Journal of Cerebral Blood Flow & Metabolism

Targeting Angiogenesis and White Matter Repair for Enhanced Functional Recovery after Acute Ischemic Stroke: A Focus on the Roles of Glial Cells

Journal:	Journal of Cerebral Blood Flow and Metabolism
Manuscript ID	JCBFM-0373-25-REV.R1
Manuscript Type:	Review Article
Date Submitted by the Author:	28-Aug-2025
Complete List of Authors:	Du, Weihong; Capital Medical University Liu, Wencao; Shaanxi Provincial People's Hospital Sun, Yanyun; Soochow University Guo, Chun; The University of Sheffield, Department of Biomedical Science Geng, Panpan; Capital Medical University Jin, Xinchun; Soochow University,
Research Topics:	Acute Stroke, Angiogenesis, Cognition, Glial Cells, White matter / oligodendrocytes
Research Techniques:	Animal studies, Behavior testing (rodent)

SCHOLARONE™ Manuscripts

Targeting Angiogenesis and White Matter Repair for Enhanced Functional Recovery after Acute Ischemic Stroke: A Focus on the Roles of Glial Cells

Weihong Du^{1#}, Wencao Liu^{2#}, Yanyun Sun³, Chun Guo⁴, Panpan Geng¹, Xinchun Jin¹

- Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069
- 2. Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China.
- 3. Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- 4. School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
- #: The authors contributed equally to this work.

Address correspondence to: Dr. Xinchun Jin, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China.; Email: xinchunjin@gmail.com.

Running Head: Glial cell-mediated angiogenesis and WM in AIS

Abbreviation:

AIS, acute ischemic stroke; BBB, blood-brain barrier; CAMP, cathelicidin antimicrobial peptide; CCR5, chemokine C-C-Motif Receptor 5; CXCL12, C-X-C Motif Ligand 12 (CXCL12); CXCR4, CXC chemokine receptor 4; ECs, endothelial cells; EPO, erythropoietin; Evs, extracellular vesicles; GGF2, glial growth factor 2; HIF, hypoxia-inducible factor; HMGB1, High Mobility Group Box-1; HT, hemorrhagic transformation; IGF-1, insulin-like growth factor 1; IL-10, interleukin 10; IL-1β, interleukin-1β; MCAO, medial cerebral artery occlusion; MG/MΦ, microglia and macrophages; MMP, matrix metalloproteinase; NG2, neural/glial antigen 2; OGD, oxygen-glucose deprivation; OLs, oligodendrocytes; OPCs, oligodendrocyte precursor cells; PAR1, protease-activated receptor 1; ROS, reactive oxygen species; TGF-β, transforming growth factor-β; TJPs, tight junction proteins; TNF-α, tumor necrosis factor-α; tPA, tissue plasminogen activator; TREM2, triggering receptor expressed on myeloid cell-2; VEGF, vascular endothelial growth factor; ZNT3, zinc transporter 3.

Abstract

Neural network connections require adequate blood flow to deliver sufficient oxygen and glucose. Acute ischemic stroke (AIS) significantly impairs neural function due to insufficient blood flow, leading to diffuse microvascular dysfunction and compromised white matter integrity, both indicators of poor prognosis. Post-stroke neural recovery hinges on promoting neovascularization around the infarct and restoring white matter integrity. Therefore, strategies to enhance angiogenesis and white matter repair are crucial for post-stroke neuro-rehabilitation. Emerging research highlights the pivotal roles of activated microglia, astrocytes, and oligodendrocyte precursor cells in facilitating neurogenesis, angiogenesis, and neural functional recovery following cerebral ischemia. In this review, we explore the mechanisms by which these neuroglial cells contribute to angiogenesis and white matter repair after AIS. We also propose potential therapeutic strategies that target the intricate interactions at the glial cellendothelial cell interface. A deeper understanding of oligovascular signaling in ischemic conditions could unveil novel therapeutic targets for improving outcomes after AIS.

Keywords: angiogenesis, blood-brain barrier, glial cells, ischemic stroke, white matter.

Introduction

Acute ischemic stroke (AIS) is one of the major diseases with high rates of disability and fatality worldwide. Currently, the thrombolytic tissue plasminogen activator (tPA) is the only drug approved by the US food and drug administration (FDA) for the treatment of AIS. However, the narrow treatment time window (~4.5 hours), the risk of cerebral hemorrhagic transformation (HT) following thrombolysis, and the high mortality rate after HT have significantly limited its clinical use¹. Despite promising results in animal experiments, all neuroprotection drugs tested so far for stroke have failed in clinical trials². Consequently, there is an urgent need to restore neural function in stroke patients to improve their quality of life significantly.

After AIS, the brain can spontaneously recover some neural function, but this recovery is often only partial³. Current research into neurological repair post-stroke largely focuses on gray matter, which is rich in neuronal cell bodies and dendrites⁴. However, despite this focus, no approved drugs have been developed that specifically target gray matter to enhance recovery. Moreover, it is important to recognize that stroke also significantly damages white matter, which consists of the axons (long extensions of neurons) that form connections between brain regions. White matter damage can account for up to half of the infarct volume, worsen stroke symptoms, and lead to a poorer prognosis⁵. This suggests that repairing white matter integrity could be a crucial strategy for promoting functional recovery. Several cellular players are involved in white matter repair, including astrocytes, microglia, and interactions between endothelial cells (ECs) and oligodendrocytes (OLs)⁶. Additionally, disruption of the bloodbrain barrier (BBB) is a key factor in pathological white matter damage⁷.

Angiogenesis, the formation of new blood vessels, is a crucial response to brain injury. It helps stabilize blood flow, supports the survival of neurons, promotes brain plasticity, and aids in neurological recovery⁸. Studies have shown that the extent of angiogenesis around the damaged brain tissue after stroke is a significant indicator of patient prognosis and survival⁸. In addition, restoring the integrity of the BBB after ischemic stroke is essential for the development of mature and functional blood vessels. In fact, new blood vessel formation is

critical for the recovery of neural function following stroke. This makes promoting effective angiogenesis in the area surrounding the infarct a promising therapeutic strategy for improving neurological recovery following AIS. Evidence increasingly points to the importance of glial cells in facilitating angiogenesis⁹. Furthermore, the interactions between existing blood vessels, OLs, and oligodendrocyte precursor cells (OPCs) are vital for maintaining the health and function of white matter⁶. For instance, clinical studies have shown that following an acute stroke diffuse microvascular dysfunction and the loss of white matter integrity are predictors of unfavorable outcomes¹⁰. In this review, we first address BBB damage and repair following ischemic stroke. Then, we examine the contributions of white matter repair and angiogenesis to functional recovery after ischemic stroke. Subsequently, we explore the roles of glial cells in regulating both angiogenesis and white matter repair. Finally, we propose integrating white matter repair with angiogenesis as a therapeutic strategy after AIS.

Angiogenesis and BBB repair-mediated vascular remodeling after ischemic stroke

BBB damage after ischemic stroke

BBB is a complex structure composed of ECs, astrocytes, pericytes, the basement membrane, components of the extracellular matrix, and tight junction proteins (TJPs)¹¹. These ECs are core anatomical structures that interact with various types of cells in the central nervous system (CNS). The ECs within the BBB are tightly bound by TJPs, resulting in a distinct lumen¹².

BBB dysfunction is one of the hallmarks of ischemic stroke. The integrity of the BBB is crucial, and its disruption is a primary pathological basis for the development of vasogenic cerebral edema and hemorrhagic transformation following acute stroke¹³. This breakdown is also a key factor contributing to pathological damage to white matter¹⁴. Protecting the integrity of the BBB has been shown to improve cognitive and motor function after AIS. Several therapeutic strategies have demonstrated promise in ameliorating BBB damage. For example, inhibition of D1 receptor-mediated endogenous tPA upregulation can alleviate BBB injury after AIS¹⁵. Moreover, inhibition of autophagy can decrease ischemia-induced occludin degradation and loss of BBB integrity¹⁶. Nicotine treatment has been shown to ameliorate BBB damage

after AIS by regulating endothelial scaffolding protein Pdlim5¹⁷, and glial growth factor 2 (GGF2) treatment alleviates ischemia and reperfusion-damaged integrity of the BBB¹⁸. It is of note that structural and functional recovery of the BBB after stroke is critical to prognosis. Compounds like Omega-3 polyunsaturated fatty acids¹⁹ and the immunomodulator 2-Methoxystypandrone²⁰ have been reported to improve neurological function in aged mice by promoting the restoration of BBB integrity (Table).

The role of angiogenesis in neural functional recovery after ischemic stroke

After a cerebral infarction, the affected brain area is often filled with empty, unperfused microvessels, a phenomenon that's especially pronounced in older patients⁸. Although microvascular density in the ischemic region increases significantly around 14 days post-stroke, cerebral blood flow remains considerably lower than in healthy areas²¹. This suggests that the newly formed microvessels are not effectively transporting blood. Furthermore, studies in rats have shown that the density of newly formed blood vessels (angiogenesis) around the infarcted area actually decreases between 30 and 60 days after ischemia-reperfusion²², which suggests that this temporary network of microvessels is not sustained long-term.

Restoring blood flow to damaged brain areas is a critical strategy for promoting neurological recovery after stroke, and the reconstruction of the vascular network is the primary way to achieve this²³. For example, in mice, the establishment of cerebral collateral circulation due to hypoxia can reduce the adverse consequences of ischemic stroke by increasing cerebral blood perfusion²⁴. Two-photon studies have further shown that the formation of new blood vessels contributes to the recovery of motor function after stroke by restoring cerebral blood perfusion around the infarct area²⁵.

Angiogenesis, the growth of new blood vessels, is a natural defense mechanism. It helps to restore the supply of oxygen and nutrients to affected brain tissue after AIS. Ischemic stroke-induced angiogenesis is a complex and dynamic process involving various vascular components, including ECs, pericytes, and extracellular matrix. This process, along with vascular remodeling, occurs around the peri-infarction area of the ischemic hemisphere after

AIS²⁶. Beyond simply providing essential materials and energy for neural regeneration and secreting neurotrophic factors and chemokines to support the survival of new neurons, angiogenesis after stroke also serves as a scaffold, guiding the migration of neural precursor cells to the injured brain area, thereby facilitating structural repair and functional remodeling of brain tissue²⁷. Previous studies have shown that cerebral ischemia increases neurogenesis, with newly generated neurons in the subventricular zone migrating toward the ischemic border, where angiogenesis is active ²⁸.

