Chemical Engineering Journal Advances 23 (2025) 100775

Contents lists available at ScienceDirect

CHEMICAL
ENGINEERING
JOURNAL

nces

Chemical Engineering Journal Advances

journal homepage: www.sciencedirect.com/journal/chemical-engineering-journal-advances

L))

Check for

Hybridised mechanistic and machine learning digital twins for modelling | e
and optimising chemical processes in flow: A comparative analysis of parallel
and series-based hybridisation

Nur Aliya Nasruddin *®-*, Nazrul Islam ", Sergio Vernuccio “*?, John Oyekan >?

aSchool of Electrical and Electronic Engineering, The University of Sheffield, S13JD, Sheffield, United Kingdom
b Department of Computer Science, University of York, YO10 5GH, York, United Kingdom
¢ School of Chemistry and Chemical Engineering, University of Southampton, SO17 1BJ, Southampton, United Kingdom

ARTICLE INFO ABSTRACT

Keywords: In the field of chemical engineering, accurate prediction of reaction kinetics and concentration profiles is
Digital twin critical for the design and optimisation of industrial processes. However, achieving accurate predictions under
Gene.tic AlgoriFhm variable or limited data conditions remains a major challenge. Despite the growing interest in hybrid models,
;ﬁ;ﬁz’;‘:ﬂ;‘g a systematic comparison of parallel and series-based hybridisation strategies using empirical flow reactor
Optimisation g data for digital twin applications has not yet been established. Here we show that PINN architecture can

Physics-Informed Neural Network accurately predict concentration profiles and estimate reaction rate constants under both data-rich and data-

Plug flow reactor
Reaction kinetics
Smooth particle hydrodynamics

scarce conditions, while the SPH+GA framework enhances spatial simulation fidelity and enables system-level
optimisation through particle-based modelling. The same PINN architecture can be effectively applied in both
forward and inverse modes, accurately predicting concentration profiles and estimating reaction rate constants

with errors under 2%, even in data-scarce conditions. The SPH+GA framework enables detailed particle-level
simulation and global optimisation, offering insight into spatial dynamics and reactor mixing. This series hybrid
model achieved an R? up to 0.91 and enabled flexible system tuning. These results underscore the broader
value of hybrid mechanistic-machine learning frameworks, particularly for process environments with limited
or noisy data. Our findings highlight that while PINNs offer high predictive accuracy and lower computational
cost, SPH+GA excels in resolving spatial dynamics and supporting system characterisation. These parallel and
series hybrid strategies demonstrate complementary strengths for building robust digital twins of chemical

processes.
1. Introduction Machine Learning (SciML), an emerging paradigm that combines phys-
ical principles with data-driven learning [6-8]. These methods, trained

Machine learning methodologies have shown a strong capability on both experimental and numerical data, demonstrate significant po-

in interpreting complex data representations and modelling physical tential for optimising complex industrial processes. One particular ap-
processes, offering potential solutions to challenging open problems in proach, which has been receiving significant attention in the scientific
chemical reaction systems [1-3]. For example, machine learning (ML) community, is the Physics-Informed Neural Network (PINN) method.

models can enhance the accuracy of estimating chemical reaction rates,
leading to more precise predictions and insights into reaction dynam-
ics [4,5]. These data-driven approaches can infer underlying patterns
from experimental or simulated datasets, enabling accurate estimations
of reaction rates and concentration profiles. However, traditional ML
models are often constrained by their dependence on large volumes
of high-quality data. Their performance typically deteriorates when
extrapolating beyond the training domain, which limits their reliability
in data-sparse or physically complex environments. In order to address
these challenges, the field has seen a growing interest in Scientific

This approach combines knowledge from first-principles models with
measurement data from a physical system and has been successful in
solving systems of ordinary and partial differential equations (ODEs
and PDEs), such as the Schrodinger [9], Allen—-Cahn [10], Navier—
Stokes [11,12], coupled Navier-Stokes and heat transfer equations [13]
as well as forward and inverse problems involving nonlinear PDEs [14].
Some examples of PINNs applications include modelling CO, capture
processes in solid sorbents [15], modelling isothermal fixed-bed re-
actors for catalytic CO, methanation by integrating reaction kinetics
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Nomenclature

At Time step (s)

r,T; Position vectors of particles i and j (m)

; Acceleration of particle i (m/s?)

g Acceleration due to gravity (m/s%)

k Reaction rate constants (M~!s™1)

ky Reaction rate constants for Model 1
M-'s7h

ky, ks Reaction rate constants for Model 2
M™M-1s™h

my, m; Mass of particles i and j (kg)

r Reaction rate term for species i

v, U; Velocity of particles i and j (m/s)

wy, Weight for boundary condition loss

wy Weight for ODE residual loss

w; Weight for initial condition loss

Wobs Weight for observational data loss

X, t Spatial and temporal coordinates

Greek Symbols

a Reaction distance in SPH modelling

€ Heat transfer coefficient constant

A Thermal conductivity (W/m K)

A Unknown physical parameters (inverse
mode)

B Boundary condition operator

F Differential operator of the system

A Initial condition operator

" Dynamic viscosity (Pa s)

v Kinematic viscosity (m2/s)

p) Fluid density (kg/m?)

T Residence time in the reactor (s or min)

0 Neural Network trainable parameters
(weights and biases)

¢ Scaling factor for system characterisation

h Smoothing length in SPH (m)

w SPH kernel function

Roman Symbols

A, B Chemical species A and B

AD Automatic differentiation

C,D Chemical species C and D

C4.Cy Concentration of species A and B (mol/L)
Cc.Cp Concentration of species C and D (mol/L)
Co Initial concentration of reactants A (mol/L)
Cpo Initial concentration of reactants B (mol/L)
FFNN Feed-Forward Neural Network

Lpc Loss terms for boundary conditions

Lic Loss terms for initial conditions

and physical laws governing the methanation process [16], and solving
stiff chemical kinetic problems by incorporating the quasi-steady-state
assumption [17]. Additionally, PINNs have been used to predict func-
tional parameters in sulfur-driven autotrophic denitrification processes
leading to improved predictions under varying conditions [18]. Simi-
larly, PINN have been applied in hydrodynamic voltammetry to analyse
transport-limited currents and kinetically controlled processes with
analytical expressions while adhering to physical laws [19]. PINNs also

Lops Loss terms for data observations

Lopg Loss terms for ODEs

Liotal Total loss terms

N, Training points for boundary conditions

N, Collocation points for the differential equa-
tion

N; Training points for initial conditions

Nops Observational data points

ODE Ordinary Differential Equations

P Pressure (Pa)

PDE Partial Differential Equations

PINN Physics-Informed Neural Networks

Q Volumetric flow rate (mL/s)

R? Coefficient of determination

RMSE Root Mean Square Error

SPH Smoothed Particle Hydrodynamics

T Temperature (°C)

V Reactor volume (mL)

have been applied to Population Balance Model (PBM) equation for par-
ticle aggregation and breakage [20] and convection—diffusion-reaction
equations for reacting flows [21]. By overcoming the limitations of
traditional numerical methods, particularly their reliance on mesh
generation, PINNs offer a mesh-free framework and broad applicability
across various governing equations enhancing both simulation accuracy
and computational efficiency. In the context of digital twin applications
for chemical processes, PINNs have been increasingly used to enhance
simulation and prediction capabilities of chemical engineering. For
example, Tang et al. highlighted the potential of PINNs for real-time
digital twin simulations of chromatography processes [22]. In their
study, the authors optimised the structure, training data, and complex-
ity of PINNs tailored to the lumped kinetic model for chromatography,
demonstrating their ability to simulate breakthrough curves quickly
and accurately under various conditions. This approach offers a faster
and more efficient alternative to traditional numerical methods. Bibeau
et al. used PINNs to predict reaction kinetics for biodiesel produc-
tion in microwave reactors, effectively creating a digital twin of the
microwave-assisted reaction [23]. By performing regression on ex-
perimental data, the authors aligned the physics of the process with
rate constants and temperature dependencies, enabling extrapolation to
different power inputs. This digital twin approach aids in the design,
optimisation, and control of microwave reactors for biodiesel produc-
tion, providing a compact and efficient solution for kinetic modelling.
Lastly, PINNs were applied to create a digital twin for monitoring a
nuclear reactor by solving point kinetic equations (PKEs). The study
demonstrated the feasibility of using PINNs for nuclear reactor moni-
toring, showing their effectiveness in predicting reactor behaviour both
within and outside the range of available data [24]. Since a digital
twin is a virtual model that replicates and simulates the behaviour
of a physical system, there are many ways of achieving this (See Fig.
1). For example, some digital twin leverage mathematical models to
describe the dynamic behaviour of a system thereby enabling precise
predictions of how the system will respond to varying conditions over
time [25]. This dynamic modelling is particularly valuable for complex
chemical systems where understanding and predicting interactions are
essential for optimising performance. In addition to dynamic modelling,
digital twin can also provide vivid visual representation of the processes
occurring in a physical system under study [26,27]. Smoothed Particle
Hydrodynamics (SPH) and Computational Fluid Dynamics (CFD) stand
out from among the various modelling techniques that provide digital
twin with such visual representation. CFD has traditionally played a
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Fig. 1. Various modelling techniques with their level of fidelity, execution time and
compute resources required. The size of the ovals indicate the level of compute
resources required.

