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Abstract

An echo state network (ESN) is a recurrent neural network that has several advantages with respectto a
deep neural network, including its fast training phase and the absence of vanishing and exploding gradients.
The training phase reduces to solving the least squares (LS) problem wy, = arg min, ||[vX — y||3, where X
is the reservoir matrix, and X and y are functions of the training data. It is common to add regularisation to
this problem because, it is claimed, it minimises the adverse effects of overfitting. Recent work in deep
neural networks, physics informed neural networks and regression has shown, however, that regularisation
does not solve the problem of overfitting, and thus this paper considers the application of regularisation to
ESN's by analysing their predictive abilities on several time series, including a non-linear communication
channel, the Hénon map and multiple superimposed oscillations. It is shown that the solution wy, of the LS
problem is, for many problems, stable with respect to a perturbation in y for a wide range of parameter
values of an ESN, and thus regularisation must not be applied to these problems. Each problem must,
however, be considered because the need, or otherwise, to apply regularisation is dependent on many
parameters of an ESN. Furthermore, regularisation is not benign because its use when a condition on the
rate of decay of the singular values of X is not satisfied leads to a large error between the theoretically exact
and regularised solutions of the LS problem.

1. Introduction

A recurrent neural network (RNN) is a neural network that captures temporal dependencies in sequential data,
and itis used in, for example, text processing [ 1], speech recognition [2] and the prediction of chaotic time
series [3]. Itis trained by backpropagation through time, which is an iterative algorithm for the determination
of the weights of the network, and it may suffer from vanishing and exploding gradients. An echo state network
(ESN), which is shown in figure 1, is a simplified form of an RNN that does not suffer from these problems. It
has three components, specifically, an input unit, a reservoir that contains the neurons, and an output unit, and
only the output weights of the network are trained [4, 5]. The weights of the neurons in the reservoir are
assigned random values that do not change during training, which marks a difference between an RNN and an
ESN. There are therefore many fewer parameters to train than in an RNN, which reduces the computational
cost of training the network. An ESN can be extended to include feedback of a component of its output back
into the reservoir, such that the state of the reservoir at time t = n is a function of the output of the ESN at time
t=n—1[6,7].

Training an ESN reduces to the calculation of the solution wy, of the the least squares (LS) problem,

[F = {1112

wy, = argmin = [[vX — y|? = yXT,

()]

where the reservoir matrix X = X(u) defines the state of the reservoir for the input data u, y is the desired output
for the data u, and the components of wy, are the weights v;, where v = {v;}, that minimise the error between
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Figure 1. The input unit, reservoir that contains the neurons and output unit of an ESN.

the computed output vX and the desired outputy. The pair (u, y) defines the training data from which the
weight vector wy is computed. This vector is then used to make predictions on new data.

Practical applications of an ESN require that it be numerically stable, that is, a perturbation of order € in the
input to an ESN yield a perturbation of the same order in wi; and predictions on new data. This paper addresses
one aspect of the stability of an ESN, and it is shown that three problems must be considered for a complete
study of the stability of an ESN.'

Let

u=[u(l) u@) - ul® ulS+1) -,

be a time series, the first S entries of which, u(i),i=1, ..., S, are used to train an ESN, and let the reservoir have
N neurons.” The state x(n) of the reservoir at timen =1, ..., S, is

x(n) = (1 — a)x(n — 1) + a(tanh (W[1; u(n)] + Wx(n — 1))), 2)

where the function tanh(-) is called the activation function,

x(n) = [x(n) x@m) - ]’ €RY,

ais theleakage, 0 < a<1,and W" € RN*2and W € RN*N are random matrices, each of whose entries is
drawn from the uniform distribution in the open interval ( — 1, 1). The vector u is normalised by ||u ||, in order
that the vector that multiplies W in (2) is balanced. It is assumed the reservoir is at rest on initialisation and
thusx(0) =0.

Equation (2) is executed forn =1, ..., S, which allows the matrix X,

1 1 .- 1
X = |u@) u®@ - u(S) € RN+2xS, 3)
x(1) x(2) -+ x(5)

to be constructed, and the output weight vector wj, € RN*2is the solution of the LS problem (1), where

y=[u@) u@B) - uS+ 1] eRS, (4

which is one time step ahead of the input {u(i) }_;, and

Xt — XXX if N+2 > S,
X'xxhH=' if N+2<S.

! The work in this paper is therefore the first part of a detailed study of the stability of ESNs.

A washout period is allowed for by only considering the time series u after the transient response has decayed.
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The predicted output (S + k + 1) of the ESN on a new data sample u(S+ k), k=1,2, ..., is

1
FS+k+ D) =wi|uS+B|, k=1,2,.. 5)
x(S + k)

The term on the right hand side is a function of the data samples u(#) and state x(n) of the reservoir at times
n=1,...,S+k,and the term on the left hand side is the output at time n = S + k + 1, and thus (5) is a one step
ahead predictor.

