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Thin-film inspection on large-area substrates in coating manufacture remains a critical parameter 
to ensure product quality; however, extending the inspection process precisely over a large area 
presents major challenges, due to the limitations of the available inspection equipment. An additional 
manipulation problem arises when automating the inspection process, as the silicon wafer requires 
movement constraints to ensure accurate measurements and to prevent damage. Furthermore, 
there are other increasingly important large-area industrial applications, such as Roll-to-Roll (R2R) 
manufacturing, where coating thickness inspection introduces additional challenges. This paper 
presents an autonomous inspection system using a robotic manipulator with a novel learned constraint 
manifold to control a wafer to its calibration point, and a novel multi-sensor array with high potential 
for scalability into large substrate areas. It is demonstrated that the manipulator can perform required 
motions whilst adhering to movement constraints. It is further demonstrated that the sensor array 
can perform thickness measurements statically with an error of ≤ 2.1% compared to a commercial 
reflectometer, and through the use of a manipulator can dynamically detect angle variations > 0.5◦ 
from the calibration point whilst monitoring the RMSE and R2 over 1406 data points. These features 
are potentially useful for detecting displacement variations in R2R manufacturing processes.
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In roll-to-roll (R2R) manufacturing, varied inspection systems have been explored to measure the coating 
thickness on large substrate areas. Existing thin-film inspection systems provide opportunities to perform 
measurements whilst the material is processed; however, they are not robust enough to provide reliable in-
process quality control1. Imaging ellipsometry is an optical technique proven to measure coating thickness in 
large substrates of 300mm width but shows spatial resolution issues in the central 100mm of the web,2,3. Atomic 
Force Microscopy (AFM) is a physical technique that has been studied for its potential application in R2R 
systems but requires high-precision and significantly large equipment to position the tip of the AFM on top of 
the coating surface4. Interferometry-based techniques such as wavelength scanning interferometry (WSI)5 and 
coherence scanning interferometry (CSI)6 have overcome the well-known 2π phase ambiguity, and others are 
implementing multi wavelength polarization to overcome limitations of previous interferometric developments7; 
but scaling them to cover large areas across the full width of the substrate in R2R processing would require a 
significant cost and space in manufacturing in addition to the technical challenges of handling imaging size 
and adapting to ink changes. Others have created a promising approach combining Hyperspectral and RGB 
cameras with spectroscopic reflectometry (SR) and ellipsometry using a probabilistic sensor fusion approach to 
create virtual mappings of the coating surfaces. Still, these techniques require an offline physical mapping of the 
samples and thousands of measurements to map the wafer coating surface.8,9.

SR is an alternative technique that measures a single point of the coated surface and has the advantage of 
“seeing” through the material and performing coating thickness measurements, nevertheless, it presents local 
minimum limitations when using optimisation algorithms to estimate the thickness values10, its accuracy 

1School of Mechanical, Aerospace & Civil Engineering, University of Sheffield, Sheffield, UK. 2School of Chemical, 
Material & Biological Engineering, University of Sheffield, Sheffield, UK. 3Airbus Robotics, Airbus UK, Chester, UK. 
4N. Sánchez-Arriaga, E. Canzini and N. Espley-Plumb: These authors contributed equally to this work. email: 
e.a.canzini@sheffield.ac.uk

OPEN

Scientific Reports |        (2025) 15:39654 1| https://doi.org/10.1038/s41598-025-23640-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-23640-5&domain=pdf&date_stamp=2025-11-9


decreases when inspecting rough surfaces and is normally used as an offline quality assurance tool1. However, 
SR is still an attractive technique due to its accuracy and low cost as compared to the other techniques mentioned 
above. Commercially available SR systems can perform multi-point in-line measurements in R2R processes 
but are limited by the optical loss in the reflectance splitters11. The physical dimensions of the light sources and 
spectrometers required to perform the measurements also limit system expansion to cover larger inspection 
areas. Despite the disadvantages, researchers are working on newer approaches using machine learning methods 
to predict the coating thickness for varied coatings and substrates using commercially available reflectometers. 
The use of machine learning methods is a viable alternative to the single-point measurement disadvantage of 
SR systems, however, it still requires a considerable amount of training data set to enable immediate thickness 
measurements12.

In 2021, Doo-Hyun Cho confirmed the single-point SR disadvantage was still present in the scientific 
community and that its use for a potential in-process inspection system for large areas would require an 
excessive amount of points, which suggests that it is not feasible with the existing SR technologies due to size, 
cost constraints and unknowns in terms of data analytics9. In 2023, Sánchez-Arriaga13, presented a miniaturised 
lab-based reflectometer that could potentially be stacked to create a multi-sensor array with integrated light 
sources which can challenge the existing single-point SR limitations, and expand the inspection of large area 
substrates.

Although R2R processing offers high throughput and low production cost, it is also prone to process failures. 
These include roll starring and displacements that manifest as misalignment or flutter of flexible substrates 
during operation. To simulate this scenario and understand if the sensor array can detect substrate angle 
variations dynamically, a robotic arm sequence is used to validate the sensor array measurement accuracy and 
tilt detection capabilities for potential failures in R2R processing. This mimics the use of manipulators in thin-
film wafer manufacturing for improving the automation of wafer inspection from a fabrication chamber. Table 
1 shows the state-of-the-art of recent advances and challenges in wafer inspection with in-process potential for 
R2R manufacturing.

As observed, techniques combined with computer vision or imaging technologies are improving the surface 
mapping; however, they are slow to process thousands of measurements to train models and remain offline 
metrology techniques. Others, based on interferometry, offer quick measurements, but the methods require 
validation for thin-film thicknesses < 400 nm or are challenging to implement in R2R conditions. Additionally, 
the solution could be difficult to incorporate for in-process conditions due to the use of multiple fibre optics, 
light sources, and spectrometers in case of expansion with robotic arms or R2R processing.