central role in representing the behaviour of physical systems, par-
ticularly in fluid dynamics [28,29]. Through the use of meshes, CFD
divides the simulated physical system into discrete grids within which
the behaviour of the physical system is calculated and predicted while
taking into consideration the global behaviour of the system and the
links between the discrete grids. As a result, mesh-based CFD methods
offer powerful capabilities but become computationally expensive and
complex when dealing with highly dynamic physical systems or irregu-
lar geometries. In this regard, Smoothed Particle Hydrodynamics (SPH)
contributes significantly by simulating fluid dynamics at a granular
level while providing visually the complex interactions within the
system, such as mixing, reaction kinetics as well as flow behaviour at
a high fidelity and accuracy as CFD [30]. This simulation capability is
crucial for understanding phenomena that are difficult to capture with
traditional modelling techniques alone. As a first-principles dynamic
modelling technique, SPH has been used for simulating the impact of
fluid dynamics on various physical systems. This includes the mod-
elling of turbulent diffusion in anaerobic digestion [31,32], chemical
reactions [33], star formations [34] and slurry mixing [35]. In fluid-
structure interaction simulations, SPH has been applied to capture the
behaviour of reacting flows, such as combustion processes [36]. How-
ever, its use in simulating chemical reactions is not as wide spread when
compared to dedicated techniques like molecular dynamics or quantum
chemistry simulations. In [31], Yan et al. applied SPH to investigate the
impact of turbulent diffusion on mixing processes within biochemical
reaction models while focusing on anaerobic digestion. That study
extended the SPH derived Coupled Hydrodynamics and Anaerobic
Digestion (CHAD) codebase to incorporate turbulent diffusion and val-
idated it against OpenFOAM (CFD derived software) simulations. Their
approach adapted SPH to overcome challenges in multi-dimensional
flows and heat release in reacting flows. The technique underscored
the advantages of Lagrangian methods in convection-dominated flows,
offering a novel perspective on direct simulation of chemical reactions
within the SPH framework. However, according to our current knowl-
edge, no approach in literature has integrated or hybridised SPH with
ML techniques for flow chemistry.

On the other hand, in line with recent developments, Zhu et al.
integrated ML with CFD in [37] for ML-assisted sub-grid models for
gas—solid flows. In particular, they used artificial neural networks
and gradient boosting techniques trained on high-fidelity CFD-DEM
datasets [37]. Their approach significantly improved the accuracy of
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coarse-grid simulations in fluidised beds by embedding data-driven
corrections into traditional two-fluid models. Building on this founda-
tion, Zhu et al. provided a comprehensive review of ML applications
in hydrodynamics, transport phenomena, and reaction modelling in
multiphase systems [38]. Their review highlighted data scarcity as
one of the key challenges when applying machine learning (ML) to
multiphase flow and reactor systems. This is because ML models typ-
ically require large, consistent, and high-quality datasets to perform
effectively. As a result, Physics-Informed Neural Networks (PINNs) rep-
resents a promising solution to address this issue. This is because unlike
conventional ML models that rely purely on data, PINNs incorporate
physical laws directly into the learning process. This integration enables
them to deliver accurate predictions even with limited data, making
them particularly well-suited for addressing data-scarce challenges in
chemical engineering. The review by Zhu et al. also outlined several
promising future directions including advancing physics-informed ML
methods, developing automated toolkits and robotic platforms for flow
optimisation, using ML to accelerate computational simulations, as
well as creating dynamic digital twin platforms that integrate physical
experiments with virtual simulations for more efficient and intelli-
gent system design. As a result, the hybridisation of first-principles or
mechanistic modelling with ML offers a lot of unique advantages.

In this study, our aim is to investigate two different types of hybrid
modelling strategies for simulating and optimising chemical reactions
under flow conditions, using empirical reactor data. These strategies are
designed within the framework of digital twin for chemical processes
and combine physical modelling with data-driven learning. Our first
approach makes use of Physics-Informed Neural Networks (PINNs)
to address both forward and inverse kinetic problems using full and
reduced real flow-ramp experimental datasets from a flow reactor sys-
tem. A consistent PINN architecture and optimised network parameters
are applied across different operational regimes, including forward
modelling at 65 °C and inverse modelling at 75 °C, to assess the
model’s generalisation capability and potential for transfer learning.
Our second approach introduces a hybrid framework that coupled
physics-based simulation with data-driven optimisation by integrating
Smoothed Particle Hydrodynamics (SPH) with a Genetic Algorithm
(GA). In this setup, SPH simulates fluid and reactive behaviours at the
particle level, capturing detailed spatial dynamics, while GA performs
global optimisation by adjusting operational parameters based on SPH-
generated outputs. This chemically informed SPH+GA hybrid system
enables flexible exploration of design spaces and system performance
tuning, particularly in scenarios with limited experimental data. These
two methods are conceptualised within a hybrid modelling architecture
(see Figure Fig. 2), where the PINN-based approach is presented as
a hybrid model operating in parallel configuration and the SPH+GA
framework exemplifies as a hybrid model operating in series config-
uration, offering a generalised view of how physics and data can be
fused in the realisation of digital twin for chemical process systems.
Our contributions are as follows:

1 We apply a PINN architecture to real flow-ramp experimental
data in a plug flow reactor, under both data-rich and data-scarce
conditions, with the aim of assessing predictive generalisability
and enabling kinetic inference from partial observations. Our
PINN workflow first identifies optimal hyperparameters in for-
ward mode using full and reduced datasets and then applies
these configurations in inverse mode to estimate kinetic param-
eters from unseen data. This is unlike previous work that used
synthetic or lumped kinetic data with PDEs and ODEs in various
chemical processes.

2 We show that our PINN architecture is able to generalise ef-
fectively and predict system behaviour beyond its training re-
gion, even when observational data from the most informative
segments of the reaction dynamics is excluded.
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Fig. 2. Conceptual classification of modelling approaches based on physical knowledge and data availability. The figure outlines the positioning of white-box, grey-box, and
black-box models according to their reliance on physics-based information and empirical data.

3 We introduce a chemically informed framework that couples
Smoothed Particle Hydrodynamics (SPH) with a Genetic Al-
gorithm (GA) thereby enabling detailed particle-level simula-
tion and data-driven optimisation to support system tuning in
data-scarce environments.

4 We contribute to the development of hybrid modelling frame-
works for chemical process systems by exploring two comple-
mentary approaches for constructing digital twins using empir-
ical flow reactor data. The developed PINN framework is pre-
sented as a hybrid model operating in parallel while integrating
physics directly into the learning process. On the other hand, the
SPH+GA framework is characterised as a hybrid model operating
in series, whereby physical simulation is followed by data-driven
optimisation. These contributions collectively advance the de-
velopment of adaptable, accurate and computationally efficient
digital twins for flow-based chemical processes.

The structure of this paper is as follows: Section 2 outlines the
modelling methodologies, the mathematical theories, physical platform
and reaction kinetic model applied in the development of our PINN
and SPH+GA algorithms. This section also describes the architecture of
the PINN framework. In Section 3, we present and analyse the results
obtained from both methods, evaluating their predictive accuracy and
computational efficiency. In Section 4, we provide a detailed compari-
son of the performance of PINNs and SPH+GA while providing insights
into the strengths and limitations of each approach. We paid particular
attention to the ability of PINNs to predict and determine unknown
parameters across various chemical flow scenarios. Finally, the paper
concludes in Section 5 by summarising the key findings and discussing
future research directions.

2. Methodology

Hybrid modelling techniques combine the strengths of mechanistic
models (physics-based or first-principles model) with machine learning
data-driven techniques. This integration allows for improved system
representation, particularly where a partial physical knowledge exists
but it is insufficient to fully capture system dynamics on its own. Fig.
2 illustrates the conceptual classification of modelling approaches in
terms of known physics and data availability.

Mechanistic models also known as a white-box models are grounded
in fundamental physical knowledge. These models apply established
physical laws such as conservation of mass, energy, as well as momen-
tum. They are typically represented through mathematical formulations
such as ordinary differential equations (ODEs) or partial differential

equations (PDEs) to describe a particular system. The primary ben-
efits include their interpretability, grounded in fundamental physics
and chemistry, allowing for a clear understanding and explanation of
underlying system behaviours. However, they typically require detailed
knowledge of system properties, extensive experimental data for pa-
rameter estimation, and significant computational resources, especially
when solving complex PDE systems. On the other hand, data-driven
models which are also referred to as black-box models, rely on em-
pirical data to establish the relationships between inputs and outputs
without incorporating the underlying physical laws. Techniques such
as artificial neural networks (ANNs), support vector machines (SVMs)
and Gaussian process regression (GPR) are commonly used to model
complex, non-linear systems. The benefits of data-driven models in-
clude their flexibility in handling complex and nonlinear systems,
efficiency in providing rapid predictions for real-time decision-making,
and adaptability to new data. However, they depend heavily on large,
high-quality datasets, suffer from limited interpretability, and typically
have poor performance when extrapolating beyond the range of their
training data. This has led to an increasing interest in hybrid modelling
which is also known as a grey-box model. It is an approach that
combines mechanistic (white-box) models based on physical laws with
data-driven (black-box) models that are derived from experimental or
operational data. By combining both methodologies, hybrid models aim
to improve prediction accuracy, enhance interpretability and reduce
reliance on extensive datasets.

