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We show that, under Dubrovin’s notion of ‘almost’
duality, the Frobenius manifold structure on the orbit
spaces of the extended affine Weyl groups of type ADE
is dual, for suitable choices of weight markings, to
the equivariant quantum cohomology of the minimal
resolution of the du Val singularity of the same
Dynkin type. We also provide a uniform Lie-theoretic
construction of Landau-Ginzburg (LG) mirrors for
the quantum cohomology of ADE resolutions. The
mirror B-model is described by a one-dimensional LG
superpotential associated with the spectral curve of
the ADE affine relativistic Toda chain.

1. Introduction

Let le€Z.9 and R=ADE, be a rank-l simply-laced
irreducible root system, and fix a choice of fundamental
weight @ for the complex simple Lie algebra associated
with R as follows:

— when R = A, ® can be any fundamental weight;

— when R=D; or R=E;, ® will be the highest
weight of the fundamental representation of the
highest dimension.

We will call the datum (R,®) a marked ADE pair. The
corresponding Dynkin diagrams, with node marking
specified by @, are shown in figure 1. In this
paper, we will be concerned with three classes of
Frobenius manifolds associated with a given pair
(R, ), arising, respectively, from representation theory,
enumerative algebraic geometry and integrable systems.
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— For R the root system of any complex simple Lie algebra, and @ € £ a particular
choice of fundamental weight, Dubrovin and Zhang [1] famously constructed a canonical
semi-simple Frobenius manifold structure EAW(R,®) on the orbits of the reflection
representation of the w-extended affine Weyl group of R, generalizing the classical
construction of polynomial Frobenius manifolds on orbit spaces of Coxeter groups. The
specialization to (R, ®) being a marked ADE pair will be the setup of sole concern to us
in this paper, and we will use the shorthand notation,

Maw :=EAW(R, ®).

— Let 6 <SL(2, C), |G| < oo be the McKay group of type R, and let Z = C2/G be the minimal
resolution of the associated canonical surface singularity. The pair (R, &) specifies a C*-
action on Z, point-wise fixing the irreducible component of the exceptional locus of Z
corresponding to the marked fundamental weight @ under the McKay correspondence
[2]. The associated Frobenius manifold is the C*-equivariant quantum cohomology of Z,

Meaw = QHe- (2).

— In [3], Dubrovin constructs a Frobenius manifold structure LG(), ¢) on the Hurwitz
moduli space of ramified covers of the projective line with given genus and ramification
profile at infinity. Here, A (the Landau—Ginzburg (LG) superpotential) denotes the universal
map, and ¢ is the additional datum of a Saito form [4] on the fibres of the family. One can
associate to the pair (R, @) an algebraically completely integrable system—the type (R, ®)
affine relativistic Toda chain [5] at vanishing Casimir—whose isospectral dynamics is
encoded in a special Frobenius submanifold of a certain Hurwitz space [6]. In this context,
A is the spectral parameter of the relativistic Toda Lax matrix, and ¢ is the differential
of the (logarithm of the) argument of its characteristic polynomial. We will denote this
Frobenius manifold as

Mg :=LG(*, ¢).

(@) Dubrovin duality and mirror symmetry

Given a Frobenius manifold M with a linear Euler vector field E and semi-simple product
o:I'M, TM)y®o, I'(M, TM)— I'(M,TM),

one can construct [7] a second family M?" of Frobenius rings on the locus where E is invertible
in the o-algebra. This is obtained by pre-composing the flat pairing on M with multiplication of
each of its entries by E~1/2,

E~1/2%,
M —— M. (1.1)

In a canonical coordinate chart for M, equation (1.1) corresponds to rescaling the coefficients
of the (diagonal) Gram matrix of the Frobenius pairing by the inverse diagonal matrix of the
canonical coordinates. It is further shown in [7] that the resulting rescaled pairing on M is flat
and induced by a dual prepotential function to the original prepotential of M. We will call M" the
Dubrovin-dual' Frobenius manifold of M.

Dubrovin’s duality acquires a particularly salient form when M admits a realization as a
Landau-Ginzburg model on a family of algebraic curves. In this case, (1.1) amounts to replacing

I The operation in equation (1.1) is often referred to as an ‘almost-duality” of Frobenius manifolds, owing to the fact that AM”
is a weak (or almost) Frobenius manifold: we review this in §2a. The terminology ‘duality” is perhaps somewhat improper, as
for once the operation in equation (1.1) is not involutive, but we abide by historical convention and refer to it as such (see also
[8,9]).
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Figure 1. Marked Dynkin diagrams of pairs (R, @). The marked node corresponding to the weight @ is indicated in black.

the superpotential by its logarithm [3,7,10]:
M’ ~LG(log 1, $).

From the point of view of the bihamiltonian quasi-linear integrable hierarchy defined on the loop
space of a Frobenius manifold [3], a mirror-symmetry presentation of M as a Landau-Ginzburg
model is equivalent to a dispersionless Lax-Sato formulation of the integrable flows, with 2
coinciding with the Lax symbol [11]. Dubrovin’s duality (1.1), on the other hand, corresponds
to expressing the integrable flows on M in Darboux coordinates for the second Poisson bracket
of the Principal Hierarchy (the limiting value of the Dubrovin-Novikov pencil at infinity), and
accordingly to a different ("dual’) notion of topological r-function in the sense of [12,13].

(b) Main results

In this paper, we show that, for all marked ADE pairs (R, ®), the Frobenius manifolds M aw,
Mcgw and Mg are either non-trivially isornorphic,2 or Dubrovin-dual to each other.

