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Abstract
Anecho statenetwork (ESN) is a recurrentneural network thathas several advantageswith respect to a
deepneuralnetwork, including its fast trainingphase and theabsenceof vanishingandexplodinggradients.
The trainingphase reduces to solving the least squares (LS)problem wls = vX yarg minv 2

2,whereX
is the reservoirmatrix, andX andy are functionsof the trainingdata. It is commontoadd regularisation to
thisproblembecause, it is claimed, itminimises the adverse effects of overfitting.Recentwork indeep
neural networks, physics informedneural networks and regressionhas shown,however, that regularisation
doesnot solve theproblemofoverfitting, and thus this paper considers the applicationof regularisation to
ESNs by analysing their predictive abilities on several time series, includinganon-linear communication
channel, theHénonmapandmultiple superimposedoscillations. It is shown that the solution wls of theLS
problem is, formanyproblems, stablewith respect to aperturbation iny for awide rangeofparameter
valuesof an ESN, and thus regularisationmustnotbe applied to theseproblems.Eachproblemmust,
however, be consideredbecause theneed, orotherwise, to apply regularisation is dependentonmany
parametersof an ESN. Furthermore, regularisation isnotbenignbecause itsusewhenaconditionon the
rateofdecayof the singular values ofX is not satisfied leads to a large errorbetween the theoretically exact
andregularised solutionsof theLSproblem.

1. Introduction

A recurrent neural network (RNN) is a neural network that captures temporal dependencies in sequential data,
and it is used in, for example, text processing [1], speech recognition [2] and the prediction of chaotic time
series [3]. It is trained by backpropagation through time, which is an iterative algorithm for the determination
of theweights of the network, and itmay suffer from vanishing and exploding gradients. An echo state network
(ESN), which is shown in figure 1, is a simplified formof anRNN that does not suffer from these problems. It
has three components, specifically, an input unit, a reservoir that contains the neurons, and an output unit, and
only the output weights of the network are trained [4, 5]. Theweights of the neurons in the reservoir are
assigned randomvalues that do not change during training, whichmarks a difference between anRNNand an
ESN. There are thereforemany fewer parameters to train than in anRNN,which reduces the computational
cost of training the network. An ESN can be extended to include feedback of a component of its output back
into the reservoir, such that the state of the reservoir at time t = n is a function of the output of the ESN at time
t = n − 1 [6, 7].

Training an ESN reduces to the calculation of the solution wls of the the least squares (LS) problem,

· · ( )†= = = =w vX y yXarg min , , 1
v

ls
2

2

where the reservoirmatrixX = X(u) defines the state of the reservoir for the input datau, y is the desired output
for the datau, and the components of wls are theweights vi, where { }= vv i , thatminimise the error between
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the computed output vX and the desired output y. The pair (u, y) defines the training data fromwhich the
weight vector wls is computed. This vector is then used tomake predictions on newdata.

Practical applications of an ESN require that it be numerically stable, that is, a perturbation of order ε in the
input to an ESN yield a perturbation of the same order in wls and predictions onnewdata. This paper addresses
one aspect of the stability of an ESN, and it is shown that three problemsmust be considered for a complete
study of the stability of an ESN.1

Let

[ ( ) ( ) ( ) ( ) ]= +u u u S u Su 1 2 1 ,

be a time series, the first S entries ofwhich, u(i), i = 1,…, S, are used to train an ESN, and let the reservoir have
Nneurons.2 The state x(n) of the reservoir at time n = 1,…, S, is

( ) ( ) ( ) ( ( [ ( )] ( ))) ( )= + +n n u n nx x W Wx1 1 tanh 1; 1 , 2in

where the function (·)tanh is called the activation function,

( ) [ ( ) ( ) ( )]= Rn x n x n x nx ,N
T N

1 2

α is the leakage, 0< α�1, and ×RW Nin 2 and ×RW N N are randommatrices, each of whose entries is
drawn from the uniformdistribution in the open interval ( − 1, 1). The vectoru is normalised by u in order
that the vector thatmultipliesWin in (2) is balanced. It is assumed the reservoir is at rest on initialisation and
thus x(0) = 0.

Equation (2) is executed for n = 1,…, S, which allows thematrixX,

( ) ( ) ( )
( ) ( ) ( )

( )( )= + ×Ru u u S
S

X
x x x

1 1 1
1 2
1 2

, 3N S2

to be constructed, and the output weight vector +Rw N
ls

2 is the solution of the LS problem (1), where

[ ( ) ( ) ( )] ( )= + Ru u u Sy 2 3 1 , 4S

which is one time step ahead of the input { ( )}=u i i
S

1, and

( )
( )

† =
+
+ <

N S

N S
X

X X X

X XX

if 2 ,

if 2 .

T T

T T

1

1

Figure 1.The input unit, reservoir that contains the neurons and output unit of an ESN.