Hybrid models are generally classified into two core configura-
tion namely series or parallel [39,40]. In a parallel hybrid model,
both the physics-based and machine learning components are trained
simultaneously, by embedding physical constraints directly into the
learning objective. In a series hybrid model, the output of a physics-
based simulation is passed into a data-driven algorithm, typically for
optimisation. In this work, we compare the use of series and parallel
configurations in developing a digital twin framework for modelling
and optimisation of chemical processes in flow systems.

2.1. Physical system (the experimental reactor platform)

In order to conduct a comparative analysis, we used previously
reported reaction models and results from a continuous flow reactor
platform [41]. The main features of the reactor setup are described
in detail in the Supplementary Information (SI) with a schematic rep-
resented in Figure S1. Further details about the reaction models are
provided in the next section. The parameters for each model, including
reactor volume and initial reactant concentrations are summarised
in Table 1. The Table outlines the specific conditions under which
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Table 1
Reaction model and its corresponding parameters.
Model Reaction model Temperature (°C) Reactor volume (mL) C,, (mol/L) Cg, (mol/L)
Model 1 A+BLC4D 65 35 0.167 0.167
75 3.5 0.167 0.167
Model 2 A+B2c, a+ctop 130 5.0 05 15
150 5.0 0.5 1.5
190 3.5 0.5 0.3
210 3.5 0.5 0.3

each reaction model was evaluated. We also utilised the time-series
concentration data provided in [41] to evaluate the performance of SPH
and PINNs under varying data availability conditions. For Model 1, two
datasets were created: one with the full original data points, providing
detailed concentration profiles across the reactor residence time and
another with a reduced dataset comprising of one-third of the original
points, sampled from the 0-5 min residence time interval. For Model
2, the analysis was conducted using all available experimental data
without reduction due to the limited size of the dataset. This evaluation
was undertaken to demonstrate our method’s capability to process data
from a variety of sources. The experimental data that were used for
Model 1 and 2 are illustrated in Figure S2 and S3 of the Supplementary
Information (SI).

2.2. Physical model (the reactor mathematical model)

In a Plug Flow Reactor (PFR), the change in the concentration of
each species along the axis of the reactor can be described by differ-
ential equations derived from mass balances with respect to residence
time. Assuming a steady-state operation and ignoring axial dispersion,
the reactor model equation can be simplified as in Eq. (1). Where (z)
is the residence time, C; and r; are the concentration and the rate of
reaction for species i, respectively.

i (€8]

To validate the reactor model and analyse the chemical kinetics,
we explore two distinct reaction models, each subjected to different
temperature conditions and ranges of data availability. These reaction
models are now discussed.

2.2.1. Model 1: One-step reaction model

In this model, we consider a simple reaction where two reactants,
A and B interact to form two products, C and D. This reaction can
be applied to describe the exemplary transformation of phenol and
acetyl chloride into phenyl acetate and hydrochloric acid. The reaction
mechanism is described by the following equation:

k
A+B—5C+D @)

The corresponding differential equations describing the change in
concentrations of the reactants and products are as follows:

&=_kl.cA.cB 3)
dr

dCp

— 2=k, -C,-C 4
dr 1 A B ()

dcC,

dC:kl'CA'CB ®
T

€ _ ky-Cy-Cy (6)
dr

The rate constant k; follows an Arrhenius-type temperature depen-
dency. The reaction has been studied under two different operating
temperatures at 65 °C and 75 °C.

2.2.2. Model 2: Two-step reaction model

The second reaction model introduces a more complex scenario
involving consecutive reactions. In the first reaction, species A and
B react to produce an intermediate product C. Subsequently, in the
second reaction, the intermediate C reacts with A to form the final
product D. This mechanism represents the typical formation reaction
of metoprolol from isopropylamine, followed by a subsequent reaction
to form a bis-substituted product. The reaction equations for this system
are given in Egs. (7) and (8).

ko

A+B— C 7
k3

A+C— D (8)

The material balances for the four species involved in this reaction
network are expressed by differential Eq. (9)-(12). In this kinetic
model, k, and k5 are the rate constants for the first and second reaction
steps, respectively.

% =—ky-C4-Cp—k; - Cy-Cc ©
ﬂ’% e a0
d;c =ky Cy-Cyhy-C,-Ce an
diﬂ —ky Cy - Ce 12

For each reaction model, the process starts with the identification
of the optimal hyperparameters to develop a robust PINN model that
accurately predicts the reactor behaviour. Once the optimal model
is established through training in forward mode, this PINN model
is applied in inverse mode at different temperatures to estimate the
unknown parameter, specifically the rate constants k of the system.
This methodology enables the validation of the model’s consistency
and adaptability across varying temperature levels, reaction complexi-
ties, and data availability. Subsequently, the predicted concentration
profiles are compared against experimental data and the numerical
solutions of the system’s ODEs, facilitating a comprehensive evaluation
of the model’s accuracy.

2.3. Physics-informed neural network (PINN) framework

The application of Physics-Informed Neural Networks (PINNs) en-
ables the prediction of concentration profiles and the determination of
the unknown reaction rate constants. Fig. 3 illustrates PINNs parallel
hybrid architectural approach that enables the integration of a neural
network (Black-box) with the physical process governing equations
(White-box). The integration of both white and black-box models is
achieved by embedding the governing equations of the targeted re-
action model into the neural network’s loss function. The function of
PINN’s loss function is to include terms that account for deviations
from the governing equations into the learning process, alongside the
traditional data. This approach ensures that the outputs not only fit
the available data but also satisfy the governing physical equations.
PINNs stand out by ensuring that the predictions align with established
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Fig. 3. Conceptual diagram of PINN as a parallel hybrid model.

physical principles, making them especially valuable when data is
sparse or expensive to obtain.

In this work, we consider a physical system described by a differen-
tial equation of the form:

Fu(x,t) = f(x,1) 13)

where:

 F is a differential operator of the system.

* u(x,t) is the solution function, which the neural network aims to
approximate.

* f(x,1) is a known function, representing sources, sinks, or other
terms in the equation.

» x and 7 represent spatial and time coordinates, respectively.

A PINN seeks to approximate the solution « using a neural network.
The neural network, parametrised by weights and biases (6), takes the
spatial coordinates (x) and time (#) as continuous inputs and outputs
an estimate of the solution, (x;,;;6). The key innovation of PINNs is
to include the differential equation itself as part of the loss function
during training. This is achieved by computing the derivatives of the
neural network’s output with respect to its inputs using automatic
differentiation (AD). These computed derivatives are then plugged into
the differential operator F. The residual of the differential equation is
then minimised during training. The loss function now comprises the
residuals of the differential equation, boundary or initial conditions,
and a term for the data fit. It can be formulated as:

Lrota(0; N) = wfﬁf(e; Nf)+wb£b(€; Np)+w;L;(0; N)+w o Lops (05 N ypo)

14
where:
|
£,0:Np) = <= ¥ |[Fa@cx. 10 1s)
[ oi=1
1Y
£,0:Ny) = 3 2, | Bl 1:0)| 16)
b =1
Ni
1 .
L£,(0:N,) = N ’; |z, 100 an
I Nops
£0bs(0; NabS) = N Z ||ﬁ(xi’ti; 0) - uGbS,iHZ (18)

obs =1

In the series of equations in the loss function, the training data
consists of four components, namely {N,, N;, N;, Nos}. These repre-
sent the number of residual points where the differential equation is
enforced (known as collocation points), the number of boundary condi-
tion training points, the number of initial condition training points, and

the number of observational data points, respectively. These are typi-
cally sampled across the domain of interest. Moreover {w ;, wy, w;, Wep, }
are the weights assigned to each of the loss function. Meanwhile
a(x;, 1;;0) is the neural network’s output approximation of the solution
at the coordinates (x;,#;) and u,,; are the observed values at these
points. Hence, considering the problem of Model 1 reaction in a PFR,
we propose the loss function as follows:

2

Ny
1 dc;
L O;N;,)= — —_— ; 19
opE( f) Nf Z <dr +r,> 19
| G 2
Lpe(0:Ny) = <= 3 |Ci(x;:0)| 20)
b
1
Lic(O; Ny = ~ Z |CAOvCBO(Tk;€)|2 2D
ik
Nops
1 4 N 2
Lops(0; Nops) = N Z ’CA = Cy4,,»Cc—Cc,, (1:0) (22)
obs 7

LroatO: N) = woppLope(®; Nyp) + wpcLge(0; Np) + wicLic(0; Ny)
+ wobsﬁobs(e; Nobs)
(23)
In forward mode, the goal is to train the neural network by optimis-
ing the trainable parameters #, which include the weights and biases
of the network, to minimise the total loss. This can be expressed as:
6% = arg min Lq/(03 N) @4

In inverse problems, additional parameters 4, representing unknown
physical parameters are introduced and optimised simultaneously with
0. We add an extra loss term to Egs. (23) to the total loss function which
incorporates these parameters and is expressed as:

Lroi(0, 4 N) = woprLopr (0, 4; N ) + wpc Lpc (0, 4; Np)

+ wicLicO, 4 Np) + Wy Lps (0, 4; Nyp)
The solution for the inverse problem is then obtained by simultane-
ously optimising 6 and 4 together as:

(25)

0%, A* = arg ngli/ln Lioa1(0, 4; N) (26)

Here, 0 represents the trainable parameters of the neural network,
while A corresponds to unknown physical parameters. In this study
A represents the reaction rate constant k. The observed data provide
additional constraints, particularly for the inverse problem, thereby
improving the identifiability of the unknown parameter k. The op-
timisation process applies gradient-based methods, such as Adam or
L-BFGS, that leverage an adaptive learning rate to ensure efficient and
robust convergence for both # and 1. To compute the partial deriva-
tives required in the ODE residuals, automatic differentiation (AD) is
utilised. AD evaluates these derivatives exactly by applying the chain
rule through backpropagation, ensuring accuracy and computational
efficiency in the training process.
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Fig. 4. Physics-Informed Neural Network (PINN) framework designed for the one-step reaction (Model 1) in a continuous flow reactor.