As mentioned, robotic arms are commonly used to transfer these wafers from a fabrication chamber to 
inspection systems17. However, robotic manipulation remains a difficult task for applications that contain 
constraints in the motion of the end-effector due to the high dimensionality and complexity of the end-effector 
and joint spaces18. Incorporating robotics for dynamic adjustments during wafer inspections introduces 
numerous practical challenges. Principally, robot-induced motion can corrupt optical metrology signals while 
manipulating objects, driving the need for carefully engineered trajectories that satisfy motion constraints to 
suppress measurement blur and pose drift19,20. In this work, a novel representation of these constraints is learned 
for maintenance purposes to ensure that the wafer remains level during manipulation, as rotations in the pitch 
and roll directions lead to the wafer being dropped during transportation. A Variational Autoencoder (VAE) is 
used to learn a lower-dimensional representation of the robot joint space so that constraints can be examined 
efficiently. This ensures the correct positioning of the wafer into its calibration point for wafer inspection during 
manufacturing and to start performing dynamic sequences to simulate R2R process scenarios.

This paper presents a novel spectrometer multi-sensor array capable of measuring thin-film thickness across 
the width of Si:SiO2 semiconductor wafers. This has a high potential for scalability into larger areas which 
is a desired feature to contribute to the global manufacturing efficiency improvements required to achieve 
carbon reduction emissions by 205013. The sensor array covers a linear width of 74mm using seven sensors 

Technique Recent improvements Challenges References

Spectroscopic 
Reflectometry (SR)

- Novel high-scalable and low cost 
invention - In-process implementation - 
Relative angle misalignment detection

Addressed in this paper: - HW and SW architecture - Multisensor data fusion strategy - 
Measurement capabilities - Visible spectrum only This paper

SR with computer 
vision - SR combined with sensor fusion - Offline physical mapping and thousands of measurements before attempting surface mapping 12

Hyperspectral with 
computer vision

- Probabilistic sensor fusion 
implementation

- Offline physical mapping and thousands of measurements before attempting surface mapping - 
Complexity of technique combination

8,9

Imaging Ellipsometry 
(IE) - Combined IE with machine learning

- Low scalability to use for in-process conditions when combined with robotic arms. - Slow 
process and low potential for in-process measurements - Requires thousands of measurements 
and data points before attempting surface mapping. (One hour for full mapping on flat surfaces)

14

Multichannel 
Interferometry

- Novel method using Lomb-Scargle 
periodogram and power spectral density 
for thickness calculation

- Moderate scalability to use for in-process conditions due to fibre optics and power source 
limitations. - Thin film thickness measurements < 400nm

15

Monochromatic 
Specular Reflection

- Surface mapping combining 
stroboscopic images with monochromatic 
light

- Moderate scalability to use for in-process conditions. - Angle dependency, calibration (optical 
corrections) and vibration effects

16

Table 1.  State-of-the-art - Recent improvements and challenges in wafer metrology with in-process potential 
for R2R manufacturing.
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positioned strategically to reduce inspection gaps and detect angle variations. Root mean squared error (RMSE) 
values lower than 0.02, R2 greater than 0.9 and thickness error measurements below 2% were observed per 
sensor, which is comparable to commercially available SR systems21. Thin-film measurements are performed 
via the Curve Fitting Method (CFM), calculating the root mean squared error (RMSE) between the measured 
reflectance curve of the coated samples (SiO2) and a mathematically modelled curve. The thickness estimation 
was performed with the Dogbox optimisation algorithm using the Python library SciPy, and a single thickness 
output of the sensor array was created by performing a basic sensor fusion averaging of each sensor output22. 
This novel methodology for thin-film thickness measurements is shown in Fig. 1, where the offline training of 
the VAE is used to evaluate the constraints of the robot trajectory during wafer inspection. An overview of the 
process is provided in Algorithm 1.

Algorithm 1.  Process flow of the constrained wafer inspection

Methods
Multi-sensor array
Array hardware architecture
The sensor architecture shown in Fig. 2 is based on an original design proposed by Sánchez-Arriaga13.

Figure 2a shows the improved sensor sub-assembly designed to occupy the least space possible to a 
configuration of 95.59 x 27 x 13.5 mm. Figure 2b shows the sensor array backbone which holds the sensor 
assemblies into numbered positions (1→7) and strategic zones (A1, A2, B and C). Zone A1 and A2 were designed 
to detect left and right tilt and zone B and C to detect rear and front tilt, respectively. Sensor locks were designed 

Fig. 1.  System overview. Robot manipulator-assisted wafer transportation enables in-line thin-film thickness 
estimation using a multi-sensor reflectance array. All sensors are calibrated simultaneously with three intensity 
exposures; uncoated Iu, noise In, and coated Ic to calculate the reflectance Rc. The Rc spectrum is used to 
estimate the thickness measurement per sensor, then the thickness measurements are fused to give a sensor 
array fused thickness output. See section “Methods” for more details of the measurement procedure.
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to lock the sensor assemblies into a fixed position. Figure 2c shows the front and back view of the sensor array 
with the sensor assemblies locked into the testing position. The locks allow an M2.5 bolt to complete the array 
assembly. Figure 2d shows the novel sensor array assembly held by a Dinolite microscope stand RK-10A and a 
sample wafer on a compact five-axis stage Thorlabs PY005/M. All sensors were connected to a DELL PC through 
a StarTech 7-Port Self-Powered USB-C Hub.

The sensor C12666MA is a CMOS spectrometer with 256 pixels. Each pixel corresponds to a predefined 
wavelength defined by the vendor as follows:

	
λ = A0 +

5∑
i=1

Bix
i,� (1)

where A0 and B0 → B5 are coefficients provided by the vendor and x is the pixel under study. Each pixel 
reads a relative intensity per wavelength in “counts,” which are defined by the microprocessor Analog-to-Digital-
Converter (ADC) (max counts: 1023 = 2n − 1, where n = 10 is the ADC resolution). The sensor can be enabled 
with an STM Nucleo-L432KC board via the Arduino IDE. The integration time was set to 0.11 seconds, so 
that all 256 sensor pixels can capture the light intensity. The light gathered across the pixels forms a reflectance 
spectrum, which is then sent through the COM port for processing.

