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Abstract: We explore an interacting dark sector model in trace-free Einstein gravity
where dark energy has a constant equation of state, w = −1, and the energy-momentum
transfer potential is proportional to the cold dark matter density. Compared to the standard
ΛCDM model, this scenario introduces a single additional dimensionless parameter, ϵ, which
determines the amplitude of the transfer potential. Using a combination of Planck 2018
Cosmic Microwave Background (CMB), DESI 2024 Baryon Acoustic Oscillation (BAO),
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a mild 1σ preference for an energy-momentum transfer from dark matter to dark energy.
This preference is primarily driven by DESI BAO measurements below redshift 1.4, which
favor a slightly lower total matter density Ωm compared to CMB constraints. Although the
interaction remains weak and does not significantly alleviate the H0 and S8 tensions, our
results highlight the potential role of dark sector interactions in late-time cosmology.
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1 Introduction

The Planck mission has marked the beginning of an exciting decade for cosmology, with its high-
precision measurements of the cosmic microwave background [1–3]. The current understanding
of the evolving Universe is built on a straightforward assumption of its homogeneity and
isotropy, plus small inhomogeneous perturbations. Starting from this cornerstone, the widely
accepted standard cosmological paradigm is the ΛCDM model based on general relativity,
which assumes that dark matter is cold (CDM), single scalar-field inflation, and the existence
of a cosmological constant (Λ) as the theoretical basis for the Universe’s accelerated expansion.
The ΛCDM model has been remarkably successful in explaining observations ranging from
temperature and polarization anisotropies in the cosmic microwave background (CMB) [3–6],
to the large-scale structure of the Universe [7, 8]; however, concerns about the ΛCDM model
have been raised from both theoretical and observational perspectives since the model was
first developed [9–12]. On one hand, the ΛCDM model suffers from the fine-tuning and
coincidence problems [13]. The fine-tuning problem is that, assuming the ΛCDM model in
data analysis, the derived cosmological constant is 54 orders of magnitude smaller than the
vacuum energy predicted by quantum theory [14], while the coincidence problem is that
today’s energy density of total mass in the Universe, Ωm, coincides in order of magnitude with
that of the vacuum energy, ΩΛ. On the other hand, the cosmological parameters measured
from recent CMB observations disagree with those measured by local experiments at a 2–5σ
level. Among these tensions, the discrepancies in the Hubble constant H0 [15–25] and the
matter clustering parameter S8 ≡ σ8(Ωm/0.3)1/2 [26–43] stand out as the most significant.

Interacting dark energy (IDE) models have been proposed as a possible solution to these
tensions [44–77]. Although certain phenomenological interactions between dark matter and
dark energy have been found to relieve the tensions [68], they suffer from criticisms such as
large-scale instability and dependence on non-local variables [78], like the Hubble parameter,
which can be seen as a consequence of the first principle of thermodynamics [79].

Alternatively, the trace-free Einstein equations provide a minimal modification to the
usual Einstein equations that naturally allows IDE models where dark energy has a constant
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equation of state w = −1 (similar to interacting vacuum models), and the energy-momentum
transfer between dark matter and dark energy originates from a potential [80–82]. Importantly,
these IDE models are not affected by the large-scale instability that plagues many IDE
models [82, 83].

In general, the conservation of the matter stress-energy tensor does not follow from the
trace-free Einstein equations but rather represents an independent assumption that leads to
unimodular gravity, from which general relativity can be recovered with Λ playing the role of
a free integration constant [84]. Instead, by allowing violations of the conservation of the
matter stress-energy tensor, in the case where the energy-momentum loss is integrable, it is
possible to recast the dynamics in the form of the usual Einstein field equations; however,
now Λ is not a constant but rather a spacetime function [80, 81]. In this case, the trace-free
Einstein equations must be complemented by a specific model for the energy-momentum
transfer, which determines the evolution of Λ.

Within this context, it has been argued that energy-momentum non-conservation may
arise due to diffusive interactions of low-energy matter degrees of freedom with the discrete
quantum-gravity structures underlying spacetime [80]. Such non-conservation could poten-
tially have an impact on cosmological scales, for example as a source of dark energy [85, 86],
in alleviating the Hubble tension [81], the S8 tension [87], and on the CMB [88].