2.3.1. PINN architecture

The PINN architecture used for this work is illustrated in Fig. 4
which integrates a feed-forward neural network (FFNN) with funda-
mental physical laws. The FFNN takes inputs such as initial concentra-
tions of the species (C,, Cp), temperature (T), and residence time (z),
processing these through multiple hidden layers composed of neurons
connected by weights (wi’j) and biases (b;). The weight and biases
parameters are adjusted during training to minimise prediction errors.
In the forward problem, the network outputs the predicted desired
product concentrations (C4, Cp, C¢, Cp). Meanwhile in the inverse
problem, the network predicts that the unknown parameter for this case
is the rate constant, k. The governing differential equations describe
the dynamics of the reaction as shown in Egs. (3)-(6) and ((9) to
(12)) for Model 1 and Model 2 case study, respectively. The total
loss functions Ly, in the PINN include physics-based losses, Lypg,
Lgc and L;c, which are associated with the differential equations,
boundary and initial conditions, respectively. Meanwhile, the empirical
loss L,,,, measures the discrepancy between the network’s predictions
and observed data. For Model 1, L,,, is computed using concentration
data of C4 and C., while for Model 2 using concentration data of
C,, Cc and Cp. Automatic differentiation is applied to compute the
gradients of the loss functions with respect to the network parameters,
facilitating their optimisation to minimise the total loss.

2.3.2. Optimising PINN architecture via its hyperparameters

Neural networks have various hyperparameters that dictate both
the structure of the network and its training process. Hyperparameters
that dictate the network structure include the activation function, the
number of hidden layers and the number of hidden neurons. The
training process also has hyperparameters, notably the learning rate
and the number of training iterations. The learning rate controls the
size of the steps taken when updating the trainable parameters. Due
to the number of hyperparameters and their effect on the perfor-
mance of PINN structures, systematic studies are necessary to identify
an appropriate set of optimal hyperparameters. Towards this, a grid
search algorithm is a straightforward tool for hyperparameter tun-
ing. This involves discretising the hyperparameter space into a grid
with every combination within the grid evaluated using performance
metrics such as the coefficient of determination (R2) and the Root
Mean Square Error (RMSE). High R? values close to 1.0 and low
RMSE values indicate a strong correlation between the predicted and

actual concentrations. However, though the grid search method pro-
vides a systematic approach to explore the hyperparameter space, it
is computationally intensive. Nevertheless, despite its computational
intensiveness, the grid search ensures a comprehensive evaluation of
all possible combinations, offering a thorough understanding of the
impact of hyperparameters on model performance. In order to imple-
ment and evaluate the algorithm, we used DeepXDE, a Python-based
library for scientific computing that leverages PyTorch or Tensor-
Flow as its computational engine [42]. DeepXDE is an open source
framework for Physics-Informed Neural Networks (PINN), specifically
designed to solve forward and inverse problems involving ordinary
differential equations (ODE) and partial differential equations (PDE) as
shown in Algorithm 1 and 2, respectively. The framework addresses
problems defined by initial and boundary conditions, along with the
available measurements. For the ODE numerical solver, we applied the
solve_ivp function from the scipy.integrate library.

2.4. Chemically-informed smoothed particle hydrodynamics (SPH) + ge-
netic algorithm (GA) framework

We used a series hybrid modelling architecture for the chemically
informed SPH+GA framework used in this study (See Fig. 5). In this
configuration, SPH is used to simulate the physical behaviour of the
system, such as particle motion, concentration distribution and flow
dynamics based on established governing equations. This forms the
mechanistic core (white box) of the hybrid modelling system. Sub-
sequently, Genetic Algorithm or any other optimisation algorithm is
then used for system parameter characterisation. This two-stage setup
fits the definition of a series hybrid model in which the black-box
model (GA) relies on the outputs of the white-box model (SPH). In
the development and application of a chemically informed SPH, the
chemical interactions between molecules and their dynamics in the
simulated reactor were taken into account. As a result, we discuss
the fluid dynamics equations governing SPH in Section 2.4.1. We also
discuss in Sections 2.4.2 to 2.4.4 how we modelled the reactor chemical
processes mentioned in Section 2.2.1. Furthermore, in Section 2.4.5,
we discuss the black-box approach we used for system characterisation.
This step is important in order to achieve a one-to-one representation
between the physical system and a digital twin model.
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Fig. 5. Conceptual diagram of SPH+GA as a series hybrid model.

Algorithm 1 PINN algorithm for Forward Mode with DeepXDE

1: Define the reactor/reaction model ODE include the rate constant,
k, and its related parameters using the Tensorflow grammar.

2: Define the boundary conditions.

3: Load and define the observation points using the PointSetBC
module (C4, and Cc, ) for reaction model 1, Cy , Cc, and
Com) for reaction model 2.

4: Define the computational domain using the geometry module.

5: Specify the initial conditions (initial concentration of C, and Cp,
using the IC module.

6: Combine the geometry module, ODE, observation points and IC
module together into data.PDE.

7: Specify the training distribution, training data and set the number
of points to be sampled in data.PDE.

8: Construct the neural network and choose the FFNN module to
represent the feed-forward neural network, specify the FFNN in-
put, output and layer and neuron size, activation function, and
initialiser.

9: Define the Model by combining data.PDE in Step 6 and the FFNN
in Step 8.

10: Call Model.compile and set the optimisation hyperparameters,
such as optimiser and learning rate.

11: Call Model.train to train the network by minimising the loss
function.

12: Call Model.predict to predict the ODE solutions and reactor
behaviour.

Algorithm 2 PINN algorithm for Inverse Mode with DeepXDE

1: Define the reactor / reaction model ODE without the rate constant,
k; and its related parameters using the Tensorflow grammar.

2: Define the unknown parameter to be identified, the rate constant
using the Variable module (k, for reaction model 1, k, and k;
for reaction model 2).

3: Apply the same network configuration from the forward mode
(defined in Step 8 of Algorithm 1).

4: Apply the same optimiser settings from the forward mode(Step 10
of Algorithm 1).

5: Repeat Steps 2-7 from Algorithm 1.

6: Define callbacks module to monitor the behaviour at the spec-
ified period of iterations and stored the unknown parameter
value.

7: Call Model.compile and set the optimisation hyperparameters,
such as optimiser and learning rate.

8: Call Model.train to train the network by minimising the loss
function.

9: Call Model.predict to predict the ODE solutions, reactor
behaviour, and unknown parameters.

2.4.1. Fundamental equations of smoothed particle hydrodynamics (SPH)
Smoothed Particle Hydrodynamics (SPH) is a mesh-free compu-
tational method in which particles discretise both the fluid and the

boundaries of a system. In SPH, particles are used to discretise both
the fluid and boundaries of the system. Each particle carries physical
properties such as mass, density, and viscosity [43]. Furthermore, the
SPH methodology attempts to ensure that the principles of conservation
of mass, momentum and energy are respected in the hydrodynamics
system. In order to achieve the principles mentioned above, the domain
must be discretised to approximate the behaviour of the hydrody-
namic system at specific discrete locations [44]. The majority of the
hydrodynamic problems are solved by the weakly compressible SPH
(WCSPH) scheme. Throughout the SPH simulation, the mass of each
particle is kept constant while the density of the particles changes
according to the continuity Eq. (27) [44]. The conservation of mass
is governed by the continuity equation (Eq. (27)), which describes the
fundamental principle of mass preservation in a system. In this context,
the density p; of particle i is estimated using Eq. (28) where m ; is the
mass of the particle j and W (r; —r;, h) denotes the smoothing kernel
function. This formulation applies a summation approach to account
for the contributions of neighbouring particles, thereby ensuring mass
conservation within the system.

dp _
= +V =0 27)
0= Z mW(r; —x;, h) (28)

Thje conservation of momentum in fluid dynamics is governed by the
Navier-Stokes equation, which, for a compressible fluid, can be written
as:
& lypyvivag 29
dt p
In SPH, the momentum equation for a particle i is divided into
pressure and viscosity components, given by:

fpu,i = fpressurej + fviscosity,i (30)

where f,,,gure; @0 foiscosiry; are the forces generated by pressure and
viscosity of the particles and given in Egs. (31). This summation ac-
counts for the pressure contributions from neighbouring particles, with
P, and P; being the pressures at particles i and j respectively. Viscosity
forces, which account for the diffusive transport of momentum between
neighbouring particles, are expressed by Eq. (32):

LN
“Ym =+ ) VW - (31)
; ;P

J J

f

pressure,i —

V-V,
Eyiscosity =11 Z m; Py
J J
In addition to the forces listed above, the external forces generated
by the pump are included in Eq. (33):
V,
f P

exti =

t
This leads to the total acceleration generated on a particle i as Eq.
(34), which influences the velocity of each particle and consequently
the position (Eq. (35)).

fpressure,i + fviscosity,[ + fext,[

a;, = (34)
Pi

VW (r, - r;, ) (32)

(33)
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v;(t + A1) = v;(t) + a, At (35)

Where p is the density of the fluid, v the velocity vector field, 7 the time,
P is pressure, v is the kinematic viscosity, f,,, ; represent external forces,
V- denotes the divergence operator, V? is the Laplacian operator, E is
the total energy, T is the temperature of the fluid and y is the dynamic
viscosity.