Pathologic analysis and brain imaging studies of patients with cerebral infarction in the subacute and chronic phases have revealed that the extent of angiogenesis and vascular network reconstruction in the ischemic penumbra directly influences patients' long-term survival rates⁸. Promoting cerebral angiogenesis can significantly enhance neurological recovery after stroke, while disrupting it after stroke can hinder neural functional recovery. For example, conditional knockout of microRNA-15a/16-1²⁹ or neutrophil-derived cathelicidin antimicrobial peptide $(CAMP)^{30}$. can regulate target genes to promote angiogenesis and vascular network reconstruction after stroke, leading to improved neurological outcomes. In addition, Kaempferol has shown promise in promoting angiogenesis in the peri-infarct cortex. It does this by enhancing the proliferation, migration, and lumen formation of endothelial cells through hypoxia inducible factor-1 α (HIF-1 α)/vascular endothelial growth factor-A (VEGF-A) signaling pathway³¹.

Despite these promising results, current strategies aimed at improving angiogenesis, even with factors like VEGF, can be a double-edged sword. While they can promote angiogenesis after cerebral infarction²⁶, their effects are often countered by impaired vascular maturation and increased vessel permeability. This hindrance prevents the formation of stable lumens and effective blood perfusion. Furthermore, it can severely compromise BBB integrity, which exacerbates cerebral edema or hemorrhagic transformation and can potentially worsen post-stroke outcomes²⁶.

Given that angiogenesis in ischemic infarcts regulates cerebral blood flow, neuronal

repair and regeneration, patient functional recovery, and the re-establishment of synaptic connections between neuronal cells, it is crucial for neurological function recovery after stroke⁸. Consequently, effective angiogenesis in the peri-infarction area is now considered a significant therapeutic target for promoting neural functional recovery after AIS³.

The role of BBB repair in neural functional recovery after ischemic stroke

Angiogenesis after stroke offers very limited therapeutic benefit for clinical prognosis unless the new vessels become functional and perfused. For example, while angiogenic factors such as VEGF supplements can stimulate the growth of new blood vessels, they may not result in the formation of mature, functional vessels. This can lead to increased BBB leakage and vasogenic edema²⁶. Therefore, strategies that promote angiogenesis should also prioritize repairing the integrity of the BBB to ensure the newly formed blood vessels are both mature and functional²⁶ (Fig. 1). The maturation of vascular barrier function, essential for effective cerebral blood perfusion, relies on the formation of tight junction proteins, pericyte coverage, and a stable basal membrane between neovascular endothelial cells²⁶. BBB integrity repair is not solely dependent on endothelial cell proliferation and migration; it also critically requires pericyte recruitment and adhesion. Pericytes are vital not only for regulating cerebral blood perfusion after stroke but also for mediating post-stroke basement membrane remodeling, which plays a significant role in tissue repair and functional recovery following ischemic stroke³². Myeloid-driven endothelial cell-to-pericyte transdifferentiation accelerates poststroke BBB recovery and exerts neuroprotective effects³³. Interestingly, delayed administration of atorvastatin may help restore neurological function by promoting pericyte coverage and BBB integrity repair after ischemic stroke³⁴.

White matter integrity repair after ischemic stroke

White matter injury after ischemic stroke

White matter is particularly vulnerable to ischemia (reduced blood flow) because it has a lower blood supply than gray matter, and the deep white matter has limited collateral circulation¹⁴. Following ischemic stroke, white matter damage can be observed in the adult brain for several

days. The main manifestations include OL damage, nerve demyelination, and axonal injury³. Damage to the white matter of the brain is a serious consequence of ischemic stroke, significantly impacting neurological function. Ischemia-induced reductions in the integrity of local or remote white matter are known to contribute to cognitive decline in stroke patients. This is a considerable concern, as approximately 64% of stroke patients, with up to one-third developing dementia³⁵. Furthermore, cerebral white matter damage, often linked to chronic hypoperfusion, is a common histologic feature in patients with stroke and cerebrovascular disease ³⁶, and it has been shown that enhancing OL autophagy can alleviate white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats³⁷.

Promotion of oligodendrocyte differentiation facilitates white matter integrity repair after ischemic stroke

Promoting the restoration of white matter integrity is a significant factor in neurological recovery (Fig. 1), with evidence suggesting that it could be a powerful therapeutic strategy. For example, studies have shown that Nogo receptor antagonists can facilitate recovery by repairing white matter³⁸, and rosiglitazone, a drug for diabetes, similarly enhances functional recovery by improving white matter integrity³⁹. Thus, therapies that aim to increase white matter repair hold promise for promoting functional recovery after AIS¹⁴.

Myelin, produced by OLs in the CNS, is crucial for neuronal health. Myelin defects due to the absence or dysfunction of OLs are often seen after ischemic stroke, and can lead to neuronal loss and functional impairment⁴⁰. A key characteristic of ischemic white matter injury is the disruption of myelin structures, which is further exacerbated by impaired recruitment or differentiation of OPCs⁴¹. OPCs are fundamental to the brain capacity for myelin repair. While OPCs differentiate into myelin-forming OLs during development, a pool of immature OPCs persists throughout the adult brain, including the subventricular zone. These adult OPCs continuously generate new oligodendrocytes in the white matter. In cases of brain injury and neurological disorders, adult OPCs are recognized as a key component of the endogenous response that contributes to the recovery of brain function. Upon receiving demyelinating

signals, OPCs actively proliferate and migrate to the injured regions. Their differentiation into mature oligodendrocytes and subsequent remyelination highlights the potential role of OPCs in myelin repair after injury⁴². While residual OPCs typically tend to proliferate and differentiate into OLs to mitigate white matter injury in demyelinating diseases⁴³, this process may be significantly hindered after ischemic stroke.

Although ischemic stroke induces endogenous oligodendrogenesis, which is vital for maintaining axonal structure and function. Animal and human studies have shown that the adult brain's capacity for self-repair is limited. Numerous approaches aimed at preserving or increasing OPC numbers to promote OLs differentiation and myelin regeneration have been taken for improving white matter integrity and neurological function after ischemic stroke ³. For example, interleukin 10 (IL-10) is a cytokine that plays a role in reducing neuroinflammation and preventing OPCs loss and white matter damage by reducing lipid reactive oxygen species (ROS)⁴⁴. Necrostatin-1, a programmed necrosis-specific inhibitor, has been reported to promote neurological recovery after ischemic stroke by protecting neural/glial antigen 2 (NG2) cells⁴⁵, and rosiglitazone, a diabetes drug, promotes white matter integrity repair and functional recovery with significant NG2 cell proliferation³⁹. Melatonin treatment has also been reported in the literature to improve neurological function after stroke, accompanied by neurogenesis and a significant increase in NG2 cells around the infarct area⁴⁶ (Table).

Regulation of angiogenesis and white matter integrity repair by microglia cells/macrophages after ischemic stroke

Neuroglial cells play important roles in neuroinflammation and neuroimmune response in poststroke neural injury and repair. Microglia have a dual effect: they can worsen brain damage, yet they also play a role in promoting brain repair⁴⁷.

Role of microglia in angiogenesis and BBB repair after stroke

Role of microglia in BBB destruction after AIS

After ischemic stroke, microglia are activated, characterized by a debranching morphology with

contractile processes and enlarged cell bodies. These activated microglia tend to cluster around the vasculature, which can result in vessel disintegration and upregulation of phagocytic CD68 expression in the penumbra⁴⁸, a region of salvageable brain tissue. One of the critical consequences of microglial activation after stroke is the impairment of BBB integrity. Microglia contribute to this damage by upregulating pro-inflammatory cytokines, such as interleukin-1 β (IL-1 β) and tumor necrosis factor- α (TNF- α)¹³. Evidence suggests that mitigating these microglial responses can be beneficial. For example, selective depletion of resident microglia in the early phase after ischemic stroke or modulation of microglia-mediated inflammatory responses has been shown to alleviate brain damage⁴⁹ (Fig. 2).

There are several therapeutic approaches aiming to protect the BBB by modulating microglial activity. For example, melatonin attenuates ischemia- and reperfusion-impaired BBB integrity by inhibiting high mobility group box-1 (HMGB1)-mediated microglia activation¹³ and GGF2 significantly alleviates I/R-induced BBB damage by inhibiting microglial cell activation and upregulation of inflammatory factors¹⁸. TNF-α-induced endothelial apoptosis secreted by M1 microglia leads to BBB destruction after ischemic stroke. Anti-TNFα (infliximab) reduces endothelial necrotic apoptosis and BBB leakage⁵⁰. Lipid nanoparticles targeting M2 microglia induced IL-10 production and enhanced M2 polarization of microglia, restored the damaged BBB after stroke⁵¹ (Table).

Role of microglia in angiogenesis and BBB repair after AIS

Microglia are intimately involved in the brain's response to ischemic stroke, particularly in the process of angiogenesis. Following a stroke, microglia are often found clustered around blood vessels, forming perivascular clusters and phagocytic structures. Microglia exhibit different functional states, broadly categorized as M1 and M2. M1 microglia can release neuroinflammatory and neurotoxic mediators, but M2 microglia can promote neurogenesis and angiogenesis by secreting insulin-like growth factor 1 (IGF-1), VEGF and brain-derived neurotrophic factor (BDNF)⁵², highlighting that they have reparative capacity in inducing neovascularization after stroke. There is a strong correlation between angiogenesis and

microglia recruitment and activation after ischemic stroke. Various interventions and observations underscore microglia's pro-angiogenic potential. For example, microglia dynamic activity is closely related to capillary blood flows around their cell bodies after photothrombosis-induced ischemia⁵³, and extracellular vesicles derived from hypoxia-preconditioned microglia promote angiogenesis in stroke mice⁵⁴. In addition, interleukin 4 (IL-4)-polarized microglia may attenuate ischemic stroke-induced injury by promoting angiogenesis via exosomes⁵⁵, and salvianolic acid C inhibits microglia polarization, promotes endothelial cell proliferation, angiogenesis, maintains BBB integrity, and exerts neurorestorative functions in cerebral ischemia⁵⁶. Furthermore, energy-restricted-mediated upregulation of SIRT6 inhibits microglia activation and enhances angiogenesis in cerebral ischemia by suppressing TXNIP⁵⁷ and oxygen-glucose deprivation (OGD)-pretreated and intra-arterially administered microglia may cross the BBB, secrete remodeling factors in the brain parenchyma, and exert pleiotropic therapeutic effects by promoting angiogenesis and axonal growth⁵⁸.

The role of microglia in post-stroke white matter integrity repair

Microglia-mediated inflammatory response

Microglia are continuously triggered during cerebral ischemia and exhibit heterogeneity. In the acute phase of ischemia, microglia polarize toward early anti-inflammatory and protective phenotypes, followed by a chronic deleterious pro-inflammatory phenotype in the later stages of the disease. Pro-inflammatory microglia secrete pro-inflammatory cytokines that exacerbate white matter damage by exacerbating OLs death and demyelination⁵⁹, and microglial TLR4-dependent autophagy can result in ischemic white matter damage via STAT1/6 pathway⁶⁰. Protease-activated receptor 1 (PAR1) and PAR3 act as 3K3A-APC inhibitors of microglia responses and protect white matter and OLs from ischemic injury⁶¹. Other interventions also demonstrate protective effects. Minocycline protects white matter development from oxygen toxicity by blocking microglia morphology and IL-1β release and protecting OLs⁶².

