EDITORIAL Open Access

Mobility as what?

Heikki Liimatainen^{1*}, Miloš N. Mladenović² and Steve O'Hern³

From the humble beginning of five articles in 2015 to the around 200 articles each year in 2020–2023 [33], "Mobility as a Service" (i.e., MaaS) research literature has rapidly broadened. The International Conference on Mobility as a Service (ICoMaaS) has provided a platform to discuss MaaS in 2017 [19] and 2019 [20]. Selected articles presented at the 3rd ICoMaaS in 2022 in Tampere, Finland, are included in this topical collection along with additional submissions through an open call.

MaaS research literature is thriving, while the MaaS business, at least the 'level 3' bundling of mobility services integrated into a single platform [35], is struggling. However, "MaaS is happening without necessarily being called MaaS", says Sampo Hietanen, the former CEO of MaaS Global [11], as micromobility services are integrated into ride-hailing services. The MaaS ecosystem and business models are evolving and the data providers, transport service providers, customers, regulators and MaaS orchestrators are searching for their roles [32]. In addition, the quest for financially viable business models [10] and added value [9] is ongoing.

1 MaaS as the second car?

One of the earliest reasons for promoting MaaS was the possibility to reduce private car ownership [36]. However, several studies [2, 13, 38] have highlighted that MaaS should be regarded as a complement of private car use rather than a substitution. In this collection, Smith et al. [34] agree that multi-modal travelers are likely

*Correspondence: Heikki Liimatainen

heikki.liimatainen@tuni.fi

early adopters of MaaS and MaaS can be positioned as a competitor to the second car. However, Smith et al. (2023) also highlighted that many participants of their trial struggled with making the service work for them. Furthermore, there were no participants with disabilities, revealing the limitations of MaaS as previously highlighted by Pangbourne et al. [29].

2 Mobility as a feature?

While public transport has often been seen as the backbone of MaaS [1], the findings by Hasselwander & Bigotte [7] on MaaS in the Global South, highlight the importance of informal transport and the integration of mobility with retail, food, entertainment, tourist services, and other non-transport services. As Ho & Tirachini (12) highlight, MaaS could be a catalyst for a transport pricing reform in countries with informal public transport and a scarcity of public funds, as one of the features available through "local super apps" [8].

3 (How) Will MaaS lead to better services?

Despite a positive attitude towards MaaS, the willingness to pay is not at the level that people pay for their current mobility [16, 21]. Similarly, people tend to have a positive attitude towards automated vehicles (AVs), but the services are not meeting the needs of people due to low speed and availability [3, 22]. In general, potential users of MaaS and AVs are likely to be male and younger than non-users [5, 16]. In contrast, Barthelmes et al. [3] investigate if wider user potential can be found by integrating demand-based AVs with MaaS. Their findings indicate that mobility-impaired people expect to use demand-based automated door-to-door service offerings, but AVs need higher travel speeds and more flexibility to provide transfers to public transport and attract non-users.

Demand responsive or flexible transport is available in both urban and rural areas in some countries, but some

¹ Transport Research Centre Verne, Tampere University, P.O. Box 600, 33014 Tampere, Finland

² Spatial Planning and Transportation Engineering, Department of Built Environment, Aalto University, Espoo, Finland

³ Institute for Transport Studies, University of Leeds, Leeds, England

countries lack such services in rural regions [27]. Thus, mobility gaps and scarce services need to be identified, and MaaS has a strong potential to enable better accessibility to remote locations [30], which can help to address transport poverty [23].

4 What do MaaS platforms need to accomplish?

Cisterna et al. [4] and Kraus et al. [15] provide an overarching setting for this topical collection by reviewing the MaaS ecosystem modelling framework and quantifying the value created in a MaaS ecosystem. Cisterna's et al. [4] review shows the large variety and interaction of socioeconomic, mobility habits and MaaS service-related factors influencing MaaS adoption. These complex interactions require agent-based, multi-modal, multi-actor modelling approach, such as proposed by Kamargianni et al. [14]. In addition, Kraus et al. [15] show that joint value cannot be created in MaaS ecosystems under current circumstances. Hence, MaaS platforms need to be subsidized, provide additional value to customers, create new revenue streams or, expand to wider customer groups or regions.