The sensor video output should be connected to an operational amplifier (OPAMP) buffer, as per the 
manufacturer’s recommendations, before sending data to the microcontroller ADC. Therefore, the Nucleo board 
L432KC was selected as it includes a configurable OPAMP in the input of its ADC. Additional power supplies 
were used to provide a reference voltage of 2.8V for the Nucleo board VREF input and another of 3.3V was used 
to supply the LEDs. The LED intensity was regulated externally with 2.6kΩ potentiometers to achieve 90% of 
the available counts.

Reflectance curve modelling
The reflectometer principle of operation is based on the interferometry phenomena described by Heavens for a 
single thin-film coating deposited on a semi-transparent substrate23. When light gets reflected from an isotropic 
coated surface, a reflectance R′ data point is calculated per wavelength with:

	
R′ = r2

01 + r2
12 + 2r01r12 cos 2φ1

1 + r2
01r2

12 + 2r01r12 cos 2φ1
,� (2)

where rij  is the total reflection coefficient per layer and φ1 is the phase change of light in the coating. It is 
observed that φ1 = k′dN1 cos θ1 where N1 is the coating refractive index, d is the coating thickness, θ1 is the 
angle of incidence and k′ is the wave number in vacuum. In this work, k′ is determined as k′ = 2π

λ  with λ being 
the wavelength under study. Multiple reflectance points are calculated per wavelength when a broadband light 
source is under study, resulting in a modelled reflectance curve. This is shown in Fig. 3. The modelled reflectance 
curve is then compared to a measured reflectance curve per sensor. A detailed process is described in13.

Fig. 2.  Schematic of the sensor array with seven sensors: (a) Sensor sub-assembly cross section showing the 
STM Nucleo L432KC board, the DC converter, the pin socket, the sensor C12666MA and an LED; (b) 3D 
models of the array sensor holder and the lateral and front locks of the sensor devices. The top picture shows 
sensor zones A1-A2, B and C, and sensor positions 1-7; (c) Front and back isometric views of the array full 
assembly; (d) Front view of the multi-sensor array in static measurement configuration.

 

Scientific Reports |        (2025) 15:39654 4| https://doi.org/10.1038/s41598-025-23640-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Measuring reflectance
Reflectance measurements require a coated sample (i.e. Si:SiO2) and an uncoated sample (i.e. Si), and involve 
a process where three measurements must be performed. First, the uncoated sample reflected intensity (Iu) 
(calibrated to 90% of the available ADC counts as shown in Fig. 1), then the dark noise intensity (In) and finally 
the coated sample reflected intensity (Ic). Once the intensities have been measured, then the reflectance of the 
coated surface (Rc) can be calculated per pixel as follows:

	
Rc = Ic − In

Iu − In
Ru,� (3)

where Ru is the absolute reflectance of the uncoated sample; in practice, this value is close to one without affecting 
the Rc value13. Once that Rc is measured per pixel, a reflectance curve can be generated and then compared to a 
modelled reflectance curve as described in the previous point of this report (see Fig. 3). The comparison between 
the modelled and the measured reflectance curve is performed in this work with two curve-fitting approaches. 
The first approach quantifies the Root Mean Squared Error (RMSE) between the modelled and the measured 
reflectance values. The second approach allows the thickness estimation by fitting a curve to the measured values 
using an optimisation algorithm. The fitted line was then evaluated using the coefficient of determination R2, 
which allows the calculation of the RMSE as follows24:

	

RMSE = 1
n

√√√√
n∑

i=1

(
Y − Ŷ

)2
,� (4)

where n is the number of pixels under comparison, Y is the measured value per wavelength and Ŷ  is the modelled 
value per wavelength. The RMSE values must be close to zero to ensure reliable data. Since the quality metric is 
defined by the user21,25, and based on previous work, in this study, an RMSE value < 0.04 per sensor is sufficient 
to ensure a reliable thickness estimation.

Coating thickness estimation
The thickness estimation was performed via the Python SciPy curve fitting function using the Dogbox 
optimisation algorithm26. This function fits a line within the measured reflectance curve per sensor and returns 
optimised values that best describe the measured data. Additionally, it showed the best capability performance 
after running a Minitab six-pack analysis compared to the other optimisation algorithms available in Python 
SciPy library (the well-known Levenberg-Marquardt and Trust Region Reflective (TRF)). To achieve this, a 
target function must be provided to optimise, Eq. 2, and two groups of data. The first group is the x and y values 
which are the pixel wavelengths and the measured reflectance values per pixel. The second group is the estimated 
thickness, refractive index, and the angle of incidence. The second group of data is the one that the curve fitting 
function optimises to achieve the least error between the measured reflectance values and the fitted reflectance 
line.

Once the curve fitting function process is completed, the coefficient of determination R2 is used to understand 
the goodness-of-fit between the measured and the fitted values24:

	
R2 = 1 −

∑
(Y − Yf )2

∑
(Y − Ȳ )2

= 1 − SSR

SST
,� (5)

Fig. 3.  Reflectance curve formed by the model formula in Eq. 2 compared against the measured reflectance 
from Eq. 3.
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where Y is the measured value per wavelength, Yf  is the fitted value per wavelength and Ȳ  is the mean of the 
measured values. The numerator is also known as the sum of the squared residuals (SSR) and the denominator 
is also known as the total sum of squares (SST). In this work, for exploratory purposes, an R2 value > 0.7 is 
considered a reliable value for the thickness estimation per sensor. The estimated thickness value from the curve 
fitting function is used as the measured thickness per sensor.

Sensor fusion & noise handling
The definition of “sensor fusion” has been questioned for the last three decades and recently has regained 
controversy in academia due to the increased complexity and evolution of technology, applications, and fusion 
algorithms. Nevertheless, according to the definitions by Elmenreich22 and Klein27 this paper considers “sensor 
fusion” as the combination of n sensors to have a better representation of the wafer area thickness under 
inspection. According to the central limit theorem, the thickness measurements of the individual sensors should 
converge close to a normal distribution, which is a proven assumption for this sensor array28. Therefore, the 
sensor fusion technique was a simple averaging (SA) performed to obtain the average thickness Ȳ 22,29:

	
Ȳ = 1

n

n∑
i=1

Yi,� (6)

where Yi is the individual thickness measurement from each sensor in the array n ∈ {1, 7}.
To mitigate the effect of sensor and USB noise on the readings, a convolution filter was applied to smooth the 

intensity values and eliminate noise.