The phagocytic activity of microglia in white matter integrity repair after AIS

The removal of myelin debris after white matter injury is a critical step for successful myelin regeneration. This process, known as demyelination, clears the way for OPCs to be recruited and mature into new OLs, which are responsible for producing myelin. Microglia are central to this regenerative process. They foster an environment conducive to pro-myelin OPC responses by secreting regenerative factors, altering the extracellular matrix, and phagocytosing inhibitory myelin debris. The efficiency of myelin debris removal can be enhanced by various mechanisms. For example, impairments in microglial function can severely hinder recovery. Triggering receptor expressed on myeloid cell-2 (TREM2) KO mice exhibit reduced numbers of activated microglia and phagocytes, leading to decreased phagocytosis and exacerbating ischemic injury⁶³. Additionally, lactolipid globule-epidermal growth factor 8 is a microglia phagocytosis-associated protein that enhances microglia phagocytosis to promote the differentiation of OPCs⁶⁴. Finally, the efficient clearance of myelin debris by microglia is vital. The clearance of myelin debris by microglia is severely blocked, affecting axon and myelin integrity. Thus, the phagocytic activity of microglia is important not only for regional clearance but also for effective myelin regeneration⁶⁵.

Role of secreted molecules from microglia in white matter integrity repair after AIS

Several secreted molecules from microglia are known to be involved in the microglia-mediated repair of white matter damage after AIS. It has been found that selective deletion of microglia Na/H exchanger-1 (Nhe1) can accelerate restorative microglia-OLs communication by stimulating BDNF secretion to exert an effect on white matter myelin formation⁶⁶. In addition, the CD11c microglia population expresses characteristic myelin genetic profiles, enabling them to play a fundamental role in white matter repair during the recovery phase of stroke⁶⁷. Interleukin 33 (IL33) and its receptor ST2 (interleukin 1 receptor-like 1) can regulate microglia activity, protect OLs and OPCs from ischemic injury, and improve white matter integrity⁶⁸. Many genes upregulated in microglia stimulated by Regulatory T cell (Treg) encode cell-released factors that promote oligodendrocyte generation and white matter repair⁶⁹. M2 microglia-derived extracellular vesicles promote proliferation, survival, and maturation of

OPCs, oligodendrogenesis, and white matter repair after ischemic stroke⁷⁰.

The role of macrophages in BBB and white matter integrity after AIS

In addition to microglia, infiltrating monocyte-derived macrophages (MoDM) are another key mediator of immune responses in the brain. For example, activating the neuroprotective phenotype of macrophages and enhancing TJP expression in the brain can facilitate neurovascular remodeling during stroke recovery⁷¹, and macrophages can accelerate the clearance of myelin debris, which in turn promote myelin regeneration after stroke⁷².

Microglia and macrophages (MG/M Φ) can drive angiogenesis and oligodendrogenesis via a paracrine mechanism. For example, permanent depletion of MG/M Φ via antagonism of the colony-stimulating factor 1 receptor resulted in loss of poststroke angiogenesis and oligodendrogenesis 73 . In addition, targeted ablation of signal transducer and activator of transduction 1 in MG/M Φ can promote white matter recovery after ischemic stroke 74 , and IL-13 can improve the white matter integrity after ischemic stroke by promoting the polarization of MG/M Φ 75 . Furthermore, TGF α in MG/M Φ can preserve oligodendrocyte lineage cells and improve white matter integrity after cerebral ischemia 76 . Of note, C-C-motif receptor (CCR2) deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice 77 and transplantation of monocyte-derived macrophages (RAMf) into stroke-affected mice improves white matter integrity and vascular repair 78 .

Regulation of angiogenesis and white matter integrity repair by astrocytes after ischemic stroke

Astrocytes are the most abundant cell type in the CNS, and astrocytes are a key structural and functional part of the synaptic and neurovascular unit and communicate with neurons, OLs, and ECs⁷⁹. Astrocytes provide many housekeeping functions, including structural support, BBB formation, neuronal metabolism, extracellular environment maintenance, cerebral blood flow regulation, cell-cell communication stabilization, neurotransmitter synthesis, and defense against oxidative stress¹¹. Inhibition of reactive astrocytes with fluorocitrate ameliorates learning and memory impairment in ischemic stroke rats⁸⁰.

Role of astrocytes in angiogenesis and BBB repair after AIS

Dual role of astrocytes in BBB integrity after AIS

Astrocytes are critical in maintaining the BBB and regulating brain health. Their terminals, rich in gap junction channels, form a perivascular pathway around blood vessels, facilitating intercellular transport between adjacent endfeet⁸¹. The endfeet of astrocytes also wrap around the brain blood vessels, helping to maintain the tight junctions of the BBB and preventing harmful substances from entering the brain tissue. Beyond structural support, astrocytes secrete factors vital for BBB stability and repair, including glial fibrillary acidic protein and VEGF⁸². They also contribute to BBB integrity through the secretion of Wnt, which mediates Wnt/ β -catenin activity in both ECs and astrocytes ⁸³. However, astrocytes can also hurt BBB integrity. Ischemic stroke can induce astrocytes to transform into the A1 phenotype with neurotoxic properties, exacerbating brain damage⁸⁴. After ischemic stroke, these A1-reactive astrocytes release pro-inflammatory factors IL-1 β and TNF- α , which modulate the inflammatory response and increase BBB permeability, while cottonseed oil can reduce the activation of A1 phenotype neurotoxic astrocytes, inhibit the inflammatory response, and attenuate post-ischemic stroke injury. In addition, astrocytes release chemokines that recruit immune cells to the site of injury, further affecting the integrity of the BBB⁸⁶(Fig. 2).

Role of astrocyte in angiogenesis after AIS

Astrocytes play a crucial role in protecting preexisting blood vessels and promoting vascular repair and remodeling after stroke. During the repair phase of cerebral ischemia, proliferating reactive astrocytes migrate to the edge of the injury area⁸⁷. Astrocytes and ECs interact closely, and genes that are involved in vascular repair are upregulated in astrocytes after injury. Increasing the levels of HIF-1α, VEGF-A, and VEGF-R2 in astrocytes promotes angiogenesis during cerebral ischemic repair⁸⁸. Astrocyte HMGB1 enhances IL-6 differentiation through the PI3K/AKT signaling pathway to promote post-stroke angiogenesis and functional recovery⁸⁹. Imaging study shows that astrocytes actively bind to new vessel segments after stroke, and specific ablation of proliferating astrocytes in the peri-infarct cortex leads to failure of the

vascular remodeling response and long-term blood flow defects⁸⁷. HMGB1 in astrocytes can promote endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery⁹⁰. In addition, astrocyte HMGB1-mediated post-stroke depression and anxiety-like behavior inhibition were also found to promote angiogenesis and functional recovery⁸⁹.

The role of astrocytes in post-stroke white matter integrity repair

The role of astrocyte-mediated phagocytosis of myelin debris in white matter injury and repair Astrocytes also play a crucial role in maintaining healthy myelin formation. It has been shown that accumulation of lipid droplets or myelin membrane-like debris is observed in the lysosomes of astrocytes, suggesting that astrocytes are also involved in the maintenance of myelin homeostasis by phagocytosis of myelin¹⁰⁸. Astrocytes recognize myelin debris for phagocytosis via receptors such as cytosolic low-density lipoprotein-receptor-related protein 1 and multiple EGF-like structural domain 10 (MEGF10)⁹¹. However, over-activated astrocyte cells can lead to excessive myelin phagocytosis, which may result in secondary brain damage (Fig. 2). Astrocyte lipid carrier protein-2 is responsible for myelin uptake by astrocytes through binding to lipoprotein-receptor-related protein 1, exacerbating demyelination and cognitive impairment⁹².

Role of astrocyte-induced secreted molecules in white matter repair

Astrocytes are crucial in regulating the development of OPCs related to the process of myelin regeneration. BDNF expression plays an important role in oligodendrocyte-lineage cell-cell interactions in myelin homeostasis⁹³. During endogenous recovery from white matter ischemic injury, astrocytes support OPCs maturation by secreting BDNF⁹⁴. Several neurotrophic and growth factors, including neurotrophic factor-3, platelet-derived growth factor, and ciliary neurotrophic factor, are essential for OLs proliferation and differentiation.

However, the role of astrocytes is not always straightforward. For example, OGD induces activation of astrocytes, and exosomes from astrocytes under hypoxic conditions can inhibit proliferation while promoting differentiation and migration of OPCs *in vitro*⁹⁵. Moreover, pericyte medium significantly enhanced the ability of astrocyte medium to promote OPC

differentiation and myelin formation⁹⁶. Astrocyte tumor necrosis factor receptor 2 activation induces chemokine C-X-C Motif Ligand 12 (CXCL12) expression in demyelination, thereby promoting OPCs proliferation and differentiation⁹⁷. Despite these supportive roles, evidence also suggests that astrocytes can impede myelin repair. Stroke initially induces an initial proliferative and repair response in OPCs, but this response is inhibited by inhibin A secreted by reactive astrocytes, thereby blocking myelin repair and recovery⁹⁸. Additionally, astrocytederived chemokine C-X-C Motif Ligand 5 (CXCL5) exacerbates white matter damage and cognitive decline after cerebral ischemia by inhibiting microglia phagocytosis of myelin debris⁹⁹. Astrocytes can also cause OPCs maturation arrest in impaired white matter integrity by inducing cyclooxygenase 2-prostaglandin E2 signaling¹⁰⁰. Overall, these studies suggest that the activation status of astrocytes may determine the outcome of myelin formation.

Role of interactions between oligodendroglial cells and endothelial cells in angiogenesis and white matter integrity repair after ischemic stroke

Intercellular interactions between endothelial cells and OLs are also important for maintaining brain function, especially in the white matter. In addition to astrocytes and pericytes, a subset of OPCs is also close to the vasculature, and in this microenvironment, or so-called oligovascular niche, brain endothelial cells and OPCs communicate closely to maintain the BBB and to maintain OPCs homeostasis¹⁰¹. In white matter, stroke recovery should be based on re-establishing connections. During recovery after stroke, axons must be appropriately regenerated to re-normalize neuronal network connections, and blood vessels must be repaired to regain metabolic supplies of oxygen and glucose, as the "wiring and plumbing" theory has been proposed by Arai and Lo¹⁰¹.

Oligodendroglial-endothelial interactions regulate angiogenesis after ischemic stroke

In the brain, neural cells and blood vessels form a complex network of interconnections. In addition to pericytes and astrocytes, OLs-lineage cells monitor the BBB and ECs¹⁰². For example, OPCs can damage the BBB by secreting matrix metalloproteinase 9 (MMP-9) during white matter injury caused by chronic cerebral hypoperfusion¹⁰³.