5 What do public sector actors need to accomplish?

The new mobility services pose a dilemma for the public sector. New services such as e-scooters have encountered varying citizen, policy and research response [39]. In this collection, [17] show that new mobility service providers' business models are influenced by legitimization and local policy instruments. The research emphasizes the importance of learning by doing, policy mixes, and purpose-driven collaboration between service providers, users and the public sector. In particular, purpose-driven collaboration may benefit from using the Thematic map and Practical framework for implementing MaaS, which are tools developed by Milne et al. [27]. Besides those collaborative aspects, one clear issue that the public sector needs to address on the EU level is mobility services providers' liability in case of disruptions [30].

6 Future research pathways

The articles in this topical collection provide answers to some of the research gaps, and open new research pathways. First, comparative analyses on the feasibility of different types of AV services should be carried out to identify the most potential user groups. Such comparative analyses are needed to understand the effects of various policy mixes related to emerging mobility services. The accumulated evidence of the limitations of various MaaS trials highlight that there is a need for longer-term experiences and panel data analysis. In addition, Mobility as a Feature (MaaF) [9] opens a variety of research needs,

where Global North may learn from the Global South, while the digitalization of informal transport in the Global South needs further research. Moreover, introducing new services and approaches such as MaaF and AVs to mobility services also requires further research on developing MaaS modelling, possibly based on agent-based modelling.

Besides these future research aspects, this collection and most of the current MaaS related literature must recognize one important lesson from social science and humanities-technology has not only ethical but ultimately moral questions [18], especially when we think about governance questions. On the one hand, this requires further academic discussion on what is mobility in its essence, as there are other already existing and competing assumptions, such as mobility as a right [6, 24] or mobility as commoning [28]. On the other hand, this requires further research into methods for responsible innovation through a higher level of democratization, as already highlighted in relation to MaaS [25, 26] and AVs [37]. Finally, these and other future efforts will require a much greater engagement with social science and humanities concepts and methods [31].

Acknowledgements

The authors would like to thank the participants and the organizing team of ICoMaaS 2022.

Author contributions

Heikki Liimatainen: conceptualization, writing—original draft; Milos Mladenovic: writing—review & editing; Steve O'Hern: writing—review & editing.

Funding

Not applicable.

Availability of data and material

Not applicable.

Declarations

Competing interests

Not applicable.

Received: 25 October 2024 Accepted: 14 November 2024 Published online: 05 December 2024

References

- Alyavina, E., Nikitas, A., & TchouamouNjoya, E. (2022). Mobility as a service (MaaS): A thematic map of challenges and opportunities. Research in Transportation Business & Management, 43, 100783. https://doi.org/10. 1016/j.rtbm.2022.100783
- Alyavina, E., Nikitas, A., & TchouamouNjoya, E. (2024). Mobility-as-a-service and unsustainable travel behaviour: Exploring the car ownership and public transport trip replacement side-effects of the MaaS paradigm. *Transport Policy*, 150, 53–70. https://doi.org/10.1016/j.tranpol.2024.03.001
- Barthelmes, L., Wilkes, G., Kagerbauer, M., et al. (2024). Exploring the determinants of autonomous minibus adoption: Empirical findings from a demand-based service in Germany. European Transport Research Review., 16, 35. https://doi.org/10.1186/s12544-024-00659-9