Learning constraint manifolds in robotics
Constraint manifolds
Manifolds represent a subset of geometry dealing with curvature that exists in higher dimensions30. Many 
aspects of robotic manipulation can be considered to operate on manifolds, such as the symmetric and positive 
definite (SPD) matrices for joint stiffness and unit quaternion (UQ) for orientation31. These manifolds, denoted 
as M, can be considered to be Riemannian and dictate the capabilities of specific robotic platforms. Many 
robotic applications require the use of custom end-effectors, such as the wafer transportation tool used in this 
work. Some platforms may however be restricted in what positions the end-effector can take, with tasks such 
as opening doors or drawers18 imposing end-effector constraints on rotation and position. Traditionally, these 
constraint manifolds are identified iteratively during the path-planning process through the sampling of joint 
configurations that satisfy the desired constraint:

	 M := {θ ∈ Φ | Φ− ⪯ θ ⪯ Φ+ and f(θ) = 0},� (7)

where Φ is the joint limits of the robot, θ is a set of joint positions from Φ and f(θ) is the constraint function. For 
each new joint configuration sampled, the manifold grows and is identified during the planning stage. However, 
for complex constraint functions that limit movement on multiple axes, this process can increase planning time 
and reduce the efficiency of many algorithms. Additionally, many repetitive tasks that maintain constraints 
which don’t change during product life cycles, meaning that manifolds need only be identified once to ensure 
compliance with robot movement.

Manifold learning represents a method to identify the properties of a high-dimensional manifold through 
prior offline data collection. Formally, it is the process of defining a function f that maps some Euclidean space 
into a lower dimensional manifold32:

	 M = f(x) with f : X → Z,� (8)

where X  represents the Euclidean space and Z  represents a closed subset of X  lying on M. Determining the 
mapping function  becomes complex in robotics tasks as there is a coupling between the Euclidean motion 
group SE(3) and the joint configuration space Q. Approximating the function  is seen as a way to avoid the 
“curse of dimensionality” within high-dimensional models, where the function approximator can interpolate 
between the data points to construct the manifold. Another benefit of using manifold learning for robotics is the 
ability to evaluate the relationship between the joint space Φ and the pose space. Once the joint space relationship 
is known, it can be used directly to evaluate when the robot experiences drift from being on-manifold and 
maintenance to the robot is required.

Constraint manifold identification
For the constraint function, the original problem statement of this paper is the transport a wafer sample from a 
fabrication chamber to the sensing array for inspection. As the wafer is deposited on the end-effector of the robot 
and isn’t locked into place, a horizontal constraint is imposed on the end effector18. Consider the transformation 
matrix T0

e  that relates the pose in the end effector frame Fe relative to the base frame F0, for a robot with n 
joints:

	
T0

e = T0
1 T1

2 ... Tn
e =

(
n−1∏
i=0

Ti
i+1

)
Tn

e =
(
R0

e P0
e

0 1

)
.� (9)
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Equation 9’s rotations and translations are determined using the forward kinematics of the robot manipulator 
from the joint angles θ. The rotations of the robot are normally expressed in three main ways, the first being 
the rotation matrix 0Re shown in Eq. 9. In this work, the rotation of the end effector is represented in the RPY 
representation of Euler’s angles [β α γ]⊺ for constraint manifold identification. This brings a binary constraint 
vector in the form:

	 CRP Y = [cx cy cz cβ cα cγ ]⊺� (10)

to constrain the 6 degrees of freedom pose of the end-effector of a manipulator operating in Euclidean space 
R3 × SE(3), henceforth denoted as X  as shown in Eq. 8.

Using the defined transformation matrix T0
e  and constraint array CRP Y , the constraint function f(θ) can 

then be formulated. Using the joint positions θ, the forward kinematics of the manipulator can be computed 
to find the pose of the end effector x0

e  relative to the base frame F0. Using this, the constraint function can be 
constructed as the ℓ2-norm of the element-wise product of the constraint array and pose vector:

	 f(θ) = ∥C ⊙ x0
e∥2 where x0

e ≡ T0
e(θ).� (11)

Sampling the joint positions is done through a Monte Carlo sampling method, whereby increasing the number 
of samples can improve the overall estimation of the manifold.

Learning manifolds from data
Learning manifolds from data relies on reducing a higher dimensional manifold into a lower dimensional space 
through a projection function ϕ(z). This projection function can be modelled as the latent space of a function 
that learns representations between the joint positions, whereby it learns a Riemannian manifold on this latent 
space. The VAE33 learns a latent space representation of data input x. Deep VAE models seek to maximise 
the evidence lower bound (ELBO) of the model, which can be modified to use the joint space of the robot 
manipulator to produce a lower dimensional manifold of the joint operating positions32:

	 LELBO = Eqζ(z|θ) [log(pΘ(θ|z))] − KL [qζ(z|θ) ∥ pϕ(z, θ)] ,� (12)

where KL denotes the Kullback-Leibler divergence between the encoder distribution qζ(z|θ, f(θ) and the 
Gaussian latent variables and pΘ is the joint space conditional density. Once the model has been trained, the 
Riemannian metric first derived in32 can be used in combination with the predicted constraint value on the 
manifold ̂f(θ) for the manipulator joint positions to generate a Riemannian metric corresponding to the joint 
constraint value:

	 Mθ
f (z) = ζ

∣∣−1 + exp[̂f(µ(z)]
∣∣ .� (13)

This metric takes large values in areas where the model has a high uncertainty regarding joint positions and 
when estimated constraint function ̂f(θ̂) takes a large value. The model architecture is shown in Fig. 4, which 
was deployed into the MoveIt planning interface so plans can be evaluated and determine whether maintenance 
is required for calibrating the joint positions.

