
Chemical Engineering Journal Advances 23 (2025) 100775 

A
2
n

 

Contents lists available at ScienceDirect

Chemical Engineering Journal Advances

journal homepage: www.sciencedirect.com/journal/chemical-engineering-journal-advances  

Hybridised mechanistic and machine learning digital twins for modelling 

and optimising chemical processes in flow: A comparative analysis of parallel 
and series-based hybridisation
Nur Aliya Nasruddin a ,∗, Nazrul Islam b , Sergio Vernuccio c , John Oyekan b,a
a School of Electrical and Electronic Engineering, The University of Sheffield, S13JD, Sheffield, United Kingdom
b Department of Computer Science, University of York, YO10 5GH, York, United Kingdom
c School of Chemistry and Chemical Engineering, University of Southampton, SO17 1BJ, Southampton, United Kingdom

A R T I C L E  I N F O

Keywords:
Digital twin
Genetic Algorithm
Hybrid modelling
Machine learning
Optimisation
Physics-Informed Neural Network
Plug flow reactor
Reaction kinetics
Smooth particle hydrodynamics

 A B S T R A C T

In the field of chemical engineering, accurate prediction of reaction kinetics and concentration profiles is 
critical for the design and optimisation of industrial processes. However, achieving accurate predictions under 
variable or limited data conditions remains a major challenge. Despite the growing interest in hybrid models, 
a systematic comparison of parallel and series-based hybridisation strategies using empirical flow reactor 
data for digital twin applications has not yet been established. Here we show that PINN architecture can 
accurately predict concentration profiles and estimate reaction rate constants under both data-rich and data-
scarce conditions, while the SPH+GA framework enhances spatial simulation fidelity and enables system-level 
optimisation through particle-based modelling. The same PINN architecture can be effectively applied in both 
forward and inverse modes, accurately predicting concentration profiles and estimating reaction rate constants 
with errors under 2%, even in data-scarce conditions. The SPH+GA framework enables detailed particle-level 
simulation and global optimisation, offering insight into spatial dynamics and reactor mixing. This series hybrid 
model achieved an R2 up to 0.91 and enabled flexible system tuning. These results underscore the broader 
value of hybrid mechanistic–machine learning frameworks, particularly for process environments with limited 
or noisy data. Our findings highlight that while PINNs offer high predictive accuracy and lower computational 
cost, SPH+GA excels in resolving spatial dynamics and supporting system characterisation. These parallel and 
series hybrid strategies demonstrate complementary strengths for building robust digital twins of chemical 
processes.
1. Introduction

Machine learning methodologies have shown a strong capability 
in interpreting complex data representations and modelling physical 
processes, offering potential solutions to challenging open problems in 
chemical reaction systems [1–3]. For example, machine learning (ML) 
models can enhance the accuracy of estimating chemical reaction rates, 
leading to more precise predictions and insights into reaction dynam-
ics [4,5]. These data-driven approaches can infer underlying patterns 
from experimental or simulated datasets, enabling accurate estimations 
of reaction rates and concentration profiles. However, traditional ML 
models are often constrained by their dependence on large volumes 
of high-quality data. Their performance typically deteriorates when 
extrapolating beyond the training domain, which limits their reliability 
in data-sparse or physically complex environments. In order to address 
these challenges, the field has seen a growing interest in Scientific 
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Machine Learning (SciML), an emerging paradigm that combines phys-
ical principles with data-driven learning [6–8]. These methods, trained 
on both experimental and numerical data, demonstrate significant po-
tential for optimising complex industrial processes. One particular ap-
proach, which has been receiving significant attention in the scientific 
community, is the Physics-Informed Neural Network (PINN) method. 
This approach combines knowledge from first-principles models with 
measurement data from a physical system and has been successful in 
solving systems of ordinary and partial differential equations (ODEs 
and PDEs), such as the Schrödinger [9], Allen–Cahn [10], Navier–
Stokes [11,12], coupled Navier–Stokes and heat transfer equations [13] 
as well as forward and inverse problems involving nonlinear PDEs [14]. 
Some examples of PINNs applications include modelling CO2 capture 
processes in solid sorbents [15], modelling isothermal fixed-bed re-
actors for catalytic CO2 methanation by integrating reaction kinetics 
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Nomenclature

𝛥𝑡 Time step (s)
𝐫𝑖, 𝐫𝑗 Position vectors of particles 𝑖 and 𝑗 (m)
𝑎𝑖 Acceleration of particle i (m/s2)
𝑔 Acceleration due to gravity (m/s2)
𝑘 Reaction rate constants (M−1s−1)
𝑘1 Reaction rate constants for Model 1 

(M−1s−1)
𝑘2, 𝑘3 Reaction rate constants for Model 2 

(M−1s−1)
𝑚𝑖, 𝑚𝑗 Mass of particles i and j (kg)
𝑟𝑖 Reaction rate term for species 𝑖
𝑣𝑖, 𝑣𝑗 Velocity of particles i and j (m/s)
𝑤𝑏 Weight for boundary condition loss
𝑤𝑓 Weight for ODE residual loss
𝑤𝑖 Weight for initial condition loss
𝑤obs Weight for observational data loss
𝑥, 𝑡 Spatial and temporal coordinates
Greek Symbols
𝛼 Reaction distance in SPH modelling
𝜖 Heat transfer coefficient constant
𝛬 Thermal conductivity (W/m K)
𝜆 Unknown physical parameters (inverse 

mode)
 Boundary condition operator
 Differential operator of the system
 Initial condition operator
𝜇 Dynamic viscosity (Pa s)
𝜈 Kinematic viscosity (m2/s)
𝜌 Fluid density (kg/m3)
𝜏 Residence time in the reactor (s or min)
𝜃 Neural Network trainable parameters 

(weights and biases)
𝜁 Scaling factor for system characterisation
ℎ Smoothing length in SPH (m)
𝑊 SPH kernel function
Roman Symbols
𝐴,𝐵 Chemical species A and B
𝐴𝐷 Automatic differentiation
𝐶,𝐷 Chemical species C and D
𝐶𝐴, 𝐶𝐵 Concentration of species A and B (mol/L)
𝐶𝐶 , 𝐶𝐷 Concentration of species C and D (mol/L)
𝐶𝐴0 Initial concentration of reactants A (mol/L)
𝐶𝐵0 Initial concentration of reactants B (mol/L)
𝐹𝐹𝑁𝑁 Feed-Forward Neural Network
𝐿BC Loss terms for boundary conditions
𝐿IC Loss terms for initial conditions

and physical laws governing the methanation process [16], and solving 
stiff chemical kinetic problems by incorporating the quasi-steady-state 
assumption [17]. Additionally, PINNs have been used to predict func-
tional parameters in sulfur-driven autotrophic denitrification processes 
leading to improved predictions under varying conditions [18]. Simi-
larly, PINN have been applied in hydrodynamic voltammetry to analyse 
transport-limited currents and kinetically controlled processes with 
analytical expressions while adhering to physical laws [19]. PINNs also 
2 
𝐿obs Loss terms for data observations
𝐿ODE Loss terms for ODEs
𝐿total Total loss terms
𝑁𝑏 Training points for boundary conditions
𝑁𝑓 Collocation points for the differential equa-

tion
𝑁𝑖 Training points for initial conditions
𝑁obs Observational data points
𝑂𝐷𝐸 Ordinary Differential Equations
𝑃 Pressure (Pa)
𝑃𝐷𝐸 Partial Differential Equations
𝑃𝐼𝑁𝑁 Physics-Informed Neural Networks
𝑄 Volumetric flow rate (mL/s)
𝑅2 Coefficient of determination
𝑅𝑀𝑆𝐸 Root Mean Square Error
𝑆𝑃𝐻 Smoothed Particle Hydrodynamics
𝑇 Temperature (◦C)
𝑉 Reactor volume (mL)

have been applied to Population Balance Model (PBM) equation for par-
ticle aggregation and breakage [20] and convection–diffusion–reaction 
equations for reacting flows [21]. By overcoming the limitations of 
traditional numerical methods, particularly their reliance on mesh 
generation, PINNs offer a mesh-free framework and broad applicability 
across various governing equations enhancing both simulation accuracy 
and computational efficiency. In the context of digital twin applications 
for chemical processes, PINNs have been increasingly used to enhance 
simulation and prediction capabilities of chemical engineering. For 
example, Tang et al. highlighted the potential of PINNs for real-time 
digital twin simulations of chromatography processes [22]. In their 
study, the authors optimised the structure, training data, and complex-
ity of PINNs tailored to the lumped kinetic model for chromatography, 
demonstrating their ability to simulate breakthrough curves quickly 
and accurately under various conditions. This approach offers a faster 
and more efficient alternative to traditional numerical methods. Bibeau 
et al. used PINNs to predict reaction kinetics for biodiesel produc-
tion in microwave reactors, effectively creating a digital twin of the 
microwave-assisted reaction [23]. By performing regression on ex-
perimental data, the authors aligned the physics of the process with 
rate constants and temperature dependencies, enabling extrapolation to 
different power inputs. This digital twin approach aids in the design, 
optimisation, and control of microwave reactors for biodiesel produc-
tion, providing a compact and efficient solution for kinetic modelling. 
Lastly, PINNs were applied to create a digital twin for monitoring a 
nuclear reactor by solving point kinetic equations (PKEs). The study 
demonstrated the feasibility of using PINNs for nuclear reactor moni-
toring, showing their effectiveness in predicting reactor behaviour both 
within and outside the range of available data [24]. Since a digital 
twin is a virtual model that replicates and simulates the behaviour 
of a physical system, there are many ways of achieving this (See Fig. 
1). For example, some digital twin leverage mathematical models to 
describe the dynamic behaviour of a system thereby enabling precise 
predictions of how the system will respond to varying conditions over 
time [25]. This dynamic modelling is particularly valuable for complex 
chemical systems where understanding and predicting interactions are 
essential for optimising performance. In addition to dynamic modelling, 
digital twin can also provide vivid visual representation of the processes 
occurring in a physical system under study [26,27]. Smoothed Particle 
Hydrodynamics (SPH) and Computational Fluid Dynamics (CFD) stand 
out from among the various modelling techniques that provide digital 
twin with such visual representation. CFD has traditionally played a 
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Fig. 1. Various modelling techniques with their level of fidelity, execution time and 
compute resources required. The size of the ovals indicate the level of compute 
resources required.