1
Thework in this paper is therefore the first part of a detailed study of the stability of ESNs.

2
Awashout period is allowed for by only considering the time seriesu after the transient response has decayed.

2
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The predicted output ˜( )+ +y S k 1 of the ESN on a newdata sample u(S + k), k = 1, 2,…, is

˜( ) ( )
( )

( )+ + = +
+

= …y S k u S k

S k
kw

x
1

1
, 1, 2, 5ls

The termon the right hand side is a function of the data samples u(n) and state x(n) of the reservoir at times
n = 1,…, S + k, and the termon the left hand side is the output at timen = S + k + 1, and thus (5) is a one step
ahead predictor.

It is noted above that the output y of an ESNmust be stable with respect to a change δu inu, but this issue
has not been considered.Numerical issues associatedwith this stability, usingmethods of computational linear
algebra, are discussed in section 2 and it is shown that three problemsmust be considered to address this issue
fully. Themost challenging problem requires the development of a condition number of the LS problem (1)
because the perturbation δX inX is a structuredmatrix. This paper considers, therefore, a simpler problem in
which δX = 0, whichwill allow extension to the situation that occurs when the structure of δX is included in the
analysis of the condition of the LS problem. The numerical condition and regularisation of this simpler LS
problemare considered in sections 3 and 4, respectively. Examples that demonstrate the theoretical analysis are
in section 5 and futurework is discussed in section 6. The paper is summarised in section 7.

This discussion leads to the aims of the paper:

• Tikhonov regularisation is applied to (1) in order tominimise overfitting [4, section 3], [5, section 4.2],
[8, section 8.1.1].3 It leads to theminimisation

( ) { } ( ) ( )= + =w vX y v w warg min , 0 , 6
v

2 2
ls

where the regularisation parameterλ � 0 controls the extent that the constraint on v is imposed on wls. It
has, however, been shown in physics informed neural networks [9, section 2.3], regression [10] and deep
learning [11, section 1.2] that regularisation does not solve the problemof overfitting, and thus the objective
of regularisationwith respect to ESNsmust be determined.

This objective is realised by noting that regularisation imposes stability on the solution of an ill
conditioned set of linear algebraic equations, assuming the coefficientmatrix is exact. The application of
regularisation requires that the discrete Picard condition, which is a condition on the rate of decay of the
singular values ofX, be satisfied [12]. It is necessary to confirm that this condition is satisfied before
regularisation is applied because it is not benign. In particular, the application of regularisation leads to a
large error inw(λopt), whereλopt is the optimal value ofλ, with respect tow(0) if the discrete Picard
condition is not satisfied.4 This property of regularisation highlights the importance of an investigation into
the application of regularisation to (1).

• The stability and error of wls must be determined for the conditionsN + 2� S andN + 2< S because they
influence the predictive ability of an ESN. It is shown that the criterion for this selection is associatedwith
overfitting and the bias-variance trade-off.

Themotivation for this paper follows from the observation that the need, or otherwise, to apply regularisation
and the determination of the optimal value ofλ are not addressed in the literature on ESNs. For example, the
valueλ = 1 is used in [13, section 4] to train an ESN to generate the figure 8, but it is not verified that the
discrete Picard condition is satisfied, and thus that regularisation is required, and the reason for the selection of
this value ofλ is not stated. The Lorenz time series [14],Mackey-Glass time series [15] andNARMA10 time
series [16, section 4] are considered in [17, section 4]using values ofλ of (10−5 and 10−4), (10−5 and 10−4), and
(10−4 and 10−3), respectively, but the justification for the application of regularisation and these values ofλ is
not stated. Also, the valuesλ = 10−5 andλ = 10−3 are used in [18, section 3.2] for the analysis of the Lorenz
time series, but the reason for using these two values ofλ is not stated. Similarly, the valueλ = 10−6 is used in [4,
section 3] for the analysis of theMackey-Glass time series, but it is not justified.More generally, the discrete
Picard condition and condition estimation of the LS problemare not considered in the literature on ESNs, even
though the objective of regularisation is the imposition of stability on its solution.

The results of the paper are now summarised:

3
Tikhonov regularisation is also known as ridge regression and it will, for brevity, be termed regularisation.

4
Methods for calculating the optimal value ofλ are considered in section 4.1.

3
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• Experiments onmany time series show that for awide range of parameter values of an ESN, for example, the
value ofα, the length of the training data and the number of neurons in the reservoir, the LS problem (1) is
well conditionedwith respect to a perturbation in y. It follows that, formany time series, regularisationmust
not be imposed, but each problemmust be considered to determine if it is required because, as noted above,
its incorrect application leads to a large error between the theoretically exact and regularised solutions of the
LS problem.

• Twomethods, generalised cross validation (GCV) [19, 20] and the L-curve [21, section 4.6], are compared
for the determination ofλopt. The L-curve yields consistently better results, and in particular, it returns
λopt= 0 if regularisationmust not be applied because the discrete Picard condition is not satisfied, but the
GCVoften returnsλopt≫ 0, which is unsatisfactory.

• Analysis of the error and stability of wls show thatN + 2� Smust be satisfied because this condition yields
the solution wls that ismore stable with respect to a perturbation in y than the solution obtainedwhen
N + 2< S. Also, the error in the solution obtainedwith the conditionN + 2< S is large because y does not,
in general, lie in the row space ofX, but this error is zero ifN + 2� S.