2As all identifications here presuppose a choice of flat chart, we are really talking about local isomorphisms here. This only
(trivially) acquires global nature for Maw and Mgy, as the underlying manifolds are vector spaces in both cases.
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Theorem 1.1. For all marked ADE pairs (R, @), we have

~

Maw — Mra
E-1/2 O E-1/26
Moy Mig
\ /

Maw

The isomorphism in the top row,
Maw = Mg,

was proved in [6]. Therefore, the statement that the equivariant quantum cohomology of ADE
resolutions is Dubrovin-dual to the corresponding extended affine Weyl Frobenius manifold,

Mew > M?&w’ (1.2)

is logically equivalent to proving its mirror realization as an LG model on a family of relativistic
Toda spectral curves, upon replacing the spectral parameter as A — log 4,

Maw =M . (1.3)

Our strategy will be to prove the mirror theorem (1.3) first, as a means to establish the Dubrovin
duality (1.2) as a consequence, for the classical series R = A; and R = Dy; and vice-versa for the
exceptional series R =E;.

Theorem 3.2 answers constructively, in all Dynkin types, a long-standing question about
mirror symmetry in the fundamental setup of quantum cohomology of du Val resolutions. When
R = A}, Z is a smooth two-dimensional toric Calabi—Yau surface: in this case a Landau-Ginzburg
mirror has been known since Givental’s work on equivariant toric mirror symmetry [14,15]. The
case where R # A and Z is not toric has been outstanding to-date, as the methods of [14] cannot
be directly applied to this more general setup. An important consequence of equation (1.3) is that
it automatically provides a global integral representation of the components of the J-function
as univariate Laplace-type integrals: for type R = A, this enhanced control on their analytic
continuation was brought to fruition in [16] to prove Iritani’s integral K-theoretic and higher
genus full-descendent Crepant Resolution Conjectures, using R-matrix quantization techniques.
Theorem 3.2 opens the way for a similar analysis for all ADE types, which will be explored in
future work. The isomorphism (1.2) further suggests a conjectural integrable hierarchy governing
the higher genus Gromov—Witten theory of Z: this should coincide with the one constructed in
[17] expressed in a suitable set of dual variables, given by Darboux coordinates for a second
Hamiltonian structure. For the classical series R = A; and R =D, the hierarchy is a particular
rational reduction of the 2-Toda hierarchy [18].

(c) Organization of the paper

This paper will be organized as follows. In §2a, we will start with a short, but self-contained
review of basic notions from the theory of Frobenius manifolds and Dubrovin’s duality. We
will follow this up in §2b with a detailed construction of the three Frobenius manifolds M aw,
Mic and Mcgw specified by the datum of a marked ADE pair (R, ®). In §3a, we will explain
how the embedding of the LG model (%,¢) into a genus zero Hurwitz-Frobenius manifold
for the classical series R =A; and R =D allows us to systematically determine the structure
constants of /\/lbLG. Armed with this, the mirror theorem in equation (1.3), and therefore the
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Table 1. Notation used throughout the text. When working in local coordinates for M yy, we will consistently use lower-case
Latin indices for a flat chart for the intersection form; upper-case Latin indices for a flat chart for the Saito metric; and Greek
indices for a coordinate chart given by basic invariants.

ke )y linear coordinates fory @ Cinthe basis 177, resp. 27
L aflat coordinate chartfor Myy
J a set of initial conditions for M yy

duality (1.2) with the extended affine Weyl orbit spaces, can be deduced upon comparison with
the genus zero Gromov-Witten calculations of [16,19]. In §3b, we give a general representation-
theoretic argument, applicable to all extended affine Weyl Frobenius manifolds, showing that the
structure constants of the Frobenius product on both sides of equation (1.2) belong to a certain
finite-dimensional vector space of quasi-homogeneous polynomials. As such, the corresponding
(2,1)-tensors are determined by their values on a (small) finite set of points J in the semi-simple
locus of Maw, which we call a set of initial conditions for Maw. We perform this analysis
specifically for R =E;, and show how the reduction to initial conditions drastically simplifies
the verification of equation (1.2), and, therefore, the proof of the mirror theorem in (1.3), which
we carry out for the entire exceptional series.

We shall never assume Einstein’s convention in this paper. For the reader’s convenience, we
collect the notation employed throughout the text in table 1.

2. Setup

(@) Generalities on Frobenius manifolds

Let M be an n-dimensional complex manifold. We will write 75; (resp. §2p1) for the sheaf of
holomorphic sections of the holomorphic tangent (resp. cotangent) bundle T'°M (resp. T7 M),
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and X(M) :=H%(M, Tyy) for the space of global holomorphic vector fields on M. A holomorphic
Frobenius manifold structure® on M is a 4-tuple M := (M, c, 1, ) satisfying the following axioms:

FM1 the metric n € HO(M,Sym?$2)) is a flat perfect symmetric pairing on Zy;
FM2 the product c € HOM, Syrn3 £2)) is a totally symmetric (0, 3)-tensor

(X, YoZ)=n(XoY,Z)i=c(X,Y,Z) e OuM), X,Y,ZeX(M),

inducing, holomorphically in p €M, a structure of commutative, unital, associative
Frobenius algebra on the tangent fibre T;’OM;

FM3 Vye(X, Y, Z) is totally symmetric in W, X, Y, Z € X(M), where V denotes the Levi-Civita
connection of »;

FM4 the identity vector field e € X(M), defined by its fibrewise restriction to the identity of the
algebra, is horizontal with respect to V, Ve =0.

Two supplementary conditions are often imposed on M, the second of which may or may not
be realized in the context of this paper.

FM5 M is semi-simple if the set
Discr(M) := {p € M|3v € TyM with v o v =0}

has positive complex co-dimension;
FM6 M is conformal if there exists a holomorphic vector field E € X(M) which is covariantly
linear, VVE =0, and is such that

Lro=o and Lpn=Q2—d)n,

for some constant d € Q, known as the charge of M.

All examples in this paper will be semi-simple, but not necessarily conformal. We will write
M? := M \ Discr(M)

to indicate the open semi-simple locus of M, and the calligraphic notation M for the Frobenius
manifold structure induced by restriction of M to M*s.