2.4.2. Reactor modelling (boundary conditions)

In building physical helical coiled reactors, tubes are coiled around
a heated column in order to save space. In this type of reactors, the
residence time 7 of the reagents is governed by the force generated
by the pump and the length / of the reactor. As a result, the digital
representation of the reactor was modelled by unfurling the coil of
the physical helical coiled reactor into a straight line, as illustrated in
Figure S4 in the Supporting Information. This simplified the simulation
of the physical reacting system. In the future, this system can be
improved by incorporating the actual design of the physical reactor in
the simulation. This approach simplifies the representation of complex
geometries in the simulation. Particles were used to represent the
walls of the simulated reactor and used to define the limits as well
as boundaries of the fluid domain. The wall particles were solved like
any other fluid particles. However, the particle velocities were set to
zero. This ensured that their positions were fixed and followed the
boundaries of the geometry of the reactor.

2.4.3. Reactor and particle temperature modelling

We assume that each particle enters the reactor coil at 25 °C (room
temperature). The particles are then heated up over time 7, until they
reach an energy threshold p, after which the probability of reaction
increases. The rate of temperature increase 6¢ of each particle p is
governed by thermodynamic principles including heat transfer ¢ (Eq.
(37)), thermal conductivity A and properties of the carrying fluid v,
Newton’s Law of Cooling (Eq. (36)) and the concepts of conduction,
convection, as well as radiation. In this work, we model the increase
in temperature of each particle over time using Newton’s Law of
Cooling (Eq. (36)). According to the Newton’s Law of Cooling the
rate of change of the temperature of an object is proportional to the
difference between its own temperature and the room temperature.
Mathematically, this is expressed as:

ar _ T -1, (36)
dt

Where % is the rate of change of the temperature of the object, T
is the temperature of the object, T, is the ambient temperature and
€ is a constant that depends on the characteristics of the object and
the environment such as surface area, heat transfer coefficient. This
equation indicates that the greater the temperature difference (T-T,,,),
the faster the rate of change in temperature. In the context of heat
conduction, Fourier’s Law states that the heat transfer rate ¢ through
a material is proportional to the temperature difference across the
material, expressed as:

g=-a-4.9T 37
dx

Where ¢ is the heat transfer rate, A is the thermal conductivity of the
material, A is the cross-sectional area through which heat is transferred
and % is the temperature gradient across the material. The greater the
temperature difference across the material, the higher the rate of heat
transfer, resulting in a faster temperature change in the object. Since
the principles of convection and radiation vary from reactor system to
system depending on the materials used, we collectively model these
effects as ¢, which is identified using a system characterisation process
(see Section 2.4.5). When identifying ¢, we also incorporate A and e.

App = AAT (38)
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2.4.4. Kinetic model

The design equation of the PFR is applied to characterise the con-
centration of each species in the system as a function of their residence
time 7 as described by Eq. (1). We used this as a macroscopic model,
where each particle in our SPH framework models an ensemble of
reactant or product “molecules”. We embedded principles from molec-
ular dynamics and stochastic reaction diffusion models into a SPH
framework to model chemical reactions taking place while dealing with
flow in the reactor geometry. This led to a hybrid modelling system
which represents one of the key contributions in this manuscript. In
the experimental section, we compare results obtained from this hybrid
modelling approach with real-life experiments and physics informed
neural network (PINN) models. The reaction distance « for the chemical
reagents modelled in this work is defined by Eq. (39) [45,46] and is
illustrated in Fig. 6.

k

= 42D, + Dp) ©%

Where D, and Dy are diffusion constants of reactants A and B respec-
tively and k is the reaction rate constant. Depending on the reaction
rate constant of the chemical reaction, the reaction distance changed
accordingly. Residence time was calculated according to Eq. (40) where
V is the volume of the reactor and Q is the volumetric flow rate. The
flow rate in the reactor section was determined as the sum of the flow
rates delivered by pumps A and B.

14
T=— (40)

(@)
Each particle’s position (X) was influenced by the system of SPH

equations (Eq. (27) to (35)), as follows:
X=X +v (41)

When the distance between two particles of reactants A and B falls
below « and the particle temperature exceeds the energy threshold
constant for A (and respectively for B), a reaction occurs according to
the probability ~ U(0,1) < k. When this happens, the two products
C and D replace the reactants A and B in our system for the real-life
experiments we were digital twinning.

2.4.5. System characterisation through optimisation

Due to the differences in the scales of the systems under con-
sideration (microscopic to macroscopic), an appropriate optimisation
was required to characterise the physical system that our digital twin
was attempting to model. This involved discovering the values for the
variables of the system including those governing convection, radiation
and heat loss, modelled as ¢, as previously discussed. In order to
determine ¢, we made use of Genetic Algorithm (GA), a population
based algorithm with capability for handling: (1) multi-variable value
discovery and optimisation, (2) optimisation problems in large and
complex search spaces, (3) problems where a simple analytical solution
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Table 2

Hyperparameters implemented for Reaction Model 1 using the PINN framework in
forward mode at 65 °C, applied to both full and reduced datasets. As seen in the
Table, the number of neurons for the reduced dataset was larger than that for the full
dataset. This is because we used the same number of epochs in both cases thereby
providing an opportunity for the grid search algorithm to find a complex model (in
the form of increased number of neurons) that overfits to the reduced dataset.

Parameters Full dataset Reduced dataset
Layers 5 5

Neurons 8 10

Learning rate 0.001 0.001
Activation function tanh tanh

Optimiser Adam Adam

is not readily available, (4) data of any dimensionality, and (5) noisy or
incomplete datasets by exploring multiple potential solutions [47,48].
Furthermore, the parallel nature of the GA framework allows for faster
computations on multi-core systems which is very useful when handling
large computational loads. These features are unlike ordinary gradient
descent algorithm which also have the issue of getting trapped in local
minima. Towards finding ¢, we minimised the differences between the
data generated by our chemically informed SPH and the data obtained
from physical experiments. A comprehensive description of the steps
involved in this process, along with the configuration of the Genetic
Algorithm, can be found in Section 3.0 of the Supplementary Informa-
tion (SI). The pseudocode outlining the Genetic Algorithm for scaling
factor optimisation is provided as Algorithm 3 in the Supplementary
Information.

3. Results and analysis

The training process for the PINN involves constructing a compre-
hensive dataset composed of collocation points within the domain. This
dataset includes a specific number of residual points sampled within the
domain and boundary points sampled at the left and right endpoints
of the interval. The complete training dataset is formed by integrating
domain data and boundary data, providing the neural network with a
thorough understanding of the solution’s behaviour within the defined
domain. The testing dataset, used to evaluate the model’s performance,
includes a combination of randomly sampled points within the do-
main, experimental data points, and initial condition points. The entire
dataset is then split into 70% for training and 30% for testing, ensuring
a balanced approach to model training and validation.

3.1. PINN forward mode for output prediction (model 1 at 65 °C)

The hyperparameter tuning for Model 1 was carefully explored in
structured collocation points under various configurations. Specifically,
the number of hidden layers and neurons was varied to evaluate their
impact on model performance. Each configuration was trained for
10,000 epochs using the Adam optimiser with a learning rate of 0.001.
Key training metrics, including training loss, test loss, and training
time, were recorded for comprehensive performance evaluation. The
detailed results of these hyperparameter configurations, along with
the corresponding loss and prediction plots, are presented in Table S1
and Table S2 in the Supplementary Information (SI). The grid search
conducted on the full dataset identified the optimal hyperparameter
configuration as 5 hidden layers with 8 neurons per layer. This setup
achieved the lowest training and test losses of 1.34x107> and 1.28x107>,
respectively. Similarly, for the reduced dataset, the optimal configura-
tion was also found to be 5 hidden layers, but with 10 neurons per
layer, resulting in training and test losses of 1.39 x 10~ and 1.31 X
1073, respectively. The surface plots show the relationship between the
number of neurons, layers, and training loss, with the lowest point
indicating the optimal configuration as visually represented in Fig. 7

10
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for the full dataset and Fig. 8 for the reduced dataset. The result of the
optimal hyperparameters for the PINN model are detailed in Table 2.