2. The stability of an ESN

The conditions forwhich the output of an ESN is stable, and the conditions for which it is unstable,must be
determined because they are critical for practical applications of an ESN. Analysis of this stability and instability
requires that three problems be considered, and this paper addresses one of these problems, specifically, the
numerical condition of the LS problem (1)whose solution wls is theweight vector that is used for predictions
on newdata (5). These three problems are nowdescribed because they provide themotivation for thework
described in this paper.

A condition number of the problem (1) is usually computed by linear error analysis, which assumes that a
perturbation δu inu, and therefore, from (4), a perturbation δy in y, does not cause a change δX in the stateX of
the neurons in the reservoir. This linear analysis is inadequate because it is shown in [22] that to first order in

( )nx 1 and u(n), n = 1,…, S,

( )
( )

( )

( )
( )

( )

( )=

S

u
u

u S

x
x

x

l
l l

l l l l

1
2

1
2

, 7

S S S SS

11

21 22

1 2 3

where Rlij
N , i, j = 1,…, S, and the coefficientmatrix ×RL NS S,

{ } ( ( ) ( ) ( ) ( ) ( ) ( ))= = … …= S u u u SL l L x x x1 , 2 , , 1 , 1 , 2 , , ,ij i j
S
, 1

is lower triangular because of causality. Furthermore, it follows from (3) that

( ) ( ) ( )
( ) ( ) ( )

( )= + ×Ru u u S
S

X
x x x

0 0 0
1 2
1 2

,N S2

where, from (7),

( ) ( )= = …
=

n u j n Sx l , 1, , ,
j

n

nj
1

and thus δX(3:N + 2, : ) is a structuredmatrix whoseNS entries are functions of S randomvariables
( ) = …u n n S, 1, , . This structuremust be consideredwhen the effect of a perturbation δu on the state of the

neurons in the reservoir is considered.
Stability analysis of an ESN requires that three problems be considered:

• Problem1: The determination of the perturbations δx(n), n = 1,…, S, and thus the perturbation δX in the
state of the neurons in the reservoir due to a perturbation δu in the datau, as shown in (7).

• Problem2: The determination of the perturbation δwls in the output wls of an ESN, due to the perturbations
δu (and therefore δy) and δX.

4
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• Problem3: The determination of the perturbation ˜( )+ +y S k 1 in the predicted output ˜( )+ +y S k 1 ,

˜( ) ( )
( )

( )
( )

+ + = +
+

+ +
+

y S k u S k

S k

u S k

S k
w

x
w

x
1

1 0
,ls ls

for k = 1, 2,… , to first order, from (5).

Problem1 is addressed by considering the Jacobianmatrix of the reservoir, whose entriesmust be calculated
from the structured formof δX in order that ameaningful estimate of the numerical condition of the reservoir
be computed.

Full consideration of Problem2 requires that the effect on wls of the structuredmatrix δX and a random
vector δu be included. Standardmethods of error analysis of this non-linear problemassume that δX is ran-
dom,whichmay therefore lead to a large overestimate of the numerical condition of the LS problem (1). A
better estimate requires that the structured formof δX be considered, but this problemdeserves a separate
study because the structured formof δXmust be included in the non-linear error analysis of the LS problem. It
is therefore assumed in this paper that δX = 0, and the condition of (1)with respect to a randomperturbation
δy is considered. In particular, a refined condition number that allows a distinction to bemade betweenwell
conditioned and ill conditioned LS problems is developed and it is shown this distinction is essential for the
application of regularisation to (1). This refined condition numberwill allow full consideration of Problem2 in
which the structured formof δX is included in the condition number of (1).

Problem3 requires that the explicit formof δx(S + k) be considered, and the development of a refined
condition number for ˜( )+ +y S k 1 therefore requires that Problems 1 and 2 be addressed.

3. The condition of the LS problem

This section considers the numerical condition of the LS problem (1)with respect to a perturbation in y,
assuming δX = 0. A refined condition number, called the effective condition number η(X, y), for this
perturbation is developed and it allows the criterion for the application of regularisation to be established.

The condition numberκ(X) ofX is independent of y but wls is a function ofX and y, and itmay therefore be
an inaccuratemeasure of the true numerical condition of the LS problem. This issue is overcome by the effec-
tive condition number η(X, y), which is a function ofX and y, and it therefore providesmore refined informa-
tion thanκ(X) on the condition of the LS problem.An expression for it is developed inTheorem1 and its
properties are then considered.

Theorem1. Let Δy be the upper bound of the relative error in y, and let Δwls be themaximum relative error in wls

due to the perturbation δy,

=
R

y

y
y w

w

w
and max .

y
ls

ls

ls
S

Then

( ) ( )
† †

†= = =w
y X

w
y

y X

yX
y X y y, , 8ls

ls

where η(X, y) is the effective condition number.