In this paper, we derive constraints from cosmological datasets for a simple IDE model
where the transfer potential is a linear function of the energy density of cold dark matter.
Compared to ΛCDM, the model features an additional dimensionless free parameter ϵ, which
represents the coupling strength between dark matter and dark energy and leads to an effective
non-zero sound speed of dark matter (due to this effect, the model can equally be understood
as a generalized dark matter model [89–92]). Requiring the absence of gradient instabilities
ensures that energy flows from dark matter to dark energy, restricting ϵ to non-negative values.

The paper is organized as follows. In section 2, we review the formulation of the
cosmological model at hand and its embedding within trace-free Einstein gravity. In section 3,
we discuss the methodology used for the numerical simulations and data analysis. Our
results are presented in section 4, where we discuss constraints on the parameters of the
model. Finally, in section 5, we conclude and summarize our findings. A supplementary
appendix A is also included, where we provide the dynamical equations for the cosmological
background and perturbations in the synchronous gauge for a more general model with an
arbitrary transfer potential.

2 Interactions in the dark sector

The trace-free Einstein equations

Rab − 1
4Rgab = κ

(
Tab − 1

4T gab,

)
(2.1)

where gab is the metric, Rab is the Ricci curvature, R = gabRab is the Ricci scalar, Tab is the
stress-energy tensor, T = gabTab is the trace of the stress-energy tensor, and κ ≡ 8πG is the
gravitational coupling, are closely related to the standard Einstein equations, although with
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the important difference that, in this formulation, the stress-energy tensor is not necessarily
conserved [84]. The energy-momentum transfer

Ja = κ∇bTab (2.2)

measures how strongly the conservation of the stress-energy tensor is violated. An interesting
case occurs when the energy-momentum transfer is integrable, that is, Ja = ∇aQ for some
function Q, in which case it is possible to rewrite the trace-free Einstein equations as [80–82]

Gab = κTab +Qgab , (2.3)

where Gab = Rab − 1
2Rgab is the Einstein tensor, and −Q can be seen as an effective

cosmological constant, except that it is not constant, but rather a spacetime function. Note
that, despite not being constant, Q nonetheless generates dark energy with an equation of state
w = −1. Clearly, the Bianchi identities ensure that κ∇aTab + ∇aQ = 0, so any variation in Q
must be compensated for in Tab. This provides a natural framework for an energy/momentum
exchange between dark energy and dark matter. While models incorporating interactions
with baryonic matter are possible, they would be tightly constrained by observations [93].

In this work, we constrain one such model where Q is linearly proportional to the energy
density of CDM [82]:

Q = −Λf + κϵρc , (2.4)
δQ = κϵ ρcδc . (2.5)

Here, Λf is an integration constant, ϵ is a dimensionless constant measuring the strength of
the transfer from dark matter to dark energy, ρc is the energy density of cold dark matter
which we split into background and perturbative pieces as ρc = ρc +δρc, and then δc = δρc/ρ̄c.
This is one of the simplest models of energy transfer between the dark sectors, and it is, in
fact, equivalent to generalized dark matter (GDM) models [89–92] with a constant equation
of state [82]. We assume that only cold dark matter interacts with dark energy, so taking
the divergence gives

κ∇bTCDM
ab + ∇aQ = 0 , (2.6)

where TCDM
ab is the stress-energy tensor for cold dark matter. Note that energy is transferred

from dark matter to dark energy for the case ϵ > 0, and in the reverse direction for ϵ < 0 .
There is no transfer at all for ϵ = 0, in which case Q = const .

This energy transfer modifies some of the equations of motion, both for the cosmological
background and for the perturbations. Working in terms of the conformal time η, for which
the Friedman-Lemaître-Robertson-Walker metric is ds2 = a(η)2[−dη2 + dx⃗2] with a(η) being
the scale factor, the equations for the background become

H2 = a2

3 (κρ− ϵκρc + Λf) , (2.7)

H2 + 2H′ = −a2 (κp̄+ ϵκρc − Λf) , (2.8)
(1 − ϵ)ρ′

c + 3Hρc = 0 , (2.9)
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where H = a′/a, and primes denote derivatives with respect to η. For the perturbations,
in terms of Fourier modes in the synchronous gauge,

δ′
c = − 1

1 − ϵ

(
θc + h′

2

)
, (2.10)

θ′
c = −1 − 4ϵ

1 − ϵ
Hθc + ϵk2δc , (2.11)

where k is the norm of the Fourier mode, θc is the velocity perturbation of cold dark matter,
and h is the trace of the metric perturbation in the synchronous gauge (and recall that
δc = δρc/ρc); for the precise definition of these quantities see, e.g., [94].