Since the metric 7 is flat, the GL(n, C)-equivalence class of flat frames for  equips a Frobenius
manifold with a canonical GL(1, C) x C" affine-linear equivalence class of flat charts, in which
the Gram matrix of the pairing 7 is constant. The axioms FM1-FM6 in one such chart (¢4, ..., f;)
amount to the local existence of a holomorphic function F (the prepotential) with the following
properties:

(i) the unit vector field is

(ii) the Gram matrix nap:=1n(d/dt,(3/9tp)) is constant, non-degenerate and equal to the
Hessian matrix of 9, F,

j— 331: .

T Ati0ta0tg”

(iii) the prepotential is weighted quasi-homogeneous in its arguements,

NAB

n
d d
Z (PAtAf + m—) F=(3 — d)F + quadratic,
=] ot ot

for some pa, g4, d € Q;
3We call Frobenius manifold here what is often elsewhere referred to as a weak (or almost) Frobenius manifold, since we do

not require axiom ‘FM6’ (existence and covariant linearity of E) to hold in our definition. The classical notion of Frobenius
manifold in [3] is what we call conformal Frobenius manifold in this paper.
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(iv) forall A, B, M, N €{1,...,n}, writing
NP :=m"Yep,

the prepotential satisfies the Witten-Dijkgraaf-Verlinde—Verlinde (WDVV) equations,

X”: ¥F o O°F ¥F o OF o 21
& dtadigdic | otpotwdin  dtadimdic | otpotgdin | :

(i) Dubrovin duality

If M is semi-simple, and for all p € M such that E|, is in the group of units of the C-algebra
(T;’OM, o), one may define a second metric 1’ (the intersection form) by

P (X, Y)=n (E*l/z o X,E"12, Y) =y (E*l o X, Y) . 2.2)

A consequence of FM5-FM6 [3, Lect. 3] is that the metric n” is also flat; we will usually denote
by (x1,...,x,) a choice of a flat coordinate chart for it. Alongside n°, we can define a second
commutative, associative, Opps-algebra structure on X' (M3%) with unit E via

CXY,Z)=n"(X,Y+Z) and X*Y:=E 'oXoY. (2.3)

The *-product is compatible (in the sense of Frobenius algebras) with the pairing 1”: this is an
immediate consequence of the o-product being compatible with respect to the pairing 7.

Proposition 2.1 ([7,20]). Let M =(M,c,n,e,E) be a semi-simple conformal Frobenius manifold of
charge d = 1. Then M" := (M3,¢", ", E) is a semi-simple Frobenius manifold satisfying axioms FM1-5,
with flat* unit E € X (M®S).

In particular, if d =1 and in a flat chart (xq,...,x;) for the intersection form 1", there exists a
solution F* of the WDVV equations (2.1) (with 7, (t4)4 replaced by 1, (x;);) where furthermore

b 83Fb

0 and =
nij B 0x1 3x,-3x]- '

- ax1
The Frobenius manifold structure M” = (M*$, ¢”, ", E) induced by P’ will be called the Dubrovin-
dual structure to M. The two perfect pairings 1 and 1” on 7;5 locally induce isometries between
tangent and cotangent fibres,

(TpMSS,n):<T;MSS,n_1> and (TpMss,nb):(T;MSS,(nb)_1>. (2.4)

In Einstein’s convention, this would be the familiar operation of ‘raising the indices” with 7“5
(resp. (n°)V). The isomorphisms (2.4) define two, a priori distinct, Oppss-algebra structures on
holomorphic 1-forms 6, x € 2pss,

0oy and Oy, (2.5)

respectively, given by the dual of the o-product under 17!, and the dual of the x»-product under

(n°)~! in equation (2.4). By equations (2.2) and (2.3), these two dual products on §2) are in fact
identically isomorphic,

Spelling out equation (2.6) in the respective flat charts for n and n° results in the following non-
trivial relation between the prepotentials of M and M":

RR) o i b b Otc 0% 0Xp Ay gy O°F

- > » Ot 0%a 0% s 2.7
0x;0x,0%; Tiallo gy, 9ts otg T dtcotydiy @7)

a,b,A,B,C,M,N=1

4For charge d # 1, the unit E for M is not, in general, flat.
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(b) Frobenius manifolds of type (R, )

With these preliminaries, we shall consider three classes of semi-simple Frobenius manifolds
associated with a marked ADE pair (R, ®).

(i) Extended affine Weyl Frobenius manifolds

Let g = ade; be the rank-/ complex, simple, simply-laced Lie algebra with root system R. We shall
denote by bh the associated Cartan subalgebra, and by WV its Weyl group. The action of W on b lifts

to an action of the affine Weyl group W =W x AY, with AY the lattice of co-roots:

WX(]—)[), } 28)

and (w, "), h) — w(h) + 2wia”.

For (R, @) a marked ADE pair, the corresponding @-extended affine Weyl group W is defined as
the semi-direct product W := W x Z acting on h & C by

Wxh®C—hdC, }
(2.9)

and (w, oY, 1), (1, v)) —> (w(h) + 2ria" +27ile, v — 27il).

Let X denote the hyperplane arrangement associated with the root system R, and (™8 :=h\ ¥
be the set of regular elements in §. The restriction of equation (2.9) to h™8 @ C is a free affine
action, whose quotient defines the regular orbit space of the extended affine Weyl group of R
with marked weight @ as

hre8 x C) . T'e8
MAWI=( ~ )~

= (2.10)

where 778 = exp(h™8) is the image of the set of regular elements of h™8 under the exponential
map to the maximal torus 7. Let (x1, ..., x;) be linear coordinates on f) with respect to the co-root
basis {ozlv P ,alv }, and extend these to linear coordinates (x1,...,x;;x74+1) on h @ C, giving local
coordinates on the regular orbit space. Denoting (e, B) the pairing on h* induced by the restriction
of the Killing form on the Cartan subalgebra, and writing

Cﬂh = (aﬂ/ a;/>/ dtl = (wﬂ/ a)/ E:: <a/ a)/

we can define a non-degenerate pairing & on h x C by orthogonal extension of minus the Cartan—
Killing form on b as