Proof. It follows from (1) that

†w y X ,ls

and (8) follows from the division of this inequality by †=w yXls .aaa □
The relationship betweenκ(X) and η(X, y) is considered in the next section. This relationship also addresses

one of the aims of this paper stated in section 1, specifically, the relativemagnitudes ofN + 2 and S.
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3.1. Themagnitudes of κ(X) and η(X, y)
LetUΣVT be the singular value decomposition (SVD) ofX, and thus it follows from (8) that

( )( ) † †= = = =

=

d
X y

y

yV U

d

d
,

1
,

r
T

r r

i
S

i

i
r d

1
2

1

2

1
2

i

i

where ( )= … = +i r N S, 1, , min 2, ,i are the singular values ofX, { }= == Rdd yVi i
S S

1 , and thus

( )( ) ( ) ( )= =

=

=

=

d

d

d

d
X y X, . 9

r

i
S

i

i
r

i

i
S

i

i
r

i

1 1
2

1
2

2

1
2

1
2

1
2

1
2

i

1

It is convenient to partitiond andV as

[ ]
[ ] ( )

=

= × ×

R R
R R

d d d d d

V V V V V

, , ,

, , ,

r S r

S r S S r

1 2 1 2

1 2 1 2

where

= = = =V V I V V I V V 0 V V 0, , , ,T
r

T
S r

T
r S r

T
S r r1 1 2 2 1 2 , 2 1 ,

and thus

= ==

=

d

d

dd

d d

yy

yVV y
.i

S
i

i
r

i

T

T

T

T T
1

2

1
2

1 1 1 1

It follows from (9) that

( ) ( ) ( ) ( )=X y X
yy

yVV y
X

y

yV
, , 10

T

T T
1 1

1
2

1

andTheorem2 shows that the rows of VT
1 form anorthonormal basis for the row space ( )R X ofX. This

theorem is used in Theorem3 to establish a geometric interpretation of the term yVVT
1 1 , which allows the

condition for which η(X, y) → ∞ to be derived. In particular, it follows that even ifκ(X) is finite, the refined
condition number η(X, y)may be infinite.

Theorems 2 and 3 are stated in terms of an arbitrarymatrix ×RA m n of rank ( )r m nmin , because of
their generality.

Theorem2. Let ×RA m n be an arbitrarymatrix of rank ( )r m nmin , and let UΣVT be its SVD. The first r
rows of VT form an orthonormal basis for the row space ( )R A of A.

Proof. If Rt n lies in the row space ofA, there exists a vector Rx m such that t = xA, and thus

[ ]= =t xU V x U U 0
0 0

V

V
,T

T

T1 2
1 1

2

where ×Rr r
1 is the diagonalmatrix of the singular values ofA, ×RU m r

1 , ( )×RU m m r
2 , ×RVT r n

1

and ( )×RVT n r n
2 . It follows that

= = = Rt xU V yV y xU, ,T T r
1 1 1 1 1 1

and thus t is a linear combination of the rows of VT
1 . It follows that the first r rows ofV

Tdefine an orthonormal
basis for the row space ofA.aaa □

Theorem3. Let Rb n, and let b1 and b2 be the components of b that lie in ( )R A and ( )R A , respectively. Then

( ) ( ) ( )= + = =R Rb b b b bV V A b bV V A, , , 11T T
1 2 1 1 1 2 2 2

where

[ ]
( )

( )=

= = = =

× ×R RV V V V V

V V I V V I V V 0 V V 0

, , ,

, , , , 12

n r n n r

T
r

T
n r

T
r n r

T
n r r

1 2 1 2

1 1 2 2 1 2 , 2 1 ,

and

( )= =bV V bV bV V bVand . 13T T
1 1 1 2 2 2
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Proof. Since the rows of VT
1 and VT

2 formorthonormal bases for ( )R A and ( )R A respectively, there exist
vectors Ra r

1 and Ra n r
2 such that

= +b a V a V .T T
1 1 2 2

It follows from (12) that themultiplication of this equation byV1 and thenV2 yields a1= bV1 and a2= bV2

respectively, and thus

= +b bV V bV V ,T T
1 1 2 2

which establishes the result (11). aaa □
The application of Theorems 2 and 3 to the LS problem (1) yields an inequality between η(X, y) andκ(X),

which follows from (10) and (13),

( ) ( ) ( )=X y
X yV

y
,

cos
, cos , 141

where, from (11) and (13), θ is the angle between y and its component that lies in ( )R X . This angle also arises in
the expression for the square of the error r in the solution of the LS problem,

= =r
w X y

y
1 cos .2 ls

2

2
2

Equation (14) and this expression for the square of the error address one of the aims of this paper that are stated
in section 1. The relativemagnitudes ofN + 2 and S determine the properties of wls because the conditions
N + 2< S andN + 2> S lead to an overdetermined and an underdetermined LS problem, respectively. The
conditionN + 2< S is proposed in [5, section 4] and [13, section 3], and the optimal value ofN attains a
compromise between the bias and variance of themodel, such that a larger value ofN can be used if the data
have little or nonoise. The conditionN + 2> S is proposed in [4, section 3] and [8, section 2.2] because the data
{ }=ui i

S
1 aremapped to a higher dimensional space inwhich linearmethods, for example, linear regression, can

be used. The conditionN + 2< S yields <cos 1and r > 0, but the conditionN + 2� S is preferred because it
follows that =cos 1and r = 0, and it therefore yields a lower upper bound for η(X, y), and the error in wls

is zero.
The limiting cases are:

• =cos 1: ( )Ry X , and thus η(X, y) � κ(X) and r = 0.