In addition to dark matter (treated as pressureless dust), Tab receives contributions
from baryons and radiation (photons and neutrinos), while, as explained above, Q is the
source of dark energy. The remaining equations of motion are given in appendix A. The
dynamics of tensor perturbations are unaffected, and the only deviations from ΛCDM appear
in the scalar sector.

Many interacting dark energy models with w ≠ −1 are affected by a large-scale instability,
which gives rise to a runaway growth of the velocity perturbation of dark energy, θDE [83].
However, since in this framework dark energy has w = −1, it is not necessary to define its
four-velocity or its perturbation θDE , since the four-velocity does not appear in the equations
of motion (the contribution to the right-hand side of (2.3) from dark energy is independent
of its four-velocity). In such a case, the instability results obtained in ref. [83] no longer
necessarily apply, and, in particular, the model considered here is free of this instability [82],
and we expect this will continue to be true for a large class of functions Q.

Note that the family of IDE models we consider here assumes a particular scalar function
Q, which is identified with −Λeff [82]. This convention differs from the standard literature,
where Q̃ (adding a tilde to avoid confusion) instead denotes the interaction between CDM
and dark energy; the relation is Q̃ = Q

′
/κ. For common choices in the literature, such as

Q̃ = H, Q would be an integral of H over time and be non-local in time.
Furthermore, in the cases studied so far, the requirement that there should be no gradient

instabilities on sub-horizon scales often determines the sign of the coupling. For this model,
this requirement gives ϵ > 0, since the effective sound speed of the interacting dark matter
is c2

s,eff = ϵ/(1 − ϵ) [82]. In turn, this implies that Q′
< 0: energy must flow from dark

matter to dark energy.
Lastly, we note that the trace-free Einstein equations (2.1) may also be derived from

an action principle by imposing the additional requirement of invariance under volume-
preserving diffeomorphisms [95]. This is known as unimodular gravity, but it comes with an
additional condition, the so-called unimodularity constraint, that fixes the volume element
to a non-dynamical background quantity. In this study, following [82], we work with the
field equations (2.1) without imposing the unimodularity condition, thus retaining full gauge
invariance. For technical aspects concerning the relation between unimodular gravity and
trace-free Einstein gravity, specifically concerning gauge invariance, see refs. [96, 97] and
references therein. Alternative action functionals that give the trace-free field equations (2.1)
have been formulated in refs. [98, 99]; however, due to the diffusive nature of interactions
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in the general framework considered here, an action principle formulation for IDE models
based on the trace-free Einstein equations may not be available.

3 Methodology and data

We analyzed the posterior distributions obtained using the publicly available Bayesian analysis
code COBAYA, which was developed based on its predecessor CosmoMC, while a fast-dragging
algorithm was implemented for efficient oversampling of the fast parameters — usually
experimental nuisance parameters [100, 101]. COBAYA allows us to combine the modified cos-
mological theory and experimental likelihoods with the Markov Chain Monte Carlo (MCMC)
sampling algorithm. To calculate the predictions of the model under consideration, we exploit
a modified version of the Cosmic Linear Anisotropy Solving System code (CLASS) [102]. In
our modified code, we updated the dark matter perturbation equations (according to (2.10)
and (2.11)) and the gravitational field equations (according to (A.8) and (A.9)) to be in
concordance with the IDE model in this work. The dynamical equations for the cosmolog-
ical background and perturbations in the synchronous gauge are reviewed in appendix A.
The parameters being sampled are the ϵ parameter, denoting the interaction, and the six
parameters from the baseline ΛCDM model, namely, the baryon energy density Ωbh

2, the
cold dark matter energy density Ωch

2, the angular size of the sound horizon at recombination
θs, the optical depth at reionization τ , the primordial scalar power spectrum amplitude As,
and the spectral index ns. Since the ϵ < 0 regime is not of interest in this work due to
its gradient instability, we assume a flat prior on ϵ ∈ [0, 0.1]. In table 1, we list the priors
applied to the parameters in our model.

The datasets used in this work are as follows:

• The full Planck 2018 temperature and polarization likelihoods [3, 103, 104], together
with the Planck 2018 lensing likelihood [105]. We refer to this dataset as Planck2018.