Itis noted above that the output y of an ESN must be stable with respect to a change du in u, but this issue
has not been considered. Numerical issues associated with this stability, using methods of computational linear
algebra, are discussed in section 2 and it is shown that three problems must be considered to address this issue
fully. The most challenging problem requires the development of a condition number of the LS problem (1)
because the perturbation 6X in X is a structured matrix. This paper considers, therefore, a simpler problem in
which 6X = 0, which will allow extension to the situation that occurs when the structure of 6X is included in the
analysis of the condition of the LS problem. The numerical condition and regularisation of this simpler LS
problem are considered in sections 3 and 4, respectively. Examples that demonstrate the theoretical analysis are
in section 5 and future work is discussed in section 6. The paper is summarised in section 7.

This discussion leads to the aims of the paper:

e Tikhonov regularisation is applied to (1) in order to minimise overfitting [4, section 3], [5, section 4.2],
[8, section 8.1.1].” It leads to the minimisation

w(\) = argmin {||[vX — y|* + A ||v|*}, w(0) = wy,, (6)

where the regularisation parameter A\ > 0 controls the extent that the constraint on ||v||is imposed on w. It
has, however, been shown in physics informed neural networks [9, section 2.3], regression [10] and deep
learning [11, section 1.2] that regularisation does not solve the problem of overfitting, and thus the objective
of regularisation with respect to ESN's must be determined.

This objective is realised by noting that regularisation imposes stability on the solution of an ill
conditioned set of linear algebraic equations, assuming the coefficient matrix is exact. The application of
regularisation requires that the discrete Picard condition, which is a condition on the rate of decay of the
singular values of X, be satisfied [ 12]. It is necessary to confirm that this condition is satisfied before
regularisation is applied because it is not benign. In particular, the application of regularisation leads to a
large error in w(A\°P"), where A\°?" is the optimal value of )\, with respect to w(0) if the discrete Picard
condition is not satisfied.” This property of regularisation highlights the importance of an investigation into
the application of regularisation to (1).

o The stability and error of wi, must be determined for the conditions N+ 2 > Sand N+ 2 < Sbecause they
influence the predictive ability of an ESN. It is shown that the criterion for this selection is associated with
overfitting and the bias-variance trade-off.

The motivation for this paper follows from the observation that the need, or otherwise, to apply regularisation
and the determination of the optimal value of A are not addressed in the literature on ESN's. For example, the
value A=l isused in [13, section 4] to train an ESN to generate the figure 8, but it is not verified that the
discrete Picard condition is satisfied, and thus that regularisation is required, and the reason for the selection of
this value of A is not stated. The Lorenz time series [ 14], Mackey-Glass time series [ 15] and NARMA10 time
series [ 16, section 4] are considered in [17, section 4] using values of A of (10> and 10™%), (10> and 10™*), and
(10~ *and 10~), respectively, but the justification for the application of regularisation and these values of \is
not stated. Also, the values A= 10> and A = 10> are used in [ 18, section 3.2] for the analysis of the Lorenz
time series, but the reason for using these two values of ) is not stated. Similarly, the value A = 10 ®is used in [4,
section 3] for the analysis of the Mackey-Glass time series, but it is not justified. More generally, the discrete
Picard condition and condition estimation of the LS problem are not considered in the literature on ESNs, even
though the objective of regularisation is the imposition of stability on its solution.

The results of the paper are now summarised:

Tikhonov regularisation is also known as ridge regression and it will, for brevity, be termed regularisation.

4 . . . . .
Methods for calculating the optimal value of A are considered in section 4.1.
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e Experiments on many time series show that for a wide range of parameter values of an ESN, for example, the
value of o, the length of the training data and the number of neurons in the reservoir, the LS problem (1) is
well conditioned with respect to a perturbation in y. It follows that, for many time series, regularisation must
not be imposed, but each problem must be considered to determine if it is required because, as noted above,
its incorrect application leads to a large error between the theoretically exact and regularised solutions of the
LS problem.

e Two methods, generalised cross validation (GCV) [19, 20] and the L-curve [21, section 4.6], are compared
for the determination of A\°"', The L-curve yields consistently better results, and in particular, it returns
A°P'= 0 if regularisation must not be applied because the discrete Picard condition is not satisfied, but the
GCV often returns A\°?* >> 0, which is unsatisfactory.

o Analysis of the error and stability of wy, show that N+ 2 > S must be satisfied because this condition yields
the solution wy, that is more stable with respect to a perturbation in y than the solution obtained when
N+2 < S. Also, the error in the solution obtained with the condition N+ 2 < Sis large because y does not,
in general, lie in the row space of X, but this error is zeroif N+ 2 > S.