The loss curves in Figs. 9(a) and 9(c) illustrate the total training and
testing 10ss { Lyqa ) Which are { Lopg, Lpc, Lic, Lgata} OVer the course
of 10,000 steps. The area plot shown in Figs. 9(b) and 9(d), particu-
larly for the input reagent and the desired product, visually highlights
the narrowing error margins as training progresses, emphasising the
increasing precision of the model predictions. Both losses decrease con-
sistently, with the test loss closely following the training loss, indicating
strong generalisation and minimal overfitting. The final losses converge
to a magnitude of approximately 10~>, demonstrating that the model
has achieved a high degree of accuracy in its predictions. In the forward
mode PINNs are applied to simulate the kinetics of a reactive system
involving the species A, B, C, and D. Experimental data are available
only for species A and C, and the initial concentrations of A and B are
known. The reaction rate constant, k, is also known and treated as a
fixed parameter in the model. The network takes domain coordinates as
input and outputs the predicted concentrations of the chemical species.
The residuals of 4 chemical species ODEs are computed at a set of
collocation points throughout the domain that are incorporated into
the total loss function using Automatic Differentiation (AD) during the
training process. PINNs utilise AD to compute the derivatives of the
approximated concentration functions. This permits the ODE residuals
to be evaluated at the domain collocation points without discretisation
the solution on a temporal grid. When trained with the full dataset, the
network benefits from comprehensive observational information, which
complements the embedded ODEs. As shown in Fig. 10(a) we observed
a high correlation between the concentration profiles of phenol and
phenyl acetate predicted by the PINN model, the numerical solution
of the ODE, and the experimental data. For the full dataset, the RMSE
values were as low as 0.0019 and 0.0018 for phenol and phenyl
acetate, respectively, at 65 °C, with R? scores exceeding 0.99 in both
cases, as depicted in Table 4. Remarkably, even when the observational
data is reduced and active only in the first 0-6 min interval, the
physics-informed component drives the network to reconstruct accurate
full-domain concentration profiles. Data in the early region helps guide
the network’s initial learning, while the governing equations enable it
to generalise and extrapolate the solution to the remaining time span
while maintaining the correct trends in unobserved regions (6-15 min).
As evidenced in Fig. 10(b), the prediction maintained high accuracy
even for the reduced dataset, with RMSE values below 0.0027 and R?
scores above 0.972 demonstrating the robustness of the PINN model
under conditions of limited experimental data.

3.2. PINN inverse mode for simultaneous output prediction and parameter
estimation (model 1 at 75 °C)

We also applied the PINN framework in inverse mode to simulta-
neously estimate the unknown reaction rate constant k; and predict
a full-domain concentration profiles of the reaction model. The setup
remains the same as in the forward mode, involving four species (A, B,
C, and D), where experimental concentration data are available only for
species A and C, and the initial concentrations of A and B are known.
Unlike in PINN forward mode where kinetic parameters are predefined,
in PINN inverse mode, the model must infer k, directly from the
experimental observations, while still satisfying the system’s ODEs.
We adopt the same PINN architecture and optimal hyperparameters
used in the PINN forward mode (Table 2). Using consistent archi-
tecture across forward and inverse modes ensures comparable model
behaviour, simplifies hyperparameter tuning, and enables potential
reuse for transfer learning (TL). The mechanism underlying inverse
PINNs involves defining unknown physical parameters explicitly as
trainable variables alongside the neural network’s conventional weights
and biases. In this setup, k, is treated as an optimisable parameter and
the solution to the inverse problem is obtained by jointly optimising
both NN parameters, 6 and k; as shown in Eq. (26), where lambda
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Fig. 7. Surface plot of hyperparameter tuning. The red circle indicates the optimal network configuration using the full dataset. (a) Training loss (b) Testing loss.

@® Min. Train Loss: 1.3e-05, Neurons: 10, Layers: 5

(a)

@® Min. Test Loss: 1.1e-05, Neurons: 10, Layers: 5

(b)

Fig. 8. Surface plot of hyperparameter tuning. The red circle indicates the optimal network configuration using the reduced dataset. (a) Training loss (b) Testing loss.

represents as k;. When training begins, the unknown parameter k;
is first initialised with a random or approximate value. Through the
process of joint optimisation, both parameters, 6 and k; are updated
simultaneously at each iteration using a gradient-based optimiser such
as Adam. AD enables the computation of gradients of the total loss
function with respect to both parameters. This joint optimisation pro-
cess allows the model to minimise the total loss function, as expressed
in Eq. (25), by fitting the network to observed concentration data while
also identifying the value of k, that best satisfies the governing ODEs.
Once the training converges, the optimised parameters 6* define a
smooth and differentiable function that accurately approximates the
concentration profiles of all four species (A, B, C, and D) across the
domain. Simultaneously, the inferred value k] represents the reaction
rate constant that best aligns the model predictions with both the
experimental data and the underlying reaction mechanism. Figs. 11
and 12 illustrate the performance of Physics-Informed Neural Networks
(PINNs) in predicting the concentration profile and estimating the
reaction rate constant k; using empirical datasets of different sizes.
In both cases, the PINN model effectively estimated the k, value, as
illustrated in Figs. 11(b) and 12(b), which show the convergence of
the estimated k; values towards the true reaction rate constant. In the
scenario using the full dataset, the predicted k, value converges to
approximately 10.404 x 10~ M~!s~! closely matching the true value
of 10.45 x 1073 M~!s~!, This high level of agreement underscores the
model’s capability to leverage comprehensive data to produce precise
parameter estimates. Conversely, when the dataset is reduced to one-
third of its original size, the PINN model still provides a reasonable
estimate of the rate constant, with a predicted k; value of 10.31 x

11

1073 M~!s~!. While this estimate is slightly lower than that obtained
from the full dataset, the minimal difference highlights the robustness
and effectiveness of the PINN model in parameter estimation even when
the available data is limited. Figs. 11(a) and 12(a) further support these
findings by displaying the concentration profiles predicted by the PINN
model when trained on the full and reduced datasets, respectively.
The predicted concentrations align closely with the experimental data
in both cases, following the trend of the numerical solution. This
close alignment indicates that the PINN model can accurately capture
the system’s dynamics, even when trained on a deliberately reduced
dataset consisting of one-third of the original data points. These data
were specifically sampled from the 0-5 min residence time interval
allowing the model to utilise its inherent knowledge of the governing
equations. By addressing challenges posed by missing or limited data,
the model effectively generalises and predicts the system’s behaviour
beyond the training region, despite excluding observational data from
potentially more informative regions of the reaction dynamics later in
the timescale. The comparison of the predicted k, values between the
full and limited datasets, is shown in Tables 3.

To evaluate the performance of the PINN model in predicting the
concentrations of phenol and phenyl acetate at 65 °C and 75 °C, we
conducted a series of comparative analyses between the model’s pre-
dictions and two different experimental datasets. The accuracy of the
model was quantified using the coefficient of determination (R%) and
the Root Mean Square Error (RMSE). High R? values close to 1.0 and
low RMSE values indicate a strong correlation between the predicted
and actual concentrations, demonstrating the model’s precision and
reliability. These metrics were computed for both phenol and phenyl
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Fig. 9. Showing the training and testing loss curves for Model 1 using full and reduced dataset. These curves are for the optimal values of the hyperparameters (See Table 2)
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Fig. 10. Model 1: Comparison of concentration profiles predicted by PINN and ODE solutions against experimental data for phenol and phenyl acetate at 65 °C: (a) full dataset,

(b) reduced dataset.

Table 3

Model 1 at 75 °C: Comparison of the true rate constant k;, and the PINN estimates
with full and reduced datasets, showing close agreement in both cases.

Parameter Rate constant value, k,
M's™)

True value 0.01045

PINN estimation (full dataset) 0.01040

PINN estimation (reduced dataset) 0.01031

acetate at each temperature, allowing us to determine how well the
PINN model performs in replicating experimental results under both
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complete and limited data scenarios. Fig. 13 illustrates the results
obtained using the complete original dataset. The plots show a strong
correlation between the PINN model predictions and the experimental
data for both phenol and phenyl acetate. This is evidenced by the near-
unity R? values and the low RMSE values for each case, indicating
the model’s high accuracy in predicting the concentrations at both
temperatures. The data points closely align with the red dashed line,
which represents perfect agreement between the predicted and actual
values, further confirming the model’s robustness. Fig. 14 compares
the same predictions but utilises a reduced dataset for the analysis.
Despite the reduction in data, the PINN model maintains a high degree
of accuracy, as shown by the slight increase in RMSE values and minor



N.A. Nasruddin et al.

e Data Phenol
= Data Phenyl Acetate

ODE Phenol
ODE Phenyl Acetate

PINN Phenol
PINN Phenyl Acetate

0.175

0.150

0.125

o
=
o
o

o o
o o
0 N
=] a

Concentration (mol/L;

0.025

0.000

0 2 4 6 8
Residence Time (min)

(@)

10

Chemical Engineering Journal Advances 23 (2025) 100775

—— PINN Estimation ----- True Value

0.010 T=175°C
Q
S 0.008
E
2
M
5 0.006
c
©
@
c
S
o 0.004
=t
©
-4

0.002

0 2000 4000 6000 8000 10000
Iterations
(b)

Fig. 11. Model 1 using the full dataset: (a) PINN-predicted concentration profiles showing strong agreement with experimental data, and (b) evolution of PINN identification of

rate constant k, over the iterations.

e Data Phenol
= Data Phenyl Acetate

ODE Phenol
ODE Phenyl Acetate

PINN Phenol
PINN Phenyl Acetate

0.175

0.150 JSFOAC
50125 e
g ) o
~—0.100 -
c
2
=]
20.075
c
o]
o]
5 0.050
(@]

0.025 Extrapolation region with T—

limited experiment data
0.000
0 2 4 6 8 10
Residence Time (min)
(a)

—— PINN Estimation ---= True Value

0.010 T=175°C
% 0.008
°
£
I
~.0.006
v
o
c
©
% 0.004
o
(e}
o
-1
2 0.002

0.000

0 2000 4000 6000 8000 10000
Iterations
(b)
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of rate constant k,over the iterations.

deviations in R? values. The results suggest that the model can still
reliably predict the concentrations with limited data, although with
marginally reduced precision. Table 4 summarises the RMSE and R?
values for phenol and phenyl acetate at both temperatures. The results
indicate that, while the model performs slightly better with the full
dataset, the reduced dataset still yields acceptable accuracy, underscor-
ing the robustness of the PINN model in both scenarios. In Model 1,
we predicted the concentration profiles and identified the reaction rate
constant k for a simple one-step reaction. This model was characterised
by a consistent set of system parameters, such as the same reactor
volume and flow rate, which resulted in a uniform residence time.
Additionally, the initial conditions were identical for both temperature
conditions (65 °C and 75 °C), as detailed in Table 2. This uniformity
allowed us to isolate and understand the behaviour of a straightforward
reaction under controlled conditions, focusing specifically on the effect
of the temperature on the reaction kinetics.

