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lighting of traditional Chinese freehand
brushwork paintings in museums
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Traditional Chinese freehand brushwork paintings displayed inmuseums require lighting sourceswith
high color rendering accuracy. However, due to their unique visual characteristics—such as low
saturation, broad halos, and an emphasis on tonal gradation—existing general-purpose color
rendering evaluation methods are often inadequate. In this study, a full-scale (1:1) replica of a
traditional Chinese painting exhibition hall was constructed in a laboratory. Sixty representative
spectral power distributions (SPDs)wereusedas lighting conditions, and four representativepaintings
were selected for evaluation. A color fidelity assessment was conducted with 34 participants. Five
principal spectral components were extracted from each SPD and correlated with the fidelity
evaluations using a neural network algorithm. Based on this analysis, a targeted color rendering
evaluation model for lighting in traditional Chinese freehand brushwork painting exhibitions was
developed. This model predicts the fidelity presentation value of a light source, with a validated
average relative error of 9.7%.

Traditional Chinese paintings, as one of themost important exhibit types in
museums, have display lighting that is a key focus and challenge in research:
First, traditional Chinese paintings have a huge stock, with 560,000 existing
pieces in China’s collections, including numerous historical treasures of
extremely high cultural and artistic value1, making them important com-
ponents ofworld cultural heritage2. Second, due to their specialmaterial and
craftsmanship characteristics, traditional Chinese paintings are classified by
the International Commission on Illumination (CIE) as exhibits with the
highest light sensitivity, being extremely prone to irreversible damage from
optical radiation. For preservation needs, strict limits are imposed on the
surface illuminance of these exhibits3–5. Meanwhile, as the architectural
spaces for display are dim, viewing paintings in environments of low illu-
minance and high luminance contrast affects people’s recognition of
painting colors due to color visual-psychological effects. Third, traditional
Chinese paintings are divided into two types by creative techniques: meti-
culous paintings and freehand brushworks. The latter, which use large color
blocks for abstract expression6,7, —embodies the essence of traditional
Chinese culture. It prioritize spiritual resemblance over physical likeness,
featuring natural gradations in color shade, low overall saturation, and
pronounced diffusion effects. Compared with meticulous paintings and
Western oil paintings, freehand brushworks, deeply influenced by Taoist
ideals of “simplicity is the greatest beauty” and Confucian values of

“moderation and harmony,” reflect more distinctive traditional Eastern
aesthetic concepts8. In terms of color application and overall effect, it favors
restraint and tends toward low-saturation tones, as shown in Fig. 1. Free-
hand brushwork painting is widely regarded as themost representative style
of traditional Chinese painting. Display lighting, as a core factor deter-
mining their color quality, plays a crucial role in the authentic presentation
of the paintings.

Based on the above characteristics and requirements of traditional
Chinese painting lighting, how to evaluate the subjective perception of color
fidelityof paintingsbyhumaneyesunderdifferent light sources is a key issue
to be addressed. The current internationally adopted and latest light source
color rendering evaluation method is the TM-30 light source color ren-
dering evaluation method proposed by the Illuminating Engineering
Society (IES). This method proposes a fidelity index (Rf), gamut
index (Rg), and Color Vector Graphics (CVG) to determine color
shifts of test light sources relative to reference sources9, playing a
significant role in the lighting field10–12.

In recent years, researchershave studied the effects ofRf andRgon color
presentation for illuminated objects such as oil paintings13,14. However, the
optimal illuminance for oil paintings typically ranges between
200–15,000 lx15–20, whereas due to material characteristics and preservation
needs, the illuminance for traditional Chinese paintings is strictly limited to

1Henan International Joint Laboratory of Eco-community & Innovative Technology, School of Architecture, Zhengzhou University, Zhengzhou, China. 2School of
Design, University of Leeds, Leeds, United Kingdom. 3Tianjin Key Laboratory of Building Physics and Environmental Technology, School of Architecture, Tianjin
University, Tianjin, China. e-mail: dr_tju@163.com

npj Heritage Science |          (2025) 13:427 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s40494-025-01966-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s40494-025-01966-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s40494-025-01966-7&domain=pdf
mailto:dr_tju@163.com
www.nature.com/npjheritagesci


below 50 lx3–5. Additionally, viewer-preferred color temperatures for oil
paintings fall between3500K-3700Kand5100K-5700K21,22,while those for
traditionalChinese paintings concentrate in the3500–5000 Krange23. These
differences indicate significant disparities in the display light environments
between traditional Chinese paintings and oil paintings, making existing
research results on oil painting lighting inapplicable directly to traditional
Chinese paintings. Therefore, the research teampreviously analyzed studies
on light source color rendering evaluation by Royer et al.11,14 and conducted
extensive research on the color rendering effects of traditional Chinese
painting freehand brushwork lighting24–26, identifying the influence patterns
of Rf and Rg on color presentation in traditional Chinese freehand brush-
work painting lighting. Meanwhile, it was discovered that even under the
same Rf and Rg conditions, different light sources still lead to significant
color perception differences11,14.