2. The stability of an ESN

The conditions for which the output of an ESN is stable, and the conditions for which it is unstable, must be
determined because they are critical for practical applications of an ESN. Analysis of this stability and instability
requires that three problems be considered, and this paper addresses one of these problems, specifically, the
numerical condition of the LS problem (1) whose solution wy; is the weight vector that is used for predictions
on new data (5). These three problems are now described because they provide the motivation for the work
described in this paper.

A condition number of the problem (1) is usually computed by linear error analysis, which assumes that a
perturbation du in u, and therefore, from (4), a perturbation dy in y, does not cause a change 6X in the state X of
the neurons in the reservoir. This linear analysis is inadequate because it is shown in [22] that to first order in
x(n — l)andu(n),n=1,...,S,

6X( 1) 11 1 bu ( 1)
(SX.(Z) _ |k b . (514.(2) ) )

0x(S) I 1o lss - lss || 6u(S)

where l;; € RN, i,j=1,..., S, and the coefficient matrix L € RS>,

L = {l; }iS,j:l = L(x(1), x(2),....x(§ — 1), u(1), u(2),...,u(95)),
is lower triangular because of causality. Furthermore, it follows from (3) that

0 0 - 0
§X = | ou(l) ou(2) --- o6u(S) € RN+2)xS
ox(1) 6x(2) --- 6x(S)

where, from (7),

ox(n) = Zlm-éu(j), n=1,..,S,

=1

and thus 6X(3: N + 2, :) isa structured matrix whose NS entries are functions of S random variables
bu(n), n = 1, ..., S. Thisstructure must be considered when the effect of a perturbation éu on the state of the
neurons in the reservoir is considered.

Stability analysis of an ESN requires that three problems be considered:

e Problem I: The determination of the perturbations 6x(n), n =1, ..., S, and thus the perturbation 6X in the
state of the neurons in the reservoir due to a perturbation éu in the data u, as shown in (7).

e Problem 2: The determination of the perturbation d wy, in the output wys of an ESN, due to the perturbations
6u (and therefore éy) and 6X.
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e Problem 3: The determination of the perturbation 67(S + k + 1) in the predicted output (S + k + 1),

1 0
67(S + k4 1) = dwig| u(S + k) | + wys| 6u(S + k) |,
x(S + k) 5x(S + k)

fork=1,2,...,tofirst order, from (5).

Problem 1 is addressed by considering the Jacobian matrix of the reservoir, whose entries must be calculated
from the structured form of 6X in order that a meaningful estimate of the numerical condition of the reservoir
be computed.

Full consideration of Problem 2 requires that the effect on wy; of the structured matrix 6X and a random
vector éu be included. Standard methods of error analysis of this non-linear problem assume that 6X is ran-
dom, which may therefore lead to a large overestimate of the numerical condition of the LS problem (1). A
better estimate requires that the structured form of 6X be considered, but this problem deserves a separate
study because the structured form of éX must be included in the non-linear error analysis of the LS problem. It
is therefore assumed in this paper that 6X = 0, and the condition of (1) with respect to a random perturbation
oy is considered. In particular, a refined condition number that allows a distinction to be made between well
conditioned and ill conditioned LS problems is developed and it is shown this distinction is essential for the
application of regularisation to (1). This refined condition number will allow full consideration of Problem 2 in
which the structured form of 6X is included in the condition number of (1).

Problem 3 requires that the explicit form of éx(S + k) be considered, and the development of a refined
condition number for #(S + k + 1) therefore requires that Problems 1 and 2 be addressed.

3. The condition of the LS problem

This section considers the numerical condition of the LS problem (1) with respect to a perturbation iny,
assuming 6X = 0. A refined condition number, called the effective condition number 7(X, y), for this
perturbation is developed and it allows the criterion for the application of regularisation to be established.

The condition number x(X) of X is independent of y but wy is a function of X and y, and it may therefore be
an inaccurate measure of the true numerical condition of the LS problem. This issue is overcome by the effec-
tive condition number n(X, y), which is a function of X and y, and it therefore provides more refined informa-
tion than x(X) on the condition of the LS problem. An expression for it is developed in Theorem 1 and its
properties are then considered.