~Cp ifab<l+1,
Wy @ ) :=1d  ifa=b=1+1, 2.11)

0 otherwise,

with x7;1 parameterizing linearly the right summand in h @ C. The quotient map X : 7% x C* —
Maw from equation (2.10) defines a principal W-bundle on Maw: a section ¢; lifts a (sufficiently
small) open U C Maw to the ith sheet of the cover V; e Ei_l(u) =ViuU---u V. The invariant
ring Z:=C[7]" is, from classical results about exponential Weyl invariants [21], a polynomial
ring Z ~C[Y1,..., Y]], where

Y; = Syyp(el@M), (2.12)
and Syy is the average over the Weyl orbit. Equivalently, we have Z >~ C[Wq, ..., W;], where

W=y el (2.13)

wel;

[400ST02 18 1 205§ 2014 eds/feuinof/BioBuiysiigndiiaposiefos
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Proposition 2.2 ([1, Theorem 1.1]). Let A be the ring of Wh-invariant Fourier polynomials in the
variables x1, . .., x; and x;41 /f that are bounded in the limit

x=x 451, X = x%?r]l -1, T— 409, (2.14)

[0]

for any (1%, x; "

), where f is the determinant of the Cartan matrix. Then,
A=Cly,...,y,e"]

with
daXi1y =1 1
e ’ seeerby
Vo = @ (2.15)
x1+1, o= l + 1

and d; = (w;, ®).

In the following, for ke {1,...,I} such that g o, we will denote V=5 We will define a
grading on A by @ W n
deg yo =do(x=1,...,]), degeV*' =1.

The following reconstruction theorem holds [1, Theorem 2.1].

Theorem 2.3. There exists a unique, up to isomorphism, semi-simple and conformal Frobenius manifold

Maw = (Maw, caw, naw, €, E)

of charge d =1 satisfying the following properties in flat coordinates (t1, ..., t+1) for naw:

AW-IdE =8y, = Y} djtydy, + 0,/
AW-II the intersection form is n° = G'E;
AW-III the prepotential is polynomial in t, ..., t1, 1.

(i) Quantum cohomology of ADE resolutions

Let G < SU(2), |G| < oo be a finite subgroup of SU(2). The classical McKay correspondence classifies
G by root systems of type R = ADE,,

_z
(I+172’
BDy 2=1(2,2,), R=D,
€=1BT=233), R=F,
BO=1(2,3,4), R=Ey,
Bl =(2,3,5), R =Eg.

R=A,

The corresponding du Val singularity is defined as the affine scheme
X :=Spec ((C[x, y]G> ,

where the action on C? by G is induced by restriction of the fundamental representation of SU(2).
Klein’s classical presentation of the ring of invariants,

¢ _ Clu,v,w]
Clx,yI" = Ty

where
w? 4+ u? + oIt R=A,,
w? + v(u2 + vl_z), R=Dy,
Te(u,v,w) =  w? + 13 + 14, R =Eg,
w? + ud + ud, R=E,
w2—|—u3+v5, R =Eg,
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realizes X as a hypersurface in C® with an isolated singularity at the origin. There is a well-known
canonical minimal resolution

Z -5 X (2.16)

obtained through a sequence of blowing-ups of the singularity [2]. The intersection diagram
describing the configuration of irreducible rational curves in the exceptional locus is the Dynkin
diagram of the corresponding ADE type, and the integral homology of the resolution,

H.(Z,7Z)=Hy(Z,Z) ® Hy(Z,Z) ~ 7. & 7",
is isomorphic to the affine root lattice of type R. Writing
T :={ay,...,q;} and 2 :={w1,..., o1}

for, respectively, the set of simple roots and fundamental weights of the complex simple Lie
algebra associated with R. We will label the irreducible components {ey, . . ., ¢/} of the exceptional
locus accordingly, so that

ej <> A <> w;. (2.17)

Let T~ C* and consider a T-representation on C? commuting with the action of 6. This induces
T-actions on X and Z, respectively, by descent to the quotient and by T-equivariance of the
resolution (2.16). When R = DE}, we have a unique possible choice for the action of T: this is the
scalar torus action on C2 with characters (t, t) on the affine coordinates (x, y) of C2. When R = A,
since G is abelian, we have more generally that the full Cartan torus

T:=(C*)? <GL(2,C),

with characters (fy,t,) will act effectively on X and Z. For ke{l,...,1}, we will be specially

interested in the one-dimensional subtori T acting with characters (tx, t;) = (1=K fhy,

As the singularity is the only torus fixed point in X, the T-fixed locus of Z is fully contained in
the exceptional set. We will write [¢;]¥ for the Poincaré dual classes to [¢;] in the locally compact
cohomology, ; for their canonical lifts to T-equivariant cohomology, and ¢ for the identity class
in Hy(Z). The localized T-equivariant cohomology of Z is an (I 4+ 1)-dimensional vector space over
the field of fractions of H(BT, C) >~ C[v], where v is the first Chern class of the T-representation ¢.
For R = Aj, we can more generally consider the equivariant cohomology of Z with respect to the
full two-dimensional torus T': this will now be an (! 4 1)-dimensional vector space over C(vy, v2),
with v; := c1(t;) € Hr (pt). We will slightly abuse notation and continue to write ¢, ..., ¢}, ¢4 for
the lift of e in the T'-equivariant cohomology of Z.

Remark 2.4. For (R, ®) a marked ADE pair, the marked fundamental weight @ € §2 corresponds
to the (single) irreducible exceptional divisor e € Hp(Z, Z) which is point-wise fixed by T

o~ ~ ~
C<——> U < .

To see this, notice that each double point in the exceptional locus is T-fixed. For R = DE], this
entails that the T-action on the irreducible component ¢ labelled by the trivalent marked node in
figure 1 must be trivial, since ¢ is a P! with three T~ C*-fixed points. When R = A, the weights
w;t at the two T'-fixed points of e; are [16, Appendix B]

(w;",wi_) =(—ivi +(+1 =iy, ivy — (I +1—=1D)wy).