This is because the IES TM-30 system is designed to evaluate the color
rendering performance of light sources for all colors, which may have cer-
tain errors in applicability to specific special colors. First, the IES TM-30
evaluationmethod is established based on 105,000 object reflection spectra,
encompassing spectral data from natural objects, industrial products, the
Munsell color system, the Natural Color System (NCS), and the German
Institute for Standardization (DIN), among others27. After screening,
99 standard color samples are retained. However, traditional Chinese
freehand brushwork paintings rely on low-saturationwater-based pigments
and achieve abstract expression through large areas of color wash, resulting
in gamut characteristics that differ significantly from conventional object
colors6,7. To verify the coverage of these 99 standard color samples for
traditionalChinese freehandbrushworkpainting colors, the typical colors of
traditional Chinese freehand brushwork painting were identified through
the following steps. First, drawing on the monographs Color in Chinese
Painting—The Unfolding of the History of Chinese Painting Styles and
Forms (Niu Kecheng)28, History of Chinese Painting (Pan Tianshou)29, and
Research on Colors in Chinese Painting (Yu Fei’an)30, a comprehensive
review of commonly used traditional pigments was conducted. Core pig-
ments were then selected to define the primary hues, including cinnabar
(red), ochre (brownish red/yellow), stone yellow (yellow), stone green
(green, categorized into first, second, and third grades), and stone blue
(blue). Additional inorganic mineral pigments such as head blue, second
blue, chalk (white), lead white (white), clam powder (white), realgar
(orange), and orpiment (lemon yellow), as well as organic plant- and
animal-based pigments such as rattan (yellow), carmine (red), indigo (blue),
and ink (black), were also included. Next, derivative hues were identified
based on the blending of these pigments. According to traditional Chinese
painting techniques, saturation gradients were adjusted by varying the
amount of water added, while lightness gradients were achieved by incor-
porating clam powder (white) and different concentrations of ink (black).
Following the principle of “covering as many colors as possible,” eighteen
representative traditional Chinese freehand paintings—each holding a
canonical status in the history of Chinese painting and reflecting the char-
acteristics of different schools, styles, and periods—were selected. From
these, 304 typical color points were ultimately determined. Using an SRC-
200S spectral colorimeter, we measured the relative spectral reflectance of

these typical colors, which were then categorized into 82 typical colors
through K-means clustering analysis. Comparisons revealed that TM-30
color samples only cover 37.8% of typical colors in Chinese paintings,
indicating that the color samples used in TM-30 cannot fully represent the
gamut characteristics of traditional Chinese freehand brushwork paintings.
Second, due to preservation requirements, the lighting environment for
traditional Chinese freehand brushwork paintings forms a distinctive high-
luminance-contrast setting—where the surface lightness of the paintings is
relatively high while the ambient luminance is low. The IES TM-30 color
rendering evaluation method, however, is based on the “average” environ-
ment type in CAM02, introducing limitations when applied to the special
high-luminance-contrast lighting environments of museum galleries dis-
playing traditional Chinese freehand brushwork paintings. Therefore, this
study aims to develop a mathematical model based on the fundamental
parameter of light sources—spectral power distribution (SPD)—to directly
predict observers’ perception of color fidelity in paintings, providing a new
quantitative method for evaluating and selecting lighting sources for tra-
ditional Chinese paintings in museums.

However, the high-dimensional spectral features in the visible light
band (380–780 nm), which include 81 variables (at 5 nm intervals), make
direct analysis of the relationshipbetweeneachwavelength andcolorfidelity
excessively complex. To address such high-dimensional data analysis
challenges, researchers have employed principal component analysis (PCA)
to decompose spectral features31–33 and reduce data dimensions. Through
PCA, original high-dimensional variables are transformed into n principal
components, with their importance and dimensionality reduction effec-
tiveness evaluated by eigenvalues and cumulative contribution rates. An
eigenvalue represents the variance of the original data explained by that
principal component, while the cumulative contribution rate indicates the
proportion of total variance explained by the first n principal components,
measuring the retained information after dimensionality reduction. When
eigenvalues exceed 1 or the cumulative contribution rate surpasses 90%34,35,
it signifies greater data fluctuation and more information in that direction,
indicating the principal component’s significance. This approach satisfies
dimensionality reduction needs while preserving key spectral features,
providing reasonable input variables for subsequent modeling.

Meanwhile, the study’s data exhibit multi-input single-output char-
acteristics (n SPDprincipal components, 1 colorfidelity score), necessitating
a machine learning algorithm with strong nonlinear mapping capabilities.
Traditional mathematically based modeling methods have notable limita-
tions: linear regression cannot capture the complex relationship between
spectral components and subjective perception, and support vector
machines struggle to visualize input-output association paths in high-
dimensional feature spaces. From a neurophysiological perspective, visual
perception follows a hierarchical processing mechanism of “light stimula-
tion—retinal photoreceptors—optic ganglion cells—lateral geniculate
nucleus—visual cortex”36–38. This nonlinear, hierarchical information
transmission process fundamentally differs from linearly modeled mathe-
matical assumptions. In contrast, bionic algorithms align better with visual
perception mechanisms. Among these, swarm intelligence algorithms like
particle swarmoptimization focus on collective collaborationand lackdirect

Fig. 1 | Comparison of the traditional Chinese
freehandbrushworkpainting andother paintings.
a Chinese freehand brushwork painting: Dream
Brush Blooming (Qian Song yan, modern times);
bMeticulous painting: Spring Morning in the Han
Palace (Qiu Ying, Ming Dynasty); cWestern oil
painting: Landscape painting (Albert Bierstadt,
modern times).
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relevance to individual visual pathways, while artificial neural network
methods simulate neuron connections, with their hierarchical structure
(input layer–hidden layer–output layer) closelymatching visual conduction
pathways. Specifically, backpropagation neural networks (BPNN) can
optimizeweights through gradient descent and arewell-matched to the data
characteristics and sample size, having been widely used in predictive
modeling39–41. Thus, for this study, BPNN is the optimal algorithm choice
that simultaneously satisfies data features, neural mechanisms, and com-
putational efficiency.