central role in representing the behaviour of physical systems, par-
ticularly in fluid dynamics [28,29]. Through the use of meshes, CFD 
divides the simulated physical system into discrete grids within which 
the behaviour of the physical system is calculated and predicted while 
taking into consideration the global behaviour of the system and the 
links between the discrete grids. As a result, mesh-based CFD methods 
offer powerful capabilities but become computationally expensive and 
complex when dealing with highly dynamic physical systems or irregu-
lar geometries. In this regard, Smoothed Particle Hydrodynamics (SPH) 
contributes significantly by simulating fluid dynamics at a granular 
level while providing visually the complex interactions within the 
system, such as mixing, reaction kinetics as well as flow behaviour at 
a high fidelity and accuracy as CFD [30]. This simulation capability is 
crucial for understanding phenomena that are difficult to capture with 
traditional modelling techniques alone. As a first-principles dynamic 
modelling technique, SPH has been used for simulating the impact of 
fluid dynamics on various physical systems. This includes the mod-
elling of turbulent diffusion in anaerobic digestion [31,32], chemical 
reactions [33], star formations [34] and slurry mixing [35]. In fluid–
structure interaction simulations, SPH has been applied to capture the 
behaviour of reacting flows, such as combustion processes [36]. How-
ever, its use in simulating chemical reactions is not as wide spread when 
compared to dedicated techniques like molecular dynamics or quantum 
chemistry simulations. In [31], Yan et al. applied SPH to investigate the 
impact of turbulent diffusion on mixing processes within biochemical 
reaction models while focusing on anaerobic digestion. That study 
extended the SPH derived Coupled Hydrodynamics and Anaerobic 
Digestion (CHAD) codebase to incorporate turbulent diffusion and val-
idated it against OpenFOAM (CFD derived software) simulations. Their 
approach adapted SPH to overcome challenges in multi-dimensional 
flows and heat release in reacting flows. The technique underscored 
the advantages of Lagrangian methods in convection-dominated flows, 
offering a novel perspective on direct simulation of chemical reactions 
within the SPH framework. However, according to our current knowl-
edge, no approach in literature has integrated or hybridised SPH with 
ML techniques for flow chemistry.

On the other hand, in line with recent developments, Zhu et al. 
integrated ML with CFD in [37] for ML-assisted sub-grid models for 
gas–solid flows. In particular, they used artificial neural networks 
and gradient boosting techniques trained on high-fidelity CFD–DEM 
datasets [37]. Their approach significantly improved the accuracy of 
3 
coarse-grid simulations in fluidised beds by embedding data-driven 
corrections into traditional two-fluid models. Building on this founda-
tion, Zhu et al. provided a comprehensive review of ML applications 
in hydrodynamics, transport phenomena, and reaction modelling in 
multiphase systems [38]. Their review highlighted data scarcity as 
one of the key challenges when applying machine learning (ML) to 
multiphase flow and reactor systems. This is because ML models typ-
ically require large, consistent, and high-quality datasets to perform 
effectively. As a result, Physics-Informed Neural Networks (PINNs) rep-
resents a promising solution to address this issue. This is because unlike 
conventional ML models that rely purely on data, PINNs incorporate 
physical laws directly into the learning process. This integration enables 
them to deliver accurate predictions even with limited data, making 
them particularly well-suited for addressing data-scarce challenges in 
chemical engineering. The review by Zhu et al. also outlined several 
promising future directions including advancing physics-informed ML 
methods, developing automated toolkits and robotic platforms for flow 
optimisation, using ML to accelerate computational simulations, as 
well as creating dynamic digital twin platforms that integrate physical 
experiments with virtual simulations for more efficient and intelli-
gent system design. As a result, the hybridisation of first-principles or 
mechanistic modelling with ML offers a lot of unique advantages.

In this study, our aim is to investigate two different types of hybrid 
modelling strategies for simulating and optimising chemical reactions 
under flow conditions, using empirical reactor data. These strategies are 
designed within the framework of digital twin for chemical processes 
and combine physical modelling with data-driven learning. Our first 
approach makes use of Physics-Informed Neural Networks (PINNs) 
to address both forward and inverse kinetic problems using full and 
reduced real flow-ramp experimental datasets from a flow reactor sys-
tem. A consistent PINN architecture and optimised network parameters 
are applied across different operational regimes, including forward 
modelling at 65 ◦C and inverse modelling at 75 ◦C, to assess the 
model’s generalisation capability and potential for transfer learning. 
Our second approach introduces a hybrid framework that coupled 
physics-based simulation with data-driven optimisation by integrating 
Smoothed Particle Hydrodynamics (SPH) with a Genetic Algorithm 
(GA). In this setup, SPH simulates fluid and reactive behaviours at the 
particle level, capturing detailed spatial dynamics, while GA performs 
global optimisation by adjusting operational parameters based on SPH-
generated outputs. This chemically informed SPH+GA hybrid system 
enables flexible exploration of design spaces and system performance 
tuning, particularly in scenarios with limited experimental data. These 
two methods are conceptualised within a hybrid modelling architecture 
(see Figure Fig.  2), where the PINN-based approach is presented as 
a hybrid model operating in parallel configuration and the SPH+GA 
framework exemplifies as a hybrid model operating in series config-
uration, offering a generalised view of how physics and data can be 
fused in the realisation of digital twin for chemical process systems. 
Our contributions are as follows:

1 We apply a PINN architecture to real flow-ramp experimental 
data in a plug flow reactor, under both data-rich and data-scarce 
conditions, with the aim of assessing predictive generalisability 
and enabling kinetic inference from partial observations. Our 
PINN workflow first identifies optimal hyperparameters in for-
ward mode using full and reduced datasets and then applies 
these configurations in inverse mode to estimate kinetic param-
eters from unseen data. This is unlike previous work that used 
synthetic or lumped kinetic data with PDEs and ODEs in various 
chemical processes.

2 We show that our PINN architecture is able to generalise ef-
fectively and predict system behaviour beyond its training re-
gion, even when observational data from the most informative 
segments of the reaction dynamics is excluded.
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Fig. 2. Conceptual classification of modelling approaches based on physical knowledge and data availability. The figure outlines the positioning of white-box, grey-box, and 
black-box models according to their reliance on physics-based information and empirical data.
3 We introduce a chemically informed framework that couples 
Smoothed Particle Hydrodynamics (SPH) with a Genetic Al-
gorithm (GA) thereby enabling detailed particle-level simula-
tion and data-driven optimisation to support system tuning in 
data-scarce environments.

4 We contribute to the development of hybrid modelling frame-
works for chemical process systems by exploring two comple-
mentary approaches for constructing digital twins using empir-
ical flow reactor data. The developed PINN framework is pre-
sented as a hybrid model operating in parallel while integrating 
physics directly into the learning process. On the other hand, the 
SPH+GA framework is characterised as a hybrid model operating 
in series, whereby physical simulation is followed by data-driven 
optimisation. These contributions collectively advance the de-
velopment of adaptable, accurate and computationally efficient 
digital twins for flow-based chemical processes.

The structure of this paper is as follows: Section 2 outlines the 
modelling methodologies, the mathematical theories, physical platform 
and reaction kinetic model applied in the development of our PINN 
and SPH+GA algorithms. This section also describes the architecture of 
the PINN framework. In Section 3, we present and analyse the results 
obtained from both methods, evaluating their predictive accuracy and 
computational efficiency. In Section 4, we provide a detailed compari-
son of the performance of PINNs and SPH+GA while providing insights 
into the strengths and limitations of each approach. We paid particular 
attention to the ability of PINNs to predict and determine unknown 
parameters across various chemical flow scenarios. Finally, the paper 
concludes in Section 5 by summarising the key findings and discussing 
future research directions.

2. Methodology

Hybrid modelling techniques combine the strengths of mechanistic 
models (physics-based or first-principles model) with machine learning 
data-driven techniques. This integration allows for improved system 
representation, particularly where a partial physical knowledge exists 
but it is insufficient to fully capture system dynamics on its own. Fig. 
2 illustrates the conceptual classification of modelling approaches in 
terms of known physics and data availability.

Mechanistic models also known as a white-box models are grounded 
in fundamental physical knowledge. These models apply established 
physical laws such as conservation of mass, energy, as well as momen-
tum. They are typically represented through mathematical formulations 
such as ordinary differential equations (ODEs) or partial differential 
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equations (PDEs) to describe a particular system. The primary ben-
efits include their interpretability, grounded in fundamental physics 
and chemistry, allowing for a clear understanding and explanation of 
underlying system behaviours. However, they typically require detailed 
knowledge of system properties, extensive experimental data for pa-
rameter estimation, and significant computational resources, especially 
when solving complex PDE systems. On the other hand, data-driven 
models which are also referred to as black-box models, rely on em-
pirical data to establish the relationships between inputs and outputs 
without incorporating the underlying physical laws. Techniques such 
as artificial neural networks (ANNs), support vector machines (SVMs) 
and Gaussian process regression (GPR) are commonly used to model 
complex, non-linear systems. The benefits of data-driven models in-
clude their flexibility in handling complex and nonlinear systems, 
efficiency in providing rapid predictions for real-time decision-making, 
and adaptability to new data. However, they depend heavily on large, 
high-quality datasets, suffer from limited interpretability, and typically 
have poor performance when extrapolating beyond the range of their 
training data. This has led to an increasing interest in hybrid modelling 
which is also known as a grey-box model. It is an approach that 
combines mechanistic (white-box) models based on physical laws with 
data-driven (black-box) models that are derived from experimental or 
operational data. By combining both methodologies, hybrid models aim 
to improve prediction accuracy, enhance interpretability and reduce 
reliance on extensive datasets.

Hybrid models are generally classified into two core configura-
tion namely series or parallel [39,40]. In a parallel hybrid model, 
both the physics-based and machine learning components are trained 
simultaneously, by embedding physical constraints directly into the 
learning objective. In a series hybrid model, the output of a physics-
based simulation is passed into a data-driven algorithm, typically for 
optimisation. In this work, we compare the use of series and parallel 
configurations in developing a digital twin framework for modelling 
and optimisation of chemical processes in flow systems.