• The full Planck 2018 temperature and polarization likelihoods [3, 103, 104], together
with the Planck 2018 lensing likelihood [105], combined with DESI Baryon Acoustic
Oscillation (BAO) distance measurements from galaxies and quasars [106–108]. For
each sample at its effective redshift z, either both the transverse comoving distance
DM/rd and Hubble horizon DH/rd or the angle-averaged distance DV /rd is measured
by DESI, where distance measurements are scaled by rd. The full list of samples is
given in ref. [108]. We refer to this dataset as Planck2018+DESI.

• The full Planck 2018 temperature and polarization likelihoods [3, 103, 104], together with
the Planck 2018 lensing likelihood [105], combined with the Pantheon+ likelihood [109].
The Pantheon+ likelihood is obtained by analyzing 1701 light curves from 1550 Type
Ia supernovae. We refer to this dataset as Planck2018+SNIa.

• The full Planck 2018 temperature and polarization likelihoods [3, 103, 104], together
with the Planck 2018 lensing likelihood [105], combined with DESI Baryon Acoustic
Oscillation (BAO) data [106–108] and the Pantheon+ likelihood [109]. We refer to this
dataset as Planck2018+DESI+SNIa.
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Parameter Prior
Ωbh

2 [0.005, 0.1]
Ωch

2 [0.001, 0.990]
τreio [0.01, 0.80]
ns [0.8, 1.2]

log(1010As) [1.61, 3.91]
100θs [0.5, 10]
ϵ [0, 0.1]

Table 1. Flat priors on the parameters sampled in the MCMC analysis.

Figure 1. The left (right) posterior distributions show constraints on fiducial ΛCDM model and the
model in this work from Planck2018 (Planck2018+DESI).

A modified version of the Gelman-Rubin statistic, R − 1, is adopted in COBAYA to
measure chain sampling convergence [100, 110]. We set the criterion for chain convergence
at R − 1 < 0.02.

4 Results

The constraints at the 68% (95%) confidence level (CL) on the parameters of the present
model are presented in table 2. Comparing our results with those obtained by assuming a
ΛCDM model, we observe a shift of about 1σ in the cold dark matter density, and consequently
in the total matter density, towards smaller values, as shown in figure 1. This occurs because
ϵ is negatively correlated with these parameters, as we can see in figure 2. As a result, due
to the very accurate measurements of Ωmh

2 from the CMB peaks, ϵ is positively correlated
with H0, which also shifts towards higher values by approximately 1σ. The key feature of the
results is that the scale of the dimensionless interaction parameter ϵ is small, on the order
of ∼ O(10−4), and consistent with no interaction for Planck2018 only, with ϵ < 9 × 10−4 at
95% CL. This is expected because the interaction in this model is proportional to the energy
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Figure 2. The posterior distributions of the interacting dark energy model across different dataset
combinations. We apply a prior ϵ ∈ [0, 0.1], motivated by theoretical instabilities that arise for negative
ϵ values. The results are not affected by imposing such positive prior on ϵ, as discussed further in
this section.

density of dark matter, ρc, as shown in eq. (2.5). In the literature, interacting dark energy
models with similar ρc-dependence exhibit comparably tight constraints on their interaction
parameters. Their posterior distributions are concentrated close to zero, as analyzed using
various combinations of datasets [44]. The main reason for such small derived values is
that, as shown in figure 3, introducing a stronger interaction in the cosmological model
reduces the amplitudes of the peaks. These peaks are very well constrained by data, as
this region has very small error bars. Meanwhile, the predicted Sachs-Wolfe plateau at
low multipoles increases; however, this lies in the cosmic variance-limited region, where the
error bars are large and the effect is less significant. The decrease in peak amplitudes is
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Figure 3. The theoretical predictions on the CMB TT, TE, EE power spectra for various ϵ values.

consistent across the CMB TT, TE, and EE spectra. The Planck mission measures these
peaks with high precision, leaving very little tolerance for such mechanisms. This effect
is very similar to the constraints on the Hubble constant, where a larger H0 value also
leads to smaller peaks. In figure 2, the correlation between ϵ and H0 can be examined
more straightforwardly. These findings also remain robust when tested with Planck PR4
data [111–113], which yield consistent results.