To address the above issues, this study constructed a 1:1 scale
simulated museum exhibition hall for Chinese paintings in the
laboratory. In accordance with the lighting protection requirements
for traditional Chinese paintings, 60 representative spectra were
selected as experimental conditions by restricting the illuminance (E),
correlated color temperature (CCT), fidelity index, and gamut index
of light sources in the experimental cabinet. Four representative
traditional Chinese freehand brushwork paintings with distinct color
styles—cool-toned, warm-toned, mixed-color, and ink-dominated—
served as experimental samples. Thirty-four participants evaluated
the color fidelity of these four types of freehand brushworks under 60
conditions in the simulated hall. The PCA was then applied to the
light source SPD to obtain five principal component values char-
acterizing the SPD. Finally, using BPNN data analysis, a mathema-
tical model was established to predict observers’ perception of
painting color fidelity based on the principal components of light
source SPD. The technical roadmap is shown in Fig. 2.

Methods
Experimental scene
To conduct subjective evaluation experiments on the color fidelity of tra-
ditional Chinese freehand brushwork paintings, this research utilized the
design recommendations for museum painting exhibition halls from the
Architectural Design Dataset (3rd edition) and the index requirements
outlined in the Code for Lighting Design of Museum (GBT 23863-2009). In
the optical laboratory at Zhengzhou University, a 1:1 Chinese painting
exhibition hall that represents the real light characteristics of museums was
built as the experimental environment. The layout plan is shown in Fig. 3a.
The dimensions of the experimental space are 7.2 × 4.65 × 3.6 m (length ×
width × height), and the average reflectivity of the inner wall, ground, and
ceiling are 0.6, 0.2, and 0.2, respectively. Six display cabinets were arranged
within the experimental space. Cabinets No. 1 and No. 2 were used for
subjective evaluations. Cabinets No. 3 to No. 6 were used for background
ambiance creation. Both cabinets No. 1 and No. 2 were equipped with a
THOUSLITE LED Cube lighting device with a luminous surface size of
27 × 27 cm and amulti-channel spectral simulation system, which includes
14 narrowband LED channels (peak wavelengths covering 380-780 nm, as
shown in Fig. 4. By independently controlling the LED channels’ luminous
intensity, the system can precisely generate any combination of SPD, ful-
filling the needs of various experimental conditions. The device’s luminous
surface size was 27 × 27 cm. Cabinet No. 1 displayed the experimental light
source, while Cabinet No. 2 simulated the reference light source. To mini-
mize interference between light sources, a double layer of black light
blocking cloth was placed between the two cabinets, as illustrated in Fig. 3b.

Fig. 2 | The technical roadmap.
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The illuminance on the surface of the paintings in Cabinets No. 3 toNo. 6 is
set at 50 lx, theCCTis 3300 K, the average illuminanceof the ground is 10 lx,
and the above lighting parameters remained constant during the experi-
ment. The observer was instructed to stand at a fixed position tomaintain a
consistent viewing perspective. The painting samples were displayed flat
within the cabinets, and the evaluation site is shown in Fig. 3c.

Experimental conditions
According to the illumination protection requirements for traditional
Chinese paintings3–5, the surface illuminance of painting samples was set at
50 lx for this experiment. Based on the recommended ranges of CCT inCIE
157:20044 and ANSI/IES RP-30-2042, as well as the preservation require-
ments for traditional Chinese paintings42, four CCT values were selected:
2650 K, 3150 K, 3650 K, and 4150K.Additionally, based on the distribution
characteristics of the Rf - Rg space in TM-30-2043. These combinations were
used to further screen the SPDs of the light sources. TheRf values of the light
sources are uniformly distributed in the range of 65–100, and the Rg values
are uniformly distributed in the range of 80–120.A total of 60 representative
spectra were selected as experimental conditions, as shown in Fig. 5. In
addition, Planckian radiations corresponding to the four CCT values were
chosen as reference illuminants43. The parameters of the light sources are
shown in Table 1.

Painting samples
Traditional Chinese freehand brushwork paintings can be categorized into
four types based on their color characteristics: cool colors, warm colors,
mixed colors, and ink colors. According to the characteristics of color

classification, in this study, four representative paintings were
selected respectively. The basic information and characteristics of the
paintings are shown in Table 2. The four paintings included: Shen-
xiang Pavilion Peony Painting with mixed colors (Fig. 6a), Landscape
Painting Album with cool colors (Fig. 6b), Six Scenes from the Song
and Yuan Dynasties Album with warm colors (Fig. 6c), and Autumn
Mountain Evening Mist Scroll, predominantly featuring ink colors
(Fig. 6d). According to the museum-level digital replication tech-
nology. First, this research obtained high-definition electronic images
(resolution ≥ 2880 × 1440 dpi) of four paintings from the official
database of collected artworks and selected acid-free rice paper (pH
7.0–8.5) and silk fabric (warp/weft density: 120 × 80 threads/cm²)
according to their substrate types to simulate the carrier character-
istics of ancient paintings. Subsequently, professionals certified by the
National Museum with cultural relic replication qualifications were
commissioned to utilize an Epson Sure Color P9000 large-format
printer. Through micro-piezoelectric printing technology, museum-
grade ultra-high resolution outputs at 2880 × 1440 dpi were achieved,
and human observation confirmed that the visual effects were com-
pletely consistent with those of the original artifacts. Therefore, this
research employed two of the aforementioned museum-grade rice
paper inkjet replicas (high-fidelity reproductions) as experimental
samples, which were placed into Cabinet No. 1 (experimental con-
dition group) and Cabinet No. 2 (reference light source group),
respectively. To prove the difference in the main colors of the four
paintings, the spectral reflection functions of the six main color
points in the four paintings were measured by a spectral radiance

Fig. 3 | Experimental scheme. a layout plan; b Experimental scenario; c Evaluation experiment site.