2.1. Physical system (the experimental reactor platform)

In order to conduct a comparative analysis, we used previously 
reported reaction models and results from a continuous flow reactor 
platform [41]. The main features of the reactor setup are described 
in detail in the Supplementary Information (SI) with a schematic rep-
resented in Figure S1. Further details about the reaction models are 
provided in the next section. The parameters for each model, including 
reactor volume and initial reactant concentrations are summarised 
in Table  1. The Table outlines the specific conditions under which 
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Table 1
Reaction model and its corresponding parameters.
 Model Reaction model Temperature (◦C) Reactor volume (mL) 𝐶𝐴0

 (mol/L) 𝐶𝐵0
 (mol/L) 

 Model 1 𝐴 + 𝐵
𝑘1
←←←←←←←←←→ 𝐶 +𝐷 65 3.5 0.167 0.167  

 75 3.5 0.167 0.167  
 Model 2 𝐴 + 𝐵

𝑘2
←←←←←←←←←→ 𝐶, 𝐴 + 𝐶

𝑘3
←←←←←←←←←→ 𝐷 130 5.0 0.5 1.5  

 150 5.0 0.5 1.5  
 190 3.5 0.5 0.3  
 210 3.5 0.5 0.3  
each reaction model was evaluated. We also utilised the time-series 
concentration data provided in [41] to evaluate the performance of SPH 
and PINNs under varying data availability conditions. For Model 1, two 
datasets were created: one with the full original data points, providing 
detailed concentration profiles across the reactor residence time and 
another with a reduced dataset comprising of one-third of the original 
points, sampled from the 0–5 min residence time interval. For Model 
2, the analysis was conducted using all available experimental data 
without reduction due to the limited size of the dataset. This evaluation 
was undertaken to demonstrate our method’s capability to process data 
from a variety of sources. The experimental data that were used for 
Model 1 and 2 are illustrated in Figure S2 and S3 of the Supplementary 
Information (SI).

2.2. Physical model (the reactor mathematical model)

In a Plug Flow Reactor (PFR), the change in the concentration of 
each species along the axis of the reactor can be described by differ-
ential equations derived from mass balances with respect to residence 
time. Assuming a steady-state operation and ignoring axial dispersion, 
the reactor model equation can be simplified as in Eq.  (1). Where (𝜏) 
is the residence time, 𝐶𝑖 and 𝑟𝑖 are the concentration and the rate of 
reaction for species 𝑖, respectively. 
𝑑𝐶𝑖
𝑑𝜏

= 𝑟𝑖 (1)

To validate the reactor model and analyse the chemical kinetics, 
we explore two distinct reaction models, each subjected to different 
temperature conditions and ranges of data availability. These reaction 
models are now discussed.

2.2.1. Model 1: One-step reaction model
In this model, we consider a simple reaction where two reactants, 

𝐴 and 𝐵 interact to form two products, 𝐶 and 𝐷. This reaction can 
be applied to describe the exemplary transformation of phenol and 
acetyl chloride into phenyl acetate and hydrochloric acid. The reaction 
mechanism is described by the following equation: 

𝐴 + 𝐵
𝑘1
←←←←←←←←←←→ 𝐶 +𝐷 (2)

The corresponding differential equations describing the change in 
concentrations of the reactants and products are as follows: 
𝑑𝐶𝐴
𝑑𝜏

= −𝑘1 ⋅ 𝐶𝐴 ⋅ 𝐶𝐵 (3)

𝑑𝐶𝐵
𝑑𝜏

= −𝑘1 ⋅ 𝐶𝐴 ⋅ 𝐶𝐵 (4)

𝑑𝐶𝐶
𝑑𝜏

= 𝑘1 ⋅ 𝐶𝐴 ⋅ 𝐶𝐵 (5)

𝑑𝐶𝐷
𝑑𝜏

= 𝑘1 ⋅ 𝐶𝐴 ⋅ 𝐶𝐵 (6)

The rate constant 𝑘1 follows an Arrhenius-type temperature depen-
dency. The reaction has been studied under two different operating 
temperatures at 65 ◦C and 75 ◦C.
5 
2.2.2. Model 2: Two-step reaction model
The second reaction model introduces a more complex scenario 

involving consecutive reactions. In the first reaction, species 𝐴 and 
𝐵 react to produce an intermediate product 𝐶. Subsequently, in the 
second reaction, the intermediate 𝐶 reacts with 𝐴 to form the final 
product 𝐷. This mechanism represents the typical formation reaction 
of metoprolol from isopropylamine, followed by a subsequent reaction 
to form a bis-substituted product. The reaction equations for this system 
are given in Eqs. (7) and (8). 

𝐴 + 𝐵
𝑘2
←←←←←←←←←←→ 𝐶 (7)

𝐴 + 𝐶
𝑘3
←←←←←←←←←←→ 𝐷 (8)

The material balances for the four species involved in this reaction 
network are expressed by differential Eq.  (9)–(12). In this kinetic 
model, 𝑘2 and 𝑘3 are the rate constants for the first and second reaction 
steps, respectively. 
𝑑𝐶𝐴
𝑑𝜏

= −𝑘2 ⋅ 𝐶𝐴 ⋅ 𝐶𝐵−𝑘3 ⋅ 𝐶𝐴 ⋅ 𝐶𝐶 (9)

𝑑𝐶𝐵
𝑑𝜏

= −𝑘2 ⋅ 𝐶𝐴 ⋅ 𝐶𝐵 (10)

𝑑𝐶𝐶
𝑑𝜏

= 𝑘2 ⋅ 𝐶𝐴 ⋅ 𝐶𝐵−𝑘3 ⋅ 𝐶𝐴 ⋅ 𝐶𝐶 (11)

𝑑𝐶𝐷
𝑑𝜏

= 𝑘3 ⋅ 𝐶𝐴 ⋅ 𝐶𝐶 (12)

For each reaction model, the process starts with the identification 
of the optimal hyperparameters to develop a robust PINN model that 
accurately predicts the reactor behaviour. Once the optimal model 
is established through training in forward mode, this PINN model 
is applied in inverse mode at different temperatures to estimate the 
unknown parameter, specifically the rate constants 𝑘 of the system. 
This methodology enables the validation of the model’s consistency 
and adaptability across varying temperature levels, reaction complexi-
ties, and data availability. Subsequently, the predicted concentration 
profiles are compared against experimental data and the numerical 
solutions of the system’s ODEs, facilitating a comprehensive evaluation 
of the model’s accuracy.

2.3. Physics-informed neural network (PINN) framework

The application of Physics-Informed Neural Networks (PINNs) en-
ables the prediction of concentration profiles and the determination of 
the unknown reaction rate constants. Fig.  3 illustrates PINNs parallel 
hybrid architectural approach that enables the integration of a neural 
network (Black-box) with the physical process governing equations 
(White-box). The integration of both white and black-box models is 
achieved by embedding the governing equations of the targeted re-
action model into the neural network’s loss function. The function of 
PINN’s loss function is to include terms that account for deviations 
from the governing equations into the learning process, alongside the 
traditional data. This approach ensures that the outputs not only fit 
the available data but also satisfy the governing physical equations. 
PINNs stand out by ensuring that the predictions align with established 
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Fig. 3. Conceptual diagram of PINN as a parallel hybrid model.
physical principles, making them especially valuable when data is 
sparse or expensive to obtain.

In this work, we consider a physical system described by a differen-
tial equation of the form: 
𝑢(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) (13)

where:

•  is a differential operator of the system.
• 𝑢(𝑥, 𝑡) is the solution function, which the neural network aims to 
approximate.

• 𝑓 (𝑥, 𝑡) is a known function, representing sources, sinks, or other 
terms in the equation.

• 𝑥 and 𝑡 represent spatial and time coordinates, respectively.
A PINN seeks to approximate the solution 𝑢 using a neural network. 

The neural network, parametrised by weights and biases (𝜃), takes the 
spatial coordinates (𝐱) and time (𝑡) as continuous inputs and outputs 
an estimate of the solution, 𝐮̂(𝐱𝑖, 𝑡𝑖; 𝜃). The key innovation of PINNs is 
to include the differential equation itself as part of the loss function 
during training. This is achieved by computing the derivatives of the 
neural network’s output with respect to its inputs using automatic 
differentiation (AD). These computed derivatives are then plugged into 
the differential operator  . The residual of the differential equation is 
then minimised during training. The loss function now comprises the 
residuals of the differential equation, boundary or initial conditions, 
and a term for the data fit. It can be formulated as: 

Total(𝜃;𝑁) = 𝑤𝑓𝑓 (𝜃;𝑁𝑓 )+𝑤𝑏𝑏(𝜃;𝑁𝑏)+𝑤𝑖𝑖(𝜃;𝑁𝑖)+𝑤𝑜𝑏𝑠𝑜𝑏𝑠(𝜃;𝑁𝑜𝑏𝑠)

(14)

where: 

𝑓 (𝜃;𝑁𝑓 ) =
1
𝑁𝑓

𝑁𝑓
∑

𝑖=1

|

|

 (𝐮̂(𝐱𝑖, 𝑡𝑖; 𝜃))||
2 (15)

𝑏(𝜃;𝑁𝑏) =
1
𝑁𝑏

𝑁𝑏
∑

𝑖=1

‖

‖

(𝐮̂(𝐱𝑖, 𝑡𝑖; 𝜃))‖‖
2 (16)

𝑖(𝜃;𝑁𝑖) =
1
𝑁𝑖

𝑁i
∑

𝑖=1

‖

‖

(𝐮̂(𝐱𝑖, 𝑡𝑖; 𝜃))‖‖
2 (17)

𝑜𝑏𝑠(𝜃;𝑁𝑜𝑏𝑠) =
1

𝑁𝑜𝑏𝑠

𝑁𝑜𝑏𝑠
∑

𝑖=1

‖

‖

𝐮̂(𝐱𝑖, 𝑡𝑖; 𝜃) − 𝐮𝑜𝑏𝑠,𝑖‖‖
2 (18)

In the series of equations in the loss function, the training data 
consists of four components, namely {𝑁𝑓 , 𝑁𝑏, 𝑁𝑖, 𝑁obs}. These repre-
sent the number of residual points where the differential equation is 
enforced (known as collocation points), the number of boundary condi-
tion training points, the number of initial condition training points, and 
6 
the number of observational data points, respectively. These are typi-
cally sampled across the domain of interest. Moreover {𝑤𝑓 , 𝑤𝑏, 𝑤𝑖, 𝑤𝑜𝑏𝑠}
are the weights assigned to each of the loss function. Meanwhile 
𝐮̂(𝐱𝑖, 𝑡𝑖; 𝜃) is the neural network’s output approximation of the solution 
at the coordinates (𝐱𝑖, 𝑡𝑖) and 𝐮obs,𝑖 are the observed values at these 
points. Hence, considering the problem of Model 1 reaction in a PFR, 
we propose the loss function as follows: 

𝑂𝐷𝐸 (𝜃;𝑁𝑓 ) =
1
𝑁𝑓

𝑁𝑓
∑

𝑖

|

|

|

|

|

(

𝑑𝐶𝑖
𝑑𝜏

+ 𝑟𝑖

)

|

|

|

|

|

2

(19)

𝐵𝐶 (𝜃;𝑁𝑏) =
1
𝑁𝑏

𝑁𝑏
∑

𝑗

|

|

|

𝐶𝑖(𝜏𝑗 ; 𝜃)
|

|

|

2
(20)