A different effect is observed in the DESI-combined analyses, which prefer a higher ϵ value.
This is due to the preference of DESI 2024 BAO measurements for lower values of Ωm, which
breaks degeneracies in the parameter space, slightly favoring higher values of the interaction
parameter: ϵ = 0.00049+0.00022

−0.00033 at 68% CL for Planck2018+DESI and ϵ = 0.00041+0.00015
−0.00035 at

68% CL for Planck2018+DESI+SNIa. Compared to CMB results, DESI data alone favor
a smaller total matter density when assuming a constant dark energy equation of state. In
the ΛCDM scenario, the derived total matter densities from Planck2018+DESI and DESI
alone are Ωm = 0.3069 ± 0.0050 and 0.295 ± 0.015, respectively. This preference for a smaller
Ωm in DESI is mainly driven by the DESI distance measurements at lower redshift bins
(z ≤ 1.4), more explicitly by the bright galaxy sample (BGS), luminous red galaxies (LRG),
and emission line galaxies (ELG), as shown in figure 4 [108]. It is interesting to note that
the LRG and ELG tracers at the same redshift bins are cross-correlated in their clustering
analyses, in which BAO measurements from other redshift bins are not involved. This trend
in the redshift range z ≤ 1.4 is not masked by data from higher-redshift bins. Moreover, the
DESI-combined datasets show a strong preference for a time-varying dark energy equation of
state at levels ≥ 2.5σ [108, 114], while in this work based on the trace-free Einstein equations
w = −1. Overall, the DESI 2024 BAO data break degeneracies present in CMB analyses,
such as the Ωm-H0-w degeneracy, leading to a decreasing trend in Ωm. When an interaction
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Figure 4. Distance-redshift relations from the Planck2018+DESI dataset, adopting the IDE (ΛCDM)
best-fit, are shown with dashed (solid) lines. The y-axis is rescaled by the sound horizon at baryon
drag, rd. For visual convenience, DH/rd is further rescaled by z. The sample points represent DESI
2024 BAO distance measurements, with corresponding ±1σ uncertainties. From low to high redshifts,
these plotted samples include BGS at 0.1 < z < 0.4, LRG at 0.4 < z < 0.6, LRG at 0.6 < z < 0.8,
a combined sample of LRG and ELG at the overlapping redshift range 0.8 < z < 1.1, ELG at
1.1 < z < 1.6, quasars at 0.8 < z < 2.1, and quasars at 1.77 < z < 4.16.

between dark sectors is allowed, this degeneracy-breaking effect induces significant changes
in the posterior distribution, resulting in a nonzero ϵ.

For exactly the opposite reason, i.e., because they prefer a higher value for the matter
density, SNIa data are more in agreement with no interaction at all. The upper limit on
ϵ < 6 × 10−4 at 95% CL for Planck2018+SNIa is stronger than in the Planck2018 case alone,
and for the same reason, the Hubble constant shifts towards a lower value, making it more
consistent with the ΛCDM case. However, as explained above, the compromise found with
DESI BAO data indicates an interaction different from zero at 1σ, even when SNIa data
are included in the full dataset combination.

Due to correlations between ϵ, H0, Ωm, and the assumptions on the dark energy equation
of state, it is also interesting to compare with interacting dark energy models in the literature
with energy transfer from DM to DE and their effects on the tensions [51, 115–117]. In the
ΛCDM scenario, CMB data suggest a relatively large Ωm. When CMB data are involved,
the energy-momentum transfer from dark matter to dark energy due to their interaction can
naturally reduce Ωm, leading to a larger current expansion rate and, consequently, mitigating
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Figure 5. By adopting flat priors of [-0.1, 0.1] and [0, 0.1], the normalized ϵ posterior distributions
are plotted in black and red, respectively. The likelihoods are the Planck2018+DESI+SNIa dataset.

the H0 tension. For the same reason, if late-time measurements such as DESI 2024 BAO
are combined — where a smaller Ωm is observed — such an interaction is more supported
by data analysis. Conversely, when SNIa data are included, which prefer a higher Ωm, the
interaction is in disagreement with the data. By relaxing the assumptions on the dark energy
equation of state, either by assuming a constant w ≠ −1 or allowing w to vary with time, the
low-redshift tension on Ωm is alleviated [118]. In this case, the constraints on the interaction
are loosened, and the intensity of such an interaction becomes less significant [52, 64, 119].
It remains challenging to reconcile all measurements simultaneously, as the constraints on
dark-sector interactions from matter clustering and the expansion rate measured by early-
and late-time projects are engaged in an arm-wrestling match.