Fig. 4 | The SPD of LEDs with different peak wavelength.
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colourimeter (SRC-200S) under a CIE standard A light source
(Fig. 6e). The corresponding color coordinates (L*, a*, and b*) were
calculated in the CIE 1976 LAB color space. Details are provided in
Table 2.

Experimental process
Thirty-four participants were selected based on the statistical characteristics
of the data from the psychophysical experiments19,44, half male and half
female, who were students at Zhengzhou University. The age of the parti-
cipants ranged from 18 to 26 years, with an average age of 22.6 years and a
standard deviation of 2.8 years, which is slightly lower than the average age
of realmuseumvisitors. All participants passed the Ishihara color vision test
andhadnormal corrected vision. The experimentwas conducted daily from
8:30 to 11:30 in the morning and from 14:00 to 17:00 in the afternoon.
Because the experiments were performed in a low illuminance light envir-
onment (≤50 lx) that simulated the high light sensitivity of cultural relic
exhibition halls in museums, to reduce the experimental evaluation error
caused by dark adaptationwhen the participants arrived at the experimental
area from other bright areas, after entering the experimental area, the
subjects are required to adapt for 15minutes under a 50 lx neutral gray
background (illuminated by a CIED65 light source with L* = 50, a*=0, and
b*=0), duringwhich the recorder described the experimental process. In the
evaluation, a continuous scale was employed to assess the color fidelity of

four traditional Chinese freehand brushwork paintings under different
lighting conditions. This scale, shown in Table 3, is advantageous in studies
involving individual differences45, enhancing the accuracy and general-
izability of the results. The colorfidelity represents the similarity between the
overall color appearance of a painting under a given experimental condition
and that under the reference light source.

To smoothly carry out the formal experiment and accurate under-
standing of color fidelity, pre-tests with four painting samples were con-
ducted before the formal experiments. For each sample, 60 working
conditions, as shown in Fig. 5, were established in theNo. 1 display cabinet,
with the corresponding reference illumination conditions set in the No. 2
display cabinet, as shown in Table 1. Initially, the first painting samples
were placed in the No. 1 and No. 2 cabinets, and the experimental con-
ditions were presented in a randomized order to familiarize participants
with the environment. Each condition was displayed for 5 seconds46, and
three conditions were randomly selected for scoring practice to ensure
participants understood the evaluation requirements. In the formal
experiment, 4 of the 60 working conditions were randomly repeated to
analyze the reliability of participants’ evaluations, resulting in a total of 64
conditions. To avoid the effect of visual fatigue on the experimental results,
the 64conditionswere randomlydivided into three groups.Eachof thefirst
two groups includes 26 working conditions, and the third group includes
12 working conditions. The duration of each condition was 25 seconds:
participants rested with their eyes closed for 5 seconds based on voice
prompts, in order to eliminate the influence of residual color vision, then
had 15 seconds for visual adaptation and observation, followed by
5 seconds to record their evaluation. After completing one set of working
conditions, take a 2-minute break. After the evaluation of each painting is
finished, take a 5-minute break and conduct a dark adaptation recovery
test. Using the first painting as an example, the evaluation process is shown
in Fig. 7. Following the evaluation of the first painting, the remaining
paintings were sequentially replaced, and this evaluation process was
repeated.

Fig. 5 | Relative SPD of the 60 experimental lighting conditions. a CCT = 2650 K; b CCT = 3150 K; c CCT = 3650 K; d CCT = 4150 K.

Table 1 | Lighting characteristics of the 4 reference illuminant
conditions

E (lx) CCT (K) x y Rf Rg

50.2 2647 0.4652 0.4135 96 103

50.1 3173 0.4180 0.4083 96 102

50.1 3697 0.3964 0.3897 95 100

50.0 4171 0.3746 0.3780 97 99
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Results
Data consistency
In order to analyze the reliability of the observers’ data, in this research,
Cronbach’s alpha was applied to analyze intra-observer and inter-observer
consistency. The results showed that the mean reliability coefficient (α)
exceeded 0.95, indicating the reliability of the observer data were of high
reliability and that all the evaluation data could be used for data analysis.
After that, the arithmeticmean of the evaluation scores for the four painting
types, as assessed by the 34 participants under identical working conditions,
was calculated. Pearson correlation coefficients between the scores of the
four painting typeswere then computed, as presented inTable 4. The results
showed that the average Pearson correlation coefficient of the four paintings
was 0.94 (p < 0.01), indicating a significant positive correlation. This sug-
gests that differences in the color characteristics of the paintings do not
considerably influence the evaluation of color fidelity under varying light
sources. For the convenience of analysis, the average evaluation scores of the
four painting types under identical experimental conditions were calculated
to represent the overall color fidelity of traditional Chinese paintings.
Therefore, for the convenience of analysis, the average evaluation values of
the four painting types under the same experimental conditions were cal-
culated to represent the color fidelity of traditional Chinese freehand
brushwork paintings.