𝐼𝐶 (𝜃;𝑁𝑖) =
1
𝑁𝑖

𝑁𝑖
∑

𝑘

|

|

𝐶𝐴0, 𝐶𝐵0(𝜏𝑘; 𝜃)||
2 (21)

𝑜𝑏𝑠(𝜃;𝑁𝑜𝑏𝑠) =
1

𝑁obs

𝑁𝑜𝑏𝑠
∑

𝑙

|

|

|

𝐶𝐴 − 𝐶𝐴𝑜𝑏𝑠 , 𝐶𝐶 − 𝐶𝐶𝑜𝑏𝑠 (𝑡𝑙; 𝜃)
|

|

|

2
(22)

𝑇 𝑜𝑡𝑎𝑙(𝜃;𝑁) = 𝑤𝑂𝐷𝐸𝑂𝐷𝐸 (𝜃;𝑁𝑓 ) +𝑤𝐵𝐶𝐵𝐶 (𝜃;𝑁𝑏) +𝑤𝐼𝐶𝐼𝐶 (𝜃;𝑁𝑖)

+ 𝑤𝑜𝑏𝑠𝑜𝑏𝑠(𝜃;𝑁𝑜𝑏𝑠)

(23)

In forward mode, the goal is to train the neural network by optimis-
ing the trainable parameters 𝜃, which include the weights and biases 
of the network, to minimise the total loss. This can be expressed as: 
𝜃∗ = argmin

𝜃
𝑇 𝑜𝑡𝑎𝑙(𝜃;𝑁) (24)

In inverse problems, additional parameters 𝜆, representing unknown 
physical parameters are introduced and optimised simultaneously with 
𝜃. We add an extra loss term to Eqs. (23) to the total loss function which 
incorporates these parameters and is expressed as: 
𝑇 𝑜𝑡𝑎𝑙(𝜃, 𝜆;𝑁) = 𝑤𝑂𝐷𝐸𝑂𝐷𝐸 (𝜃, 𝜆;𝑁𝑓 ) +𝑤𝐵𝐶𝐵𝐶 (𝜃, 𝜆;𝑁𝑏)

+ 𝑤𝐼𝐶𝐼𝐶 (𝜃, 𝜆;𝑁𝑖) +𝑤𝑜𝑏𝑠𝑜𝑏𝑠(𝜃, 𝜆;𝑁𝑜𝑏𝑠)
(25)

The solution for the inverse problem is then obtained by simultane-
ously optimising 𝜃 and 𝜆 together as: 
𝜃∗, 𝜆∗ = argmin

𝜃,𝜆
total(𝜃, 𝜆;𝑁) (26)

Here, 𝜃 represents the trainable parameters of the neural network, 
while 𝜆 corresponds to unknown physical parameters. In this study 
𝜆 represents the reaction rate constant 𝑘. The observed data provide 
additional constraints, particularly for the inverse problem, thereby 
improving the identifiability of the unknown parameter 𝑘. The op-
timisation process applies gradient-based methods, such as Adam or 
L-BFGS, that leverage an adaptive learning rate to ensure efficient and 
robust convergence for both 𝜃 and 𝜆. To compute the partial deriva-
tives required in the ODE residuals, automatic differentiation (AD) is 
utilised. AD evaluates these derivatives exactly by applying the chain 
rule through backpropagation, ensuring accuracy and computational 
efficiency in the training process.
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Fig. 4. Physics-Informed Neural Network (PINN) framework designed for the one-step reaction (Model 1) in a continuous flow reactor.
2.3.1. PINN architecture
The PINN architecture used for this work is illustrated in Fig.  4 

which integrates a feed-forward neural network (FFNN) with funda-
mental physical laws. The FFNN takes inputs such as initial concentra-
tions of the species (𝐶𝐴0, 𝐶𝐵0), temperature (T), and residence time (𝜏), 
processing these through multiple hidden layers composed of neurons 
connected by weights (𝑤𝑖,𝑗) and biases (𝑏𝑖). The weight and biases 
parameters are adjusted during training to minimise prediction errors. 
In the forward problem, the network outputs the predicted desired 
product concentrations (𝐶̄𝐴, 𝐶̄𝐵 , 𝐶̄𝐶 , 𝐶̄𝐷). Meanwhile in the inverse 
problem, the network predicts that the unknown parameter for this case 
is the rate constant, k. The governing differential equations describe 
the dynamics of the reaction as shown in Eqs. (3)–(6) and ((9) to 
(12)) for Model 1 and Model 2 case study, respectively. The total 
loss functions 𝐿𝑇 𝑜𝑡𝑎𝑙 in the PINN include physics-based losses, 𝐿𝑂𝐷𝐸 , 
𝐿𝐵𝐶 and 𝐿𝐼𝐶 , which are associated with the differential equations, 
boundary and initial conditions, respectively. Meanwhile, the empirical 
loss 𝐿𝑜𝑏𝑠, measures the discrepancy between the network’s predictions 
and observed data. For Model 1, 𝐿𝑜𝑏𝑠 is computed using concentration 
data of 𝐶𝐴 and 𝐶𝐶 , while for Model 2 using concentration data of 
𝐶𝐴, 𝐶𝐶 and 𝐶𝐷. Automatic differentiation is applied to compute the 
gradients of the loss functions with respect to the network parameters, 
facilitating their optimisation to minimise the total loss.

2.3.2. Optimising PINN architecture via its hyperparameters
Neural networks have various hyperparameters that dictate both 

the structure of the network and its training process. Hyperparameters 
that dictate the network structure include the activation function, the 
number of hidden layers and the number of hidden neurons. The 
training process also has hyperparameters, notably the learning rate 
and the number of training iterations. The learning rate controls the 
size of the steps taken when updating the trainable parameters. Due 
to the number of hyperparameters and their effect on the perfor-
mance of PINN structures, systematic studies are necessary to identify 
an appropriate set of optimal hyperparameters. Towards this, a grid 
search algorithm is a straightforward tool for hyperparameter tun-
ing. This involves discretising the hyperparameter space into a grid 
with every combination within the grid evaluated using performance 
metrics such as the coefficient of determination (R2) and the Root 
Mean Square Error (RMSE). High R2 values close to 1.0 and low 
RMSE values indicate a strong correlation between the predicted and 
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actual concentrations. However, though the grid search method pro-
vides a systematic approach to explore the hyperparameter space, it 
is computationally intensive. Nevertheless, despite its computational 
intensiveness, the grid search ensures a comprehensive evaluation of 
all possible combinations, offering a thorough understanding of the 
impact of hyperparameters on model performance. In order to imple-
ment and evaluate the algorithm, we used DeepXDE, a Python-based 
library for scientific computing that leverages PyTorch or Tensor-
Flow as its computational engine [42]. DeepXDE is an open source 
framework for Physics-Informed Neural Networks (PINN), specifically 
designed to solve forward and inverse problems involving ordinary 
differential equations (ODE) and partial differential equations (PDE) as 
shown in Algorithm 1 and 2, respectively. The framework addresses 
problems defined by initial and boundary conditions, along with the 
available measurements. For the ODE numerical solver, we applied the
solve_ivp function from the scipy.integrate library.

2.4. Chemically-informed smoothed particle hydrodynamics (SPH) + ge-
netic algorithm (GA) framework

We used a series hybrid modelling architecture for the chemically 
informed SPH+GA framework used in this study (See Fig.  5). In this 
configuration, SPH is used to simulate the physical behaviour of the 
system, such as particle motion, concentration distribution and flow 
dynamics based on established governing equations. This forms the 
mechanistic core (white box) of the hybrid modelling system. Sub-
sequently, Genetic Algorithm or any other optimisation algorithm is 
then used for system parameter characterisation. This two-stage setup 
fits the definition of a series hybrid model in which the black-box 
model (GA) relies on the outputs of the white-box model (SPH). In 
the development and application of a chemically informed SPH, the 
chemical interactions between molecules and their dynamics in the 
simulated reactor were taken into account. As a result, we discuss 
the fluid dynamics equations governing SPH in Section 2.4.1. We also 
discuss in Sections 2.4.2 to 2.4.4 how we modelled the reactor chemical 
processes mentioned in Section 2.2.1. Furthermore, in Section 2.4.5, 
we discuss the black-box approach we used for system characterisation. 
This step is important in order to achieve a one-to-one representation 
between the physical system and a digital twin model.
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Fig. 5. Conceptual diagram of SPH+GA as a series hybrid model.
Algorithm 1 PINN algorithm for Forward Mode with DeepXDE
1: Define the reactor/reaction model ODE include the rate constant, 
𝑘1 and its related parameters using the Tensorflow grammar.

2: Define the boundary conditions.
3: Load and define the observation points using the PointSetBC
module (𝐶𝐴𝑜𝑏𝑠  and 𝐶𝐶𝑜𝑏𝑠 ) for reaction model 1, 𝐶𝐴𝑜𝑏𝑠 , 𝐶𝐶𝑜𝑏𝑠  and 
𝐶𝐷𝑜𝑏𝑠 ) for reaction model 2.

4: Define the computational domain using the geometry module.
5: Specify the initial conditions (initial concentration of 𝐶𝐴0

 and 𝐶𝐵0
using the IC module.

6: Combine the geometry module, ODE, observation points and IC
module together into data.PDE.

7: Specify the training distribution, training data and set the number 
of points to be sampled in data.PDE.

8: Construct the neural network and choose the FFNN module to 
represent the feed-forward neural network, specify the FFNN in-
put, output and layer and neuron size, activation function, and 
initialiser.

9: Define the Model by combining data.PDE in Step 6 and the FFNN
in Step 8.

10: Call Model.compile and set the optimisation hyperparameters, 
such as optimiser and learning rate.

11: Call Model.train to train the network by minimising the loss 
function.

12: Call Model.predict to predict the ODE solutions and reactor 
behaviour.

Algorithm 2 PINN algorithm for Inverse Mode with DeepXDE
1: Define the reactor / reaction model ODE without the rate constant, 
𝑘1 and its related parameters using the Tensorflow grammar.

2: Define the unknown parameter to be identified, the rate constant 
using the Variable module (𝑘1 for reaction model 1, 𝑘2 and 𝑘3
for reaction model 2).

3: Apply the same network configuration from the forward mode 
(defined in Step 8 of Algorithm 1).

4: Apply the same optimiser settings from the forward mode(Step 10 
of Algorithm 1).

5: Repeat Steps 2–7 from Algorithm 1.
6: Define callbacks module to monitor the behaviour at the spec-
ified period of iterations and stored the unknown parameter 
value.

7: Call Model.compile and set the optimisation hyperparameters, 
such as optimiser and learning rate.

8: Call Model.train to train the network by minimising the loss 
function.

9: Call Model.predict to predict the ODE solutions, reactor 
behaviour, and unknown parameters.

