rigorous approach involving multiple independent
optimisation runs, totalling 24 runs. From these runs, the Pareto Front
approximations are collected and subjected to non-dominated sorting,
culminating in the formation of the final Pareto Front. This avoids
outlier runs where the algorithm fails to converge, and convergence is
poor.

Diversity is evaluated using numeric performance indicators, no-
tably the Hyper Volume (HV) (Shang et al., 2021) and the Inverse
Ratio of Net Avertence angle (IRNA) (Wu and Panoutsos, 2021a). These
metrics provide insights into the distribution and coverage of the Pareto
Front within the objective space. You can refer to Table 7 for specific
HV and IRNA values associated with the Pareto Front approximations.

The maximum achievable values for both HV and IRNA metrics are
1.0. A HV value of 0.6732 indicates relatively low diversity, and the
same holds true for an IRNA value of 0.1303. Notably, HV is nonlinear
as a diversity metric, meaning that its value varies nonlinearly with
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Fig. 14. Cardinality distributions of PF optimal sets.

Table 7
The HV and IRNA values of the PF approximations and the
simulated data.

The simulated data

0.3412
0.0033

PF approximations

0.6732
0.1303

HV
IRNA

increasing diversity. Consequently, it can be challenging to assess the
coverage of the Pareto front in the objective space using HV alone.

However, IRNA serves as a linear diversity metric, and its value
increases linearly with expanding Pareto front coverage. An IRNA value
of 0.1303 signifies that the obtained Pareto front approximation encom-
passes only around 13% of the entire four-dimensional objective space.
This limited coverage may have two possible explanations. Firstly,
there could be additional Pareto front approximations that the optimi-
sation process failed to discover. Secondly, it is possible that most of
the undetected Pareto front approximations have been dominated by
the existing ones.

Table 7 also presents the HV and IRNA values for the simulated
data, which demonstrate significantly lower optimisation performance

11

values. These values underscore the limited coverage of the simulated
data within the objective space, forming the foundation for surrogate
modelling. Investigating the impact of this sparse coverage of simulated
data on the accuracy of surrogate models could be an interesting subject
for future research.

5.7. Evaluation of the effect of optimisation - ProD

The vertical axis of ProD, see for instance Fig. 12, indicates the
convergence of the optimisation, i.e., how far the optimisation process
has reached. The effect of the optimisation process can thus be assessed
by comparing the averaged r value of the obtained PF with that of the
raw data; this principle is shown in Fig. 13.

The efficiency in an optimisation outcome or improvement in con-
vergence (IC) compared with the simulated data before optimisation:

L2 _ 0
e TN _074-047 _ o -
D 0.47
N (D) N
where: 0 = Z=10 = 047 40 = 22l 74
=T AT :
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Fig. 15. The recommended chosen solutions for further experimental testing.

Table 8
The chosen decision/objective function values obtained for further testing while x,=20
x3=6 x5=11000 x,=55 x3=50 x,,=600 are common.

Solution No.  x, Xy X6 Xy xip N S f3 fa

1 35 0.75 35 25 25 111 0.813 44.4 19.2
2 45 0.75 35 25 25 111 0.997 47.2 19.2
3 35 1.50 35 25 25 64 0.529 43.8 19.2
4 35 0.75 39 45 25 120 1.171 42.4 19.2
5 45 0.75 39 45 25 120 1.392 47.2 19.2
6 35 0.75 35 25 35 111 0.535 38.1 19.2
7 45 0.75 35 25 35 111 0.748 42.4 19.2
8 35 1.50 35 25 35 63 0.185 37.4 19.2
9 45 1.50 35 25 35 63 0.353 41.0 19.2
10 45 1.50 39 25 35 57 0.373 41.0 19.2
11 35 0.75 39 45 35 120 1.144 35.1 19.2

5.8. Choice of solutions for further experimental testing

After determining the PF optimal sets, their cardinality distributions
are calculated and arranged by dividing an input variable into 20 equal
parts and counting the number of solutions that occurred in each part.
(A similar technique to Kernel Density Estimation (KDE)). The result
of totalling 11 scatter plots is depicted in Fig. 14. Then, the most
frequent occurring decision variable values are identified and marked
in red circles. By randomly combining these solutions, 64 potentially PF
optimal sets are identified. They are then used in the surrogate models
yielding multiple objective function sets. The final optimal solutions
are found using non-dominant sorting on these sets with all previously
found PF approximations. The outcomes are plotted in ProD in Fig.
15. Here, the red dots signify the 64 generated solutions, and the
green dots show the targeting PF solutions among them, while the blue
dots indicate the PF solutions from previous optimisation efforts. The
corresponding PF optimal sets (corresponding to the green dots) are
listed in Table 8 and can be targeted in a new experimental campaign.

6. Summary and conclusions

This study focuses on the process optimisation of mefenamic acid
production based on simulated data from a high-fidelity model,
gPROMS software. For the first time, a many-objective framework is
considered, and to enable this a computationally fast surrogate model
of the process has been developed with via the use of Machine Learning.
The following conclusions are made based on the analysis performed:
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Using the process simulations via high-fidelity models (gPROMS)
and simpler surrogate models based on Machine Learning to
estimate the functional relationships of wet milling and MSMPR
processes is feasible for process optimisation purposes;

The Radial Basis Function Neural Network is an effective and
modelling tool for the current study, for regression—this is used
to establish a number of surrogate models of high accuracy in
terms of low root mean square error, mean absolute error, and
R? value.

The model parameters are found at which the differences between
modelling errors (RM SE, M AE or R?) of training and validation
offer a good balance, hence no overfitting and good generalisation
properties.

A clear Pareto Front surface is obtained. The corresponding de-
cision variables under optimal conditions are located in clus-
ters, making choosing the optimal operational conditions more
accessible.

The current approach identifies the critical factors in the continu-
ous manufacturing process of mefenamic acids, in the form of raw
material properties and production governing parameters, that
influence the efficiency of production and product quality. Within
this paradigm, the input determinants (independent variables)
define the process outcomes (dependent variables) in functional
terms. A systematic methodology is developed that incorporates
analytical and risk-management considerations during the drug
design, development, and manufacturing phases.
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