Principal components of light source SPD
The primary objective of this research is to establish a correlation model
between the SPDof light sources and subjective color perception evaluations
of traditional Chinese paintings. PCA was employed to reduce the dimen-
sionality of high-dimensional spectral data. The visible light spectrum
(380–780 nm) was sampled at 5 nm intervals, with each light source’s SPD
characterized by power values at 81 discrete wavelength points. PCA of 60
experimental SPDdatasets indicated that thefirstfive principal components
exhibited eigenvalues exceeding 1. These components individually con-
tributed 47.4%, 27.8%, 10.9%, 7.0%, and 2.8% to the variance, respectively,
collectively explaining 95.9% of the total variance. This indicates that these
components retained 95.9% of the original spectral information while
preserving core spectral features and achieving dimensionality reduction.
Based on the PCA results, a weight distribution plot of the five principal
components across different wavelengths was generated, as shown in Fig. 8.

As shown in Fig. 8, the five principal components reveal the dominant
roles of different spectral bands on light source characteristics through their
weight coefficient distributions. Specifically, Principal Component X1

(variance contribution rate: 47.4%) reflects its spectral contributions in the
680–730 nm and 580–610 nm bands, corresponding to the light source’s
color reproduction capabilities for red and orange hues, respectively.
Principal Component X2 (variance contribution rate: 27.8%) and Principal
Component X4 (variance contribution rate: 7.0%) demonstrate their spec-
tral contributions in the 640–700 nm and 640–670 nm bands, respectively,
both associated with red hue reproduction capabilities. Principal Compo-
nent X3 (variance contribution rate: 10.9%) indicates its spectral contribu-
tion in the 380–430 nm band, corresponding to blue hue reproduction
capability,while PrincipalComponentX5 (variance contribution rate: 2.8%)

reflects its spectral contribution in the 600–650 nm band, linked to the light
source’s orange-red hue reproduction capability.

Based on the spectral response characteristics characterized by the
aforementioned principal components, the 81—dimensional original
spectral data were reduced in dimension to 5 principal component values
through linear combinations, thus providing interpretable input variables
for subsequent perceptual models (calculation method detailed in Eq. (1)).
Each principal component is defined as the sumof the products between the
light source SPD and the eigenvector matrix (as shown in Table 5), where
each column of the matrix represents a principal component (5 columns
corresponding to the 5 principal components), and each element within the
columns indicates the weight coefficient applied to the light source SPD.

Xn ¼
X81
p¼1

anp � λp ð1Þ

Where anpðn ¼ 1 � 5; p ¼ 1 � 81Þ represents the p-th of the n-th prin-
cipal component.A total offive principal components are present,with each
principal component’s eigenvector containing 81 weight coefficients.λp
represents the SPD value of the light source at the p-th wavelength point
within the 380-780 nm range (sampled at 5 nm intervals). Through matrix
operations, the SPD of each light source can be mapped into a vector
composed of 5 principal component values [X]60 = [X1, X2, X3, X4, X5]60.

Based on the aforementioned methodology, this research calculated
the principal component valuematrix for 60 experimental conditions ½X�60,
where each row corresponds to the 5 principal component values of a single
light source. This result demonstrates that the high-dimensional spectral
information of light source SPDs can be compressed into 5 principal
component values, thus providing concise and highly interpretable input
data for constructing subsequent perceptual models.

The evaluation model
To establish a nonlinear mapping relationship between the SPD of light
sources and color fidelity evaluations, this research constructs a mathe-
matical model based on PCA dimensionality reduction results using a
BPNN algorithm, which includes 5 input variables (principal component
values) and 1 output variable (color fidelity score). To improve the model’s
prediction accuracy, the structure and parameters of the BPNN, as well as
the data for model construction and validation, must be determined before
using the BPNN algorithm to construct the model.

As shown in Fig. 9, the structure of the BPNN algorithm includes four
parts: the input end, the hidden layer, the output layer, and the output end.
Among them, the input end consists of the five normalized principal
component values, denoted as xiði ¼ 1 � 5Þ. The hidden layer is denotedas
Njðj ¼ 1 � nÞ. where j represents the number of units in the hidden layer.
The internal parameters of the hidden layer include: the weight ωij, which
represents the connection strength between the input parameters xi
and the neurons Nj in the hidden layer; the constant b1j, which
represents the bias of the neurons Nj in the hidden layer. The output
layer is denoted as N , and its internal parameters include: the weight

Table 2 | Characteristics of painting samples

Title of Painting Artist Years Collection Location Color
Characteristics

Picture Size Main Color [L*, a*, b*]

Shenxiang Pavilion Peony
Painting

Wu Changshuo 1844- 1924 National Palace
Museum, Taipei

Mixed colors 65*65 cm [66,31–13],
[79, −14, −2]

Landscape Painting Album Shi Tao 1642–1707 The Palace Museum Cool colors 20*30 cm [76, −27, −11]

Six Scenes from the Song
and Yuan Dynasties Album

Qiu Ying 1540– 1544 National Palace
Museum, Taipei

Warm colors 30*45 cm [68, 18, 19]

Autumn Mountain Evening
Mist Scroll

Gao Kegong 1248– 1310 The Palace Museum Ink colors 47*60 cm [36, 16, 7],
[68, 8, 3]
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Fig. 6 | Painting samples used for the experiment. a “Shenxiang Pavilion Peony Painting”; b “Landscape Painting Album”; c “Six Scenes from the Song and YuanDynasties
Album”; d “Autumn Mountain Evening Mist Scroll”; e The relative spectral reflectance distributions of 6 locations on the four paintings.

Table 3 | Evaluation scales and color fidelity ratings

Evaluation scale

Evaluation score [1,3) [3,5) [5,7]

Color fidelity grade bad normal good
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ωj, which represents the connection strength between the neurons in
the hidden layer Nj, and the neurons N in the output layer; the
constant b2, which represents the bias of the neurons in the output
layer. The output end, denoted as N , which represents the bias of the
neurons in the output layer. The output end, denoted as y, represents
the normalized predicted value of color fidelity.