2.4.1. Fundamental equations of smoothed particle hydrodynamics (SPH)
Smoothed Particle Hydrodynamics (SPH) is a mesh-free compu-
tational method in which particles discretise both the fluid and the 
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boundaries of a system. In SPH, particles are used to discretise both 
the fluid and boundaries of the system. Each particle carries physical 
properties such as mass, density, and viscosity [43]. Furthermore, the 
SPH methodology attempts to ensure that the principles of conservation 
of mass, momentum and energy are respected in the hydrodynamics 
system. In order to achieve the principles mentioned above, the domain 
must be discretised to approximate the behaviour of the hydrody-
namic system at specific discrete locations [44]. The majority of the 
hydrodynamic problems are solved by the weakly compressible SPH 
(WCSPH) scheme. Throughout the SPH simulation, the mass of each 
particle is kept constant while the density of the particles changes 
according to the continuity Eq.  (27) [44]. The conservation of mass 
is governed by the continuity equation (Eq.  (27)), which describes the 
fundamental principle of mass preservation in a system. In this context, 
the density 𝜌𝑖 of particle 𝑖 is estimated using Eq.  (28) where 𝑚𝑗 is the 
mass of the particle 𝑗 and 𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ) denotes the smoothing kernel 
function. This formulation applies a summation approach to account 
for the contributions of neighbouring particles, thereby ensuring mass 
conservation within the system. 
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐯) = 0 (27)

𝜌𝑖 =
∑

𝑗
𝑚𝑗𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ) (28)

The conservation of momentum in fluid dynamics is governed by the 
Navier–Stokes equation, which, for a compressible fluid, can be written 
as: 
𝑑𝐯
𝑑𝑡

= −1
𝜌
∇𝑃 + 𝜈∇2𝐯 + 𝐠 (29)

In SPH, the momentum equation for a particle 𝑖 is divided into 
pressure and viscosity components, given by: 
𝑓𝑝𝑣,𝑖 = 𝑓𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒,𝑖 + 𝑓𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦,𝑖 (30)

where 𝑓𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒,𝑖 and 𝑓𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦,𝑖 are the forces generated by pressure and 
viscosity of the particles and given in Eqs. (31). This summation ac-
counts for the pressure contributions from neighbouring particles, with 
𝑃𝑖 and 𝑃𝑗 being the pressures at particles 𝑖 and 𝑗 respectively. Viscosity 
forces, which account for the diffusive transport of momentum between 
neighbouring particles, are expressed by Eq.  (32): 

𝐟pressure,𝑖 = −
∑

𝑗
𝑚𝑗

(

𝑃𝑖
𝜌2𝑖

+
𝑃𝑗
𝜌2𝑗

)

∇𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ) (31)

𝐟viscosity,𝑖 = 𝜂
∑

𝑗
𝑚𝑗

𝐯𝑗 − 𝐯𝑖
𝜌𝑗

∇2𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ) (32)

In addition to the forces listed above, the external forces generated 
by the pump are included in Eq.  (33): 

𝐟ext,𝑖 =
𝑉𝑃
𝑡

(33)

This leads to the total acceleration generated on a particle 𝑖 as Eq. 
(34), which influences the velocity of each particle and consequently 
the position (Eq.  (35)). 

𝐚𝑖 =
𝐟pressure,𝑖 + 𝐟viscosity,𝑖 + 𝐟ext,𝑖 (34)
𝜌𝑖
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𝐯𝑖(𝑡 + 𝛥𝑡) = 𝐯𝑖(𝑡) + 𝐚𝑖𝛥𝑡 (35)

Where 𝜌 is the density of the fluid, 𝐯 the velocity vector field, 𝑡 the time, 
𝑃  is pressure, 𝜈 is the kinematic viscosity, 𝐟𝑒𝑥𝑡,𝑖 represent external forces, 
∇⋅ denotes the divergence operator, ∇2 is the Laplacian operator, 𝐸 is 
the total energy, 𝑇  is the temperature of the fluid and 𝜇 is the dynamic 
viscosity.

2.4.2. Reactor modelling (boundary conditions)
In building physical helical coiled reactors, tubes are coiled around 

a heated column in order to save space. In this type of reactors, the 
residence time 𝜏 of the reagents is governed by the force generated 
by the pump and the length 𝑙 of the reactor. As a result, the digital 
representation of the reactor was modelled by unfurling the coil of 
the physical helical coiled reactor into a straight line, as illustrated in 
Figure S4 in the Supporting Information. This simplified the simulation 
of the physical reacting system. In the future, this system can be 
improved by incorporating the actual design of the physical reactor in 
the simulation. This approach simplifies the representation of complex 
geometries in the simulation. Particles were used to represent the 
walls of the simulated reactor and used to define the limits as well 
as boundaries of the fluid domain. The wall particles were solved like 
any other fluid particles. However, the particle velocities were set to 
zero. This ensured that their positions were fixed and followed the 
boundaries of the geometry of the reactor.

2.4.3. Reactor and particle temperature modelling
We assume that each particle enters the reactor coil at 25 ◦C (room 

temperature). The particles are then heated up over time 𝑡, until they 
reach an energy threshold 𝜌, after which the probability of reaction 
increases. The rate of temperature increase 𝛿𝑡 of each particle 𝑝 is 
governed by thermodynamic principles including heat transfer 𝑞 (Eq. 
(37)), thermal conductivity 𝛬 and properties of the carrying fluid 𝜓 ,
Newton’s Law of Cooling (Eq.  (36)) and the concepts of conduction,
convection, as well as radiation. In this work, we model the increase 
in temperature of each particle over time using Newton’s Law of 
Cooling (Eq.  (36)). According to the Newton’s Law of Cooling the 
rate of change of the temperature of an object is proportional to the 
difference between its own temperature and the room temperature. 
Mathematically, this is expressed as: 
𝑑𝑇
𝑑𝑡

= −𝜖(𝑇 − 𝑇env) (36)

Where 𝑑𝑇𝑑𝑡  is the rate of change of the temperature of the object, 𝑇
is the temperature of the object, 𝑇env is the ambient temperature and 
𝜖 is a constant that depends on the characteristics of the object and 
the environment such as surface area, heat transfer coefficient. This 
equation indicates that the greater the temperature difference (𝑇−𝑇env), 
the faster the rate of change in temperature. In the context of heat 
conduction, Fourier’s Law states that the heat transfer rate 𝑞 through 
a material is proportional to the temperature difference across the 
material, expressed as: 

𝑞 = −𝛬 ⋅ 𝐴 ⋅
𝑑𝑇
𝑑𝑥

(37)

Where 𝑞 is the heat transfer rate, 𝛬 is the thermal conductivity of the 
material, 𝐴 is the cross-sectional area through which heat is transferred 
and 𝑑𝑇𝑑𝑥  is the temperature gradient across the material. The greater the 
temperature difference across the material, the higher the rate of heat 
transfer, resulting in a faster temperature change in the object. Since 
the principles of convection and radiation vary from reactor system to 
system depending on the materials used, we collectively model these 
effects as 𝜁 , which is identified using a system characterisation process 
(see Section 2.4.5). When identifying 𝜁 , we also incorporate 𝛬 and 𝜖. 
𝛥𝑝𝑇 = 𝛬𝛥𝑇 (38)
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Fig. 6. Modelling concept of reaction distance 𝛼 between two reactants within the 
chemical process.

2.4.4. Kinetic model
The design equation of the PFR is applied to characterise the con-

centration of each species in the system as a function of their residence 
time 𝜏 as described by Eq.  (1). We used this as a macroscopic model, 
where each particle in our SPH framework models an ensemble of 
reactant or product ‘‘molecules’’. We embedded principles from molec-
ular dynamics and stochastic reaction diffusion models into a SPH 
framework to model chemical reactions taking place while dealing with 
flow in the reactor geometry. This led to a hybrid modelling system 
which represents one of the key contributions in this manuscript. In 
the experimental section, we compare results obtained from this hybrid 
modelling approach with real-life experiments and physics informed 
neural network (PINN) models. The reaction distance 𝛼 for the chemical 
reagents modelled in this work is defined by Eq.  (39) [45,46] and is 
illustrated in Fig.  6. 

𝛼 = 𝑘
4𝜋(𝐷𝐴 +𝐷𝐵)

(39)

Where 𝐷𝐴 and 𝐷𝐵 are diffusion constants of reactants 𝐴 and 𝐵 respec-
tively and 𝑘 is the reaction rate constant. Depending on the reaction 
rate constant of the chemical reaction, the reaction distance changed 
accordingly. Residence time was calculated according to Eq.  (40) where 
𝑉  is the volume of the reactor and 𝑄 is the volumetric flow rate. The 
flow rate in the reactor section was determined as the sum of the flow 
rates delivered by pumps 𝐴 and 𝐵. 

𝜏 = 𝑉
𝑄

(40)

Each particle’s position (𝑋) was influenced by the system of SPH 
equations (Eq.  (27) to (35)), as follows: 
𝑋𝑡+1 = 𝑋𝑡 + 𝑣 (41)

When the distance between two particles of reactants A and B falls 
below 𝛼 and the particle temperature exceeds the energy threshold 
constant for A (and respectively for B), a reaction occurs according to 
the probability ∼ 𝑈 (0, 1) < 𝑘. When this happens, the two products 
C and D replace the reactants A and B in our system for the real-life 
experiments we were digital twinning.

2.4.5. System characterisation through optimisation
Due to the differences in the scales of the systems under con-

sideration (microscopic to macroscopic), an appropriate optimisation 
was required to characterise the physical system that our digital twin 
was attempting to model. This involved discovering the values for the 
variables of the system including those governing convection, radiation 
and heat loss, modelled as 𝜁 , as previously discussed. In order to 
determine 𝜁 , we made use of Genetic Algorithm (GA), a population 
based algorithm with capability for handling: (1) multi-variable value 
discovery and optimisation, (2) optimisation problems in large and 
complex search spaces, (3) problems where a simple analytical solution 
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Table 2
Hyperparameters implemented for Reaction Model 1 using the PINN framework in 
forward mode at 65 ◦C, applied to both full and reduced datasets. As seen in the 
Table, the number of neurons for the reduced dataset was larger than that for the full 
dataset. This is because we used the same number of epochs in both cases thereby 
providing an opportunity for the grid search algorithm to find a complex model (in 
the form of increased number of neurons) that overfits to the reduced dataset. 
 Parameters Full dataset Reduced dataset 
 Layers 5 5  
 Neurons 8 10  
 Learning rate 0.001 0.001  
 Activation function tanh tanh  
 Optimiser Adam Adam  

is not readily available, (4) data of any dimensionality, and (5) noisy or 
incomplete datasets by exploring multiple potential solutions [47,48]. 
Furthermore, the parallel nature of the GA framework allows for faster 
computations on multi-core systems which is very useful when handling 
large computational loads. These features are unlike ordinary gradient 
descent algorithm which also have the issue of getting trapped in local 
minima. Towards finding 𝜁 , we minimised the differences between the 
data generated by our chemically informed SPH and the data obtained 
from physical experiments. A comprehensive description of the steps 
involved in this process, along with the configuration of the Genetic 
Algorithm, can be found in Section 3.0 of the Supplementary Informa-
tion (SI). The pseudocode outlining the Genetic Algorithm for scaling 
factor optimisation is provided as Algorithm 3 in the Supplementary 
Information.