OPCs transplantation can promote oligodendrogenesis, angiogenesis, which reduces infarct volume in early ischemia and cerebral atrophy volume in recovery, and induced angiogenesis promotes OPCs migration and myelin remodeling, improving ischemic stroke prognosis¹⁰⁴. OPC-encoded HIF can induce postnatal white matter angiogenesis and can directly stimulate endothelial cell proliferation, and OPC-specific HIF1/2α loss of function leads to insufficient callosal angiogenesis and catastrophic axonal loss¹⁰⁵. Treatment with hypoxic OPC-conditioned medium 5 times daily, starting 2 days after ischemic stroke, promotes post-stroke angiogenesis and improves functional impairment⁶. After white matter injury, mature OLs secrete a well-known angiogenic factor, MMP-9, to promote vascular remodeling¹⁰⁶. Hypoxic OPCs secreted a greater amount of pro-angiogenic factors, such as VEGF and angiopoietin-1¹⁰⁷. Although astrocytes and pericytes are regulators of BBB maturation and maintenance, OPCs also play a key role in promoting BBB integrity by upregulating TJPs through transforming growth factor-β (TGF-β) signaling¹⁰⁸.

Oligodendroglial-endothelial interactions regulate white matter repair after ischemic stroke

The regeneration of OLs and the maturation of OPCs depend on the number of local angiogenesis in this brain, and microvascular dysfunction and loss of white matter integrity predict a poor prognosis in patients with acute ischemic stroke¹⁰. OLs may act as sensors of white matter injury and maintain white matter homeostasis by secreting angiogenic factors¹⁰⁶. In addition, OPCs migration requires physical interaction with the vascular endothelium¹⁰⁹. Endothelial cells-derived from human induced pluripotent stem cells benefit myelin protection and regeneration by increasing the proliferation, migration, and differentiation of OPCs through secreted soluble factors BDNF¹¹⁰. Factors released by brain endothelial cells activate Src and Akt signaling to maintain OPCs proliferation¹¹¹. Deletion of the interferon gene stimulator of the endothelium perturbs metabolic homeostasis in endothelial cells and increases interleukin 17D production, thereby inhibiting OLs development and myelin formation¹¹². Endothelial caveolin-1 restores normal vascular-OPCs interactions, promotes oligodendrogenesis, and attenuates ischemic myelin damage¹¹³. In addition, endothelial cells exert myelin debris

clearance through the degradation of phagocytosed myelin debris by the autophagy-lysosomal pathway¹¹⁴.

The effect of OPC-neuron interaction on the integrity of BBB and white matter

In the nervous system, the only known neuron-glial synapse is the one between neurons and OPCs. These neuron-OPC synapses are dynamically assembled and use Ca²⁺ signaling to play a key role in the CNS¹¹⁵. OPCs affect white matter impairment by differentiating into OLs for myelin formation, but they can also form synaptic connections with neurons or secrete factors that regulate neuronal function. Neurons themselves promote oligodendrocyte differentiation, remyelination, and improve working memory in mice after ischemic white matter injury¹¹⁶. Additionally, neurons regulate the BBB and neurovascular coupling¹¹⁷, as seen with the neuronal zinc transporter ZNT3, which can regulate ischemic stroke-induced BBB damage¹¹⁸.

Coupling of white matter repair and angiogenesis as a therapeutic strategy after ischemic stroke

Therapies in basic research have targeted vascular remodeling or white matter integrity repair after ischemic stroke to alleviate neurological deficits^{26, 40}. Long-term neural functional recovery is strongly associated with angiogenesis and oligodendrogenesis¹¹⁹. However, drugs that can effectively promote neural functional repair are still lacking. Therefore, the therapies could target the interaction between glial cells and endothelial cells to promote neovascularization and white matter repair.

Growth factors that can stimulate angiogenesis and oligodendrogenesis

Several studies have shown that neuroprotective agents have an important role in white matter repair and revascularization after ischemic stroke. Microglia and astrocytes release a variety of neuroprotective agents, including erythropoietin (EPO), VEGF, and glial cell-derived neurotrophic factor, all of which can reduce injury after ischemic stroke. For example, minocycline and EPO can reduce oligodendrocyte apoptosis, promote myelin regeneration, and improve white matter integrity¹²⁰, and EPO can also promote endothelial cell proliferation and migration and stimulate angiogenesis by upregulating VEGF expression¹²¹. In addition,

atorvastatin can promote the induction of VEGF and BDNF post-stroke angiogenesis and brain plasticity, and enhance functional recovery¹²², and delayed recombinant fibroblast growth factor 21 (rFGF21) administration can improve cerebrovascular remodeling and white matter repair after stroke in diabetic mice ¹²³.

Extracellular vesicles (EVs)

EVs, which can transfer a wide range of molecules such as lipids, nucleic acids, and proteins, serve as a new platform for complex intercellular communication¹²⁴. EVs of astrocyte cell origin are actively involved in cerebral angiogenesis, neural synapse regeneration, maintenance of neurohomeostasis, and neuroprotection after stroke¹²⁵. Astrocyte-derived exosomes can exert pro-angiogenic, neurogenic, and synaptogenic effects through the release of VEGF and FGF-2¹²⁶. Astrocyte-derived EVs accelerate OPC proliferation by upregulating cell cycle protein D1 via laminin Beta 2 ¹²⁷. In vitro, experimental studies show that astrocyte-derived exosomes improve OPC differentiation and migration in the OGD/R model⁹⁵. Extracellular vesicles derived from inflammatory microglia inhibit myelin regeneration, whereas extracellular vesicles produced by pro-regenerative microglia are effective in promoting myelin repair. A microglia depletion model suggests that injection of regenerating microglia-derived EVs rescues OPCs differentiation and functional recovery¹²⁸. In addition, endothelial cell-derived EVs can promote nerve regeneration by activating the PI3K/AKT/PTEN signaling pathway¹²⁹. Brain endothelium-derived EVs attenuate BBB permeability and improve neurological function by regulating caveolin-1-dependent ZO-1 and claudin-5 endocytosis¹³⁰ and anti-inflammatory effects¹³¹ after ischemic stroke.

Chemokine receptor antagonists or chemokine inhibitors

Studies have shown that activation of the C-C motif chemokine 5 (CCL5)-chemokine C-C-motif receptor 5 (CCR5) signaling pathway significantly promotes neuroinflammation and neurological deficits after ischemic stroke¹³². CCL2 and CCL5 have been shown to cause leukocyte recruitment, which induces disruption of the BBB, thereby exacerbating cerebral ischemia/reperfusion injury¹³². Inhibition of CCR5 or CXCR4 chemokine pathways attenuates

inflammatory white matter injury. A novel CCR5 antagonist, A14, significantly inhibited reactive proliferation of post-stroke glial cells, reduced infiltration of peripheral immune cells, and promoted repair after ischemic stroke¹³³. Maraviroc (CCR5 antagonist) and plerixafor (AMD3100), a CXC chemokine receptor 4 (CXCR4) antagonist, improve recovery after traumatic brain injury¹³⁴. In the OGD/R model, interleukin 1 receptor antagonist (IL-1RA) prevents acute brain injury by inhibiting neutrophil migration through inhibition of astrocyte CXCL1 expression¹³⁵. Maraviroc down-regulates the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in microglia and attenuates the neuroinflammatory response after cerebral ischemia/reperfusion injury¹³⁶.

Anti-inflammatory drugs

Inflammatory responses after ischemic stroke play an important role in white matter injury and BBB disruption. On one hand, microglia and astrocytes activate and release pro-inflammatory factors (e.g., TNF- α , IL-1 β , and IL-6) and chemokines, which exacerbate white matter injury. On the other hand, by disrupting proteins that tightly connect endothelial cells in the BBB and the components of the basement membrane, inflammatory factors increase vascular permeability. The Wnt/ β -catenin pathway activator TWS119 promotes angiogenesis after ischemic stroke by modulating microglia to an anti-inflammatory phenotype¹³⁷. Levetiracetam stimulated angiogenesis and functional recovery after cerebral ischemia mediated by anti-inflammatory and anti-apoptotic activities as well as induced expression of heat shock protein 70 (HSP70), VEGF, and HIF-1 α ¹³⁸. L-4F, an economical apolipoprotein A member I mimetic peptide, reduces macrophage infiltration and neuroinflammation, providing a recovery strategy for stroke by promoting neurovascular and white matter remodeling¹³⁹.

Regulation of related phagocytosis signaling molecules

Astrocyte- and microglia-mediated phagocytosis has regulatory effects on pathological repair after injury. Astrocytes and microglia recognize and phagocytose necrotic cell debris, apoptotic neurons, and damaged myelin debris, thereby reducing toxic accumulation and inhibiting the spread of secondary inflammation ¹⁴⁰. Pentoxifylline promotes myelin debris phagocytosis by

microglia and attenuates white matter damage by upregulating Mer receptor tyrosine kinase (Mertk) expression in the bilateral common carotid artery stenosis model and primary cultured microglia¹⁴¹. Overexpression of macrophage scavenger receptor 1 leads to increased phosphorylation of Akt via histamine receptor H1, which promotes myelin debris clearance accelerated by phagocytosis of myelin debris by microglia¹⁴². Notably, prolonged or dysregulated phagocytosis may lead to undesirable consequences, and thus precise regulation of the spatiotemporal balance of phagocytosis is a key target for promoting neural repair.

Factors to consider when stimulating angiogenesis and white matter repair

The impact of comorbidities

The presence of comorbidities significantly impacts angiogenesis, white matter repair, and the overall therapeutic window following a stroke. While angiogenesis can promote neural functional recovery after stroke, patients with conditions such as diabetes and obesity often face complications.

Diabetes, for instance, can trigger dysfunctional and uncontrolled angiogenesis in the cerebral vascular system, which may lead to a hemorrhagic conversion and toxic edema¹⁴³. This can worsen cognitive and motor impairments, delaying recovery after ischemic stroke¹⁴³. Furthermore, diabetes can exacerbate white matter damage of cerebral ischemia¹⁴⁴, as high-glucose conditions can cause microglia/macrophages to adopt a pro-inflammatory state. This, in turn, inhibits the differentiation of OPCs, thereby impairing white matter repair¹⁴⁵.

Obesity can also negatively affect angiogenesis¹⁴⁶ and is linked to impaired white matter integrity¹⁴⁷. In fact, previous studies have shown a negative correlation between obesity and white matter integrity¹⁴⁷. Additionally, obesity can significantly increase stroke-induced brain edema, which results in worsened long-term recovery¹⁴⁸. This suggests that weight loss may be a beneficial strategy to normalize pre-stroke glucose metabolism, reduce post-stroke complications in diabetic populations, and improve functional recovery ¹⁴⁹.