The simple model analyzed here does not address the H0 and S8 tensions. We note that,
despite some similarities between the model at hand and the ‘anomalous diffusion’ model
considered in ref. [81], which was proposed to alleviate the Hubble tension, the latter features
a step function in the transfer potential, such that the (effective) equation of state of cold
dark matter undergoes a sharp transition at recombination, an effect that is absent in the
present model (2.4). Extensions of the present model, including such sudden transitions,
will be investigated in future work.

Lastly, we remark that in this work, we assumed a non-negative flat prior for ϵ due to
the gradient instability in the ϵ < 0 case [82]. On the other hand, if we allow for negative ϵ
values and assume a flat prior in the interval [−0.1, 0.1], the posterior distribution features
a sharp tail at the lower boundary; see figure 5. This is consistent with the findings in
ref. [82], which indicate that the ϵ < 0 case is problematic, and it further shows that this
regime is also disfavored by data.

5 Conclusions

We have conducted a comprehensive analysis of a dark sector interaction model based on the
trace-free Einstein equations where the energy-momentum transfer potential is proportional to
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Parameter Planck2018 Planck2018+DESI Planck2018+SNIa Planck2018+DESI+SNIa

Ωbh
2 0.02232 ± 0.00015 0.02236 ± 0.00016 0.02230 ± 0.00015 0.02234 ± 0.00015

Ωch
2 0.1186+0.0017

−0.0014 0.11742 ± 0.00097 0.1195+0.0013
−0.0012 0.11802 ± 0.00088

τreio 0.0543 ± 0.0077 0.0564 ± 0.0073 0.0530 ± 0.0072 0.0553 ± 0.0071

ns 0.9660 ± 0.0043 0.9683 ± 0.0036 0.9645 ± 0.0040 0.9673 ± 0.0035

log(1010As) 3.043 ± 0.015 3.046 ± 0.014 3.042 ± 0.014 3.044 ± 0.014

H0 68.17+0.67
−0.92 68.80 ± 0.53 67.73+0.56

−0.67 68.46 ± 0.47

Ωm 0.305+0.011
−0.009 0.2967 ± 0.0065 0.3107+0.0088

−0.0076 0.3009 ± 0.0058

σ8 0.8083 ± 0.0060 0.8070 ± 0.0060 0.8095 ± 0.0058 0.8074 ± 0.0058

S8 0.815+0.018
−0.015 0.803 ± 0.011 0.824 ± 0.014 0.809 ± 0.011

ϵ < 0.000436(< 0.000926) 0.00049+0.00022
−0.00033(< 0.00097) < 0.000292(< 0.000637) 0.00040+0.00015

−0.00034(< 0.000868)

∆χ2
min 1.67 −2.27 −1.33 −1.31

∆AIC 3.67 −0.27 0.67 0.69

Table 2. Constraints at 68% (95%) CL on parameters from various combinations of datasets. Here
∆χ2

min = χ2
min, IDE −χ2

min, ΛCDM , so that a negative ∆χ2
min indicates the IDE model provides a better

fit than ΛCDM to the dataset. The Akaike Information Criterion, AIC = 2k + χ2 is provided, where
k is the number of parameters in the model. ∆AIC = AICIDE − AICΛCDM .

the cold dark matter density. Using a combination of Planck 2018 CMB, DESI 2024 BAO, and
Pantheon+ SNIa data, we derived tight constraints on the interaction strength, characterized
by the dimensionless parameter ϵ. Our results show that ϵ is of the order of ∼ O(10−4), with
no significant evidence of interaction from CMB and SNIa data alone. However, when DESI
data are included, a mild 1σ preference emerges for an energy-momentum transfer from dark
matter to dark energy, with ϵ ≈ (4–5) × 10−4. This preference is primarily driven by the
lower Ωm values favored by low-redshift DESI BAO measurements.

Despite this indication, the interaction remains small and does not significantly alleviate
the Hubble constant (H0) or matter clustering (S8) tensions. Nevertheless, our findings
reinforce the idea that late-time interactions in the dark sector could have subtle yet measurable
effects on the expansion history and structure formation. The observed correlation between
ϵ and Ωm suggests that further investigations into IDE models may yield new insights into
potential modifications to the standard ΛCDM paradigm.