3. Results and analysis

The training process for the PINN involves constructing a compre-
hensive dataset composed of collocation points within the domain. This 
dataset includes a specific number of residual points sampled within the 
domain and boundary points sampled at the left and right endpoints 
of the interval. The complete training dataset is formed by integrating 
domain data and boundary data, providing the neural network with a 
thorough understanding of the solution’s behaviour within the defined 
domain. The testing dataset, used to evaluate the model’s performance, 
includes a combination of randomly sampled points within the do-
main, experimental data points, and initial condition points. The entire 
dataset is then split into 70% for training and 30% for testing, ensuring 
a balanced approach to model training and validation.

3.1. PINN forward mode for output prediction (model 1 at 65 ◦C)

The hyperparameter tuning for Model 1 was carefully explored in 
structured collocation points under various configurations. Specifically, 
the number of hidden layers and neurons was varied to evaluate their 
impact on model performance. Each configuration was trained for 
10,000 epochs using the Adam optimiser with a learning rate of 0.001. 
Key training metrics, including training loss, test loss, and training 
time, were recorded for comprehensive performance evaluation. The 
detailed results of these hyperparameter configurations, along with 
the corresponding loss and prediction plots, are presented in Table S1 
and Table S2 in the Supplementary Information (SI). The grid search 
conducted on the full dataset identified the optimal hyperparameter 
configuration as 5 hidden layers with 8 neurons per layer. This setup 
achieved the lowest training and test losses of 1.34×10−5 and 1.28×10−5, 
respectively. Similarly, for the reduced dataset, the optimal configura-
tion was also found to be 5 hidden layers, but with 10 neurons per 
layer, resulting in training and test losses of 1.39 × 10−5 and 1.31 ×
10−5, respectively. The surface plots show the relationship between the 
number of neurons, layers, and training loss, with the lowest point 
indicating the optimal configuration as visually represented in Fig.  7 
10 
for the full dataset and Fig.  8 for the reduced dataset. The result of the 
optimal hyperparameters for the PINN model are detailed in Table  2.

The loss curves in Figs.  9(a) and 9(c) illustrate the total training and 
testing loss {𝐿Total} which are {𝐿ODE, 𝐿BC, 𝐿IC, 𝐿data} over the course 
of 10,000 steps. The area plot shown in Figs.  9(b) and 9(d), particu-
larly for the input reagent and the desired product, visually highlights 
the narrowing error margins as training progresses, emphasising the 
increasing precision of the model predictions. Both losses decrease con-
sistently, with the test loss closely following the training loss, indicating 
strong generalisation and minimal overfitting. The final losses converge 
to a magnitude of approximately 10−5, demonstrating that the model 
has achieved a high degree of accuracy in its predictions. In the forward 
mode PINNs are applied to simulate the kinetics of a reactive system 
involving the species A, B, C, and D. Experimental data are available 
only for species A and C, and the initial concentrations of A and B are 
known. The reaction rate constant, 𝑘1 is also known and treated as a 
fixed parameter in the model. The network takes domain coordinates as 
input and outputs the predicted concentrations of the chemical species. 
The residuals of 4 chemical species ODEs are computed at a set of 
collocation points throughout the domain that are incorporated into 
the total loss function using Automatic Differentiation (AD) during the 
training process. PINNs utilise AD to compute the derivatives of the 
approximated concentration functions. This permits the ODE residuals 
to be evaluated at the domain collocation points without discretisation 
the solution on a temporal grid. When trained with the full dataset, the 
network benefits from comprehensive observational information, which 
complements the embedded ODEs. As shown in Fig.  10(a) we observed 
a high correlation between the concentration profiles of phenol and 
phenyl acetate predicted by the PINN model, the numerical solution 
of the ODE, and the experimental data. For the full dataset, the RMSE 
values were as low as 0.0019 and 0.0018 for phenol and phenyl 
acetate, respectively, at 65 ◦C, with R2 scores exceeding 0.99 in both 
cases, as depicted in Table  4. Remarkably, even when the observational 
data is reduced and active only in the first 0–6 min interval, the 
physics-informed component drives the network to reconstruct accurate 
full-domain concentration profiles. Data in the early region helps guide 
the network’s initial learning, while the governing equations enable it 
to generalise and extrapolate the solution to the remaining time span 
while maintaining the correct trends in unobserved regions (6–15 min). 
As evidenced in Fig.  10(b), the prediction maintained high accuracy 
even for the reduced dataset, with RMSE values below 0.0027 and R2

scores above 0.972 demonstrating the robustness of the PINN model 
under conditions of limited experimental data.

3.2. PINN inverse mode for simultaneous output prediction and parameter 
estimation (model 1 at 75 ◦C)

We also applied the PINN framework in inverse mode to simulta-
neously estimate the unknown reaction rate constant 𝑘1 and predict 
a full-domain concentration profiles of the reaction model. The setup 
remains the same as in the forward mode, involving four species (A, B, 
C, and D), where experimental concentration data are available only for 
species A and C, and the initial concentrations of A and B are known. 
Unlike in PINN forward mode where kinetic parameters are predefined, 
in PINN inverse mode, the model must infer 𝑘1 directly from the 
experimental observations, while still satisfying the system’s ODEs. 
We adopt the same PINN architecture and optimal hyperparameters 
used in the PINN forward mode (Table  2). Using consistent archi-
tecture across forward and inverse modes ensures comparable model 
behaviour, simplifies hyperparameter tuning, and enables potential 
reuse for transfer learning (TL). The mechanism underlying inverse 
PINNs involves defining unknown physical parameters explicitly as 
trainable variables alongside the neural network’s conventional weights 
and biases. In this setup, 𝑘1 is treated as an optimisable parameter and 
the solution to the inverse problem is obtained by jointly optimising 
both NN parameters, 𝜃 and 𝑘  as shown in Eq.  (26), where lambda 
1
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Fig. 7. Surface plot of hyperparameter tuning. The red circle indicates the optimal network configuration using the full dataset. (a) Training loss (b) Testing loss.
Fig. 8. Surface plot of hyperparameter tuning. The red circle indicates the optimal network configuration using the reduced dataset. (a) Training loss (b) Testing loss.
represents as 𝑘1. When training begins, the unknown parameter 𝑘1
is first initialised with a random or approximate value. Through the 
process of joint optimisation, both parameters, 𝜃 and 𝑘1 are updated 
simultaneously at each iteration using a gradient-based optimiser such 
as Adam. AD enables the computation of gradients of the total loss 
function with respect to both parameters. This joint optimisation pro-
cess allows the model to minimise the total loss function, as expressed 
in Eq.  (25), by fitting the network to observed concentration data while 
also identifying the value of 𝑘1 that best satisfies the governing ODEs. 
Once the training converges, the optimised parameters 𝜃∗ define a 
smooth and differentiable function that accurately approximates the 
concentration profiles of all four species (A, B, C, and D) across the 
domain. Simultaneously, the inferred value 𝑘∗1 represents the reaction 
rate constant that best aligns the model predictions with both the 
experimental data and the underlying reaction mechanism. Figs.  11
and 12 illustrate the performance of Physics-Informed Neural Networks 
(PINNs) in predicting the concentration profile and estimating the 
reaction rate constant 𝑘1 using empirical datasets of different sizes. 
In both cases, the PINN model effectively estimated the 𝑘1 value, as 
illustrated in Figs.  11(b) and 12(b), which show the convergence of 
the estimated 𝑘1 values towards the true reaction rate constant. In the 
scenario using the full dataset, the predicted 𝑘1 value converges to 
approximately 10.404 × 10−3 M−1s−1 closely matching the true value 
of 10.45 × 10−3 M−1s−1. This high level of agreement underscores the 
model’s capability to leverage comprehensive data to produce precise 
parameter estimates. Conversely, when the dataset is reduced to one-
third of its original size, the PINN model still provides a reasonable 
estimate of the rate constant, with a predicted 𝑘  value of 10.31 ×
1

11 
10−3 M−1s−1. While this estimate is slightly lower than that obtained 
from the full dataset, the minimal difference highlights the robustness 
and effectiveness of the PINN model in parameter estimation even when 
the available data is limited. Figs.  11(a) and 12(a) further support these 
findings by displaying the concentration profiles predicted by the PINN 
model when trained on the full and reduced datasets, respectively. 
The predicted concentrations align closely with the experimental data 
in both cases, following the trend of the numerical solution. This 
close alignment indicates that the PINN model can accurately capture 
the system’s dynamics, even when trained on a deliberately reduced 
dataset consisting of one-third of the original data points. These data 
were specifically sampled from the 0–5 min residence time interval 
allowing the model to utilise its inherent knowledge of the governing 
equations. By addressing challenges posed by missing or limited data, 
the model effectively generalises and predicts the system’s behaviour 
beyond the training region, despite excluding observational data from 
potentially more informative regions of the reaction dynamics later in 
the timescale. The comparison of the predicted 𝑘1 values between the 
full and limited datasets, is shown in Tables  3.