3.3. Application of a chemically-informed SPH+GA series hybrid modelling
framework

Table 5 outlines the Genetic Algorithm (GA) hyperparameters used
to optimise the scaling factor (¢) within the chemically informed
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Smoothed Particle Hydrodynamics (SPH) framework. The implemented
GA settings included a population size of 100, 100 generations, and
a mutation rate of 0.2. The optimal scaling factors obtained were
0.000453 for Model 1 at 65 °C, 0.000481 for Model 1 at 75 °C,
and 0.881377 for Model 2 at 190 °C. These scaling factors were
applied to tune the thermal and kinetic behaviour of the SPH model,
ensuring closer alignment with experimental concentration data. The
GA convergence behaviour, shown in Supplementary Information (SI)
Figure S5, demonstrates rapid mean squared error (MSE) reduction
within the first 10 generations, confirming efficient parameter optimi-
sation. To achieve this, a structured GA configuration was adopted. The
algorithm employed a roulette wheel selection method, single-point
crossover, and mutation with a small random perturbation to maintain
diversity and avoid premature convergence. A fitness function based
on the sum of absolute differences between scaled SPH predictions and
experimental data guided the optimisation, favouring scaling factors
that minimised this error. This approach ensured that the SPH model
could be calibrated effectively with minimal reliance on physical exper-
imentation, helping to reduce experimental cost and time. Nevertheless,
strategically selected experimental points were still required to inform
the optimisation and validate the digital twin model’s predictions.
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Table 4
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Performance Metrics (RMSE and R?) of the PINN model for predicting Phenol and Phenyl Acetate concentrations at different temperatures and

dataset sizes.

Species PINN mode Temperature RMSE R? scores RMSE R? scores
(Full dataset) (Reduced dataset)
Phenol Forward 65 °C 0.0019 0.995 0.0021 0.986
Phenol Inverse 75 °C 0.0028 0.991 0.0026 0.974
Phenyl Acetate Forward 65 °C 0.0018 0.993 0.0015 0.994
Phenyl Acetate Inverse 75 °C 0.0031 0.987 0.0027 0.972
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Fig. 13. Parity plots showing PINN-predicted versus experimentally measured concentrations for (a) phenol at 65 °C, (b) phenyl acetate at 65 °C, (c) phenol at 75 °C, and (d)
phenyl acetate at 75 °C. Results are based on the full experimental dataset. The associated RMSE and R? values quantify predictive accuracy of the model.

Further implementation details, including the full procedural logic and
parameter settings, are presented in Section 3.0 of the Supplemen-
tary Information (SI), with pseudocode outlined in Algorithm 3. This
includes the use of two input datasets (SPH raw simulation data and ex-
perimental data), initialisation of a population of scaling factors, fitness
evaluation via MSE, parent selection, crossover, mutation, and iterative
replacement of poorly performing candidates. This SPH+GA approach
exemplifies a series hybrid modelling framework, in which physics-
based simulation (SPH) is sequentially enhanced through data-driven
parameter tuning (GA). This hybridisation strengthens the model’s
predictive fidelity and adaptability across various reaction systems and
temperature regimes. Fig. 15 illustrates the resulting model perfor-
mance, with sub-figures (a), (c), and (e) showing concentration profiles
for phenyl acetate (Model 1) and metoprolol (Model 2) compared to
experimental data. Sub- Figs. 15(b), (d), and (f) present parity plots
that quantitatively assess the model’s accuracy using RMSE and R?
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metrics. Together, these results demonstrate the effectiveness of the
SPH+GA hybrid model in reproducing complex chemical dynamics.
Table 6 complements this analysis by comparing performance across
PINN and SPH+GA models. While PINNs exhibit superior accuracy,
particularly in data-scarce settings, the SPH+GA framework provides
critical insights into flow and transport dynamics, making it a valuable
complementary tool for digital twinning of chemical processes.

3.4. PINN inverse mode for simultaneous output prediction and parameter
estimation in two-step reaction model

In this section, we analysed the performance of the PINN model
to describe the kinetics of a more complex reaction network. Model
2 introduces additional complexity by requiring the simultaneous es-
timation of two rate constants, k, and k; while also predicting the
concentration profiles of the species involved in the system. This model
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Fig. 14. Parity plots showing PINN-predicted versus experimentally measured concentrations for (a) phenol at 65 °C, (b) phenyl acetate at 65 °C, (c) phenol at 75 °C, and (d)
phenyl acetate at 75 °C. Results are based on the incomplete/limited experimental dataset. The associated RMSE and R? values quantify predictive accuracy of the model.

Table 5

GA hyperparameters implemented.
Parameters Value
Population Size 100
Number of Generations 100
Mutation Rate 0.2
Best scaling factor (Model 1, 65 °C) 0.000453
Best scaling factor (Model 1, 75 °C) 0.000481
Best scaling factor (Model 2, 190 °C) 0.881377

Table 6
Performance metrics (RMSE and R?) for PINN and SPH models at different temperatures
for Models 1 and 2.

Model Reaction system Temperature RMSE R?
(9]

PINN Model 1 65 0.0018 0.993
Model 1 75 0.0030 0.987
Model 2 190 0.0033 0.988

SPH Model 1 65 0.0114 0.758
Model 1 75 0.0122 0.822
Model 2 190 0.0090 0.912
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was designed to evaluate the PINN’s ability to simultaneously predict
multiple rate constants within a complex reaction network. The in-
troduction of changes in reactor volume, residence time, and initial
concentration across different temperatures added further complexity,
making it more challenging for the model to accurately capture the
system’s kinetic behaviour. We evaluated Model 2 with PINN in Inverse
mode using the same optimal hyperparameters reported in Table 7,
which were previously used for Model 1. However, due to the limited
experimental data available for Model 2, we did not perform further
dataset reduction as in the case of Model 1. We evaluated Model 2 at
four temperatures of 130 °C, 150 °C, 190 °C and 210 °C. The PINN
model was used to predict the species output and the same time identify
the unknown two rate constants, k, and k3, within a reaction network
involving two consecutive reactions, described by Egs. (7) and (8).
Fig. 16 illustrates the convergence of these values across the varying
temperature conditions, further validating the model’s accuracy. Table
8 provides a comparison of the experimental and PINN-estimated rate
constants k, and ks across different temperatures, showing their close
agreement. The figure illustrates PINN predictions of species concen-
trations and estimation of rate constants of k, and k5 across varying
temperatures. The results validate the PINN model by comparing the
predicted concentration profiles of the reactants and products with the
experimental data. The concentration profiles in Fig. 16 (a, d, g, j)
demonstrate that the predicted concentrations align closely with both
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Fig. 15. Comparative evaluation of SPH+GA model predictions against experimental data across three reaction conditions. Sub-figures (a, c, e) show the temporal concentration
profiles predicted by the SPH+GA model alongside experimental measurements for phenyl acetate (Model 1) at 65 °C and 75 °C, and metoprolol (Model 2) at 190 °C. Sub-figures
(b, d, f) present parity plots assessing model performance, highlighting the model correlation and predictive capability of the SPH+GA approach under varying operating conditions.

the experimental data and trends observed from its ODEs solutions,
confirming the model’s accuracy in capturing the dynamic behaviour
of the reaction network even with sparse data. The estimated values
of rate constant k, and k; show n Fig. 16 (b, e, h, k) progressively
converge towards the experimental values as iterations progress shows
effective convergence towards true values, with faster convergence
observed at higher temperatures. Training and test loss curves in Fig. 16
(c, f, i, 1) further confirm the consistency of the model’s performance
across iterations. These results collectively validate the PINN model’s
accuracy in capturing the reaction network’s dynamics, confirming the
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model’s accuracy in capturing the dynamic behaviour of the reaction
network. Its consistent performance across varying temperatures high-
lights the potential of the PINN model as a powerful tool for analysing
complex reaction networks in chemical engineering. Model 2 further
exemplifies the ability of PINNs to estimate multiple rate constants
and predict concentration profiles in systems involving consecutive
reactions. Despite the limited experimental data, the model’s ability to
generalise and provide accurate predictions underscores the robustness
of the selected hyperparameters, making it applicable to a range of
reaction conditions.
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Fig. 16. PINN predictions for Model 2 (Metoprolol) at 130 °C (a—c), 150 °C (d-f), 190 °C (g-i), and 210 °C (j-1). At each temperature, the concentration profiles prediction (a,
d, g, j), evolution of k, and k; identification over iterations (b, e, h, k) and training and test loss curves (c, f, i, 1).