Each part is connected through an activation function and a transfer
equation. The activation function selected between the input end and the
hidden layer is the Sigmoid function, as shown in Eq. (2):

f 1 xð Þ ¼ 1
1þ e�x

ð2Þ

The transfer equation between the input end and the hidden layer:

Hj ¼ f 1
Xi¼5

i¼1

ωij � xi
�
� b1j

 !
ð3Þ

The activation function between the hidden layer and the output layer
is Purelin, as shown in Eq. (4):

f 2 xð Þ ¼ x ð4Þ

The transfer equation between the hidden layer and the output layer:

y ¼
Xj¼n

j¼1

ωjHj

 !
� b2 ð5Þ

It can be seen from Eqs. (2) to (5) that the calculation equation used to
predict the color fidelity is as follows:

y ¼
Xj¼n

j¼1

ωj �
2

1þ e�2ðð
Pi¼5

i¼1
ωij�xiÞ�b1jÞ

� 1

 !" #( )
� b2 ð6Þ

After determining the BPNN architecture, it is necessary to define the
model parameters, namely the convergence criteria and training parameters.
This research selects the Levenberg-Marquardt algorithmwithMean Squared
Error (MSE) as the loss function and the prediction correlation coefficient (R)
of the entire dataset as the evaluation index for model prediction accuracy. A
value of R > 0.8 indicates high prediction accuracy. The training parameters
primarily include the number of hidden layers (j) and the LearningRate of the
algorithm, where the Learning Rate serves as a critical hyperparameter in the
BPNN algorithm to control the adjustment step size of network weights and
biases during each iteration. This research determines the hidden layer count
andLearningRateusingacontrolledvariablecomparisonmethod,asshownin
Fig. 10. Separately, relationships between the average MSE and average cor-
relation coefficient R from five training sessions with the number of hidden
layers and Learning Rate were established. Results indicate that the optimal
training performance occurs when the number of hidden layers is 10 and the
LearningRate is0.01.Collectively, theBPNNalgorithmarchitectureand initial
parameters adopted in this research are presented in Table 6.

Next, to avoid the over-fitting phenomenon when the BPNN algo-
rithm trains the data and to effectively validate the obtainedmodel later, this
research divides the data of 60 experimental conditions and evaluations into

Fig. 7 | Time arrangement in subjective evaluation experiments.

Table 4 | The Pearson correlation between different types of
painting

Warm colors Ink colors Mixed colors

Cool colors 0.95* 0.94* 0.95*

Warm colors 0.92* 0.95*

Ink colors 0.91*

*p < 0.01.

Fig. 8 | The weight distribution of the principal components of the spectrum at
different wavelengths.
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a training set (70%), a validation set (15%), and a test set (15%) in pro-
portion. The training set is the dataset used for training and learning. The
BPNN learns the data features through the training set and generates a
model for later prediction. The validation set is the dataset used for mon-
itoring the model’s performance. During the training process, the
model adjusts its own parameters and hyperparameters through the
validation set to avoid the situations of over-fitting or under-fitting.
The test set is the dataset used for testing the final performance of the
model. It does not overlap with the training set and the validation set,

and can evaluate the model’s performance on unseen data, so as to
judge whether the model is accurate enough40. Moreover, in order to
avoid the errors caused by the order during data allocation, this
research uses the Randperm function to randomly perturb the
sampling order of each dataset, reducing the risk that the training
order affects the training results47.

Prior to formal training, because different principal component values
(X1,X2,X3,X4,X5)may exhibit significant differences inunits andnumerical
ranges due to spectral band energy variations (e.g., red light band energy is

Table 5 | The eigenvector matrix of five principal components

p anp p anp

a1p a2p a3p a4p a5p a1p a2p a3p a4p a5p

1 −0.0001 −0.0001 0.0019 −0.0001 0.0026 41 −0.0009 −0.0023 −0.0109 −0.0105 −0.0738

2 0.0009 −0.0006 0.0177 0.0003 0.0026 42 0.0262 −0.0048 0.0043 0.0104 −0.1736

3 0.0048 −0.0021 0.0669 0.0024 0.0080 43 0.0591 −0.0071 0.0238 0.0379 −0.2851

4 0.0127 −0.0052 0.1817 0.0048 0.0190 44 0.0706 −0.0087 0.0305 0.0480 −0.3135

5 0.0282 −0.0123 0.3877 0.0090 0.0436 45 0.0447 −0.0114 0.0150 0.0261 −0.2099

6 0.0426 −0.0206 0.5876 0.0086 0.0712 46 0.0083 −0.0160 −0.0084 −0.0055 −0.0727

7 0.0393 −0.0253 0.5412 −0.0015 0.0691 47 −0.0135 −0.0225 −0.0227 −0.0250 0.0213

8 0.0229 −0.0302 0.3144 −0.0242 0.0457 48 −0.0217 −0.0328 −0.0315 −0.0321 0.0913

9 0.0099 −0.0374 0.1435 −0.0472 0.0278 49 −0.0239 −0.0508 −0.0382 −0.0350 0.1801

10 0.0016 −0.0339 0.0532 −0.0503 0.0124 50 −0.0233 −0.0788 −0.0488 −0.0377 0.3083

11 −0.0038 −0.0229 0.0123 −0.0402 −0.0032 51 −0.0214 −0.1034 −0.0580 −0.0292 0.4426