• =cos 0: ( )Ry X , and thus η(X, y) → ∞ and r = 1.

Example 1.LetX and y be

[ ]= =X y1 0 1
0 1 1

and 1 1 1 .

The condition number ofX is ( ) =X 3 and itmay therefore be thought that wls is stable with respect to a
perturbation in y. This is incorrect because ( )Ry X ,

[ ]=yX 0 0 ,T

and thus ( )†= = =w yX yX XX 0T T
ls

1 , and hence η(X, y) → ∞. aaa □

3.2. The geometry of the effective conditionnumber
This section considers the geometric conditions, in terms of the spaces spanned by the rows ofUT andVTwhere
UΣVT is the SVDofX, forwhich η(X, y) attains itsminimumandmaximumvalues. It is assumed, for
simplicity, that r = N + 2= S, and thus the effective condition number of the LS problem is

( ) = = =X y
y X

w

d

d
d yV, , .

r

1

ls
1

• Ill conditioned LS problem: η(X, y) ≈ κ(X) = σ1/σr ≫ 1
d is dominated by the first few components ofd such that

( )d
i r0 as . 15i

i

This condition is called the discrete Picard condition and it requires that the constants di decay to zero
faster than the singular valuesσi decay to zero [12]. It is shown in section 4 that the application of

7
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regularisation to (1) requires that this condition be satisfied.
The dominant components of y lie in the first few rows ofVT.
The dominant components of wls lie in the first few rows ofU

T.

• Well conditioned LS problem: η(X, y) ≈ 1
d is dominated by the last few components ofd such that

d
d

d dand .r
r

r

1

The dominant components of y lie in the last few rows ofVT.
The dominant components of wls lie in the last few rows ofU

T.

It follows that the value of the effective condition number η(X, y) is defined by the space spanned by the
rows ofVT inwhich the dominant components of y lie.

4. Regularisation

Regularisation imposes stability on the solution of an ill conditioned set of linear algebraic equations, and its
application to (1) is justified by the claim that it reduces overfitting [4, section 3], [5, section 4.2], [8, section
8.1.1]. The application of regularisation to (1) leads to theminimisation (6)whose solution is, assuming
N + 2� S,

( ) ( ) ( )= + =
+=

d
w y X X I X u , 16T T

i

S
i

i

i

i
i
T1

1

2

2

where { }= ==dd yVi i
S

1 , the SVDofX isUΣVT, the singular values ofX areσi, i = 1,…, S, and ui
T is the ith

rowofUT. Regularisation assumes there are errors in y only and thatX is exact. Its application requires that the
discrete Picard condition (15) be satisfied, and it is based on a trade-off between the error and stability ofw(λ):

• There exists an optimal valueλopt ofλ such that (i) the error inw(λopt)with respect to the theoretically exact
solutionw(0) of the LS problem is small, and (ii) w(λopt) ismuchmore stable thanw(0)with respect to a
perturbation in y.

This trade-off is the bias-variance trade-off inmachine learning inwhich the bias and variance are, respectively,
the error and stability ofw(λ). The trade-off is satisfied if the discrete Picard condition (15) is satisfied:

• It is shown in [23, section 5.2] thatw(λopt) ismuchmore stable than wls = w(0) if (15) is satisfied.

• It is shown in [23, theorem5.1] that the error inw(λopt)with respect to the theoretically exact solution of the
LS problem is small if (15) is satisfied. If, however, (15) is not satisfied, then the error in the regularised
solution is large and it increases asλ increases. It follows that regularisation is not benign and itmust
therefore be verified that the discrete Picard condition (15) is satisfied before it is applied.

Regularisation requires that the value ofλopt be determined, and this issue is addressed in the next section.

4.1. The calculation of λopt

This section considers the calculation ofλopt using theGCV [19, 20] and the L-curve [21, section 4.6]. If
( )X y, 1 , the LS problem is well conditioned and thusλopt= 0, and it is therefore assumed in this section
that the discrete Picard condition (15) is satisfied.

The L-curve, which is shown in figure 2, is a parametric plot of themagnitude ( ) ( )=m wlog10 against
the residual ( ) ( )=r w X ylog10 , wherew(λ) is defined in (16). Themagnitudem(λ)decreases and the
residual r(λ) is approximately constant asλ increases from zero to its value in the corner of the L. Asλ increases
from this value,m(λ) is approximately constant and r(λ) increases. The optimal valueλopt ofλminimises,
approximately,m(λ) and r(λ) simultaneously, and thusλopt is the value ofλ in the corner of the L. It follows
thatλ = λopt balances the residual r(λ) of themodel and the satisfaction of the constraint onm(λ).