Results
Wafer inspection results
Static experiments - inspection box definition
The sensor array was first validated statically to understand its capabilities. A full factorial design of experiments 
was performed with three samples made of Si substrate and a layer of SiO2 coating (Si:SiO2). Each sample 
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Fig. 4.  Model of the VAE system for generating a latent space Riemannian manifold. The latent space 
qζ(z|θ) is used to generate the Riemannian metric M, which is used to determine whether the manipulator 
is experiencing joint drift. The estimate of the constraint function ̂f(θ) is computed from decoding the latent 
space and computing the manifold constraint function.
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had the following coating thicknesses: SAMPLE1: 300nm, SAMPLE2: 286nm and SAMPLE3: 164nm. The set 
of experiments consisted of calibration at 2mm above the sample surface, then modifying the array height: 
-1mm/+2mm, and the wafer angle up to 0.498◦ (rounded to 0.5◦) in increments of 0.166◦ as shown in Fig. 5.

Table 2 shows the SAMPLE1 sensor-array measurements with increments of 0.166◦ rounded to the nearest 
2 decimal places: RMSE, R2 and Thickness. It was observed that when the RMSE was ≤ 0.022, the R2 > 0.9. 
This is considered a good result for the sensor array as it shows that the measured reflectance curve for each 
sensor fits correctly to the modelled reflectance curve, as explained in the methods section. By contrast, when 
the RMSE is > 0.022, the R2 likely drops below or trends towards 0.9. When this occurs some of the individual 
sensors present a loss of performance.

The loss of performance was first observed when the sensor array was positioned at the calibration point and 
when there was a 0.5◦ tilt on the right side of the sensor array. After reviewing the individual sensor performance 
it is clear that when the array tilts to the right side, the SENSOR6 showed an RMSE > 0.04 and R2 < 0.7. Then, 
when varying the height 1mm below the calibration point and tilting the sensor array to the right side by 0.33◦, 
SENSOR5 and SENSOR6 showed the same behaviour. Similarly, when there is a tilt on the left side below the 
calibration point, SENSOR1 and SENSOR7 showed an increase in RMSE and a decrease in R2 when varying the 

ARRAY HEIGHT (mm)

Position 1 2* 3 4 1 2* 3 4 1 2* 3 4

0.5 0.0316 0.0241 0.0194 0.0176 0.6693 0.8665 0.9312 0.9416 304.55 301.13 300.6 300.76

0.33 0.0258 0.0188 0.0157 0.0171 0.8202 0.9315 0.9571 0.9433 301.46 301.58 301.11 300.47

RIGHT 0.16 0.0218 0.0141 0.0142 0.018 0.9086 0.9707 0.9643 0.9408 300.65 300.93 300.84 300.07

CENTER 0 0.0207 0.0124 0.0146 0.0197 0.927 0.9791 0.9644 0.9305 299.69 300.08 299.34 300.12

0.16 0.0204 0.0135 0.0158 0.0208 0.919 0.9732 0.9571 0.9215 299.17 298.11 298.97 299.63

0.33 0.022 0.0171 0.0179 0.0218 0.8739 0.9486 0.943 0.9116 299.55 297.82 298.94 298.64

LEFT 0.5 0.026 0.0212 0.0208 0.0225 0.788 0.9036 0.9209 0.9018 298.1 298.37 298.77 298.45

0.5 0.0271 0.0217 0.0202 0.0203 0.7751 0.9051 0.9292 0.9284 299.56 300.34 301.36 301.12

0.33 0.0236 0.018 0.0173 0.0191 0.8575 0.9409 0.9486 0.9325 300.05 299.82 300.23 300.53

BACK 0.16 0.0207 0.014 0.0154 0.0186 0.915 0.9685 0.9589 0.9357 299.38 299.79 299.74 300.08

CENTER 0 0.0189 0.0115 0.0142 0.0187 0.9434 0.9805 0.965 0.9368 298.79 299.32 299.91 300.76

0.16 0.0242 0.0127 0.0132 0.0181 0.8937 0.9776 0.9701 0.94 299.01 299.18 299.05 300.26

0.33 0.0267 0.015 0.0135 0.0174 0.8504 0.9664 0.9686 0.944 299.09 298.83 299.29 300.48

FRONT ANGLE (◦) 0.5 0.0341 0.0202 0.0157 0.0166 0.7132 0.9311 0.9616 0.9481 301.33 298.39 299.24 299.56

RMSE R2 Thickness (nm)

Table 2.  Full factorial DOE of SAMPLE1 (300nm) showing the averaged RMSE, R2 and Thickness (nm) per 
combination of factors (Angle vs Height). Notes: (i) The Thorlabs PY005/M base was re-positioned when 
measuring RIGHT-LEFT and FRONT-BACK positions. (ii) Each data value is an average of thirty readings 
performed by all the sensors. (iii) *Calibration point @ height = 2mm from the sample surface.

 

Fig. 5.  Array height and angle experiments. (a) Sensor array calibration point at 2mm above wafer surface 
(red dotted line) and height variations from the calibration point -1mm/+2mm (green arrows). Thorlabs base 
PY005/M, reproduced with permission. The numbers are the sensor numbers i.e. SENSOR1 = 1. (b) Angle 
variations from 0◦ to 0.498◦ (rounded to 0.5◦) in steps of 0.166◦. (c) The hardware setup.
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angle 0.33◦. Comparably, SENSOR6 and SENSOR7 detected variation when the wafer was tilted on the back side 
of the sensor array. Finally, all sensors except SENSOR2 detected a variation on the front side of the sensor array. 
This behaviour was repeatable for all the samples, data for which can be found in Supplementary 1.

Reduced performance of the RMSE and R2 per sensor is caused by a change in the reflected intensity received 
by the sensor slit due to the angle and height variations distorting the measured reflectance curve. When this 
occurs, the RMSE increases above 0.4, similarly, the R2 calculation gets affected because the optimisation 
algorithm fails to effectively fit a line within the measured reflectance curve making the R2 go below <0.7. See 
the Methods section for more details on R2 calculation.