12 −0.0084 −0.0157 −0.0083 −0.0368 −0.0168 52 −0.0177 −0.0860 −0.0536 0.0110 0.4581

13 −0.0126 −0.0117 −0.0265 −0.0393 −0.0300 53 −0.0148 −0.0132 −0.0350 0.0965 0.3113

14 −0.0148 −0.0075 −0.0390 −0.0408 −0.0372 54 −0.0111 0.0823 −0.0178 0.2161 0.1508

15 −0.0129 −0.0031 −0.0371 −0.0342 −0.0346 55 −0.0051 0.1856 −0.0026 0.3738 0.0647

16 −0.0088 0.0012 −0.0212 −0.0235 −0.0280 56 0.0051 0.2974 0.0103 0.5103 0.0317

17 −0.0055 0.0047 −0.0039 −0.0156 −0.0255 57 0.0209 0.3845 0.0130 0.3972 0.0369

18 −0.0040 0.0097 0.0114 −0.0125 −0.0294 58 0.0449 0.4408 0.0108 0.0122 0.0504

19 −0.0030 0.0178 0.0294 −0.0107 −0.0412 59 0.0718 0.4805 0.0108 −0.3278 0.0582

20 −0.0021 0.0264 0.0492 −0.0104 −0.0549 60 0.0894 0.4143 0.0027 −0.3989 0.0627

21 −0.0017 0.0302 0.0586 −0.0101 −0.0615 61 0.1090 0.2379 −0.0102 −0.2589 0.0516

22 −0.0008 0.0249 0.0530 −0.0083 −0.0506 62 0.1528 0.0870 −0.0169 −0.1099 0.0315

23 −0.0002 0.0141 0.0396 −0.0095 −0.0275 63 0.2331 0.0028 −0.0222 −0.0245 0.0188

24 0.0005 0.0039 0.0293 −0.0143 −0.0019 64 0.3516 −0.0449 −0.0301 0.0219 0.0152

25 0.0020 −0.0053 0.0248 −0.0199 0.0262 65 0.4910 −0.0782 −0.0375 0.0536 0.0174

26 0.0046 −0.0129 0.0247 −0.0227 0.0476 66 0.5394 −0.0896 −0.0451 0.0627 0.0315

27 0.0089 −0.0161 0.0298 −0.0190 0.0523 67 0.4052 −0.0711 −0.0438 0.0401 0.0432

28 0.0135 −0.0136 0.0377 −0.0064 0.0338 68 0.2060 −0.0382 −0.0300 0.0172 0.0316

29 0.0171 −0.0077 0.0420 0.0085 0.0069 69 0.0823 −0.0171 −0.0152 0.0054 0.0164

30 0.0162 −0.0016 0.0407 0.0163 −0.0071 70 0.0311 −0.0080 −0.0071 −0.0029 0.0050

31 0.0096 0.0021 0.0311 0.0143 −0.0039 71 0.0109 −0.0042 −0.0055 −0.0013 0.0013

32 −0.0001 0.0039 0.0170 0.0052 0.0086 72 0.0030 −0.0026 −0.0034 −0.0013 0.0014

33 −0.0091 0.0046 0.0047 −0.0045 0.0224 73 0.0011 −0.0017 −0.0010 −0.0023 −0.0003

34 −0.0164 0.0051 −0.0059 −0.0130 0.0319 74 0.0000 −0.0014 −0.0017 −0.0009 −0.0029

35 −0.0215 0.0047 −0.0138 −0.0196 0.0391 75 −0.0011 −0.0001 −0.0003 0.0012 −0.0016

36 −0.0253 0.0045 −0.0196 −0.0245 0.0435 76 −0.0005 −0.0007 −0.0001 −0.0023 −0.0005

37 −0.0280 0.0038 −0.0235 −0.0284 0.0436 77 −0.0004 −0.0006 0.0004 −0.0007 −0.0006

38 −0.0276 0.0024 −0.0249 −0.0292 0.0355 78 −0.0007 −0.0002 0.0005 0.0000 −0.0004

39 −0.0240 0.0011 −0.0243 −0.0281 0.0170 79 0.0004 0.0002 −0.0005 −0.0010 −0.0023

40 −0.0161 0.0000 −0.0208 −0.0216 −0.0151 80 0.0004 −0.0001 −0.0009 −0.0004 −0.0010

81 −0.0001 0.0000 0.0003 −0.0002 −0.0014
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generally higher than blue light band energy), this research performs nor-
malization on these values. They are linearly mapped to the [0–1] interval
and denoted as x1; x2; x3; x4; x5. The normalization calculation equation is
as follows:

x ¼ X � Xmin

Xmax � Xmin
ð7Þ

Here,x represents thenormalized value,Xdenotes thenon-normalized
input value, Xmin is the minimum value of the non-normalized data, and
Xmax is the maximum value of the non-normalized data. Based on the
architectural configuration of the BPNN algorithm, parameter selection,
and dataset allocation method described above, this research trained the

color fidelity evaluation data of traditional Chinese freehand brushwork
paintings. The training results are presented in Fig. 11. It is shown inFig. 11a
that the network’s structural parameters reached their optimal state at the

16th generation, and Fig. 11b indicates that the correlation coefficient R
between the model’s predicted values and target values was 0.85 (R > 0.8),
confirming the network’s high prediction accuracy. The internal archi-
tectural parameters of the trained model are listed in Table 7.

In order to quantify the effect of illumination light source SPD on the
perceived color fidelity of traditional Chinese freehand brushwork paint-
ings, this research first obtained the five principal components representing
the light source’s SPD through PCA. Subsequently, an evaluationmodel for
the color fidelity of illumination of traditional Chinese freehand brushwork
paintings in museum was developed using BPNN algorithm.