TheGCV is based on the principle that if an arbitrary component of y is deleted, an error in the predicted
value of the deleted component by the regularised solution should be small. The optimal value ofλ computed
by theGCVminimises a function, but thisminimummay be flat, which causes numerical difficulties. TheGCV
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may also return a very small value ofλopt, and other issues associatedwith the use of theGCV for computing the
value ofλopt are in [21, section 7.7].

5. Examples

This section contains examples that illustrate the theory in the previous sections. The determination of the
requirement, or otherwise, to impose regularisation, as shown in (16), requires that the data are exact, and thus
δy = 0. The examples consider the dependence of the stability of wls on the parameters of the reservoir:

• The connections in the reservoir: Experiments show that the numerical condition of the LS problem is
weakly dependent on the number of connections in the reservoir, that is, the sparsity ofW.

• The spectral radiusμ(W) ofW: The conditionμ(W) < 1 is often imposed because it guarantees satisfaction
of the echo state property (ESP) [8, section 5.1]. The ESP states that the effect of a state x(n) of the reservoir
and input sample u(n) on a state x(n + k) of the reservoir decreases as k → ∞. It can also be satisfied if
μ(W) > 1 and thus the conditionμ(W) < 1 is not necessary for the satisfaction of the ESP.

• The leakageα: Equation (2) shows that the contribution to x(n) of the data sample u(n) decreases asα → 0.
Experiments show that the condition number of the LS problem increases asα decreases.

The output of an ESN is dependent onmany parameters that include, apart from the parameters listed
above, the dimensions ofW, the number of neurons in the reservoir, the random seed for the computation of
W, and the activation function. A study that considers the effects of all these parameters on the performance of
an ESN is necessarily large and cannot, therefore, be included in one paper. It is not the aimof this paper to
determine optimal values for these parameters, but rather to consider the application of regularisation for time
series analysis by considering several examples and the consequences of varying several parameters. Typical
values for the parameters whose values are constant are used in order that the results be representative of results
obtainedwith other values of these parameters.

All predictions in the examples are one step ahead predictions (5).

Example 2.The time series u(n) of a non-linear communication channel,

( ) ( ) ( ) ( )= +u n q n q n q n0.0036 0.11 ,2 3

was formed [16], where

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

= + + + +
+ +

+ +

q n d n d n d n d n

d n d n d n d n

d n d n

0.08 2 0.12 1 0.18 1

0.1 2 0.09 3 0.05 4 0.04 5

0.03 6 0.01 7 ,

and d(n) is a sequence of randomnumbers drawn from the set { }3, 1, 1, 3 .

Figure 2.The L-curvewhen the discrete Picard condition is satisfied.
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The reservoirmatrixX is 100× 60, the sparsity ofW is 20%and it is normalised byμ(W), the spectral radius
ofW. Figure 3 shows the singular valuesσi ofX, the constants di and the ratios /di i for four values of the
leakageα. The constants di are approximately constant and the dominant components of /di i are
associatedwith large values of i, that is, the small singular values ofX. The regularised solutionw(λ) is obtained
by the deletion of the small singular values fromw(0) = wls and thus regularisation leads to a large error in

( )w . Figure 4 shows the variation of the effective condition number ( )X ylog ,10 and the condition number
( )Xlog10 with the leakageα. It is seen thatκ(X) ismany orders ofmagnitude larger than η(X, y), and the large

value ofκ(X) suggests that wls is unstable with respect to a perturbation in y, but the small value of η(X, y)
shows that wls is stable with respect to this perturbation.

Figure 5(a) shows the L-curves for four values of the leakageα. They have the same form,which is very
different from the curve in figure 2. In particular, asλ increases from zero, ( )w is constant and

( )w X y increases, and asλ increases further, ( )w decreases rapidly and ( )w X y is constant. It
follows there does not exist a value ofλ thatminimises simultaneously ( )w and ( )w X y , and thus

Figure 3.The variation of (a) the singular values log i10 ofX, (b) the constants dlog i10 , and (c) the ratios /dlog i i10 with i, for
four values of the leakageα, for Example 2.

Figure 4.The effective condition number ( )X ylog ,10 and the condition number ( )Xlog10 for four values of the leakageα, for
Example 2.

10

Phys. Scr. 100 (2025) 116009 YLu and J RWinkler



λopt= 0, which is in accordwith the small values of η(X, y) in figure 4. This absence of aminimum is in sharp
contrast to the L-curve in figure 2, forwhich theminimum is attained in the corner of the L.

Figure 5(b) shows theGCV for the four values ofα, andλopt≈ 0 forα = 0.2 andα = 0.4, butλopt≈ 10 for
α = 0.6 andα = 0.8. These results suggest that regularisation is required ifα = 0.6 andα = 0.8, which is
incorrect because figures 3 and 5(a) show thatλopt= 0. The L-curves in figure 5(a) are identical, but the curves
of theGCV in figure 5(b) are different, which suggests that the L-curve ismore effective than theGCV for
determining the value ofλopt. These problemswith theGCV arementioned in section 4.1. aaa □

Example 3.The Lorenz system is a set of three first order differential equations that represent flow in three-
dimensional space [14]. TheHénonmap, which is a simplemodel that displays the sameproperties as the
Lorenz system, is generated by the recurrence equation [24],

( ) ( ) ( ) ( ) ( )= + + = …u n u n u n z n n1 1.4 1 0.3 2 , 3, 4, , 172

where u(1) = u(2) = 0 and z(n) is a normally distributed randomvariable that has zeromean and standard
deviation 0.05.