As discussed above, the restriction to a one-dimensional torus T acting with characters (tlHJ‘, ti‘)
sets

vi=(l+1—kv and v =k, (2.18)
so that wlﬁ: =0. Hence, in this case,

E%(—)O{I'((—)a)l'(:a).
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The torus action on Z induces an action on its moduli space of stable maps ﬂg,n (Z, B). Since
the T-action on Z is free away from the exceptional locus, its fixed locus in Mg (Z, B) is proper,
and it carries a torus-equivariant perfect obstruction theory and virtual fundamental class [22].
Gromov-Witten invariants of Z can then be defined by

" [T, Fevi(ei)
e T o) [T cevi i)
Civr- e o= fM [Tevitep:= fM )

o Z AR i o

with ¢ :ﬂ;n (Z,B) — Mg,n(Z, B) being the immersion of the substack of T-fixed points into the

moduli space of stable maps and N'* its T-equivariant normal bundle. Writing x = Zfz% Xjp; €
Hi(Z), the genus-zero invariants of Z define a Frobenius manifold satisfying the axioms FM1-
FM5,

Maw = H1(2), caw, new, ¢i1+1)

via
cowlp, ¥,0) = T/[Z] QUPUO+ D (0, 9,0)55 4¢P
PRz (2.19)
and new(e, ¥) = cow(eit1, ¢, ¥) = T/Z] U,
T

In [1], when the torus acts with characters (t,t), the authors solved the genus zero T-equivariant
Gromov—-Witten theory of Z using degeneration arguements and the Aspinwall-Morrison
formula for the super-rigid local curve. The formal power series (2.19) is the Fourier expansion of
a trigonometric rational function given explicitly by

11

——, i=j=1+1,

2ig I

caw (@1, @ir @) = now (@i, ) = —Cj,  ij<l,

0, else
1
_1 (B, am)x -

and caw(pi, @i, 00)=—v Y (i, B) e, B) ek, B) coth (Z"”z’”’”> ijk<l
BeERT

(2.20)
The corresponding prepotential is Fgw :FOGW + Féw, where the zero and positive degrees
parts read

1
1 1
Flyw = - 2|G|( 1) — meCz]xzx] Z > e, BYlatj, B ek, BYxixjxi

ij=1 ﬂeR+ ij k=1

and GW_Zv Z L13( )

BeER*
(2.21)
When R = A, the same reasoning applied to the full two-dimensional T'-action on Z yields [15,23]

1

1
1 1 1 1
FOGW 61)1\)2 |G| l+1 xl+1 Z Cijxixj - 6 Z sz’c Ckk’Qz]k/xlx]xk
ij=1 i j k=1 2.22)
and F&yy =1 +12) Z L13< >,
BER+

where the symmetric trilinear form Qiijk is determined by its value ati <j <k as

v+ 0+ 104120
I+1 -

Cijk =
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(iii) Landau—Ginzburg mirrors from ADE spectral curves

Let N € Z.( and Hg,n be the moduli space of smooth genus g-covers of P! with ramification profile
at infinity specified by a partition mt N. We will write 7z, A and X; for, respectively, the universal
family, the universal map, and the sections marking {0o;}; := A~ 1([1:0]), as per the following
commutative diagram:

A
Cy > Cgm ——> P!

(] (]

pt

N &= Hygm . (2.23)

We furthermore denote by d =d; the relative differential with respect to the universal family
and pif € Cg 771([A]) the critical locus dA = 0 of the universal map. By the Riemann existence

theorem, the critical values of A,
(Ui)i=1,... dgms
serve as local coordinates away from the discriminant locus u; = u; for i # j. On its complement,
we can construct a family of semi-simple, commutative, C-algebra structures on the tangent fibres
at (uy,...,uq,,) by stipulating that the coordinate vector fields in the u-chart are the idempotents
of the algebra,
Oy; - 3uj = 81']'8”1.. (2.24)

Let u:Com — Pl be a surjective morphism such that the relative one-form
dlogu e 'Q(lfg,m/Hg,m (0og + - - - + oom)

is an exact third-kind differential® on the fibres of the universal curve with simple poles at oo;,
with residues
Resso; dlog u =a; € Z.

If 1+ does not factor through 2, this defines an Ehresmann connection on TCgn where points in
nearby fibres of the universal curve are identified if they have the same image under p. This
defines a meromorphic derivation

83, :H'(Cym, Oc,,) = H(Com, Ke,)

defined in local coordinates p = (ul,...,ud&_m ;) for C¢m as the partial derivative taken with

respect to u; while keeping p constant. A Frobenius manifold structure H([g“n]] = (MLg, LG, LG, €)
can be defined on the Hurwitz space MG := Hgm by the residue formulas [3]

Sx Aoy A

X,Y):=) R 2, 2.25
mG(X,Y) Zijpgs TR (2.25)
SxASYAdzA o
X,Y,Z):=Y Res———~22¢p2, 2.26
cra( ) Z S ¢ (2.26)
b ] Sx log Adylogi 5
and neX Y):= Xi:r;gsw¢ , (2.27)
where B
o
¢=—.
"

The universal map A and the relative differential ¢ are referred to as the superpotential and the
primitive form of Hg m.