Theorem 1. Let Ay be the upper bound of the relative error in y, and let Awg be the maximum relative error in wg
due to the perturbation dy,

M < A and Aw), = max M
Iyl oyer® ||wy|

Then

A (y x| ) Ay (nyn x| ) Ay 1% 1)y, "

[[wil| [yXT]
wheren(X, y) is the effective condition number.
Proof. It follows from (1) that
[owill < [y lHIX7l,

and (8) follows from the division of this inequality by ||wys|| = [|yX"||. O

The relationship between x(X) and (X, y) is considered in the next section. This relationship also addresses
one of the aims of this paper stated in section 1, specifically, the relative magnitudes of N+ 2 and S.
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3.1. The magnitudes of x(X) and (X, y)
Let UX V7 be the singular value decomposition (SVD) of X, and thus it follows from (8) that
1

d 1| X3 ,d?
(X, y) = HyllT _ | ||T _1 i |
ayVEU|  oldZT| o s (d)

i=1\ o

O

where g;, i = 1,...,r = min (N + 2, S), are the singular values of X, d = {d; }is:1 =yV e RS, and thus
1

1
S 12 S 12
0 2idi 2idi )P
nXy) = —| ——=| < m(X)(ﬁ) : ©)
o Zgzldiz(ﬁ.) AL
Itis convenient to partition d and V as
d= [d1 dz], d e R, d, € Rsir,
V = [Vl VZ]: Vl c Rer’ V2 c RSX(S—?’),
where
Vivi=1, Vii=I,, VV,=0,5, VIVi=0s,,
and thus
Sidl ddt '
Sidi o ddl ywviy"
It follows from (9) that
1
T 2
Yy Iyl
nXy) < kX)) —==| = K(X)(— ) (10)
yiviy' IVl

and Theorem 2 shows that the rows of V{ form an orthonormal basis for the row space R (X) of X. This
theorem is used in Theorem 3 to establish a geometric interpretation of the term yV,V{ , which allows the
condition for which (X, y) — coto be derived. In particular, it follows that even if x(X) is finite, the refined
condition number 7(X, y) may be infinite.

Theorems 2 and 3 are stated in terms of an arbitrary matrix A € R"*" ofrank r < min(m, n) because of
their generality.

Theorem 2. Let A € R"™*" be an arbitrary matrix of rank r < min(m, n) and let USV" be its SVD. The firstr
rows of V' form an orthonormal basis for the row space R(A) of A.

Proof. If t € R"liesin the row space of A, there exists a vector x € R such thatt =xA, and thus
VT

t =xUXV! = x[U; U] [21 0] ",

0 offv}

where X € R"™*" is the diagonal matrix of the singular values of A, U; € R"*", U, € Rm*(m=n), VIT € R™>n
and VI € R"~7x7 Tt follows that

t = xU121V1T = YVIT, y= xU Y, € R,

and thus tis a linear combination of the rows of VI It follows that the first 7 rows of V' define an orthonormal
basis for the row space of A. O

Theorem 3. Let b € R", and letb; and b, be the components of b that lie in R(A) and R(A)*, respectively. Then

b=b, +b,, b =bVVf € R(A), b,=DbWV]c RA)", 11)
where
V=[Vi V;], VeRw>,  V,eRx0,
Vivi=l, ViVi=1L,,, ViV,=0,, VVi=0,,, (12)
and
[ bVVE || = bVl and  [[BVaVT || = bVl (13)
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Proof. Since the rows of Vi and V} form orthonormal bases for R(A) and R(A)" respectively, there exist
vectors a; € R"and a, € R" " such that

b= alVlT + ang.

It follows from (12) that the multiplication of this equation by V; and then V, yieldsa; =bV; anda, =bV,
respectively, and thus

b = bVV/ + bV,V3,

which establishes the result (11). O
The application of Theorems 2 and 3 to the LS problem (1) yields an inequality between n(X, y) and x(X),
which follows from (10) and (13),
Vi
nX,y) < @, cosf = M, (14)
cos ¢ [yl
where, from (11) and (13), §is the angle between y and its component that lies in R (X). This angle also arises in
the expression for the square of the error r in the solution of the LS problem,

Xy
IvIP

Equation (14) and this expression for the square of the error address one of the aims of this paper that are stated
in section 1. The relative magnitudes of N+ 2 and S determine the properties of w); because the conditions
N+2 < Sand N+ 2 > Slead to an overdetermined and an underdetermined LS problem, respectively. The
condition N + 2 < Sis proposed in [5, section 4] and [ 13, section 3], and the optimal value of N attains a
compromise between the bias and variance of the model, such that a larger value of N can be used if the data
have little or no noise. The condition N + 2 > Sis proposed in [4, section 3] and [8, section 2.2] because the data
{u; }_, are mapped to a higher dimensional space in which linear methods, for example, linear regression, can
be used. The condition N+ 2 < Syields cos § < 1andr > 0, but the condition N+ 2 > Sis preferred because it
follows that cos @ = 1and r=0, and it therefore yields a lower upper bound for n(X, y), and the error in wy
is zero.

The limiting cases are:

1 — cos?6.

e cosf = 1:y € R(X),and thusn(X,y) < k(X)andr=0.
e cosf = 0:y € R(X)*,and thus (X, y) — coand r= 1.