Translational Challenges: rodents vs. humans

Significant differences between rodents and humans, particularly in the brain composition and structure, present challenges for translating stroke repair research. In rodents, white matter constitutes only about 10% of the brain volume¹⁵⁰. In contrast, it makes up roughly 45% of the

human brain volume¹⁵⁰. The human brain also has a more complex white matter network. This substantial difference means that white matter damage has a far more pronounced impact on cognitive and motor functions in humans than in rodents, directly influencing the translational potential of stroke repair research findings.

Conclusion

In summary, glial cells not only perform multiple functions in the microvasculature, such as promoting neovascularization and maintaining BBB integrity, but also play a crucial role in repairing white matter integrity after cerebral ischemia. In particular, glial cells systematically drive neurological recovery by secreting various growth factors and mediating debris removal through phagocytosis. This highlights the importance of investigating glial cell interactions, both among themselves and with endothelial cells, as a therapeutic target.

Acknowledgments

This work was supported by Beijing Natural Science Foundation (7252192) and by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM202310025027). This work was also supported by the National Natural Science Foundation of China (81870973, 81671145).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' contributions

WD, WL, YS, PG drafted the manuscript, WD prepared the figures and table. CG, PG and XJ revised the manuscript. All authors agreed on the final manuscript.

Reference

- Jin X, Liu J, Liu W. Early Ischemic blood brain barrier damage: A potential indicator for hemorrhagic transformation following tissue plasminogen activator (tPA) thrombolysis?
 Curr Neurovasc Res 2014; 11(3): 254-62.
- O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW.
 1,026 experimental treatments in acute stroke. *Annals of neurology* 2006; 59(3): 467-77.
- 3. Hu X, Geng P, Zhao X, Wang Q, Liu C, Guo C *et al.* The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. *Neurobiology of disease* 2023; 180: 106076.
- Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain:
 an evolving field for stroke research. *Prog Neurobiol* 2018.
- 5. Etherton MR, Wu O, Giese AK, Lauer A, Boulouis G, Mills B *et al.* White Matter Integrity and Early Outcomes After Acute Ischemic Stroke. *Translational stroke research* 2019; 10(6): 630-638.
- 6. Kishida N, Maki T, Takagi Y, Yasuda K, Kinoshita H, Ayaki T *et al.* Role of Perivascular Oligodendrocyte Precursor Cells in Angiogenesis After Brain Ischemia. *Journal of the American Heart Association* 2019; 8(9): e011824.
- 7. Wang X, Shi Y, Chen Y, Gao Y, Wang T, Li Z *et al.* Blood-Brain Barrier Breakdown is a Sensitive Biomarker of Cognitive and Language Impairment in Patients with White Matter Hyperintensities. *Neurology and therapy* 2023; 12(5): 1745-1758.
- 8. Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT et al. Vascular remodeling

- after ischemic stroke: mechanisms and therapeutic potentials. *Prog Neurobiol* 2014; 115: 138-56.
- Grinchevskaya LR, Salikhova DI, Silachev DN, Goldshtein DV. Neural and Glial Regulation of Angiogenesis in CNS in Ischemic Stroke. *Bull Exp Biol Med* 2024; 177(4): 528-533.
- 10. Rost NS, Cougo P, Lorenzano S, Li H, Cloonan L, Bouts MJ *et al.* Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. *J Cereb Blood Flow Metab* 2018: 271678X17706449.
- 11. Wang YP, Du WH, Hu XY, Yu X, Guo C, Jin XC et al. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharmaceutica Sinica B 2023; 13(12): 4667-4687.
- 12. Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. *J Cereb Blood Flow Metab* 2023; 43(7): 1042-1059.
- 13. Chen S, Sun Y, Li F, Zhang X, Hu X, Zhao X *et al.* Modulation of alpha7nAchR by melatonin alleviates ischemia and reperfusion-compromised integrity of blood-brain barrier through inhibiting hmgb1-mediated microglia activation and crtc1-mediated neuronal loss. *Cell Mol Neurobiol* 2022; 42(7): 2407-2422.
- 14. Li F, Liu WC, Wang Q, Sun Y, Wang H, Jin X. NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. *Biochem Pharmacol* 2020; 171: 113720.

- 15. Wang Y, Wang X, Zhang X, Chen S, Sun Y, Liu W *et al.* D1 receptor-mediated endogenous tPA upregulation contributes to blood-brain barrier injury after acute ischaemic stroke. *J Cell Mol Med* 2020; 24(16): 9255-9266.
- 16. Kim KA, Kim D, Kim JH, Shin YJ, Kim ES, Akram M et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids Barriers CNS 2020; 17(1): 21.
- 17. Hu X, Dong J, Geng P, Sun Y, Du W, Zhao X *et al.* Nicotine treatment ameliorates blood-brain barrier damage after acute ischemic stroke by regulating endothelial scaffolding protein Pdlim5. *Transl Stroke Res* 2024; 15(3): 672-687.
- 18. Zhang XL, Du WH, Qian SX, Lu XD, Yu X, Fang HL et al. Glial growth factor 2 treatment alleviates ischemia and reperfusion-damaged integrity of the blood-brain barrier through decreasing Mfsd2a/caveolin-1-mediated transcellular and Pdlim5/YAP/TAZ-mediated paracellular permeability. Acta Pharmacol Sin 2024; 45(11): 2241-2252.
- Cai M, Zhang W, Weng Z, Stetler RA, Jiang X, Shi Y et al. Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke - Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. Aging Dis 2017; 8(5): 531-545.
- 20. Chern CM, Wang YH, Liou KT, Hou YC, Chen CC, Shen YC. 2-Methoxystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke. *Biochem Pharmacol* 2014; 87(3): 502-14.
- 21. Wang Z, Tsai LK, Munasinghe J, Leng Y, Fessler EB, Chibane F et al. Chronic

- valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. *Stroke* 2012; 43(9): 2430-6.
- 22. Yu SW, Friedman B, Cheng Q, Lyden PD. Stroke-evoked angiogenesis results in a transient population of microvessels. *J Cereb Blood Flow Metab* 2007; 27(4): 755-63.
- Yang Y, Kimura-Ohba S, Thompson JF, Salayandia VM, Cosse M, Raz L et al.
 Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat
 with neuroinflammatory white matter injury. Neurobiology of disease 2018; 114: 95-110.
- Zhang H, Rzechorzek W, Aghajanian A, Faber JE. Hypoxia induces de novo formation of cerebral collaterals and lessens the severity of ischemic stroke. *J Cereb Blood Flow Metab* 2020; 40(9): 1806-1822.
- 25. Williamson MR, Franzen RL, Fuertes CJA, Dunn AK, Drew MR, Jones TA. A Window of Vascular Plasticity Coupled to Behavioral Recovery after Stroke. *J Neurosci* 2020; 40(40): 7651-7667.
- Yang Y, Torbey MT. Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke. *Curr Neuropharmacol* 2020; 18(12): 1250-1265.
- 27. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H *et al.* Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. *Stem cells (Dayton, Ohio)* 2010; 28(3): 545-54.
- Zhang RL, Zhang ZG, Zhang L, Chopp M. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. *Neuroscience* 2001; 105(1): 33-41.
- 29. Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H et al. Endothelium-Targeted

- Deletion of microRNA-15a/16-1 Promotes Poststroke Angiogenesis and Improves Long-Term Neurological Recovery. *Circ Res* 2020; 126(8): 1040-1057.
- 30. Xie W, Huang T, Guo Y, Zhang Y, Chen W, Li Y *et al.* Neutrophil-derived cathelicidin promotes cerebral angiogenesis after ischemic stroke. *J Cereb Blood Flow Metab* 2023; 43(9): 1503-1518.
- 31. Zhang S, Liu C, Li W, Zhang Y, Yang Y, Yang H *et al.* Kaempferol promotes angiogenesis through HIF-1α/VEGF-A/Notch1 pathway in ischemic stroke rats.

 *Neurochemistry international 2025; 185: 105953.
- 32. Shibahara T, Nakamura K, Wakisaka Y, Shijo M, Yamanaka K, Takashima M *et al.*PDGFRbeta-positive cell-mediated post-stroke remodeling of fibronectin and laminin alpha2 for tissue repair and functional recovery. *J Cereb Blood Flow Metab* 2022: 271678X221145092.
- 33. Li T, Yang L, Tu J, Hao Y, Zhu Z, Xiong Y *et al.* The myeloid cell-driven transdifferentiation of endothelial cells into pericytes promotes the restoration of BBB function and brain self-repair after stroke. *eLife* 2025; 14.
- 34. Yang Y, Yang LY, Salayandia VM, Thompson JF, Torbey M, Yang Y. Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. *Transl Stroke Res* 2021; 12(5): 905-922.
- 35. Weterings RP, Kessels RP, de Leeuw FE, Piai V. Cognitive impairment after a stroke in young adults: A systematic review and meta-analysis. *International journal of stroke :*official journal of the International Stroke Society 2023; 18(8): 888-897.
- 36. Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M et al. Association of

- MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. *Stroke* 2010; 41(4): 600-6.
- 37. Wang H, Liu Y, Guo Z, Cui M, Pang P, Yang J *et al.* Enhancement of oligodendrocyte autophagy alleviates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats. *Acta Pharm Sin B* 2023; 13(5): 2107-2123.
- 38. Sozmen EG, Rosenzweig S, Llorente IL, DiTullio DJ, Machnicki M, Vinters HV *et al.*Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice. *Proceedings of the National Academy of Sciences of the United States of America* 2016; 113(52): E8453-e8462.
- 39. Han L, Cai W, Mao L, Liu J, Li P, Leak RK *et al.* Rosiglitazone Promotes White Matter Integrity and Long-Term Functional Recovery After Focal Cerebral Ischemia. *Stroke* 2015; 46(9): 2628-36.
- 40. Cheng YJ, Wang F, Feng J, Yu B, Wang B, Gao Q *et al.* Prolonged myelin deficits contribute to neuron loss and functional impairments after ischaemic stroke. *Brain* 2024; 147(4): 1294-1311.
- Watzlawik J, Warrington AE, Rodriguez M. Importance of oligodendrocyte protection,
 BBB breakdown and inflammation for remyelination. *Expert Rev. Neurother.* 2010;
 10(3): 441-57.
- 42. Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R *et al.*Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. *Proceedings of the National Academy of Sciences of the United States of America* 2002; 99(20): 13211-6.