To evaluate the performance of the PINN model in predicting the 
concentrations of phenol and phenyl acetate at 65 ◦C and 75 ◦C, we 
conducted a series of comparative analyses between the model’s pre-
dictions and two different experimental datasets. The accuracy of the 
model was quantified using the coefficient of determination (R2) and 
the Root Mean Square Error (RMSE). High R2 values close to 1.0 and 
low RMSE values indicate a strong correlation between the predicted 
and actual concentrations, demonstrating the model’s precision and 
reliability. These metrics were computed for both phenol and phenyl 
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Fig. 9. Showing the training and testing loss curves for Model 1 using full and reduced dataset. These curves are for the optimal values of the hyperparameters (See Table  2) 
obtained during grid search. For Model 1 with full dataset: (a) Shows loss curves and area plot, 𝐿𝑂𝐷𝐸 for 𝐶𝐴 (phenol) and 𝐶𝐵 (phenyl acetate) while (b) Shows the overall 
training and testing loss, 𝐿𝑇 𝑜𝑡𝑎𝑙 across all iterations. For Model 1 with reduced dataset: (c) Shows loss curves and area plot t, 𝐿𝑂𝐷𝐸 for 𝐶𝐴 (phenol) and 𝐶𝐵 (phenyl acetate) while 
(d) show the overall training and testing loss, 𝐿𝑇 𝑜𝑡𝑎𝑙 across all iterations.
Fig. 10. Model 1: Comparison of concentration profiles predicted by PINN and ODE solutions against experimental data for phenol and phenyl acetate at 65 ◦C: (a) full dataset, 
(b) reduced dataset.
Table 3
Model 1 at 75 ◦C: Comparison of the true rate constant 𝑘1 and the PINN estimates 
with full and reduced datasets, showing close agreement in both cases.
 Parameter Rate constant value, 𝑘1 
 (M−1s−1)  
 True value 0.01045  
 PINN estimation (full dataset) 0.01040  
 PINN estimation (reduced dataset) 0.01031  

acetate at each temperature, allowing us to determine how well the 
PINN model performs in replicating experimental results under both 
12 
complete and limited data scenarios. Fig.  13 illustrates the results 
obtained using the complete original dataset. The plots show a strong 
correlation between the PINN model predictions and the experimental 
data for both phenol and phenyl acetate. This is evidenced by the near-
unity R2 values and the low RMSE values for each case, indicating 
the model’s high accuracy in predicting the concentrations at both 
temperatures. The data points closely align with the red dashed line, 
which represents perfect agreement between the predicted and actual 
values, further confirming the model’s robustness. Fig.  14 compares 
the same predictions but utilises a reduced dataset for the analysis. 
Despite the reduction in data, the PINN model maintains a high degree 
of accuracy, as shown by the slight increase in RMSE values and minor 
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Fig. 11. Model 1 using the full dataset: (a) PINN-predicted concentration profiles showing strong agreement with experimental data, and (b) evolution of PINN identification of 
rate constant 𝑘1 over the iterations.
Fig. 12. Model 1 using the reduced dataset: (a) PINN-predicted concentration profiles showing strong agreement with experimental data, and (b) evolution of PINN identification 
of rate constant 𝑘1over the iterations.
deviations in R2 values. The results suggest that the model can still 
reliably predict the concentrations with limited data, although with 
marginally reduced precision. Table  4 summarises the RMSE and R2

values for phenol and phenyl acetate at both temperatures. The results 
indicate that, while the model performs slightly better with the full 
dataset, the reduced dataset still yields acceptable accuracy, underscor-
ing the robustness of the PINN model in both scenarios. In Model 1, 
we predicted the concentration profiles and identified the reaction rate 
constant 𝑘 for a simple one-step reaction. This model was characterised 
by a consistent set of system parameters, such as the same reactor 
volume and flow rate, which resulted in a uniform residence time. 
Additionally, the initial conditions were identical for both temperature 
conditions (65 ◦C and 75 ◦C), as detailed in Table  2. This uniformity 
allowed us to isolate and understand the behaviour of a straightforward 
reaction under controlled conditions, focusing specifically on the effect 
of the temperature on the reaction kinetics.

3.3. Application of a chemically-informed SPH+GA series hybrid modelling 
framework

Table  5 outlines the Genetic Algorithm (GA) hyperparameters used 
to optimise the scaling factor (𝜁) within the chemically informed 
13 
Smoothed Particle Hydrodynamics (SPH) framework. The implemented 
GA settings included a population size of 100, 100 generations, and 
a mutation rate of 0.2. The optimal scaling factors obtained were 
0.000453 for Model 1 at 65 ◦C, 0.000481 for Model 1 at 75 ◦C, 
and 0.881377 for Model 2 at 190 ◦C. These scaling factors were 
applied to tune the thermal and kinetic behaviour of the SPH model, 
ensuring closer alignment with experimental concentration data. The 
GA convergence behaviour, shown in Supplementary Information (SI) 
Figure S5, demonstrates rapid mean squared error (MSE) reduction 
within the first 10 generations, confirming efficient parameter optimi-
sation. To achieve this, a structured GA configuration was adopted. The 
algorithm employed a roulette wheel selection method, single-point 
crossover, and mutation with a small random perturbation to maintain 
diversity and avoid premature convergence. A fitness function based 
on the sum of absolute differences between scaled SPH predictions and 
experimental data guided the optimisation, favouring scaling factors 
that minimised this error. This approach ensured that the SPH model 
could be calibrated effectively with minimal reliance on physical exper-
imentation, helping to reduce experimental cost and time. Nevertheless, 
strategically selected experimental points were still required to inform 
the optimisation and validate the digital twin model’s predictions. 
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Table 4
Performance Metrics (RMSE and R2) of the PINN model for predicting Phenol and Phenyl Acetate concentrations at different temperatures and 
dataset sizes.
 Species PINN mode Temperature RMSE R2 scores RMSE R2 scores 
 (Full dataset) (Reduced dataset)
 Phenol Forward 65 ◦C 0.0019 0.995 0.0021 0.986  
 Phenol Inverse 75 ◦C 0.0028 0.991 0.0026 0.974  
 Phenyl Acetate Forward 65 ◦C 0.0018 0.993 0.0015 0.994  
 Phenyl Acetate Inverse 75 ◦C 0.0031 0.987 0.0027 0.972  
Fig. 13. Parity plots showing PINN-predicted versus experimentally measured concentrations for (a) phenol at 65 ◦C, (b) phenyl acetate at 65 ◦C, (c) phenol at 75 ◦C, and (d) 
phenyl acetate at 75 ◦C. Results are based on the full experimental dataset. The associated RMSE and R2 values quantify predictive accuracy of the model.
Further implementation details, including the full procedural logic and 
parameter settings, are presented in Section 3.0 of the Supplemen-
tary Information (SI), with pseudocode outlined in Algorithm 3. This 
includes the use of two input datasets (SPH raw simulation data and ex-
perimental data), initialisation of a population of scaling factors, fitness 
evaluation via MSE, parent selection, crossover, mutation, and iterative 
replacement of poorly performing candidates. This SPH+GA approach 
exemplifies a series hybrid modelling framework, in which physics-
based simulation (SPH) is sequentially enhanced through data-driven 
parameter tuning (GA). This hybridisation strengthens the model’s 
predictive fidelity and adaptability across various reaction systems and 
temperature regimes. Fig.  15 illustrates the resulting model perfor-
mance, with sub-figures (a), (c), and (e) showing concentration profiles 
for phenyl acetate (Model 1) and metoprolol (Model 2) compared to 
experimental data. Sub- Figs.  15(b), (d), and (f) present parity plots 
that quantitatively assess the model’s accuracy using RMSE and R2
14 
metrics. Together, these results demonstrate the effectiveness of the 
SPH+GA hybrid model in reproducing complex chemical dynamics. 
Table  6 complements this analysis by comparing performance across 
PINN and SPH+GA models. While PINNs exhibit superior accuracy, 
particularly in data-scarce settings, the SPH+GA framework provides 
critical insights into flow and transport dynamics, making it a valuable 
complementary tool for digital twinning of chemical processes.

3.4. PINN inverse mode for simultaneous output prediction and parameter 
estimation in two-step reaction model

In this section, we analysed the performance of the PINN model 
to describe the kinetics of a more complex reaction network. Model 
2 introduces additional complexity by requiring the simultaneous es-
timation of two rate constants, 𝑘2 and 𝑘3 while also predicting the 
concentration profiles of the species involved in the system. This model 
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Fig. 14. Parity plots showing PINN-predicted versus experimentally measured concentrations for (a) phenol at 65 ◦C, (b) phenyl acetate at 65 ◦C, (c) phenol at 75 ◦C, and (d) 
phenyl acetate at 75 ◦C. Results are based on the incomplete/limited experimental dataset. The associated RMSE and R2 values quantify predictive accuracy of the model.
Table 5
GA hyperparameters implemented.
 Parameters Value  
 Population Size 100  
 Number of Generations 100  
 Mutation Rate 0.2  
 Best scaling factor (Model 1, 65 ◦C) 0.000453 
 Best scaling factor (Model 1, 75 ◦C) 0.000481 
 Best scaling factor (Model 2, 190 ◦C) 0.881377 

Table 6
Performance metrics (RMSE and 𝑅2) for PINN and SPH models at different temperatures 
for Models 1 and 2.
 Model Reaction system Temperature RMSE R2  
 (◦C)  
 PINN Model 1 65 0.0018 0.993 
 Model 1 75 0.0030 0.987 
 Model 2 190 0.0033 0.988 
  
 SPH Model 1 65 0.0114 0.758 
 Model 1 75 0.0122 0.822 
 Model 2 190 0.0090 0.912 
15 
was designed to evaluate the PINN’s ability to simultaneously predict 
multiple rate constants within a complex reaction network. The in-
troduction of changes in reactor volume, residence time, and initial 
concentration across different temperatures added further complexity, 
making it more challenging for the model to accurately capture the 
system’s kinetic behaviour. We evaluated Model 2 with PINN in Inverse 
mode using the same optimal hyperparameters reported in Table  7, 
which were previously used for Model 1. However, due to the limited 
experimental data available for Model 2, we did not perform further 
dataset reduction as in the case of Model 1. We evaluated Model 2 at 
four temperatures of 130 ◦C, 150 ◦C, 190 ◦C and 210 ◦C. The PINN 
model was used to predict the species output and the same time identify 
the unknown two rate constants, 𝑘2 and 𝑘3, within a reaction network 
involving two consecutive reactions, described by Eqs. (7) and (8).