Example 1. Let X and y be

10 1 B
X_[O 1_1] and y=[-111]

The condition number of X is £ (X) = +/3 and it may therefore be thought that wy, is stable with respect to a
perturbation iny. Thisis incorrect because y € R(X)*,

yX' =10 0],
and thus wi; = yX' = yX'(XX")~! = 0,and hence n(X,y) — cc. O

3.2. The geometry of the effective condition number

This section considers the geometric conditions, in terms of the spaces spanned by the rows of U” and V' where
UXVTisthe SVD of X, for which N(X, y) attains its minimum and maximum values. It is assumed, for
simplicity, that r = N+ 2 = S, and thus the effective condition number of the LS problem is

X,y - IAIXL ]
Iwill o=

n( d =yV.

o Ill conditioned LS problem: n(X,y) = k(X) =01/0,>> 1
||d|is dominated by the first few components of d such that

Id—i| — 0 as i— . (15)
o;

This condition is called the discrete Picard condition and it requires that the constants |d;| decay to zero
faster than the singular values o; decay to zero [12]. It is shown in section 4 that the application of

7
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regularisation to (1) requires that this condition be satisfied.
The dominant components ofy lie in the first few rows of V.
The dominant components of wy lie in the first few rows of U”.

e Well conditioned LS problem: (X, y) ~ 1
||d||is dominated by the last few components of d such that

d,
Id| ~ |d,| and  [|dz-1| ~ 19

r

The dominant components ofy lie in the last few rows of V.
The dominant components of wy lie in the last few rows of U”.

It follows that the value of the effective condition number 1(X, y) is defined by the space spanned by the
rows of V' in which the dominant components of y lie.

4.Regularisation

Regularisation imposes stability on the solution of an ill conditioned set of linear algebraic equations, and its
application to (1) is justified by the claim that it reduces overfitting [4, section 3], [5, section 4.2], [8, section
8.1.1]. The application of regularisation to (1) leads to the minimisation (6) whose solution is, assuming
N+22S,

S . 2

w) =y XX + )X = (i) 2”1 ul, (16)
izi\\ai J\oi + A

whered = {d; };g:1 = yV, the SVD of Xis UX VT the singular values of X are 0;,i=1, ..., S,and uiT isthe ith

row of U”. Regularisation assumes there are errors in y only and that X is exact. Its application requires that the

discrete Picard condition (15) be satisfied, and it is based on a trade-off between the error and stability of w(\):

o There exists an optimal value A\°"* of A such that (i) the error in w(A°"") with respect to the theoretically exact
solution w(0) of the LS problem is small, and (ii) w(\°?") is much more stable than w(0) with respect to a
perturbationiny.

This trade-off is the bias-variance trade-off in machine learning in which the bias and variance are, respectively,
the error and stability of w(). The trade-off is satisfied if the discrete Picard condition (15) is satisfied:

e Itisshownin[23, section 5.2] that w(A°P") is much more stable than wi; = w(0) if (15) is satisfied.

e Itisshownin[23,theorem 5.1] that the error in w(\°P") with respect to the theoretically exact solution of the
LS problem is small if (15) is satisfied. If, however, (15) is not satisfied, then the error in the regularised
solution islarge and it increases as A increases. It follows that regularisation is not benign and it must
therefore be verified that the discrete Picard condition (15) is satisfied before it is applied.

Regularisation requires that the value of A°P'be determined, and this issue is addressed in the next section.

4.1. The calculation of \°P*

This section considers the calculation of A\°"* using the GCV [19, 20] and the L-curve [21, section 4.6]. If
n(X,y) =~ 1,theLSproblem iswell conditioned and thus \°** =0, and it is therefore assumed in this section
that the discrete Picard condition (15) is satisfied.

The L-curve, which is shown in figure 2, is a parametric plot of the magnitude m()\) = log,,||w())| against
the residual 7 (\) = log,,||w(A\)X — y||, where w(]) is defined in (16). The magnitude m(\) decreases and the
residual 7(\) is approximately constant as A increases from zero to its value in the corner of the L. As A increases
from this value, m(\) is approximately constant and r(\) increases. The optimal value A°*" of A minimises,
approximately, m()\) and r()\) simultaneously, and thus A°"" is the value of \ in the corner of the L. It follows
that A = A°P'balances the residual r(\) of the model and the satisfaction of the constraint on m()).

The GCV is based on the principle that if an arbitrary component of y is deleted, an error in the predicted
value of the deleted component by the regularised solution should be small. The optimal value of A computed
by the GCV minimises a function, but this minimum may be flat, which causes numerical difficulties. The GCV

8
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Figure 2. The L-curve when the discrete Picard condition is satisfied.

may also return a very small value of \°F', and other issues associated with the use of the GCV for computing the
value of \°P*arein [21, section 7.7].