Finally, despite the loss of the fit quality metrics, the final observation was that all combinations show an 
estimated thickness of less than 2% variation (<6nm) vs the expected thickness value of 300nm. However, when 
the RMSE and R2 fail beyond the expected levels, the thickness values are not reliable, and sensor alignment 
to the calibration point must be performed. Based on the static experiment results, an inspection box for the 
presented sensor array was defined in Fig. 6.

The virtual inspection box is the sensor array limit to measure thin film thickness, whereas the inspection box 
is the baseline for an automated inspection procedure using a robot manipulator.

Sample comparison with filmetrics F20
An additional test was performed to evaluate the capability of the sensor array to meet manufacturing tolerances. 
The performance of the array was compared to a Filmetrics F20 reflectometer using the three aforementioned 
samples, see Fig. 7.

As observed, the sensor array measurements match the Filmetrics F20 measurements, being all within the 
vendor’s tolerances. Table 3 shows that two hundred and forty measurements were performed with the F20 in 
the same positions as the sensor array per sample.

The F20 showed similar thickness measurements, demonstrating that the sensor array is capable of measuring 
thickness values with an error ≤ 2.1% compared to the F20 reflectometer, demonstrating the capability of the 
developed sensing array. Table 3 additionally shows the uncertainty calculations based on the National Physical 
Laboratory (NPL)34. The Type A uncertainty was calculated based on the standard deviation of the measurements, 
in this case u = σ/

√
(n), where σ is the standard deviation and n is the sample size. The combined uncertainty 

(uc) is the combination of the Type A, with other Type B factors such as the spectrometer reproducibility per 

Fig. 7.  Comparison of the proposed sensor array against the Filmetrics F20 reflectometer.

 

Fig. 6.  Sensor array inspection box.
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pixel and temperature (0.8nm and 0.08nm, respectively, for the Hamamatsu sensor), or others. In this case, 
uc =

√
(T ypeA2 + T ypeB factor12 + ... + T ypeB factor n2). In Table 3, an additional 1 nm factor was 

added when calculating uc for the sensor array to compensate for any time delays and disturbances in the 
precision of the measurements caused by mechanical misalignment and USB connections. Additional Type 
B factors for the F20 were unknown, so they were estimated assuming similar behaviour to the Hamamatsu 
sensors; therefore, the F20 uncertainty calculation is an estimate.

Dynamic measurement accuracy
Four automated trajectories were implemented with a robot manipulator, shown in Fig. 8.

Figure 8a shows the robot arm trajectory to the calibration position. First, the Si uncoated wafer is placed in 
the end effector and the arm moves it to the calibration point to start the calibration process. After measuring 
the uncoated intensity, the arm goes back to its loading position so that the Si wafer can be manually removed 
and the Si:SiO2 coated wafer loaded, to complete the calibration process. Figure 8b shows the wafer loaded on 
the end effector. Figure 8c shows a circular motion to perform an area scan of the surface, and Fig. 8d shows a 
back-and-forth trajectory to simulate an R2R motion. The final positions are shown in Fig. 5b, used to duplicate 
the static experiment results and evaluate the inspection box calculations.

Figure 9 shows the sensor array results for each one of the programmed trajectories per sample.
Figure 9a shows the SAMPLE1 (300nm) results. As observed in the Fig., from left to right, Sequence 1 

(CALIB POINT) shows an RMSE < 0.02, R2 > 0.9 and thickness measurement = 302.57nm. This represents a 
thickness error of 0.86% vs the expected thickness value of 300nm, which is close to the 0.4% accuracy offered 
by the F20 and within the ± 2% compared to Yersak et al. for a potential R2R application35. This behaviour 
was similar when performing Sequence 4 (BACK AND FORTH), as it showed an error of 0.79%. This result 
is similar in Samples 2 and 3, as seen in Figs. 9b and 9c respectively. Nevertheless, Sequence 2 (CIRCULAR) 
showed an increase in the RMSE > 0.02, meaning that the sensor array detected height variations below the 
calibration point whilst performing the sequence. In this case, it was observed that SENSOR1, SENSOR2, and 
SENSOR6 started failing showing an RMSE > 0.04 and an R2 < 0.07 after half of the circular motion sequence 
which suggests a misalignment of the end effector. When the RMSE and R2 go beyond these limits, it was 
observed that the individual thickness measurements can go above 10% of the expected thickness value. For 
instance, when SENSOR6 showed an RMSE=0.07 and R2=0.63, the individual thickness reading was 368.26nm 
affecting the general average metric score. Sequence 3 was designed to duplicate the static experiments, for a 
potential in-motion tilt detection. The array could detect front and back tilting, with SENSOR5 and SENSOR7 
detecting RMSE variations of > 0.02 and R2 close to 0.9, however, it was not possible to detect significant 
variations beyond the set limits when the robot arm tilted the wafer on the right and left sides. Similar behaviour 
was observed in SAMPLE2 (286nm) and SAMPLE3 (164nm) when performing all the robot arm programmed 
sequences, data for which can be found in Supplementary 2.

Verification of robot movement
Constraint manifold identification
To identify the constraint manifold, the first manifold that was obtained was the global manipulation manifold. 
The results of the training process are shown in Fig. 10a, where the variance measure in Fig. 10b shows the 
confidence of the variational autoencoder (VAE) in its predictions of the joint space positions from the latent 
space into the joint space. In Fig. 10c, the magnification factor of the metric is defined as:

Fig. 8.  Wafer inspection experiments with robot manipulator: (a) Robot arm movement from an idle/load 
position to the calibration point. The green rectangle shows the wafer and a 3D-printed end effector. (b) 
Zoom-in of the end effector and the wafer. (c) Circular trajectory. (d) Back & forth trajectory.
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	 J = log
√

det[MJµ + MJσ ],� (14)

where MJµ  and MJσ  are the Jacobian matrices of the VAE’s decoder mean and variance architecture outputs 
respectively, governing the model’s confidence in its estimation of the manifold. This metric shows the boundary 
of the manifold based on the data, indicating that the lower dimensions constitute a manifold Mθ  encompassing 
the joint positions. It is observed that the latent space representation in Fig. 10b correlates to the data spread 
presented in Fig. 10c’s distribution of embedded points on the manifold, indicating that the lower-dimensional 
representation is sufficient for the application of studying a manipulator’s kinematics.