Substituting the optimal ωij, b1j, ωj, b2i parameters into Eq. (6), the
mathematical matrix model for calculating the perceived color fidelity of
traditional Chinese freehand brushwork paintings in museums under dif-
ferent lighting conditions can be obtained, as shown in Eq. (8).

Where y is the normalized color fidelity perceived prediction value and
x1; x2; x3; x4 and x5 are the normalized 5 principal component values.
Whenusing themodel to evaluate the colorfidelity of a light source,first, the

Fig. 9 | The structure diagram of BPNN.

Fig. 10 | Parameter comparison of the BPNN algorithm. a The relationship between the number of hidden layers and the prediction accuracy of the model; b The
relationship between the learning rate and the prediction accuracy of the model.
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five principal component values of the light source are calculated according
to Eq. (1) and the eigenvector matrix in Table 5, including
X1;X2;X3;X4;X5, and then the normalized parameters x1; x2; x3; x4 and
x5 of the five principal component values are substituted into Eq. (8) to
obtain the normalized color fidelity prediction value y. The predicted color
fidelity is obtained via inverse normalization of y, and the color fidelity level
corresponding to the predicted color fidelity value can be obtained by
comparison Table 3. With this approach, the perceived color fidelity of
lighting sources for traditional Chinese freehand brushwork paintings in
museums can be quantitatively calculated and evaluated.

Discussion
The regression results reflect the high prediction accuracy of the network.
To further verify the accuracy of themodel in calculating the colorfidelity of
traditionalChinese freehandbrushworkpaintings inmuseums, a test set not
involved in model construction was selected for validation analysis. Speci-
fically, the mean relative error (δ) between the experimental evaluation
scores F′ of the test set light sources and the model-predicted values F was
calculated using the following equation:

δ ¼ F0 � Fð Þ
F0

����
����X100% ð9Þ

From the calculation results (Table 8), the mean relative error between
themodel’s colorfidelity prediction results and actual subjective evaluations
was 9.7%. Considering the practical application scenario, this error range is
acceptable, indicating that the model’s predicted data aligns with actual
subjective evaluations and its prediction results for color fidelity are
satisfactory.

Additionally, to enable model users to conveniently select appropriate
light sources based on prediction levels, this research calculated the color
fidelity model prediction values for 60 working conditions using the above
method. These values were compared with experimental evaluation values
to determine the accuracy rate of themodel in predicting the perceived color
fidelity levels of museum lighting sources for traditional Chinese freehand
brushwork paintings. Here, the accuracy rate is defined as the percentage of
correct predictions for a given dataset. Under three color fidelity levels, the
number of model prediction values matching the true evaluation results is
presented inTable 9.As shown inTable 9, among60working conditions, 53
model prediction values were consistent with the true evaluation values,
indicating that the model achieved an 88.3% accuracy rate in predicting the
perceived color fidelity levels of traditional Chinese freehand brushwork
paintings.

It isworthnoting that the experimental conditions used in colorfidelity
evaluation experiments in this research are limited, and the participants are
students aged 18-26 years (M= 22.6, SD = 2.8), which presents a dis-
crepancy compared to the average age of museum visitors (18–35 years).
Therefore, future research plans include two components: (1) Adjust the
light source SPD, increase the number of experimental conditions, and
revise and refine the model; (2) Expand the participant pool to include
individuals of varying ages, genders, and occupations to conduct a study on
differences in perceived color fidelity of traditional Chinese freehand
brushwork paintings in museums across different populations. Addition-
ally, correlation coefficient values may be revised based on data obtained
from future experiments.

In this research, principal component analysis was employed to
demonstrate that the spectral power distribution of light sources can be
characterized byfive principal component values. Based on thisfinding, an
evaluation model for assessing the color fidelity of illumination in tradi-
tional Chinese freehand brushwork paintings was developed. To apply this
model, the SPD of the light source is first measured using a spectrometer.
The five principal component values of the SPD are then calculated
through the eigenvector matrix and input into the model to derive the
predicted color fidelity value of traditional Chinese freehand brushwork

Fig. 11 | Training results. a The trend of the MSE for the three datasets; b The regression analysis of the model.

Table 6 | Parameter Settings of the Model

Parameter Value

Number of neurons in the input layer 5

Number of neurons in the hidden layer 10

Number of neurons in the output layer 1

Learning rate 0.01

Number of iterations 100

Number of cross-validation times 100

Activation function between the input layer and the
hidden layer

Sigmoid

Activation function between the hidden layer and the
output layer

Purelin

Training function Levenberg-Marquardt

Model evaluation metric R
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paintings under the specific light source. By comparing the predicted value
with Table 3, the corresponding color fidelity grade can be determined,
thus realizing the quantitative calculation and evaluation of color fidelity
formuseum lighting of traditional Chinese freehand brushwork paintings.
This model can quantitatively predict observer-perceived color fidelity of
traditional Chinese freehand brushwork paintings illuminated by different
SPDs at an illuminance of 50 lx, addressing the critical demand for accurate
color fidelity in traditional Chinese freehand brushwork painting con-
servation. This research has taken an important step forward in the
research on achieving optimal museum lighting for Chinese paintings.
Additionally, the research methodologies and mathematical model
established in this research provide valuable references for lighting studies
on colored cultural relics in museums, serve as a basis for formulating
museum lighting standards, and offer practical guidance for exhibition
lighting design in museum settings.

Data availability
The datasets analysed during the current study are available from the cor-
responding author on reasonable request.
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