5. Examples

This section contains examples that illustrate the theory in the previous sections. The determination of the
requirement, or otherwise, to impose regularisation, as shown in (16), requires that the data are exact, and thus
6y = 0. The examples consider the dependence of the stability of wy; on the parameters of the reservoir:

o The connectionsin the reservoir: Experiments show that the numerical condition of the LS problem is
weakly dependent on the number of connections in the reservoir, that is, the sparsity of W.

e The spectral radius (W) of W: The condition u(W) < 1is often imposed because it guarantees satisfaction
of the echo state property (ESP) [8, section 5.1]. The ESP states that the effect of a state x(n) of the reservoir
and input sample u(#) on a state x(n + k) of the reservoir decreases as k — oo. It can also be satisfied if
(W) > 1 and thus the condition ;«(W) < 1 is not necessary for the satisfaction of the ESP.

o Theleakage a: Equation (2) shows that the contribution to x(n) of the data sample (1) decreases as o — 0.
Experiments show that the condition number of the LS problem increases as o decreases.

The output of an ESN is dependent on many parameters that include, apart from the parameters listed
above, the dimensions of W, the number of neurons in the reservoir, the random seed for the computation of
W, and the activation function. A study that considers the effects of all these parameters on the performance of
an ESN is necessarily large and cannot, therefore, be included in one paper. It is not the aim of this paper to
determine optimal values for these parameters, but rather to consider the application of regularisation for time
series analysis by considering several examples and the consequences of varying several parameters. Typical
values for the parameters whose values are constant are used in order that the results be representative of results
obtained with other values of these parameters.

All predictions in the examples are one step ahead predictions (5).

Example 2. The time series #(n) of a non-linear communication channel,
u(n) = q(n) + 0.0036g%(n) — 0.11g°(n),
was formed [16], where

q(n) =0.08d(n + 2) — 0.12d(n + 1) + d(n) + 0.18d(n — 1)
—0.1d(n — 2) + 0.09d(n — 3) — 0.05d(n — 4) + 0.04d(n — 5)
+ 0.03d(n — 6) + 0.01d(n — 7),

and d(n) is a sequence of random numbers drawn from the set { —3, —1, 1, 3}.
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Figure 3. The variation of (a) the singular values log,, 0; of X, (b) the constants log,, |d;|, and (c) the ratios log,, |d;|/c; with i, for
four values of the leakage «v, for Example 2.
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Figure 4. The effective condition number log, ;1 (X, y) and the condition number log, , & (X) for four values of the leakage a, for
Example 2.

The reservoir matrix X is 100 x 60, the sparsity of W is 20% and it is normalised by («(W), the spectral radius
of W. Figure 3 shows the singular values 0; of X, the constants |d;| and the ratios |d; |/ g; for four values of the
leakage cv. The constants |d; | are approximately constant and the dominant components of |d;|/o; are
associated with large values of 7, that is, the small singular values of X. The regularised solution w(\) is obtained
by the deletion of the small singular values from w(0) = wy, and thus regularisation leads to a large error in
w(\) . Figure 4 shows the variation of the effective condition number log, ;7 (X, y) and the condition number
log, , & (X) with the leakage c. It is seen that #(X) is many orders of magnitude larger than (X, y), and the large
value of k(X) suggests that wy, is unstable with respect to a perturbation in 'y, but the small value of n(X, y)
shows that wy is stable with respect to this perturbation.

Figure 5(a) shows the L-curves for four values of the leakage . They have the same form, which is very
different from the curve in figure 2. In particular, as A increases from zero, || w(\) || is constant and
[[w(M)X — yl|increases, and as A increases further, ||w(\)|| decreases rapidly and ||w(A\) X — y]||is constant. It
follows there does not exist a value of A that minimises simultaneously || w(\)||and ||w(A\)X — y]||, and thus

10
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Figure 5. (a) The L-curves and (b) the GCV for four values of the leakage «, for Example 2.

A\°P' =0, which is in accord with the small values of n(X, y) in figure 4. This absence of a minimum is in sharp
contrast to the L-curve in figure 2, for which the minimum is attained in the corner of the L.