Trace-free Einstein gravity provides a minimal modification to general relativity that is
covariant, and naturally allows a large class of IDE models. While our analysis here focused
on a simple interaction model with a linear dependence on the cold dark matter energy density,
a broader class of IDE models remains largely unexplored. One potential avenue for future
research is the inclusion of more general transfer functions Q, allowing for time-dependent or
scale-dependent interactions. Such extensions could potentially provide a better fit to data
while simultaneously preserving key features of the standard cosmological model.

Additionally, the preference for interaction in the DESI BAO data — though not
statistically strong — suggests that future large-scale structure surveys may be crucial in
testing IDE scenarios. The upcoming Euclid mission, the Vera C. Rubin Observatory’s LSST
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survey, and future DESI data releases will significantly refine BAO and large-scale structure
constraints, allowing for more precise measurements of Ωm, H0, and dark sector interactions.
Continued theoretical advancements and observational progress will be key to determining
whether such interactions play a fundamental role in shaping the evolution of the universe.
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A System of equations of motion

In this appendix, we review the cosmological dynamics for the class of models at hand with a
general transfer potential Q. We specialize the results of ref. [82] to the synchronous gauge and
re-express the equations using the notation of ref. [94], which is convenient for implementation
in the CLASS code. The dynamical equations for the particular model considered in this paper
can be obtained by substituting eq. (2.4) into the equations shown below.

The Friedmann equations and the continuity equations, with a general transfer potential,
can be split, as usual, into background and perturbative degrees of freedom. Assuming a
spatially flat FLRW background, the equations of motion for the background degrees of
freedom are, in conformal time,

H2 = a2

3
(
κρ−Q

)
, H2 + 2H′ = −a2

(
κp̄+Q

)
, (A.1)

ρ′
γ + 4Hργ = 0 , ρ′

ν + 4Hρν = 0 , (A.2)

ρ′
b + 3Hρb = 0 , ρ′

c + 3Hρc = Q
′

κ
, (A.3)

where H is the conformal Hubble rate and primes denote derivatives with respect to conformal
time. The indices are: γ for radiation, ν for neutrinos, b for baryonic matter, and c for cold
dark matter, while the total energy density is

ρ = ργ + ρν + ρb + ρc , (A.4)

and the total pressure is

p = 1
3

(
ργ + ρν

)
. (A.5)

For scalar perturbations, we work in the synchronous gauge and use the same conventions
as in ref. [83], where the line element is

ds2 = a2
(

− dτ2 + [(1 − 2ψ)δij + 2E,ij ]dxidxj
)
. (A.6)
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The general case has been worked out in ref. [82], from which the equations shown below
can be obtained by imposing the gauge conditions B = ϕ = 0. In Fourier space, we have
the following correspondence with the variables h, η used in ref. [94]:

ψ = η , E = − 1
2k2 (h+ 6η) . (A.7)

In terms of these variables, the gravitational field equations read

2k2η − Hh′ = −a2 (κδρ− δQ) , (A.8)

k2η′ = κ

2a
2(ρ+ p)θ , (A.9)

h′′ + 2Hh′ − 2k2η = −3a2 (κδp+ δQ) , (A.10)
h′′ + 6η′′ + 2H(h′ + 6η′) − 2k2η = −2κa2k2π . (A.11)

We assume that the matter fields considered here have no intrinsic entropy perturbations,
that is, c2

s A = c2
a A = wA. Then, the perturbed continuity equations (including Thomson

scattering and neglecting the contribution of photons to the anisotropic stress) are

δ′
γ + 4

3θγ + 2
3h

′ = 0 , δ′
ν + 4

3θν + 2
3h

′ = 0 , (A.12)

δ′
b + θb + h′

2 = 0 , δ′
c + θc + h′

2 = δQ′ − Q̄′δc

κρ̄c
, (A.13)

θ′
γ − k2

4 δγ = τ−1
c (θb − θγ) , θ′

ν − k2

4 δν + k2σν = 0 , (A.14)

θ′
b + Hθb − k2c2

s,bδb =
(4ρ̄γ

3ρ̄b

)
τ−1

c (θγ − θb) , θ′
c + Hθc = k2δQ− Q̄′θc

κρ̄c
, (A.15)

where τc = (aneσT )−1 and σν =
(
2k2/3(ρ̄ν + p̄ν)

)
πν =

(
k2/2ρ̄ν

)
πν . The equation for σν

is obtained from the quadrupolar moment of the Boltzmann equation [94] (we neglect the
neutrino octopole term, following ref. [83])

σ′
ν = 4

15θν . (A.16)
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