- Cisterna, C., Madani, N., Bandiera, C., Viti, F., & Cools, M. (2023). MaaS modelling: A review of factors, customers' profiles, choices and business models. European Transport Research Review, 15, 37. https://doi.org/10. 1186/s12544-023-00597-y
- Dong, X., DiScenna, M., & Guerra, E. (2019). Transit user perceptions of driverless buses. *Transportation*, 46, 35-50.
- Hamburg, J. R., Blair, L., & Albright, D. (1995). Mobility as a right. Transportation research record, 1499, 52–55.
- Hasselwander, M., & Bigotte, J. F. (2023). Mobility as a service in the global south: Research findings, gaps and directions. European Transport Research Review, 15, 27. https://doi.org/10.1186/s12544-023-00604-2
- Hasselwander, M., Weiss, D., & Werland, S. (2024). Local super apps in the 15-minute city: A new model for sustainable smart cities? Frontiers in Sustainable Cities, 6, 1404105. https://doi.org/10.3389/frsc.2024.1404105
- Hensher, D. A., & Hietanen, S. (2022). Mobility as a feature (MaaF): Rethinking the focus of the second generation of mobility as a service (MaaS).
 Transport Reviews, 43(3), 325–329. https://doi.org/10.1080/01441647.2022.
- 10. Hensher, D. A., Mulley, C., Ho, C., Wong, Y., Smith, G., & Nelson, J. D. (2020). Understanding Mobility as a Service (MaaS). Elsevier.
- Hill, A. (2024). Sampo Hietanen: "Most likely you're going to be the 'magnificent corpse' out of all this". ITS International, 21.8.2024. https://www. itsinternational.com/its17/feature/sampo-hietanen-most-likely-youregoing-be-magnificent-corpse-out-all
- Ho, C. Q., & Tirachini, A. (2024). Mobility-as-a-Service and the role of multimodality in the sustainability of urban mobility in developing and developed countries. *Transport Policy*, 145, 161-176.
- Hörcher, D., & Graham, D. J. (2020). MaaS economics: Should we fight car ownership with subscriptions to alternative modes? *Economics of Transportation*, 22, 100167. https://doi.org/10.1016/j.ecotra.2020.100167
- Kamargianni, M., Yfantis, L., Muscat, J., Azevedo, CL., Ben-Akiva, M. (2019). Incorporating the mobility as a service concept into transport modelling and simulation frameworks. In: Proceedings of the Transportation Research Board (TRB) 98th Annual Meeting 2019. Transportation Research Board: Washington D.C, USA. https://discovery.ucl.ac.uk/id/eprint/10061860/7/ Kamargianni TRB2019_MaaSsim_Extended%20Abstract_full.pdf
- Kraus, L., Proff, H., & Jeppe, A. (2023). Estimation of joint value in mobility as a service ecosystems under different orchestrator settings. European Transport Research Review., 15, 25. https://doi.org/10.1186/ s12544-023-00594-1
- Kriswardhana, W., & Esztergar-Kiss, D. (2023). A systematic literature review of mobility as a Service: Examining the socio-technical factors in MaaS adoption and bundling packages. *Travel Behaviour and Society, 31*, 232–243. https://doi.org/10.1016/j.tbs.2022.12.007
- Kriukelyte, E., Sochor, J., Kramers, A. 2024. Actualizing sustainable transport: the interplay between public policy instruments and shared mobility providers' business models. *European Transport Research Review*, 16:11. https://doi.org/10.1186/s12544-024-00634-4
- Latour, B., & Venn, C. (2002). Morality and technology. Theory, culture & society, 19(5–6), 247–260. https://doi.org/10.1177/026327602761899246
- Liimatainen, H., & Mladenović, M. N. (2018). Understanding the complexity of mobility as a service. Research in Transportation Business and Management. 2018(27), 1–2.
- Liimatainen, H., & Mladenović, M. N. (2021). Developing mobility as a service—user, operator and governance perspectives. European Transport Research Review, 13, 37. https://doi.org/10.1186/s12544-021-00496-0
- Liljamo, T., Liimatainen, H., Pöllänen, M., & Utriainen, R. (2020). People's current mobility costs and willingness to pay for Mobility as a Service offerings. *Transportation Research Part A: Policy and Practice, 136*, 99–119. https://doi.org/10.1016/j.tra.2020.03.034
- Liljamo, T., Liimatainen, H., & Pöllänen, M. (2018). Attitudes and concerns on automated vehicles. *Transportation Research Part F: Traffic Psychology* and Behaviour, 59, 24–44. https://doi.org/10.1016/j.trf.2018.08.010
- Lucas, K., Mattioli, G., Verlinghieri, E., & Guzman, A. (2016). Transport poverty and its adverse social consequences. In: *Proceedings of the Institution of Civil Engineers—Transport*, pp. 1–13. https://doi.org/10.1680/jtran.15.00073
- Mladenović, M. N., Abbas, M., Roncoli, C., & Chenani, S. B. (2019). A cooperative framework for Universal Basic Mobility System: Mobility credits approach. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE. pp. 694–701. https://doi.org/10.1109/ITSC.2019.8916964