A general mirror symmetry construction of Frobenius submanifolds of Hurwitz spaces
isomorphic to Maw, and the associated Dubrovin-dual Frobenius manifolds was given in [6]

SThis is a special case of a type III admissible differential, in the classification of [3, Lect. 5].
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(see also [1,24]), as we review here. For (R, ®) as a marked ADE pair, let ke {1,...,1} be such that
wp = . Fix 0# o € Af, a non-zero dominant weight. Starting from the characteristic polynomial
of a regular element of 7 in the representation p,,,

o= [] € —peqivy,... Yillul (2.28)
' eW(w)
define
P -y ko) :=9Q (Yi =ye s Spre Y, u) . (2.29)

For fixed y € M?ASW’ equation (2.29) defines a plane algebraic curve Cy:=V(P). Let q denote the
normalization of the projective closure of the fibre at y, g := hl,O(q), and let m be the ramification
profile over infinity of the Cartesian projection 1:C, — P!. The corresponding family is the
pull-back of the universal curve to MSASW, where the pull-back metric, product, and intersection
tensors are given by equations (2.25)~(2.27). With {p{'},s, the ramification points of A :Cp — PL.
For convenience and later comparison with Mgw, it will be helpful to rescale the primitive
differential and the linear coordinate on the second factor of h™& @ C as

2v dim du\? 1
2 c9g M
any =X, 2.30
o (o, w 4 2w) dim¢ pgp ( u ) LT gyt (2:50)

where

1
w::% Y B=) o (2.31)

BeR* i=1

is the Weyl vector. By equations (2.25)—(2.27), this just results in an overall rescaling of the
prepotential for M.

Theorem 2.5 (Mirror symmetry for Maw). For all marked pairs (R,®), the Landau—-Ginzburg
formulas (2.25)-(2.27) define a semi-simple conformal Frobenius manifold

Mg = (MrG, MG, LG, e E),
with e = yﬂ.11 o5, E=y1410y,,,. Furthermore,
MLG ~ Maw.

The next proposition [7,10] shows that, for M < H¢n a Frobenius submanifold of a Hurwitz
space, the Dubrovin-dual Frobenius manifold M” is obtained by replacing the superpotential by
its logarithm

A —>log .

Proposition 2.6. Let t: M = (M,c,n,e,E) — Hgm be a semi-simple conformal Frobenius submanifold
of a Hurwitz space defined by a Landau-Ginzburg pair (A, $). Let M™8 be the Frobenius submanifold
structure on M* defined by the formulas (2.25)-(2.26) with 1 =log ho=¢, and X,Y,Z € L (X (M)).
Then,

Mlog ~ MP.
From proposition 2.6, the Frobenius structure of M{G ~ MZW is given as

SxA Sy A

N @ (2.32)

Naw(X, V) =1g(X,Y) = Res

m p!)l
and

SxA SyAdSzA
GwX Y, 2)=c[ (X, Y,Z) = ) Res X=X 20 g2 (2.33)
m

P AZda
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3. Dubrovin duality and mirror symmetry

In this section, we will state and prove our two main theorems relating the Dubrovin-dual
Frobenius structures of Maw and Mg to the T-equivariant quantum cohomology of ADE
resolutions.

Theorem 3.1 (Dubrovin duality for M aw and Mgw). For all (R, ®), we have M:W ~ Mgw.
Theorem 3.2 (Mirror symmetry for Mgw). For all (R, ®), we have M;G ~ Mgw.

Remark 3.3. In theorem 3.1, when comparing the Frobenius structures on M?&w and Mgw, we
shall need to formally set v =1: by the Degree Axiom, the dependence on v is reinstated on the
Gromov—-Witten side (or introduced on the extended affine Weyl side) upon rescaling

Fow — vFgw, F?&W — vF;W, Xj41 —> xlTH

In the following, we will describe how theorem 3.2 for rational spectral curves translates into
a comparison statement between the Gromov-Witten calculation in equations (2.21) and (2.22)
on one hand, and an explicit summation of residues which localize to the fibre over zero of the
A-projection on the other: we will compute this in a closed-form for R = A; and R = D, thereby
proving theorem 3.2, and therefore theorem 3.1, for the classical series. We also explain in general
how to reduce theorem 3.1 to a comparison statement of the structure constants for the Frobenius
algebras restricted to a finite set of points on the complement of the discriminant: computing this
explicitly for R = E; will provide a proof of theorem 3.1, and therefore theorem 3.2, for the three
exceptional cases.

(a) Landau—Ginzburg mirror symmetry
We start by looking at the argument of the residues in equation (2.32),

T — L 31
1,],k(p) )\.2IJ,2 3/4)» M(P) ( )
so that
b b
MG dy) =) Res Tijpa(p), - eq (P By, ) = > Res T ju(p) (3.2)
m m m —Fm

From equation (3.1), we deduce that the pole structure of 7; ;x(p) is as follows:

(i) it has at most simple poles at the critical points {p;"}, for which dA(p{") = 0;
(i) it has a pole of order at most

max{2 — §; 41 — 8141 — Ski+1, 0}

at A(p) = 0: this follows from
s xoca,

JCI 1
which offsets a linear power in the vanishing of the denominator;
(iii) it has at most simple poles at u(p) =0 (When A(p) = occ) wheni=j=k=1+1;
(iv) it has a pole of order at most

max{1l — ;41 — 141 — Sk41, 0}

at the critical points {g;;} of the u-projection, du(qy;) =0. These are the loci where the
Ehresmann connection induced by the p-foliation is singular and 8(“ 2 possibly develops
a pole. These singularities are partially offset by a vanishing of the same order of dp/dy .

The residue sums (3.2) pick up the contributions from the residues of type (i) alone: the difficulty
in writing the critical points of the superpotential as algebraic functions of (x1,...,x;) makes,
however, their individual computation unwieldy. To overcome this problem, we turn the contour
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around and equate the sum of residues at the critical points in equation (2.27) to a much more
manageable sum of residues at poles and zeros of n and A (type (ii) and (iii)) as well as a
contribution from residues at critical points of u (type (iv)).

Computing the individual contributions from type (iv) residues is as difficult, if not more so,
than computing those arising from the critical points of ». However, there are two scenarios when
they can be shown to vanish identically.

— Ifany of i, j or kis equal to I + 1, we have
ordger Yije =max{l — 8141 — 8141 — k141,04 =0,

hence there is no pole at the ramification points of the p-projection. The sum was
calculated explicitly for all extended affine Weyl Frobenius manifolds with canonically
marked node in [6, Theorem 3.5], showing that
niG(ain ax,-) = Z pli%g’ri,j,lJrl (P) = UGW(ax,v, 3,\"/')
m m
as expected.