Figure 5(b) shows the GCV for the four values of o, and AP 2~ 0 for « = 0.2 and o = 0.4, but \°"' & 10 for
a=0.6and a =0.8. These results suggest that regularisation is required if &« = 0.6 and a = 0.8, which is
incorrect because figures 3 and 5(a) show that \°’* = 0. The L-curves in figure 5(a) are identical, but the curves
ofthe GCV in figure 5(b) are different, which suggests that the L-curve is more effective than the GCV for
determining the value of \°"". These problems with the GCV are mentioned in section 4.1. O

Example 3. The Lorenz system is a set of three first order differential equations that represent flow in three-
dimensional space [14]. The Hénon map, which is a simple model that displays the same properties as the
Lorenz system, is generated by the recurrence equation [24],

u(n) =1— 14u*(n — 1) + 0.3u(n — 2) + z(n), n=3,4,.., (17)

where u(1) = u(2) = 0 and z(n) is a normally distributed random variable that has zero mean and standard
deviation 0.05.
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Figure 6. The variation of (a) the singular values log,  ; of X, (b) the constants log,, |d;|, and (c) the ratios log,, |d;|/c; with i, for
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10 \

9r log r(X)

St logn(X,y)

\A

200

250 300

training data

Figure 7. The effective condition number log, ;7 (X, y) and the condition number log,, x(X), for four values of the length of the
training data, for Example 3. The sparsity of W is 20% and it is normalised by («(W).

The reservoir has 250 neurons, o = 0.2, W is 20% sparse and normalised by (W), and the values
{150, 200, 250, 300} of the length of the training data were considered. Figure 6 shows that the singular values
o;of X decay to zero slightly faster than the constants |d; | decay to zero and thus the discrete Picard condition
(15) is not satisfied. The effective condition number is large, n(X, y) ~ 10* but much smaller than x(X), as
shown in figure 7. The L-curves are shown in figure 8(a) and each curve has a corner, albeit badly defined, at
log,,[|w(AM)X — y|| & —2. Figure 8(b) shows that the GCV for the four values of the length of the training data
is small, which is consistent with figure 6 because the discrete Picard condition is not satisfied.

The experiment was repeated, but W was dense and it was not normalised by 1(W). Figure 9 shows the
variation of the singular values log, , 0; of X, the constants log,, |d;|, and the ratios log,, |d;|/c; with i, for the
four values of the length of the training data, and it differs from figure 6:

o The span of the singular values in figure 6 is larger than the span of the singular values in figure 9, and thus
#(X) for X in figure 6 is much larger than x(X) for X in figure 9.
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Figure 8. (a) The L-curves and (b) the GCV for four values of the length of the training data, for Example 3. The sparsity of W is 20%
and it is normalised by j«(W).

o The constants |d;|span about six orders of magnitude in figure 6 and they span about three orders of
magnitude in figure 9.

The condition numbers log,, 7 (X, y) and log, , x (X) for the four values of the length of the training data when
W is dense and not normalised by j«(W) are shown in figure 10. Figures 7 and 10 suggest that a sparse form of W
and/or its normalisation by (W) increase these condition numbers. The improved stability of X obtained by
using the dense form of W and not normalising it by (W) is evident in figure 11(a), which shows the L-curve
for the four values of the length of the training data. The curves show that A\°"* = 0, but it is difficult to draw a
conclusion from figures 6 and 8(a) because figure 6 shows that regularisation must not be applied, and

figure 8(a) shows that each L-curve has a corner, but the corners are badly defined. Figure 11(b) shows the GCV
for the four values of the length of the training data and it is seen that A°P' ~ 10~ "> = 0.03. This result suggests
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Figure 10. The effective condition number log,, 7 (X, y) and the condition number log, , x (X), for four values of the length of the
training data, for Example 3. The matrix W is dense and it is not normalised by ;((W).

that regularisation should be applied, but it is inconsistent with figures 9 and 11(a), which show that
regularisation must not be applied. O

Example 4. Consider the series formed from the addition of several sine waves [25],

u(n) = isin(ﬁin), n = 1,...,10000, (18)

i=1
where s =8 and

B =020, [(,=0311, (=042, [ =051,
Bs=0.63, B¢=074, (=085 [s=097.

The matrix X was of order 100 x 70, and the dependence of the condition numbers 7(X, y) and «(X) on the
leakage o and the sparsity of W were computed. Figure 12(a) shows the variation of log, ,  (X) with these
parameters when W is normalised by ;4(W). The smallest values of #(X) are larger than 10° and they occur when
avis large, for all values of the sparsity. The matrix W is not normalised by (W) in figure 12(b), and the graphs
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Figure 11. (a) The L-curves and (b) the GCV for four values of the length of the training data, for Example 3. The matrix W is dense
and it is not normalised by j«(W).

in figures 12(a) and (b) are significantly different because the smallest values of x(X) are about 10 in

figure 12(b). Figures 13(a) and (b) show the results for the effective condition number 7(X, y) and they are
similar to figures 12(a) and (b), respectively, because n(X, y) is, in general, smaller when W is not normalised by
(W), and the smallest values occur when «v is large and the sparsity is not large.

Figures 12 and 13 show that the stability of wy, with respect to a perturbation in y increases rapidly as «
increases, but this stability is weakly dependent on the sparsity of W. Furthermore, they show that
normalisation of W by p(W) leads to an increase, by several orders of magnitude, in the condition numbers
17 (X, y) and x(X) for large values of cv.