4. Discussion

As seen from the results above, both PINN and SPH are highly
effective strategies for modelling flow chemistry particularly in the
context of mixing. However, with an increasing number of particles,
SPH rapidly becomes computationally expensive, requiring the use of
Graphical Processing Units (GPUs) to run simulations effectively. In
order to compensate for this, it is possible to use a single particle
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to represent an ensemble of particles. Furthermore, SPH excels at
capturing complex reactor geometries as well as multiphase mixing,
aspects that are not explicitly represented or defined in PINNs. As a
result, in contrast to PINN, SPH offers better scalability as reactor sizes
or process complexity increases. On the other hand, PINNs are well-
suited for rapidly testing out changes in reactor geometry as long as the
governing equations are known. For a similar change, the new reactor
geometry would need to be digitally constructed and then converted
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Fig. 16. (continued).

into boundary particles for SPH simulations, thereby taking longer to
start the simulation.

While plug flow reactors (PFRs) are traditionally modelled using
systems of ordinary differential equations (ODEs) with known reaction
kinetics, recent developments in reaction engineering have significantly
increased the complexity of kinetic models. Mechanistic microkinetic
models now routinely involve hundreds to thousands of elementary
reaction steps and intermediates [49-51]. These reaction networks
are often generated automatically through rule-based algorithms that
classify reactions into families based on chemical knowledge [50,52].

18

Though it is theoretically possible to solve these large stiff systems with
conventional numerical solvers, integrating them into advanced simula-
tion platforms such as computational fluid dynamics (CFD) frameworks
or digital twin environments presents major computational challenges.

In this study, we explore the use of Physics-Informed Neural Net-
works (PINNs) and Smoothed Particle Hydrodynamics coupled with
Genetic Algorithm optimisation (SPH+GA) as hybrid modelling strate-
gies. These approaches enable the direct embedding of physical laws
into the learning process or simulation framework, allowing for scal-
able, efficient prediction of system behaviour even when kinetics are
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Table 7
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Hyperparameters and model performance metrics for the two-step reaction (Model 2) using the PINN framework in inverse mode, evaluated at

different temperatures.

Parameters 130 °C 150 °C 190 °C 210 °C
Layers 5 5 5 5
Neurons 10 10 10 10
Learning rate 0.001 0.001 0.001 0.001
Activation function tanh tanh tanh tanh
Optimiser Adam Adam Adam Adam
Iterations 15,000 15,000 15,000 15,000
Training loss 1.41e-04 8.64e—05 3.28e-05 8.70e—-05
Testing loss 1.40e—-04 8.67e—05 3.32e-05 8.65e—05
Training time (s) 42.3907 36.3376 53.5021 43.5168

Table 8

Model 2: Comparison of experimental and PINN-estimated rate constants k, and k; at different temperatures.

Temperature True value PINN estimation
kZ k3 kZ k}
(M—ls—l) (M—ls—l) (M—ls—l) (M—ls—l)
130 °C 0.0006 0.0004 0.0006 0.00035
150 °C 0.0019 0.0005 0.0018 0.00014
190 °C 0.0099 0.0017 0.0095 0.00140
210 °C 0.0162 0.0019 0.0147 0.00186

only partially known or when sparse experimental data are available.
By demonstrating their application on a model reaction system, we
illustrate the potential of PINNs and SPH+GA to bridge the gap between
fundamental mechanistic modelling and practical reactor simulation,
particularly in the context of digital twin development for chemical
processes.

The evaluations across the case studies demonstrated that the PINN
model achieved high predictive accuracy, with coefficient determina-
tion, (R?) of 0.99 and RMSE values as low as 0.0018 for phenol and
phenyl acetate concentrations under both full and reduced datasets. In
inverse mode, the model also accurately estimated the values of the
kinetic rate constants with errors within 1%-2% of the true values.
SPH+GA framework similarly showed strong predictive performance,
achieving R? scores up to 0.91 and RMSE values around 0.009 at
190 °C. Additionally, it demonstrated flexibility in capturing complex
particle-level dynamics and enabled effective parameter optimisation
through GA, with convergence achieved within 10 generations. Due
to the SPH+GA series hybridisation architecture, this approach ensures
generalisation across physical systems. By collecting experimental data
while running simulations, we are able to perform both system identi-
fication of the parameter space towards capturing intrinsic parameters
that the simulations are missing while at the same time performing
tuning of the parameters that have been captured. This ensures that the
SPH+GA approach can be used to predict regions of the experimental
space not captured by the experimental dataset.

These results demonstrate that PINNs are highly effective in pre-
dicting reaction rate constants and concentration profiles, while solving
forward problems to predict system behaviour and inverse problems to
infer unknown parameters in the governing ODEs, even with sparse
experimental data. Meanwhile SPH enhances the simulation of fluid
dynamics and mixing processes at a granular level. The SPH model,
while effective to some extent, demonstrates higher prediction errors
and weaker correlations with experimental data, as evidenced by the
evaluation metrics in Table 6 and Fig. 15. This might be due to
the SPH model’s reliance on particle-based methods, which may not
fully capture complex chemical kinetics or interactions in the system,
particularly at lower concentrations or early reaction stages. The PINN
model benefits from incorporating physical laws (governing equations)
directly into the neural network, which allows it to maintain strong
predictive accuracy even with limited data. Its ability to solve both
forward and inverse problems while adhering to physical constraints
makes it a more robust model for complex chemical systems. Overall,
the findings of this research demonstrate that digital twin created using
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physics-informed mechanisms can significantly enhance the design,
optimisation, and control of chemical reactors. This approach offers
promising directions for the development of advanced computational
tools that combine the strengths of both machine learning and physics-
based models thereby enabling more robust, efficient and accurate
simulations of industrial processes.

Another approach gaining traction is the use of data-driven trans-
former based machine learning approaches. However, transformer
models remain predominantly data-driven which typically require large
and high-quality datasets to achieve robust predictive performance.
In scenarios of sparse or incomplete data, which is common within
chemical synthesis, transformers can struggle to generalise accurately
or extrapolate reliably to untested conditions. To mitigate these lim-
itations, future research should explore integrating transformer ar-
chitectures with physics-informed methodologies. This would include
embedding fundamental physical constraints such as conservation laws,
thermodynamic principles, and chemical reaction kinetics into the
transformer training processes.

Furthermore, generative transformer architectures such as decoder-
only or encoder—decoder models present an opportunity for chemical
reaction outcome prediction. These architectures, inspired by sequence-
to-sequence tasks in natural language processing, are well-suited to
tasks where both inputs and outputs are sequences, analogous to trans-
lating reactants into products. This enables chemical reactions to be
modelled as text-like sequences, allowing transformers to translate
sequences of reactants and reagents into corresponding product struc-
tures [53]. However, embedding geometrical constraints of the physical
reactor might be challenging and require large datasets to represent
their effects in these architectures.

5. Conclusion

In this work, we have demonstrated how series and parallel hybrid
modelling approaches can be used for Digital Twinning of a chemi-
cal reactor platform. We have investigated the use of both Physics-
Informed Neural Network (PINN) and Smoothed Particle Hydrodynam-
ics with Genetic Algorithm (SPH+GA) approaches. We presented a
Smoothed Particle Hydrodynamics with Genetic Algorithm (SPH+GA)
as a series hybrid model, in which a physics-based simulation is fol-
lowed by data-driven optimisation. In contrast, the Physics-Informed
Neural Network (PINN) exemplifies a parallel hybrid model, which in-
tegrates mechanistic information and data-driven learning concurrently
by embedding physical laws directly into the neural network’s loss
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function. Both techniques rely on replicating the physical dynamics of
the platform as well as optimisation and machine learning principles
to support system identification and scaling. The comparative evalu-
ation of PINN and SPH+GA in this study highlights their potential in
advancing the modelling of chemical flow processes particularly in flow
reactors where experimental data may be sparse or limited. Results
show that both of our approaches present good predictive capabilities
in such data-sparse scenarios.

In terms of performance, fidelity and resources required, PINNs
have a lower computational footprint due to their reliance on ODEs
and PDEs. However, their fidelity is lower compared to SPH based
methods and they do not have the capability to capture the geometry of
the reactor especially in situations where mixing impacts the chemical
reactions of the experiments under consideration. On the other hand,
SPH can do this but requires more compute resources as the level
of fidelity increases. In terms of performance, these intricacies could
be the reason why SPH+GA achieved lower predictive values when
compared with PINNs.

Our future work will focus on extending the framework to more
complex reaction networks and exploring its application in real-time
monitoring and control of industrial reactors. In addition, our goal is
to refine both the SPH+GA and PINN models to improve computational
efficiency and scalability. This will make them even more practical
for large-scale industrial applications especially in scenarios of low
compute resources.
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