(2) If deg, P =degy Q =1, implying that the spectral curve is rational, we have {g5;} =¥, so
once again the sum over residues only picks up contributions from zeros and poles of 1
and X. For i, j, k # 1 + 1, the sole contribution arises from the zeroes of the rational function
A().

When R=A; or R=D, it was shown in [6] that deg, P =1, and for these two cases the
summation over residues can be performed explicitly.®

(i) Proof of theorem 3.2 for the A, series with arbitrary marked weight

Let w be the highest weight of the defining representation p of g =sl;;1(C), and let 1 < k<lbea
choice of marked node. From equation (2.29), the corresponding superpotential reads

o l ]
_ Moew@© " —w = (1) T (1= ) [Thea (1 — kx9)

A = -
(_M)Hl—k -1 ] ql+1—k

R )

where
)

1
1—[ —p; ) o 1 Z )
Kj = € plr 1 5] S l/ q =€ (wmmrh)’u’ wmin = _l + 1 1(11'.
i=j i=1

The structure constants of the Frobenius manifold structure on /\/liG were computed using the
method described in §3a in [10] and, in a slightly generalized fashion, in [16, Theorem 5.4], where
more generally the three-point functions of the full T-equivariant Gromov-Witten theory of Z
were seen to equate’ those arising from the Landau-Ginzburg pair (log 1, ¢), with

1

1 2
A = ¥ /vity 1_[ Kj—vl/v1+vz 1-9 Hk:lf]1 - qu)’ ¢2 — (1 + 1) (ﬂ) .
| ) :
j=1 q 1+v2

Taking the restriction to the one-dimensional subtorus T that fixes the irreducible component E¢
as in equation (2.18), the superpotential A coincides with equation (3.3), hence

b
CGW(%‘/ 90]/ (pk) = CLG(aX“/ 8,7(]/ 8Xk)/
which yields the statement of theorem 3.2 for R = Aj and & = wj.
Using the superpotential derived in [24], the almost dual prepotentials for the BCD-cases with arbitrary marked node may

easily be calculated. These are of the same form, corresponding to a BC;-root system.

"More precisely, the comparison in [16] was performed for Z x C with a 2-torus action acting with opposite weights on the
canonical bundle of the two factors. The corresponding genus-zero GW potential differs from that of Z by by an overall
weight factor of —(v + 12).
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(ii) Proof of theorem 3.2 for the D; series

Let w be the highest weight of the defining representation of g = soy;(C). From equation (2.29), the
corresponding superpotential reads
K14 [orew) €™ — 1) K41 Ty (i — k) — )

= u=2(u? —1)2 - w=2(u? — 1)2 G4

where
I

logki=Y_Gjx;,1<i<l, (3.5)
j=1
and Gjj :=djj — &;j+1 + 8;1-19;,; note that (GTG)i]- = Cjj. As in equation (2.30), we shall normalize
the coordinate x;;1 and the quadratic differential associated with the primitive form such that

d 2
log ki1 = x;—:l and ¢’ =v (#) . (3.6)

Since the spectral curve is rational in this case and the u-projection is unramified, to perform
the sum of residues over critical points in equations (2.32)-(2.33) we take the contour of
integration around on the fibres of the mirror family, and instead sum over residues at the other
poles of the integrand. From equation (3.4), these are located at the support of the divisor (1): the
locus of zeroes and poles of A. We thus need to show that

8, (1)3a, (W3, (1)

caw (@i, ¢j, k) = chG(wi, @i o) = — Z R}gs Tqﬁ . (3.7)
pesupp(i)
Write
1, 3 9 3
Rijk = ¢ , ’ , (3.8)
TRy 16 (810g/{i dlogk; Blogxk)

and joqk] for the contribution of the residue at u = g in the sum (3.7). We start with the following:
Lemma 3.4. We have

8i 141681419
R[l] . R[_1] —0, R[o] _ R[oo] _ 91,1+19) 1410k 1+1

[xm] [1/1m] — (5. . . .
ik = Nijk it =Rig = 502 R+ Rige™ = Bijm + Sjkm + Sikm)

X 1 @ije — DIGijmSk+1 + 8 kmij+1 + 8ikmbji+1)

8ijkqi }

= (1= 8ijmSk+1 — 8jkmOii+1 — Sijm;1+1)(8i jmPmk + SkimPmj + 8k mPmi)] + 3

with
’Ci(’sz -1 kn(1 — K}?)

— kn)(kgkn — 1)

j=-——-"——6/—9— and =
Pi (ki — Kj)(kirj — 1) i HZ#(Kk

Proof. The statement follows from a lengthy but straightforward calculation of the rational

residues in
-1

_ P 175m,l+1
1_[ . Km + m
mefi,j,k} (,j,me M_anll) du

[q]
R = —Res (3.9)
ijk = ! 1 1 1-2 4 2427
H=1 Zr:l (;/.—Kr + ;L—Kfl) T uzlil "
forq=0, oo, £1, K% ; we omit the details here. |
Corollary 3.5. We have, for 1 <i,j<I[+1,
—, i=j=1+1,
o (2 a8 \_ 4v2(1-2) / (310)
LG ax;’ ax]" X141 - _Cij/ Lj#El+1, '

0 else.
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Proof. Since log«j11 =x741/(2v), the Lh.s. fori=j=I1+1is

[0] [o0]
R TR 1

41)2 I+1,141,1+1 41)2 4\)2([ — 2)

The vanishing when i # j and either i =1 4 1 or j = 4 1 is immediate from lemma 3.4. For the case
1<i,j <1, we use equation (3.5) to get

b 9 [k [1/er]
16 (axm ax;’ ax] Z CrilRicp, 11+ R 111G ZleGk]_ i

kmn=1

Recall that with respect to the orthonormal basis {Ei}i‘zl of R/, the D; root system is
IT=A{e — 6i+1}f-j Ulemr+el, RPf=letelic, (@ €)=Gji