The latent space in Fig. 10b has a circular distribution similar to that of the joint space of the robot which 
exists on a set of tori Tn = S1 × S2 × · · · × Sn with n being the number of joints and S  being a 1-sphere. This 
distribution is mimicked in Fig. 10c, where the circular nature is now repeated in the boundary of the learned 

Fig. 9.  Sensor array results (From left to right: RMSE, R2 and Thickness). (a) SAMPLE1: 300nm, (b) 
SAMPLE2: 286nm, (c) SAMPLE3: 164nm. Notes: (i) The green zone in the RMSE and R2 is the discovered 
safe zone for the array output. (ii) Each data point represents the averaged value of 50 measurements of all the 
sensors. (iii) The x-axis shows the test sequences: CALIB POINT, CIRCULAR, FRONT-BACK-RIGHT-LEFT 
and BACK&FORTH.
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latent space manifold. This shows that the sampling of the joint space when training the VAE can capture the 
original kinematics of the manipulator, hence the uniform random sampling plan used is sufficient to model the 
manipulator kinematics in the latent space. For higher dimensional or redundant manipulators where n > 6, 
alternative sampling plans should be used that encode the geometry of the kinematics into the sampling36.

The learned manifold domain can be modified by applying the constraint function metric Mθ
f  to the variance 

measure plot. This creates a sub-manifold M̃ that satisfies the constraint function f(θ̂) = 0, where θ̂ indicates 
a predicted value from the VAE. As this application considers the manipulator to maintain horizontal motion 
during operation, a constraint vector of C = [0 0 0 1 1 0]⊺ is applied, then the value of f(θ̂) computed 
for each point in the latent space. This is then used to determine the constraint metric Mθ

f , which is then projected 
onto a three-dimensional variance measure plot.

As shown in Fig. 11, there exists a sub-manifold - shown in dark blue - that corresponds to areas that satisfy 
the constraint vector and maintain horizontal motion. As these areas lie on the low variance regions of the 
manifold, this learned model can then be used to examine the manipulator movement and determine with a 
high degree of confidence whether the constraints are being met during the motion of the manipulator.

Fig. 11.  Projected value of the constraint metric Mθ
f , normalised to between 0 and 1, onto the variance 

measure in three-dimensions. Areas corresponding to zero (dark blue) are latent space points that satisfy the 
constraint. The colour bar on the left represents the value of the constraint metric, with the Z-axis value being 
the variance metric.

 

Fig. 10.  Training results from the Riemannian manifold VAE: (a) ELBO loss averaged across 10 runs, 
indicating convergence on a stable manifold; (b) Variance measure of the latent space. This variance takes 
low values in areas that the manifold has a high confidence of performance and high values in areas of high 
uncertainty; (c) The magnification factor J in Eq. 14 applied to the variance measure metric. The white dots 
indicate the training data, with a boundary around those points of high variance indicating the edge of the 
manifold.
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Movement inspection
To examine the ability of the latent space manifold to detect variations, motion plans generated on hardware can 
be embedded into the latent space of the VAE. This is done using the MoveIt motion planner in ROS37, where 
ground-truths are obtained for plans that are no longer adhering to constraints. These plans are then encoded 
into the latent space of the VAE to be evaluated with the constraint metric Mθ

f . For each path generated in 
MoveIt, points were sampled from the path and labelled with the ground truth as to whether they satisfy the 
constraints. The paths were generated from the starting position to the calibration box shown in Figs. 5a and 6, 
with three off-manifold paths being induced with increasing deviation from the desired ground-truth trajectory.

As shown in Fig. 12, the trajectories can be shown in the latent space as being continuous, indicating that 
continuity with joint positions across single trajectories is maintained when embedding the high-dimensional 
joint space onto the latent space Riemannian manifold. This continuity is caused by the fact that the VAE 
maintains the geometric relationships between the joint positions in Euclidean space when embedding them in 
the latent space. Furthermore, this preservation of the robot geometry is present when examining the trajectories 
that violate the constraint, shown in red in Fig. 12, as there is significant deviation from the desired trajectory in 
white, which indicates that trajectories that violate the constraint imposed on the manipulator can be detected in 
the latent space. This deviation is determined by examining the value of the metric Mθ

f , which allows us to build 
the curvature of the manifold based on the value of the constraint in the latent space.

Using this projection, the estimated values of the constraint function can be determined directly from 
this manifold without needing to explicitly calculate its value. The accuracy of the reconstructed points from 
the VAE decoder can also be evaluated to determine the ability of the VAE architecture to learn the lower-
dimensional manifold. This is done by passing random joint configurations through the encoder and decoder 
architectures, then comparing the resulting estimation of the joint configurations against the ground truth. The 
estimated Mθ

f  based on the reconstructed joint configuration can also be compared against the actual values 
of Mθ

f  computed using the ground-truth joint configurations. In Table 4, the mean and standard deviation of 
the two reconstructions are presented, and it is clear that the VAE can reproduce the encoded positions with 
a high degree of accuracy, indicating that the latent space in the VAE is an accurate representation of the joint 
configurations for the manipulator. Furthermore, it can be seen that the manifold constraint estimator shown 
in Fig. 11 can determine directly the value of the constraint function from the manifold, allowing the complete 
evaluation of whether the repeated trajectory is starting to experience deviation.

Discussion
SR has been overlooked in the past because of its known limitations. However, newer advances in component 
miniaturisation are allowing the exploration of novel approaches to overcome its technical disadvantages. This 
sensor array solution proposes a novel approach that challenges the existing single-point and physical expansion 
restrictions by utilising a spectrometer and a light source integrated into a single reflectometer package. 