- 43. Zhang R, Chopp M, Zhang ZG. Oligodendrogenesis after cerebral ischemia. *Front Cell Neurosci* 2013; 7: 201.
- 44. Wu W, Luo Z, Shen D, Lan T, Xiao Z, Liu M *et al.* IL-10 protects against OPC ferroptosis by regulating lipid reactive oxygen species levels post stroke. *Redox Biol* 2024; 69: 102982.
- 45. Chen Y, Zhang L, Yu H, Song K, Shi J, Chen L *et al.* Necrostatin-1 Improves Long-term Functional Recovery Through Protecting Oligodendrocyte Precursor Cells After Transient Focal Cerebral Ischemia in Mice. *Neuroscience* 2018; 371: 229-241.
- 46. Chern CM, Liao JF, Wang YH, Shen YC. Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. *Free Radic Biol Med* 2012; 52(9): 1634-47.
- 47. Guo H, Liu WC, Sun YY, Jin XC, Geng PP. Neuroglia and immune cells play different roles in neuroinflammation and neuroimmune response in post-stroke neural injury and repair. *Acta Pharmacol Sin* 2025.
- 48. Jolivel V, Bicker F, Binamé F, Ploen R, Keller S, Gollan R *et al.* Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. *Acta neuropathologica* 2015; 129(2): 279-95.
- 49. Li T, Zhao J, Xie W, Yuan W, Guo J, Pang S *et al.* Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. *J Neuroinflammation* 2021; 18(1): 81.
- 50. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L *et al.* Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after

- ischemic stroke. Cell death & disease 2019; 10(7): 487.
- 51. Gao M, Li Y, Ho W, Chen C, Chen Q, Li F *et al.* Targeted mRNA Nanoparticles

 Ameliorate Blood-Brain Barrier Disruption Postischemic Stroke by Modulating Microglia

 Polarization. *ACS nano* 2024; 18(4): 3260-3275.
- 52. Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. *Prog Neurobiol* 2016; 142: 23-44.
- 53. Masuda T, Croom D, Hida H, Kirov SA. Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. *Glia* 2011; 59(11): 1744-53.
- Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V *et al.* Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. *Cell Death Dis* 2021; 12(11): 1068.
- 55. Tian Y, Zhu P, Liu S, Jin Z, Li D, Zhao H *et al.* IL-4-polarized BV2 microglia cells promote angiogenesis by secreting exosomes. *Advances in clinical and experimental medicine : official organ Wroclaw Medical University* 2019; 28(4): 421-430.
- Shen H, Pei H, Zhai L, Guan Q, Wang G. Salvianolic acid C improves cerebral ischemia reperfusion injury through suppressing microglial cell M1 polarization and promoting cerebral angiogenesis. *International immunopharmacology* 2022; 110: 109021.
- 57. Song MY, Yi F, Xiao H, Yin J, Huang Q, Xia J *et al.* Energy restriction induced SIRT6 inhibits microglia activation and promotes angiogenesis in cerebral ischemia via transcriptional inhibition of TXNIP. *Cell death & disease* 2022; 13(5): 449.

- 58. Kanazawa M, Miura M, Toriyabe M, Koyama M, Hatakeyama M, Ishikawa M *et al.*Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. *Sci Rep* 2017; 7: 42582.
- 59. Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A *et al.* Selective role of Na(+)

 /H(+) exchanger in Cx3cr1(+) microglial activation, white matter demyelination, and post-stroke function recovery. *Glia* 2018; 66(11): 2279-2298.
- 60. Qin C, Liu Q, Hu ZW, Zhou LQ, Shang K, Bosco DB *et al.* Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. *Theranostics* 2018; 8(19): 5434-5451.
- 61. Huuskonen MT, Wang Y, Nikolakopoulou AM, Montagne A, Dai Z, Lazic D *et al.*Protection of ischemic white matter and oligodendrocytes in mice by 3K3A-activated protein C. *The Journal of experimental medicine* 2022; 219(1).
- 62. Schmitz T, Krabbe G, Weikert G, Scheuer T, Matheus F, Wang Y *et al.* Minocycline protects the immature white matter against hyperoxia. *Experimental neurology* 2014; 254: 153-65.
- 63. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL *et al.* Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 2015; 35(8): 3384-96.
- Dong X, Zhang Z, Shu X, Zhuang Z, Liu P, Liu R *et al.* MFG-E8 Alleviates Cognitive Impairments Induced by Chronic Cerebral Hypoperfusion by Phagocytosing Myelin

- Debris and Promoting Remyelination. *Neuroscience bulletin* 2024; 40(4): 483-499.
- 65. Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG *et al.*Inefficient clearance of myelin debris by microglia impairs remyelinating processes. *J*Exp Med 2015; 212(4): 481-95.
- 66. Song S, Oft H, Metwally S, Paruchuri S, Bielanin J, Fiesler V *et al.* Deletion of Slc9a1 in Cx3cr1(+) cells stimulated microglial subcluster CREB1 signaling and microglia-oligodendrocyte crosstalk. *J Neuroinflammation* 2024; 21(1): 69.
- 67. Jia J, Zheng L, Ye L, Chen J, Shu S, Xu S *et al.* CD11c(+) microglia promote white matter repair after ischemic stroke. *Cell Death Dis* 2023; 14(2): 156.
- 68. Xie D, Liu H, Xu F, Su W, Ye Q, Yu F *et al.* IL33 (Interleukin 33)/ST2 (Interleukin 1 Receptor-Like 1) Axis Drives Protective Microglial Responses and Promotes White Matter Integrity After Stroke. *Stroke* 2021; 52(6): 2150-2161.
- 69. Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q *et al.* Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. *Immunity* 2021; 54(7): 1527-1542.e8.
- 70. Li Y, Liu Z, Song Y, Pan JJ, Jiang Y, Shi X *et al.* M2 microglia-derived extracellular vesicles promote white matter repair and functional recovery via miR-23a-5p after cerebral ischemia in mice. *Theranostics* 2022; 12(7): 3553-3573.
- 71. Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. *Journal of neuroinflammation* 2015; 12: 26.

- 72. Li J, Wang C, Zhang Y, Huang Y, Shi Z, Zhang Y *et al.* Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke. *Theranostics* 2025; 15(2): 632-655.
- 73. Jin C, Shi Y, Shi L, Leak RK, Zhang W, Chen K *et al.* Leveraging single-cell RNA sequencing to unravel the impact of aging on stroke recovery mechanisms in mice.

 *Proc Natl Acad Sci U S A 2023; 120(25): e2300012120.
- 74. Han W, Pu H, Li S, Liu Y, Zhao Y, Xu M *et al.* Targeted ablation of signal transducer and activator of transduction 1 alleviates inflammation by microglia/macrophages and promotes long-term recovery after ischemic stroke. *J Neuroinflammation* 2023; 20(1): 178.
- 75. Chen D, Li J, Huang Y, Wei P, Miao W, Yang Y *et al.* Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. *J Neuroinflammation* 2022; 19(1): 112.
- 76. Dai X, Chen J, Xu F, Zhao J, Cai W, Sun Z *et al.* TGFalpha preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. *J Cereb Blood Flow Metab* 2020; 40(3): 639-655.
- 77. Pedragosa J, Miro-Mur F, Otxoa-de-Amezaga A, Justicia C, Ruiz-Jaen F, Ponsaerts P et al. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. *J Cereb Blood Flow Metab* 2020; 40(1_suppl): S98-S116.
- 78. Zhang X, Li H, Gu Y, Ping A, Chen J, Zhang Q *et al.* Repair-associated macrophages increase after early-phase microglia attenuation to promote ischemic stroke recovery.

 Nature communications 2025; 16(1): 3089.

- 79. Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. *Prog Neurobiol* 2016; 144: 103-20.
- 80. Zhang X, Shen X, Dong J, Liu WC, Song M, Sun Y et al. Inhibition of Reactive Astrocytes with Fluorocitrate Ameliorates Learning and Memory Impairment Through Upregulating CRTC1 and Synaptophysin in Ischemic Stroke Rats. Cell Mol Neurobiol 2019; 39(8): 1151-1163.
- 81. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. Signaling at the gliovascular interface. *J Neurosci* 2003; 23(27): 9254-62.
- 82. Zong X, Li Y, Liu C, Qi W, Han D, Tucker L *et al.* Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. *Theranostics* 2020; 10(26): 12090-12110.
- 83. Guérit S, Fidan E, Macas J, Czupalla CJ, Figueiredo R, Vijikumar A *et al.* Astrocytederived Wnt growth factors are required for endothelial blood-brain barrier maintenance.

 *Progress in neurobiology 2021; 199: 101937.
- 84. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L *et al.*Neurotoxic reactive astrocytes are induced by activated microglia. *Nature* 2017;

 541(7638): 481-487.
- 85. Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J *et al.* Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. *Journal of neuroinflammation* 2020; 17(1): 270.
- 86. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN *et al.* Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. *J Clin*

- Invest 2012; 122(7): 2454-68.
- 87. Williamson MR, Fuertes CJA, Dunn AK, Drew MR, Jones TA. Reactive astrocytes facilitate vascular repair and remodeling after stroke. *Cell reports* 2021; 35(4): 109048.
- 88. Li Y, Ma T, Zhu X, Zhang M, Zhao L, Wang P *et al.* Zinc improves neurological recovery by promoting angiogenesis via the astrocyte-mediated HIF-1α/VEGF signaling pathway in experimental stroke. *CNS neuroscience & therapeutics* 2022; 28(11): 1790-1799.
- 89. Chen JY, Yu Y, Yuan Y, Zhang YJ, Fan XP, Yuan SY *et al.* Enriched housing promotes post-stroke functional recovery through astrocytic HMGB1-IL-6-mediated angiogenesis. *Cell death discovery* 2017; 3: 17054.
- Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH. Astrocytic high-mobility group box
 promotes endothelial progenitor cell-mediated neurovascular remodeling during
 stroke recovery. *Proc Natl Acad Sci U S A* 2012; 109(19): 7505-10.
- 91. Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. *Glia* 2022; 70(6): 1009-1026.
- 92. Wan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M *et al.* Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. *Nature communications* 2022; 13(1): 1134.
- 93. Magami S, Miyamoto N, Ueno Y, Hira K, Tanaka R, Yamashiro K *et al.* The Effects of Astrocyte and Oligodendrocyte Lineage Cell Interaction on White Matter Injury under Chronic Cerebral Hypoperfusion. *Neuroscience* 2019; 406: 167-175.
- 94. Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N et al. Astrocytes Promote

- Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor. *J Neurosci* 2015; 35(41): 14002-8.
- 95. Xu Y, Tian Y, Wang Y, Xu L, Song G, Wu Q *et al.* Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro. *Molecular biology reports* 2021; 48(7): 5473-5484.
- 96. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M *et al.*Pericyte-Mediated Tissue Repair through PDGFRbeta Promotes Peri-Infarct

 Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic

 Stroke. *eNeuro* 2020; 7(2).
- 97. Patel JR, Williams JL, Muccigrosso MM, Liu L, Sun T, Rubin JB *et al.* Astrocyte TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS. *Acta Neuropathol* 2012; 124(6): 847-60.
- 98. Sozmen EG, DiTullio DJ, Rosenzweig S, Hinman JD, Bridges SP, Marin MA *et al.* White Matter Stroke Induces a Unique Oligo-Astrocyte Niche That Inhibits Recovery. *J Neurosci* 2019; 39(47): 9343-9359.
- 99. Cao Q, Chen J, Zhang Z, Shu S, Qian Y, Yang L *et al.* Astrocytic CXCL5 hinders microglial phagocytosis of myelin debris and aggravates white matter injury in chronic cerebral ischemia. *Journal of neuroinflammation* 2023; 20(1): 105.
- 100. Shiow LR, Favrais G, Schirmer L, Schang AL, Cipriani S, Andres C *et al.* Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. *Glia* 2017; 65(12): 2024-2037.