Figure 5. (a)The L-curves and (b) theGCV for four values of the leakageα, for Example 2.
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The reservoir has 250 neurons,α = 0.2,W is 20% sparse andnormalised byμ(W), and the values
{ }150, 200, 250, 300 of the length of the training datawere considered. Figure 6 shows that the singular values
σi ofXdecay to zero slightly faster than the constants di decay to zero and thus the discrete Picard condition
(15) is not satisfied. The effective condition number is large, η(X, y) ≈ 104, butmuch smaller thanκ(X), as
shown in figure 7. The L-curves are shown in figure 8(a) and each curve has a corner, albeit badly defined, at

( )w X ylog 210 . Figure 8(b) shows that theGCV for the four values of the length of the training data
is small, which is consistent with figure 6 because the discrete Picard condition is not satisfied.

The experimentwas repeated, butWwas dense and it was not normalised byμ(W). Figure 9 shows the
variation of the singular values log i10 ofX, the constants dlog i10 , and the ratios /dlog i i10 with i, for the
four values of the length of the training data, and it differs fromfigure 6:

• The span of the singular values in figure 6 is larger than the span of the singular values in figure 9, and thus
( )X forX in figure 6 ismuch larger thanκ(X) forX in figure 9.

Figure 6.The variation of (a) the singular values log i10 ofX, (b) the constants dlog i10 , and (c) the ratios /dlog i i10 with i, for
four values of the length of the training data, for Example 3. The sparsity ofW is 20%and it is normalised byμ(W).

Figure 7.The effective condition number ( )X ylog ,10 and the condition number ( )Xlog10 , for four values of the length of the
training data, for Example 3. The sparsity ofW is 20%and it is normalised byμ(W).
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• The constants di span about six orders ofmagnitude in figure 6 and they span about three orders of
magnitude in figure 9.

The condition numbers ( )X ylog ,10 and ( )Xlog10 for the four values of the length of the training datawhen
W is dense andnot normalised byμ(W) are shown in figure 10. Figures 7 and 10 suggest that a sparse formofW
and/or its normalisation byμ(W) increase these condition numbers. The improved stability ofX obtained by
using the dense formofW and not normalising it byμ(W) is evident in figure 11(a), which shows the L-curve
for the four values of the length of the training data. The curves show thatλopt= 0, but it is difficult to draw a
conclusion fromfigures 6 and 8(a) because figure 6 shows that regularisationmust not be applied, and
figure 8(a) shows that each L-curve has a corner, but the corners are badly defined. Figure 11(b) shows theGCV
for the four values of the length of the training data and it is seen thatλopt≈ 10−1.5= 0.03. This result suggests

Figure 8. (a)The L-curves and (b) theGCV for four values of the length of the training data, for Example 3. The sparsity ofW is 20%
and it is normalised byμ(W).
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that regularisation should be applied, but it is inconsistent with figures 9 and 11(a), which show that
regularisationmust not be applied. aaa □

Example 4.Consider the series formed from the addition of several sinewaves [25],

( ) ( ) ( )= = …
=

u n n nsin , 1, ,10000, 18
i

s

i
1

where s = 8 and

= = = =
= = = =

0.20, 0.311, 0.42, 0.51,
0.63, 0.74, 0.85, 0.97.

1 2 3 4

5 6 7 8

ThematrixXwas of order 100× 70, and the dependence of the condition numbers η(X, y) andκ(X) on the
leakageα and the sparsity ofWwere computed. Figure 12(a) shows the variation of ( )Xlog10 with these
parameters whenW is normalised byμ(W). The smallest values ofκ(X) are larger than 105 and they occurwhen
α is large, for all values of the sparsity. ThematrixW is not normalised byμ(W) in figure 12(b), and the graphs

Figure 9.The variation of (a) the singular values log i10 ofX, (b) the constants dlog i10 , and (c) the ratios /dlog i i10 with i, for
four values of the length of the training data, for Example 3. ThematrixW is dense and it is not normalised byμ(W).

Figure 10.The effective condition number ( )X ylog ,10 and the condition number ( )Xlog10 , for four values of the length of the
training data, for Example 3. ThematrixW is dense and it is not normalised byμ(W).
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in figures 12(a) and (b) are significantly different because the smallest values ofκ(X) are about 10 in
figure 12(b). Figures 13(a) and (b) show the results for the effective condition number η(X, y) and they are
similar to figures 12(a) and (b), respectively, because η(X, y) is, in general, smallerwhenW is not normalised by
μ(W), and the smallest values occurwhenα is large and the sparsity is not large.