- Mladenovic, M. (2021). Mobility as a service (MAAS). In Roger Vickerman (Ed.), International Encyclopedia of Transportation (Vol. 6, pp. 12–18). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102671-7.10607-4
- Mladenović, M. N., & Haavisto, N. (2021). Interpretative flexibility and conflicts in the emergence of Mobility as a Service: Finnish public sector actor perspectives. Case Studies on Transport Policy, 9(2), 851–859.
- Milne, J., Beecroft, M., Nelson, J. D., Greening, P., Cottrill, C., & Wright, S. (2024). Urban (UMaaS) and rural (RMaaS) mobility as a service (MaaS): Practical insights from international practitioners and experts. European Transport Research Review, 16, 5. https://doi.org/10.1186/ s12544-023-00620-2
- Nikolaeva, A., Adey, P., Cresswell, T., Lee, J. Y., Nóvoa, A., & Temenos, C. (2019). Commoning mobility: Towards a new politics of mobility transitions. *Transactions of the Institute of British Geographers*, 44(2), 346–360. https://doi.org/10.1111/tran.12287
- Pangbourne, K., Mladenović, M. N., Stead, D., & Milakis, D. (2020). Questioning mobility as a service: Unanticipated implications for society and governance. *Transportation research part A: Policy and practice*, 131, 35–49. https://doi.org/10.1016/j.tra.2019.09.033
- Papaioannou, G., Polydoropoulou, A., Tsirimpa, A., & Pagoni, I. (2023).
 Development of mobility as a service (MaaS) for intercity travel & rural/island areas: The case study of Greece. European Transport Research Review, 15, 48. https://doi.org/10.1186/s12544-023-00619-9
- 31. Ryghaug, M., Subotički, I., Smeds, E., von Wirth, T., Scherrer, A., Foulds, C., Robison, R., Bertolini, L., Beyazitİnce, E., Brand, R., Cohen-Blankshtain, G., Dijk, M., Pedersen, M. F., Gössling, S., Guzik, R., Kivimaa, P., Klöckner, C., Nikolova, H. L., Lis, A., ... Wentland, A. (2023). A social sciences and humanities research agenda for transport and mobility in Europe: key themes and 100 research questions. *Transport reviews, 43*(4), 755–779. https://doi.org/10.1080/01441647.2023.2167887
- 32. Schulz, T., Zimmermann, S., Böhm, M., Gewald, H., & Krcmar, H. (2021). Value co-creation and co-destruction in service eosystems: The case of the Reach Now App. *Technological Forecasting and Social Change, 170*, 120926. https://doi.org/10.1016/0040-1625(88)90012-1
- Scopus. (2024). Search results for "mobility as a service" in title, abstract or keywords.
- 34. Smith, G., Hensher, D., Ho, C., & Balbontin, C. (2023). Mobility-as-a-Service users: insights from a trial in Sydney. *European Transport Research Review,* 15, 40. https://doi.org/10.1186/s12544-023-00612-2
- 35. Sochor, J., Arby, H., Karlsson, M. I. C., & Sarasini, S. (2018). A topological approach to Mobility as a Service: A proposed tool for understanding requirements and effects, and for aiding the integration of societal goals. Research in Transportation Business & Management, 27, 3–14. https://doi.org/10.1016/j.rtbm.2018.12.003
- 36. Sochor, J., Strömberg, H., & Karlsson, M. I. C. (2015). Implementing mobility as a service: Challenges in integrating user, commercial, and societal perspectives. *Transportation Research Record: Journal of the Transportation Research Board*. https://doi.org/10.3141/2536-01
- Stilgoe, J., & Mladenović, M. (2022). The politics of autonomous vehicles. Humanities and Social Sciences Communications, 9(1), 1–6. https://doi.org/ 10.1057/s41599-022-01463-3
- Storme, T., De Vos, J., De Paepe, L., & Witlox, F. (2020). Limitations to the car-substitution effect of MaaS. Findings from a Belgian pilot study. *Trans*portation Research Part A: Policy and Practice, 131, 196–205. https://doi.org/ 10.1016/j.tra.2019.09.032
- Zhang, Y., Nelson, J. D., & Mulley, C. (2024). Learning from the evidence: Insights for regulating e-scooters. *Transport Policy*, 151, 63–74. https://doi.org/10.1016/j.tranpol.2024.04.001

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.