- 101. Arai K, Lo EH. Wiring and plumbing: Oligodendrocyte precursors and angiogenesis in the oligovascular niche. J Cereb Blood Flow Metab 2021; 41(8): 2132-2133.
- 102. Miyamoto N, Pham LD, Seo JH, Kim KW, Lo EH, Arai K. Crosstalk between cerebral endothelium and oligodendrocyte. *Cell Mol Life Sci* 2014; 71(6): 1055-66.
- 103. Seo JH, Miyamoto N, Hayakawa K, Pham LD, Maki T, Ayata C *et al.* Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. *J Clin Invest* 2013; 123(2): 782-6.
- 104. Wang LP, Pan J, Li Y, Geng J, Liu C, Zhang LY et al. Oligodendrocyte precursor cell transplantation promotes angiogenesis and remyelination via Wnt/beta-catenin pathway in a mouse model of middle cerebral artery occlusion. J Cereb Blood Flow Metab 2022; 42(5): 757-770.
- 105. Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SPJ *et al.*Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. *Cell* 2014; 158(2): 383-396.
- 106. Pham LD, Hayakawa K, Seo JH, Nguyen MN, Som AT, Lee BJ *et al.* Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. *Glia* 2012; 60(6): 875-81.
- Manukjan N, Majcher D, Leenders P, Caiment F, van Herwijnen M, Smeets HJ et al. Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood-brain barrier impairment. Acta neuropathologica communications 2023; 11(1): 128.
- 108. Seo JH, Maki T, Maeda M, Miyamoto N, Liang AC, Hayakawa K *et al.* Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling. *PLoS One*

- 2014; 9(7): e103174.
- 109. Tsai HH, Niu J, Munji R, Davalos D, Chang J, Zhang H *et al.* Oligodendrocyte precursors migrate along vasculature in the developing nervous system. *Science (New York, N.Y.)* 2016; 351(6271): 379-84.
- 110. Ma D, Zhang H, Yin L, Xu H, Wu L, Shaji R *et al.* Human iPSC-derived endothelial cells promote CNS remyelination via BDNF and mTORC1 pathway. *Glia* 2024; 72(1): 133-155.
- 111. Arai K, Lo EH. An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. *J Neurosci* 2009; 29(14): 4351-5.
- 112. Wang W, Wang Y, Su L, Zhang M, Zhang T, Zhao J et al. Endothelial Cells Mediated by STING Regulate Oligodendrogenesis and Myelination During Brain Development. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024; 11(38): e2308508.
- 113. Zhao Y, Zhu W, Wan T, Zhang X, Li Y, Huang Z *et al.* Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice.

 *Nature communications 2022; 13(1): 6813.
- 114. Zhou T, Zheng Y, Sun L, Badea SR, Jin Y, Liu Y et al. Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nature neuroscience 2019; 22(3): 421-435.
- 115. Li J, Miramontes TG, Czopka T, Monk KR. Synaptic input and Ca(2+) activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. *Nature* neuroscience 2024; 27(2): 219-231.

- 116. Deng S, Shu S, Zhai L, Xia S, Cao X, Li H et al. Optogenetic Stimulation of mPFC Alleviates White Matter Injury-Related Cognitive Decline after Chronic Ischemia through Adaptive Myelination. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2023; 10(5): e2202976.
- 117. Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood-brain barrier and neurovascular coupling. *Nat Rev Neurosci* 2020; 21(8): 416-432.
- 118. Qi Z, Zhou X, Dong W, Timmins GS, Pan R, Shi W *et al.* Neuronal Zinc Transporter ZnT3 Modulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption. *Aging Dis* 2023; 15(6): 2727-2741.
- 119. Lyu J, Liu L, Guo M, Li S, Su W, Liu J *et al.* Brain-targeted mild hypothermia ameliorates ischemic brain injury and promotes stroke recovery in aged mice. *J Cereb Blood Flow Metab* 2025: 271678X251346307.
- 120. Shumilov K, Xiao S, Ni A, Celorrio M, Friess SH. Recombinant Erythropoietin Induces
 Oligodendrocyte Progenitor Cell Proliferation After Traumatic Brain Injury and Delayed
 Hypoxemia. *Neurotherapeutics : the journal of the American Society for Experimental*NeuroTherapeutics 2023; 20(6): 1859-1874.
- 121. Kimáková P, Solár P, Solárová Z, Komel R, Debeljak N. Erythropoietin and Its Angiogenic Activity. *International journal of molecular sciences* 2017; 18(7).
- 122. Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A *et al.* Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. *J Cereb Blood Flow Metab* 2005; 25(2): 281-90.
- 123. Jiang Y, Han J, Li Y, Wu Y, Liu N, Shi SX et al. Delayed rFGF21 Administration

- Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice. *Transl Stroke Res* 2022; 13(2): 311-325.
- 124. Du W, He Y, Li L, Jin X, Geng P. The effects and mechanisms of stem cells and exosomes on neurological function protection and recovery after ischemic stroke.

 Neuroprotection 2025.
- 125. Li H, Luo Y, Zhu L, Hua W, Zhang Y, Zhang H *et al.* Glia-derived exosomes: Promising therapeutic targets. *Life sciences* 2019; 239: 116951.
- 126. Proia P, Schiera G, Mineo M, Ingrassia AM, Santoro G, Savettieri G *et al.* Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. *International journal of molecular medicine* 2008; 21(1): 63-7.
- 127. Cheng N, Xiong Y, Zhang W, Wu X, Sun Z, Zhang L *et al.* Astrocytes promote the proliferation of oligodendrocyte precursor cells through connexin 47-mediated LAMB2 secretion in exosomes. *Mol Biol Rep* 2022; 49(8): 7263-7273.
- 128. Raffaele S, Gelosa P, Bonfanti E, Lombardi M, Castiglioni L, Cimino M *et al.* Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. *Molecular therapy : the journal of the American Society of Gene Therapy* 2021; 29(4): 1439-1458.
- 129. Huang J, Zhang G, Li S, Li J, Wang W, Xue J *et al.* Endothelial cell-derived exosomes boost and maintain repair-related phenotypes of Schwann cells via miR199-5p to promote nerve regeneration. *Journal of nanobiotechnology* 2023; 21(1): 10.
- 130. Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y et al. Comparative study of extracellular

vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. *Journal of nanobiotechnology* 2023; 21(1): 70.

- 131. Hosseinkhani B, Duran G, Hoeks C, Hermans D, Schepers M, Baeten P et al. Cerebral microvascular endothelial cell-derived extracellular vesicles regulate blood brain barrier function. Fluids and barriers of the CNS 2023; 20(1): 95.
- 132. Yan J, Xu W, Lenahan C, Huang L, Wen J, Li G *et al.* CCR5 Activation Promotes

 NLRP1-Dependent Neuronal Pyroptosis via CCR5/PKA/CREB Pathway After

 Intracerebral Hemorrhage. *Stroke* 2021; 52(12): 4021-4032.
- 133. Wu QL, Cui LY, Ma WY, Wang SS, Zhang Z, Feng ZP *et al.* A novel small-molecular CCR5 antagonist promotes neural repair after stroke. *Acta pharmacologica Sinica* 2023; 44(10): 1935-1947.
- 134. Friedman-Levi Y, Liraz-Zaltsman S, Shemesh C, Rosenblatt K, Kesner EL, Gincberg G et al. Pharmacological blockers of CCR5 and CXCR4 improve recovery after traumatic brain injury. Experimental neurology 2021; 338: 113604.
- Huang X, Guo M, Zhang Y, Xie J, Huang R, Zuo Z *et al.* Microglial IL-1RA ameliorates brain injury after ischemic stroke by inhibiting astrocytic CXCL1-mediated neutrophil recruitment and microvessel occlusion. *Glia* 2023; 71(7): 1607-1625.
- 136. Chen B, Cao P, Guo X, Yin M, Li X, Jiang L *et al.* Maraviroc, an inhibitor of chemokine receptor type 5, alleviates neuroinflammatory response after cerebral Ischemia/reperfusion injury via regulating MAPK/NF-κB signaling. *International*

- immunopharmacology 2022; 108: 108755.
- 137. Song D, Zhang X, Chen J, Liu X, Xue J, Zhang L *et al.* Wnt canonical pathway activator

 TWS119 drives microglial anti-inflammatory activation and facilitates neurological

 recovery following experimental stroke. *Journal of neuroinflammation* 2019; 16(1): 256.
- 138. Yao X, Yang W, Ren Z, Zhang H, Shi D, Li Y *et al.* Neuroprotective and Angiogenesis Effects of Levetiracetam Following Ischemic Stroke in Rats. *Frontiers in pharmacology* 2021; 12: 638209.
- 139. Zhou M, Li R, Venkat P, Qian Y, Chopp M, Zacharek A et al. Post-Stroke Administration of L-4F Promotes Neurovascular and White Matter Remodeling in Type-2 Diabetic Stroke Mice. Frontiers in neurology 2022; 13: 863934.
- 140. Liang Z, Lou Y, Hao Y, Li H, Feng J, Liu S. The Relationship of Astrocytes and Microglia with Different Stages of Ischemic Stroke. *Current neuropharmacology* 2023; 21(12): 2465-2480.
- 141. Zheng L, Jia J, Chen Y, Liu R, Cao R, Duan M *et al.* Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance. *Journal of neuroinflammation* 2022; 19(1): 128.
- 142. Wei C, Wang T, Shi R, Yu X, Jiang J, Chen Y *et al.* Macrophage Scavenger Receptor 1 attenuates ischemic white matter injury via HRH1-mediated microglial phagocytosis.

 *Neuroscience letters 2024; 841: 137952.
- 143. Li W, Valenzuela JP, Ward R, Abdelbary M, Dong G, Fagan SC et al. Post-stroke neovascularization and functional outcomes differ in diabetes depending on severity of injury and sex: Potential link to hemorrhagic transformation. Exp Neurol 2019; 311:

106-114.