Figures 12 and 13 show that the stability of wls with respect to a perturbation in y increases rapidly asα
increases, but this stability is weakly dependent on the sparsity ofW. Furthermore, they show that
normalisation ofW byμ(W) leads to an increase, by several orders ofmagnitude, in the condition numbers

( )X y, andκ(X) for large values ofα. aaa □
Examples 5, 6 and 7 differ fromExamples 2, 3 and 4 because they consider the predictive ability of ESNs.

Example 5.Consider an ESN forwhich ×RX 100 40,α = 0.80, andW is 5% sparse andnormalised byμ(W),
for theMackey-Glass time series [15]. This series is the solution x(t) of the differential equation,

Figure 11. (a)The L-curves and (b) theGCV for four values of the length of the training data, for Example 3. ThematrixW is dense
and it is not normalised byμ(W).
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( ) ( )
( )

( )=
+

dx t

dt

ax t

x t
bx t

1
,

10

where a = 0.2, b = 0.1 and τ = 17. Figure 14 shows 500 samples of x(t), t = 1, 2,…, 500, and the predicted time
series from (5). The error in the predicted time series is small, but a bad predictionwas obtainedwhenWwas
not normalised byμ(W). aaa □

Example 6.Predictionsweremade on theHénonmap (17) forwhich ×RX 120 40,α = 0.90, andW is 5%
sparse and normalised byμ(W). Figure 15 shows 300 samples u(n), n = 1, 2,…, 300, using (5), and its predicted

Figure 12.The variation of the condition number ( )Xlog10 with the sparsity ofW and leakageαwhenW is (a)normalised and (b)
not normalised, byμ(W), for Example 4.

Figure 13.The variation of the effective condition number ( )X ylog ,10 with the sparsity ofW and leakageαwhenW is (a)
normalised and (b)not normalised, byμ(W), for Example 4.

Figure 14.TheMackey-Glass time series x(t), t = 1, 2,…, 500, and its predicted form for Example 5.
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form, and it is seen that the error in the predicted values of themap is small. The experimentwas repeated but
Wwas not normalised byμ(W), and an unsatisfactory predictionwas obtained. aaa □

Example 7.An ESN forwhichX120×40,α = 0.70, andW is 0.5% sparse andnormalised byμ(W)was used to
predict values of the time series (18), using (5). Figure 16 shows 500 samples of this time series and its predicted
form. The error in the prediction is small, and as in Examples 5 and 6, bad predictions were obtainedwhenW
was not normalised byμ(W). aaa □

6. Futurework

This paper has consideredmethods of computational linear algebra for the determination of the numerical
stability of an ESN. It is assumed in this work that δX = 0, and thus its extension requires that this restriction be
removed. This issue is addressed in [22], and the structured nature ofX, and therefore also of δX, are included
in this work.

Itmay be possible to extend the scale and class of problems that are currently considered by an ESN by
combining quantumcomputers and ESNs, which yields quantumecho state networks (QESNs) [26, 27]. Large
reservoirs in ESNs are associatedwith significant computational cost because of the complexity of the opera-
tions, for example, (i) the determination of the solution of the LS problem (1)whenX is large and (ii) the

Figure 15.TheHénonmap u(n), n = 1, 2,…, 300, and its predicted form for Example 6.

Figure 16.The time seriesu(n), n = 1,…, 500, defined in (18) and its predicted form for Example 7.
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refined stability analysis of an ESN in [22], is high and it increases rapidly as the reservoir increases. This stabi-
lity analysis is necessary because it provides a quantitativemeasure of the computational reliability of the out-
put of an ESN. The reservoir in an ESN is replaced by a quantum system in a QESN, which allows greatly
reduced execution times and thus the ability tomodel systems in newdisciplines, for example, financialmodel-
ling, signal processing and the simulation of physical phenomena.

7. Summary

This paper has considered the application of regularisation to the LS problem in ESNs. Experiments onmany
time series and for awide range of parameter values showed that regularisation should not be applied because
wls = yX† is stable with respect to a perturbation in y. Itmust, however, be noted that the need, or otherwise, to
apply regularisation is dependent uponmany parameters of an ESN and thus each problemmust be considered
to determine if regularisation is necessary. This need to consider each problem is essential because the
application of regularisation is not benign since its applicationwhen the discrete Picard condition is not
satisfied leads to a large error between the theoretically exact and regularised solutions of the LS problem.

A refined condition number of the LS problem, called the effective condition number η(X, y), was intro-
duced and it was shown that it provides a geometric interpretation of the relationships betweenX and y such
that wls is stable, and unstable, with respect to a perturbation in y. It was shown that ifX has full rank, then its
condition numberκ(X) is finite, but η(X, y)may be infinite. Furthermore, there exist vectors y such that

( )X y, 1 , even ifκ(X) ≫ 1.
The paper did not consider the effect of a perturbation in y on the reservoirmatrixX, which also causes a

perturbation in wls. A complete study of the numerical stability of an ESNmust include both sources of errors,
and the effect of these errors on the predictions on newdata [22]. This study is essential in order that stable and
unstable regimes of an ESN for the analysis of time series can be determined.

Data availability statement

The data are created to demonstrate the theory and they are fully described in the paper. The data that support
the findings of this study are available upon reasonable request from the authors.
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