Examples 5, 6 and 7 differ from Examples 2, 3 and 4 because they consider the predictive ability of ESNss.

O

Example 5. Consider an ESN for which X € R!%0*40, o = (.80, and W is 5% sparse and normalised by (W),
for the Mackey-Glass time series [15]. This series is the solution x(#) of the differential equation,
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Figure 14. The Mackey-Glass time series x(f), t =1, 2, ..., 500, and its predicted form for Example 5.

dx(t) = ax(t—1)
d  1+x@t—7)W

- bx(t))

wherea=0.2,b=0.1and 7= 17. Figure 14 shows 500 samples of x(£), t=1, 2, ..., 500, and the predicted time
series from (5). The error in the predicted time series is small, but a bad prediction was obtained when W was
not normalised by j(W). ]

Example 6. Predictions were made on the Hénon map (17) for which X € R20%40 o =0.90, and W is 5%
sparse and normalised by («(W). Figure 15 shows 300 samples u(n), n=1,2, ..., 300, using (5), and its predicted

16



10P Publishing

Phys. Scr. 100 (2025) 116009 Y Luand J R Winkler

T I I 1
—exact time series
| ! - - -predicted time series
i |
M| 1 \ D I‘
0.5 ; ; I | ‘ |
0
-0.5
| 1 | | 1

50 100 150 " 200 250 300

Figure 15. The Hénon map u(n), n=1,2, ..., 300, and its predicted form for Example 6.

T T I I
—exact time series
- - -predicted time series
051 d
1
O [ l ]
v I
4 f 4 !
]
0.5+ M
| 1 1 1 1 | 1 1 1

50 100 150 200 250 300 350 400 450 500
n

Figure 16. The time series u(n), n=1, ..., 500, defined in (18) and its predicted form for Example 7.

form, and it is seen that the error in the predicted values of the map is small. The experiment was repeated but
W was not normalised by (W), and an unsatisfactory prediction was obtained. O

Example 7. An ESN for which X'*°**°, o = 0.70, and W is 0.5% sparse and normalised by 1«(W) was used to
predict values of the time series (18), using (5). Figure 16 shows 500 samples of this time series and its predicted
form. The error in the prediction is small, and as in Examples 5 and 6, bad predictions were obtained when W
was not normalised by ((W). O

6. Future work

This paper has considered methods of computational linear algebra for the determination of the numerical
stability of an ESN. It is assumed in this work that X = 0, and thus its extension requires that this restriction be
removed. This issue is addressed in [22], and the structured nature of X, and therefore also of 6X, are included
in this work.

It may be possible to extend the scale and class of problems that are currently considered by an ESN by
combining quantum computers and ESN's, which yields quantum echo state networks (QESN’s) [26, 27]. Large
reservoirs in ESN's are associated with significant computational cost because of the complexity of the opera-
tions, for example, (i) the determination of the solution of the LS problem (1) when X is large and (ii) the
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refined stability analysis of an ESN in [22], is high and it increases rapidly as the reservoir increases. This stabi-
lity analysis is necessary because it provides a quantitative measure of the computational reliability of the out-
put of an ESN. The reservoir in an ESN is replaced by a quantum system in a QESN, which allows greatly
reduced execution times and thus the ability to model systems in new disciplines, for example, financial model-
ling, signal processing and the simulation of physical phenomena.

7.Summary

This paper has considered the application of regularisation to the LS problem in ESNs. Experiments on many
time series and for a wide range of parameter values showed that regularisation should not be applied because
Wi = yXJr is stable with respect to a perturbation in y. It must, however, be noted that the need, or otherwise, to
apply regularisation is dependent upon many parameters of an ESN and thus each problem must be considered
to determine if regularisation is necessary. This need to consider each problem is essential because the
application of regularisation is not benign since its application when the discrete Picard condition is not
satisfied leads to a large error between the theoretically exact and regularised solutions of the LS problem.

A refined condition number of the LS problem, called the effective condition number 7(X, y), was intro-
duced and it was shown that it provides a geometric interpretation of the relationships between X and y such
that wy, is stable, and unstable, with respect to a perturbation in y. It was shown that if X has full rank, then its
condition number x(X) is finite, but 7(X, y) may be infinite. Furthermore, there exist vectors y such that
nX, y) ~ 1,evenif x(X) > 1.

The paper did not consider the effect of a perturbation in y on the reservoir matrix X, which also causes a
perturbation in wy. A complete study of the numerical stability of an ESN must include both sources of errors,
and the effect of these errors on the predictions on new data [22]. This study is essential in order that stable and
unstable regimes of an ESN for the analysis of time series can be determined.

Data availability statement

The data are created to demonstrate the theory and they are fully described in the paper. The data that support
the findings of this study are available upon reasonable request from the authors.
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