- 144. Song W, Yao Y, Zhang H, Hao X, Zhou L, Song Z et al. Sigma-1 Receptor Activation Improves Oligodendrogenesis and Promotes White-Matter Integrity after Stroke in Mice with Diabetic Mellitus. Molecules (Basel, Switzerland) 2023; 28(1).
- Ma S, Wang J, Wang Y, Dai X, Xu F, Gao X et al. Diabetes Mellitus Impairs White Matter Repair and Long-Term Functional Deficits After Cerebral Ischemia. Stroke 2018; 49(10): 2453-2463.
- 146. Hunyenyiwa T, Hendee K, Matus K, Kyi P, Mammoto T, Mammoto A. Obesity Inhibits

 Angiogenesis Through TWIST1-SLIT2 Signaling. *Frontiers in cell and developmental biology* 2021; 9: 693410.
- 147. Bouhrara M, Khattar N, Elango P, Resnick SM, Ferrucci L, Spencer RG. Evidence of association between obesity and lower cerebral myelin content in cognitively unimpaired adults. *International journal of obesity (2005)* 2021; 45(4): 850-859.
- 148. Ju H, Minker J, Pavlova I, Cho S, Kim ID. Acute, not delayed, treatment of aflibercept enhances vessel density in post-ischemic brain and promotes long-term stroke recovery in obese mice. *J Cereb Blood Flow Metab* 2025; 45(7): 1402-1412.
- 149. Karampatsi D, Zabala A, Wilhelmsson U, Dekens D, Vercalsteren E, Larsson M et al.
 Diet-induced weight loss in obese/diabetic mice normalizes glucose metabolism and promotes functional recovery after stroke. Cardiovasc Diabetol 2021; 20(1): 240.
- 150. Zhou W, Xia S, Wang C, Yang Q, Verkhratsky A, Niu J. Critical analysis of translational potential of rodent models of white matter pathology across a wide spectrum of human diseases. *Cell Death Dis* 2025; 16(1): 580.

Figure legends

Fig 1. Angiogenesis, BBB and white matter repair are essential for neural functional recovery after ischemic stroke. Erythropoietin (EPO), vascular endothelial growth factor (VEGF), and insulin-like growth factor 1 (IGF-1) which promote endothelial cell proliferation and stimulate angiogenesis, improve BBB repair. In addition, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and fibroblast growth factor (FGF) promote proliferation, survival, and maturation of OPCs, oligodendrogenesis, and white matter repair after ischemic stroke.

Fig 2. Role of microglia and astrocytes in the BBB and white matter integrity after stroke. A1-reactive astrocytes and M1 microglia release pro-inflammatory factors (IL-1 β , TNF- α , iNOS, IL-6, IL-12, IL-23), which modulate the inflammatory response and increase BBB permeability, exacerbating OLs death and demyelination. The phagocytic activity of microglia and astrocytes removes myelin debris and promotes myelin integrity. A2 reactive astrocytes and M2 microglia release anti-inflammatory (TNF- β , IL-1 α , COX-2, IL-10, IL-4) and growth factors (VEGF, BDNF, CNTF, PDGF, NT-3) that promote differentiation of OPCs and angiogenesis, improving the BBB and white matter integrity after ischemic stroke.

Table. Therapeutic strategies for white matter repair and angiogenesis after ischemic stroke.

Table 1: Therapeutic strategies for white matter repair and angiogenesis after ischemic stroke

Outcome	Theraputic strategy	Molecular targets/signal pathway	Dose	Injection Method	References
Reduced BBB damage	Glial growth factor 2 (GGF2)	Inhibition of microglia activation and upregulation of inflammatory factors	50 ng/kg/day	Tail vein injection	Wang et al,. 2023
	Nicotine	Regulation of the endothelial scaffolding protein pdlim5	4.5 mg/kg/day	Subcutaneous injection	Hu et al,. 2023
	Melatonin	Inhibiting HMGB1-Mediated Microglia Activation	15 mg/kg/day	Intraperitoneal injection	Chen et al,. 2022
	Neuroserpin	Reduction of ischemia-induced upregulation of endogenous tPA	20 μ mol/L, 3 μ L	Infused into striatum	Wang et al,. 2020
	Melatonin	Activation of MT2 melatonin receptor to reduce oxidation/inflammation	10 mg/kg/day	Intraperitoneal injection	Chern et al,. 2012
	infliximab	Ameliorating endothelial necroptosis, BBB destruction	5 mg/kg/day	Tail vein injection	Chen et al,. 2019
	M2 microglia-targeting lipid nanoparticle	Inducing IL-10 production and enhance the M2 polarization of microglia.	0.6 mg/kg mRNA	Tail vein injection	Gao et al,. 2024
	3-methyladenine	Inhibition of autophagy reduces OGD-induced degradation of occludin.	0.3mg / kg/day	Tail vein injection	Kim et al,.2020
	2-Methoxystypandrone	Limiting inflammation and oxidative stress by impairing NF-κB signaling	50 μg/kg/day	Intraperitoneal injection	Chern et al,. 2014
	Cottonseed oil	Reduced A1 phenotype neurotoxic astrocyte activation, inhibit the inflammatory response	1.3 ml/kg/day	Subcutaneous injection	Liu et al,. 2020
Angiogenesis	Omega-3 polyunsaturated fatty acids		4%/day	Fed	Cai et al,. 2017
	Kaempferol	HIF-1α/VEGF-A/Notch1 signaling pathway	50 mg/kg/day	Intragastric injection	Zhang et al,. 2025
	recombinant CAMP peptide	Promoting increased expression of angiogenesis- related genes	2 mg/kg/day	intracerebroventricular injection	Xie et al,. 2023
	Exosomes of endothelial progenitor cells Extracellular vesicles		50 μg	Tail vein injection	Wang et al,. 2020
	from hypoxia- preconditioned microglia	TGF-β/Smad2/3 pathway	10 μg	Femoral vein injection	Zhang et al,. 2021
	Atorvastatin	Induction of VEGF and BDNF	10 mg/kg /day	Subcutaneous injection	Chen et al., 2005
	Salvianolic acid C	Suppressing microglial cell M1 polarization	10 mg/kg /day	Intragastric injection	Shen et al,.2022
	Microglia preconditioned by oxygen-glucose deprivation	Secretion of VEGF, MMP-9 and TNF-β promotes M2 microglia polarization.	1 × 10 ⁶ /cell	External carotid artery infusion	Masato et al,. 2017
	TWS119	Modulating the anti-inflammatory phenotype of microglia	10 mg/kg /day	Intraperitoneal injection	Song et al,.2019
	L-4F	Reduced macrophage infiltration and neuroinflammation.	16 mg/kg/day	Subcutaneous injection	Zhou et al,.2022
	Levetiracetam	Mediated by anti-inflammatory and anti-apoptotic activities as well as induced expression of HSP70, VEGF, and HIF- 1α	150 mg/kg/day	Intraperitoneal injection	Yao et al,.2021
Reduced myelin loss	IL-10	Reduction of lipid ROS to prevent OPC loss and white matter damage.	$4\times10^9~v.g./mL$ virus in 2 μL	Infused into striatum	Wu et al,. 2024
	Necrostatin-1	Inhibition of RIPK1, RIPK3, MLKL and P-MLKL expression significantly reduced necroptosis in OPCs.	0.04 mg/kg/day	Ventricular injection	Chen et al,.2018
	Rapamycin	Enhancing autophagy reduces the death of mature oligodendrocytes	3mg / kg/day	Intraperitoneal injection	Wang et al,. 2023
	Melatonin	Activation of MT2 melatonin receptor to reduce oxidation/inflammation	10 mg/kg/day	Intraperitoneal injection	Chern et al,. 2012
	3K3A-activated protein C	Activation of protease-activated receptor 1 (PAR1) and PAR3 protects oligodendrocytes.	0.2 mg/kg/day	Tail vein injection	Huuskonen et al,. 2022
	Minocycline	Blocking hyperoxia-induced microglia morphological changes and IL-1β release.	45 mg/kg/day	Intraperitoneal injection	Schmitz et al,.2014
	Pentoxifylline	Facilitated microglial phagocytosis of myelin debris by up-regulating the expression of Mertk	50 mg/kg/day	Intraperitoneal injection	Zheng et al,. 2022
Remyelinatio n	NgR(OMNI)-Fc	Blocking the Nogo signaling pathway	1.05 μg	Stereoscopic positioning	Sozmen et al,. 2016
	Rosiglitazone	Promoteing oligodendrocyte formation and microglia M2 phenotype polarization.	3 mg/kg/day	Intraperitoneal injection	Han et al,. 2015
	Erythropoietin	Promoting myelin formation by enhancing the proliferation of oligodendrocyte lineage cells	5000 U / kg/day	Intraperitoneal injection	Shumilov et al,. 202
	Lactolipid globule- epidermal growth factor 8	Enhancing microglia phagocytosis to promote the OPCs differentiation.	400 nL	Bilateral CC injections	Dong et al,. 2024
	M2 microglia-derived	miR-23a-5p promotes OPC proliferation,	100 μg	Tail vein injection	Li et al,. 2022
	extracellular vesicles	survival and maturation			
		survival and maturation Promoted Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells	20 μL 50 μg/mL	under the epineurium of the sciatic nerve by using a micro syringe	Kurachi et al,. 2016

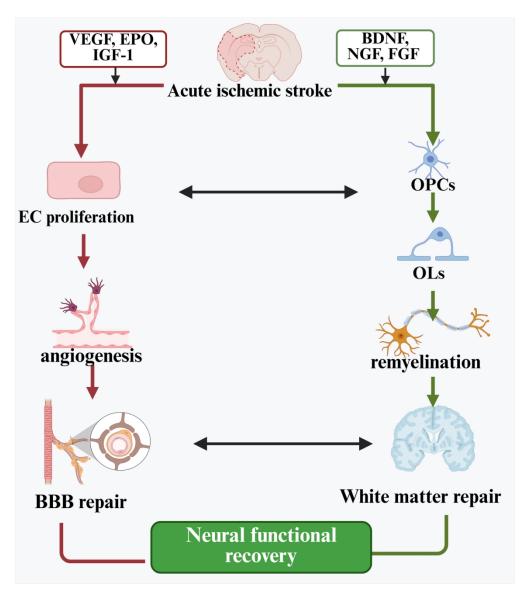


Fig.1 143x162mm (300 x 300 DPI)

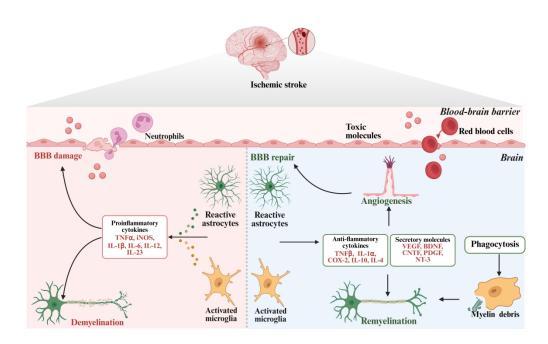


Fig.2 280x169mm (300 x 300 DPI)