Fig.  16 illustrates the convergence of these values across the varying 
temperature conditions, further validating the model’s accuracy. Table 
8 provides a comparison of the experimental and PINN-estimated rate 
constants 𝑘2 and 𝑘3 across different temperatures, showing their close 
agreement. The figure illustrates PINN predictions of species concen-
trations and estimation of rate constants of 𝑘2 and 𝑘3 across varying 
temperatures. The results validate the PINN model by comparing the 
predicted concentration profiles of the reactants and products with the 
experimental data. The concentration profiles in Fig.  16 (a, d, g, j) 
demonstrate that the predicted concentrations align closely with both 
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Fig. 15. Comparative evaluation of SPH+GA model predictions against experimental data across three reaction conditions. Sub-figures (a, c, e) show the temporal concentration 
profiles predicted by the SPH+GA model alongside experimental measurements for phenyl acetate (Model 1) at 65 ◦C and 75 ◦C, and metoprolol (Model 2) at 190 ◦C. Sub-figures 
(b, d, f) present parity plots assessing model performance, highlighting the model correlation and predictive capability of the SPH+GA approach under varying operating conditions.
the experimental data and trends observed from its ODEs solutions, 
confirming the model’s accuracy in capturing the dynamic behaviour 
of the reaction network even with sparse data. The estimated values 
of rate constant 𝑘2 and 𝑘3 show n Fig.  16 (b, e, h, k) progressively 
converge towards the experimental values as iterations progress shows 
effective convergence towards true values, with faster convergence 
observed at higher temperatures. Training and test loss curves in Fig.  16 
(c, f, i, l) further confirm the consistency of the model’s performance 
across iterations. These results collectively validate the PINN model’s 
accuracy in capturing the reaction network’s dynamics, confirming the 
16 
model’s accuracy in capturing the dynamic behaviour of the reaction 
network. Its consistent performance across varying temperatures high-
lights the potential of the PINN model as a powerful tool for analysing 
complex reaction networks in chemical engineering. Model 2 further 
exemplifies the ability of PINNs to estimate multiple rate constants 
and predict concentration profiles in systems involving consecutive 
reactions. Despite the limited experimental data, the model’s ability to 
generalise and provide accurate predictions underscores the robustness 
of the selected hyperparameters, making it applicable to a range of 
reaction conditions.
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Fig. 16. PINN predictions for Model 2 (Metoprolol) at 130 ◦C (a–c), 150 ◦C (d–f), 190 ◦C (g–i), and 210 ◦C (j–l). At each temperature, the concentration profiles prediction (a, 
d, g, j), evolution of 𝑘2 and 𝑘3 identification over iterations (b, e, h, k) and training and test loss curves (c, f, i, l).
4. Discussion

As seen from the results above, both PINN and SPH are highly 
effective strategies for modelling flow chemistry particularly in the 
context of mixing. However, with an increasing number of particles, 
SPH rapidly becomes computationally expensive, requiring the use of 
Graphical Processing Units (GPUs) to run simulations effectively. In 
order to compensate for this, it is possible to use a single particle 
17 
to represent an ensemble of particles. Furthermore, SPH excels at 
capturing complex reactor geometries as well as multiphase mixing, 
aspects that are not explicitly represented or defined in PINNs. As a 
result, in contrast to PINN, SPH offers better scalability as reactor sizes 
or process complexity increases. On the other hand, PINNs are well-
suited for rapidly testing out changes in reactor geometry as long as the 
governing equations are known. For a similar change, the new reactor 
geometry would need to be digitally constructed and then converted 
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Fig. 16. (continued).
into boundary particles for SPH simulations, thereby taking longer to 
start the simulation.

While plug flow reactors (PFRs) are traditionally modelled using 
systems of ordinary differential equations (ODEs) with known reaction 
kinetics, recent developments in reaction engineering have significantly 
increased the complexity of kinetic models. Mechanistic microkinetic 
models now routinely involve hundreds to thousands of elementary 
reaction steps and intermediates [49–51]. These reaction networks 
are often generated automatically through rule-based algorithms that 
classify reactions into families based on chemical knowledge [50,52]. 
18 
Though it is theoretically possible to solve these large stiff systems with 
conventional numerical solvers, integrating them into advanced simula-
tion platforms such as computational fluid dynamics (CFD) frameworks 
or digital twin environments presents major computational challenges.

In this study, we explore the use of Physics-Informed Neural Net-
works (PINNs) and Smoothed Particle Hydrodynamics coupled with 
Genetic Algorithm optimisation (SPH+GA) as hybrid modelling strate-
gies. These approaches enable the direct embedding of physical laws 
into the learning process or simulation framework, allowing for scal-
able, efficient prediction of system behaviour even when kinetics are 
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Table 7
Hyperparameters and model performance metrics for the two-step reaction (Model 2) using the PINN framework in inverse mode, evaluated at 
different temperatures.
 Parameters 130 ◦C 150 ◦C 190 ◦C 210 ◦C  
 Layers 5 5 5 5  
 Neurons 10 10 10 10  
 Learning rate 0.001 0.001 0.001 0.001  
 Activation function tanh tanh tanh tanh  
 Optimiser Adam Adam Adam Adam  
 Iterations 15,000 15,000 15,000 15,000  
 Training loss 1.41e−04 8.64e−05 3.28e−05 8.70e−05 
 Testing loss 1.40e−04 8.67e−05 3.32e−05 8.65e−05 
 Training time (s) 42.3907 36.3376 53.5021 43.5168  
Table 8
Model 2: Comparison of experimental and PINN-estimated rate constants 𝑘2 and 𝑘3 at different temperatures.
 Temperature True value PINN estimation
 𝑘2 𝑘3 𝑘2 𝑘3  
 (M−1s−1) (M−1s−1) (M−1s−1) (M−1s−1) 
 130 ◦C 0.0006 0.0004 0.0006 0.00035  
 150 ◦C 0.0019 0.0005 0.0018 0.00014  
 190 ◦C 0.0099 0.0017 0.0095 0.00140  
 210 ◦C 0.0162 0.0019 0.0147 0.00186  
only partially known or when sparse experimental data are available. 
By demonstrating their application on a model reaction system, we 
illustrate the potential of PINNs and SPH+GA to bridge the gap between 
fundamental mechanistic modelling and practical reactor simulation, 
particularly in the context of digital twin development for chemical 
processes.

The evaluations across the case studies demonstrated that the PINN 
model achieved high predictive accuracy, with coefficient determina-
tion, (R2) of 0.99 and RMSE values as low as 0.0018 for phenol and 
phenyl acetate concentrations under both full and reduced datasets. In 
inverse mode, the model also accurately estimated the values of the 
kinetic rate constants with errors within 1%–2% of the true values. 
SPH+GA framework similarly showed strong predictive performance, 
achieving R2 scores up to 0.91 and RMSE values around 0.009 at 
190 ◦C. Additionally, it demonstrated flexibility in capturing complex 
particle-level dynamics and enabled effective parameter optimisation 
through GA, with convergence achieved within 10 generations. Due 
to the SPH+GA series hybridisation architecture, this approach ensures 
generalisation across physical systems. By collecting experimental data 
while running simulations, we are able to perform both system identi-
fication of the parameter space towards capturing intrinsic parameters 
that the simulations are missing while at the same time performing 
tuning of the parameters that have been captured. This ensures that the 
SPH+GA approach can be used to predict regions of the experimental 
space not captured by the experimental dataset.

These results demonstrate that PINNs are highly effective in pre-
dicting reaction rate constants and concentration profiles, while solving 
forward problems to predict system behaviour and inverse problems to 
infer unknown parameters in the governing ODEs, even with sparse 
experimental data. Meanwhile SPH enhances the simulation of fluid 
dynamics and mixing processes at a granular level. The SPH model, 
while effective to some extent, demonstrates higher prediction errors 
and weaker correlations with experimental data, as evidenced by the 
evaluation metrics in Table  6 and Fig.  15. This might be due to 
the SPH model’s reliance on particle-based methods, which may not 
fully capture complex chemical kinetics or interactions in the system, 
particularly at lower concentrations or early reaction stages. The PINN 
model benefits from incorporating physical laws (governing equations) 
directly into the neural network, which allows it to maintain strong 
predictive accuracy even with limited data. Its ability to solve both 
forward and inverse problems while adhering to physical constraints 
makes it a more robust model for complex chemical systems. Overall, 
the findings of this research demonstrate that digital twin created using 
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physics-informed mechanisms can significantly enhance the design, 
optimisation, and control of chemical reactors. This approach offers 
promising directions for the development of advanced computational 
tools that combine the strengths of both machine learning and physics-
based models thereby enabling more robust, efficient and accurate 
simulations of industrial processes.

Another approach gaining traction is the use of data-driven trans-
former based machine learning approaches. However, transformer
models remain predominantly data-driven which typically require large 
and high-quality datasets to achieve robust predictive performance. 
In scenarios of sparse or incomplete data, which is common within 
chemical synthesis, transformers can struggle to generalise accurately 
or extrapolate reliably to untested conditions. To mitigate these lim-
itations, future research should explore integrating transformer ar-
chitectures with physics-informed methodologies. This would include 
embedding fundamental physical constraints such as conservation laws, 
thermodynamic principles, and chemical reaction kinetics into the 
transformer training processes.

Furthermore, generative transformer architectures such as decoder-
only or encoder–decoder models present an opportunity for chemical 
reaction outcome prediction. These architectures, inspired by sequence-
to-sequence tasks in natural language processing, are well-suited to 
tasks where both inputs and outputs are sequences, analogous to trans-
lating reactants into products. This enables chemical reactions to be 
modelled as text-like sequences, allowing transformers to translate 
sequences of reactants and reagents into corresponding product struc-
tures [53]. However, embedding geometrical constraints of the physical 
reactor might be challenging and require large datasets to represent 
their effects in these architectures.

5. Conclusion

In this work, we have demonstrated how series and parallel hybrid 
modelling approaches can be used for Digital Twinning of a chemi-
cal reactor platform. We have investigated the use of both Physics-
Informed Neural Network (PINN) and Smoothed Particle Hydrodynam-
ics with Genetic Algorithm (SPH+GA) approaches. We presented a 
Smoothed Particle Hydrodynamics with Genetic Algorithm (SPH+GA) 
as a series hybrid model, in which a physics-based simulation is fol-
lowed by data-driven optimisation. In contrast, the Physics-Informed 
Neural Network (PINN) exemplifies a parallel hybrid model, which in-
tegrates mechanistic information and data-driven learning concurrently 
by embedding physical laws directly into the neural network’s loss 
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function. Both techniques rely on replicating the physical dynamics of 
the platform as well as optimisation and machine learning principles 
to support system identification and scaling. The comparative evalu-
ation of PINN and SPH+GA in this study highlights their potential in 
advancing the modelling of chemical flow processes particularly in flow 
reactors where experimental data may be sparse or limited. Results 
show that both of our approaches present good predictive capabilities 
in such data-sparse scenarios.

In terms of performance, fidelity and resources required, PINNs 
have a lower computational footprint due to their reliance on ODEs 
and PDEs. However, their fidelity is lower compared to SPH based 
methods and they do not have the capability to capture the geometry of 
the reactor especially in situations where mixing impacts the chemical 
reactions of the experiments under consideration. On the other hand, 
SPH can do this but requires more compute resources as the level 
of fidelity increases. In terms of performance, these intricacies could 
be the reason why SPH+GA achieved lower predictive values when 
compared with PINNs.

Our future work will focus on extending the framework to more 
complex reaction networks and exploring its application in real-time 
monitoring and control of industrial reactors. In addition, our goal is 
to refine both the SPH+GA and PINN models to improve computational 
efficiency and scalability. This will make them even more practical 
for large-scale industrial applications especially in scenarios of low 
compute resources.
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