Fig. 12.  Projection of trajectories from the manipulator into the latent space of the VAE. LEFT: Projection of 
the trajectories on to the manifold; RIGHT: Zoomed in of the space where the trajectories lie on the manifold. 
The trajectory in white is the ground truth trajectory that maintains horizontal motion during the trajectory. 
Trajectories in red are ones that deviate from the constraint sub-manifold.
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Additionally, this proposal provides a linear coverage of 74mm of wafer inspection, which is promising for a 
potential area coverage expansion for the semiconductor and/or R2R manufacturing.

However, the lab-based SR sensor array requires high precision of the angle of incidence, sensor alignment, 
precise control of the light intensity, sensor integration times, and premium-quality USB devices. All the 
mentioned requirements represent a limitation of the presented solution as they are a source of variation and 
potential noise contributors that could affect the sensor’s readings. Each sensor had to be mechanically adjusted 
using a Dinolite microscope and a spirit level to ensure proper alignment during the calibration process. This 
step required at least 30 minutes before attempting the calibration and thus, before starting measuring. This 
could be solved by modifying the sensor assembly design, incorporating higher-quality moulded parts and 
adding precise positioning devices in the future.

By contrast, commercially available reflectometers use Halogen and Deuterium stable light sources, which 
cover the full spectrum from UV to Infrared. In this case, for demonstration purposes, commercial LEDs were 
used, which are limited to the Visible (VIS) spectrum (450nm to 700nm). The light intensity of the LEDs was 
controlled via hardware (HW) and software (SW). HW-wise, potentiometers adjusted to 1.34kΩ were used to 
deliver a light intensity of 164Lux (±20%). Software-wise, the integration time was adjusted to 0.11 s when 
measuring the SiO2 coating to reduce an observed offset vs the uncoated Si reference. Although this is not a 
widespread practice according to the publicly available manuals21,25 and following the NPL practices38, this was 
the best combination to ensure a good fit of the measured reflectance curve for the stated conditions.

All the aforementioned factors could also be impacted by the quality of the 3D-printed parts. The 3D printer 
nozzle had a tolerance of 0.2mm, and each part of the reflectometer was printed in Stereolithography (SLA) 
material designed to hold the components in place by making a “snap” assembly; however, the parts presented 
deformation that did not allow a tight assembly. The combination of the deformation with the tight tolerances 
of the current design left an unstable structure, making it sensitive to misalignment by the USB cables coming 
out of each reflectometer. This situation made it impossible to ensure a normal positioning of the sensor array 
with respect to the sample (zero degrees alignment) when performing the measurements, which sometimes 
caused catastrophic errors. This is critical because the angle of incidence affects the measurements as seen in Eq. 
2. To overcome the misalignment issues, a cable handler support was added during testing, which successfully 
removed the number of catastrophic errors. The sources of variation of the printed parts are out of the scope of 
this paper’s research and will be investigated in future work. The USB hub was also a source of random noise 
added to the system. The hub presented noise when more than one sensor was connected to it. After Fourier 
and Lomb-Scargle analysis, it was not possible to locate a frequency to apply a noise reduction filter. Although 
in case a frequency could be isolated, adding a filter per pixel would be a high-cost processing, therefore, the 
best noise reduction strategy was to apply a convolution procedure using the Python NumPy library. All the 
aforementioned sources of variation are accounted for in the uncertainty calculation and explain the uncertainty 
difference between the F20 and the sensor array in Table 3. Knowing the sensor array limitations is key to 
understanding the development requirements to improve its performance and test its capabilities with flexible 
substrates. Although there is room for improvement, the results are promising as the sensor array can measure 
dry thin-film thickness with less than 2.1% thickness variation compared to a well-established SR system when it 
is positioned in the calibration point, and when there are angle variations below 0.5◦. Moreover, the sensor array 
can detect RMSE and R2 variations when the sample goes 1mm below the calibration point, which is a desirable 
feature for detecting web fluttering failures in R2R manufacturing. Future work with the sensing array includes 
the reduction of the sources of variation and finding its capability in R2R variable-speed environments, testing 
with flexible solar cell materials and potential feedback control for the robot arm testing sequence. For the 
manipulator, the VAE can be used to produce new trajectories that satisfy the desired constraint, but additionally, 
new constraints can be directly imposed within the Riemannian metric to allow different constraints, such as 
limits on rotations or positional translation. Furthermore, whilst this work has focused on wafer transportation 
for inspection through a custom end-effector, in future approaches, the sensing array could be attached to the 
end-effector of the manipulator to allow for R2R inspection with linear motion constraints.

In this research, an automated inspection system using a novel sensor array and a novel robot constraint 
manipulator has been presented. The sensor array is capable of measuring coating thickness with ≤ 2.1% error 
in static and dynamic environments when the wafer remains in the calibration point, and can detect angle 
variations of 0.5◦ in the positions described in Fig. 5b. This can be combined with the robot manipulator to 

Trajectory
Reconstruction 
Accuracy

Manifold 
Constraint 
Estimation

µ σ µ σ

On-Manifold -0.18 0.24 -0.014 1.81

Off-Manifold 1 -0.08 0.23 -1.30 2.68

Off-Manifold 2 -0.003 0.30 0.82 1.49

Off-Manifold 3 -0.16 0.30 -0.11 2.28

Table 4.  Evaluation of the trajectory reconstruction and direct constraint estimation difference between 
the ground truth and the values from the latent space manifold. The mean value µ is the average difference 
between the actual ground truth and the reconstructed output from the VAE with the standard deviation σ 
over the trajectory.
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position a wafer to its calibration point whilst adhering to a novel learned constraint manifold, whereby the array 
can potentially perform surface mapping of the wafer.

This work sets the footprint for more size-reduced solutions using SR for inspection expansion in R2R systems, 
and the implementation of SR with more advanced sensor fusion techniques. Within the robotic manipulation 
field, this method allows for the design of constraint manifolds that are flexible to the constraint that is being 
imposed, whilst maintaining the underlying kinematics of the manipulator. Furthermore, this method allows the 
direct evaluation of whether the manipulator is deviating from the desired constraint.

Data availability
All sensor data generated and analysed are included in this published article and its supplementary information 
files. The data and code for the constrained robot manipulation is available from the corresponding author on 
reasonable request.
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