Definition 3.6. Choose a bijection

a;{<i,j>|15i<jfz}<_>{1,...,1(1;1)},
and for each pair (i,j) with 1 <i <j <1, define ®* and © by
. 1 ifk=iork=j, _ ! %fk:zi' ot
@G(i’j)’k: 0 otherwise, @a(i'j)'k P 9= (@_>’

0 otherwise,

Corollary 3.7. Let € be the column vector (1, . . ., €)T. Then, the rows of © - € give all the positive roots
of Dy,
(B1,---Biu-1)) = Oe. (3.11)

Define now coordinates (1, . . ., ;) of H2(Z, C) via
Geq, ..., x)T=C1G (ry, ..., o) . (3.12)
By equation (3.5), we have
(logxi, ..., log)T =Gxy, ..., x)" =GC1G N (xy, ..., o)L
Using GIG=C, we get GC1GT =1, hence logkj=1,1<i<l.

Lemma 3.8. The positive degree part of the genus Gromov—Witten primary potential of Z is

1(1-1)
GW=2U Z Lis (exp (Z Ol]r])) (3.13)

Proof. In terms of the matrix A;; = (B;, o;) of coefficients of the positive roots (81, ..., fjg-1)) in
the Omega basis,

RT=ASR, (3.14)
we find, using equation (3.12),
10-1)
Fiw=2v Y Lis | exp Z —(ACT'GT),j1
o=1 j=1
On the other hand, expressing fundamental weights in the orthonormal basis,
Br,--- Bu—1) =AC e, ..., a)" =ACTG (e, ..., e)".

From this, we deduce that ® = AC~'GT by comparing to (3.11), thereby proving the claim. |
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Proof. By corollary 3.5, we need only consider the case 1 <i,j,k <I. From proposition 3.8, we
get

(-1
i 33F+ _ Z) o exp(— Zin:l O mTm) (3.15)
i ® ’ :
2 drooT, " exp(— 3y Oom)

where ¢ is an element of the index set o € {(m,1)|1 <m <n <}, and consider the case k =j =1 for
starters. From definition 3.6, this reads explicitly as

1 °Fhy Z exp(—ti — Z exp(—7 + %) Z exp(—t¢ + 7i)
2v AT 0701 1 —exp(—1; — rk) 1 —exp(—7 + %) 1—exp(—% + 1)

Likewise, for k =j # i, we spell out equation (3.15) to be

1 83F exp(—t1; — r]-) exp(—1; + 1))
2v ar,arlar] 11— exp(—7i—7) 1—exp(~7+7)

+ %(sgn(i —j)+1).

As, for fixed o, ©,; is only non-zero for exactly two values of i, we finally have that, for i,j, k all
distinct,
PFow
3‘Ei3‘[ja‘tk

Let us compare the above back to the structure constants of the Landau-Ginzburg product (3.8).
From lemma 3.4 and for i, j, k all distinct, we find

1 9°FLy 1 %FLy 1 o 1 0°FLy,

Riii = 2v dT;0T;0T; — i+ Riij T 970707 B E(sgn(z —N+D Rijk ~ 2 970707k -
(3.16)

Hence, theorem 3.2 for type D; reduces to verifying the following identities relating the additive
terms in the r.h.s. of equation (3.16) to the T-equivariant triple intersection numbers of Z,

Z(ZXE)O [2a-9, 1<i=j<l,
sgn(z—])+1, 1<i#j<l

These are easily verified using the definition of @, concluding the proof. |

(b) Dubrovin duality via initial conditions

A direct proof of theorem 3.1 would entail showing that the structure constants of M';W,
expressed in terms of those of M aw through the duality relation (2.7), coincide with the quantum
cohomology product (2.20) of Z. Explicitly, in our case (2.7) reads

*Few

b b dtc dx,; dxy
Row | dtc dx, dxy Hx)), 3.17
9x;0x;0x% ® ab;g C(nAW)la(nAW) jb oxy 0ta Ofp ( W) ( ©) ( )

where
I+1 33 Faw
AM_ BN

_ _°Faw 3.18
(CAW)C M; 1 NAW AW dtpdtNote (319

For a given marked pair (R, ®), equation (3.17) could a priori be proved by brute-force, as both
sides of the equality are calculable, at least in principle. For the r.h.s., closed-form expressions for
the prepotential Faw(f) and the Saito flat coordinates {f4(x)} in linear coordinates on h x C were
found in [1,6,25]; for the Lh.s., the Gromov-Witten quantum prepotential is given by equation
(2.20).

In practice, however, this approach is largely unfeasible. The entries of the Jacobian matrix
dx,tc(x) are trigonometric polynomials with, e.g. up to billions of terms for R = Eg; for the same
reason, computing the inverse 9;,x, relevant to equation (3.17) is well out of reach of symbolic
computation packages, such as Mathematica, even for very low values of I.
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As we will show, both sides of equation (3.17) are uniquely determined by their values at a
(small) finite number of points in the semi-simple locus M, = h™& @ C: we will refer to this as
a set of initial conditions for the Dubrovin duality. The functional equality (3.17) reduces then to a
numerical equality over the set of initial conditions, which can, in turn, be verified very effectively.
As explained in remark 3.3, we will formally set v =1 throughout this section.

(i) Reduction to initial conditions

We will start by establishing various homogeneity properties for the tensors appearing in
equation (3.17). Following [1], we define dj;1:=deg(y;+1)=0. On the complement of the
discriminant, the coefficients (’&W)aﬂ of equation (2.10) in the chart parametrized by the
coordinates (y1, . ..,Y4+1) satisfy [1, Lemma 2.1]

deg(ny)* = do +dg,

while the inverse Gram matrix of the Saito metric is, by definition,

“ 3(npw)*
naw(y) = $~

By [1, Corollary 2.5], the flat coordinates {f4}4—1, . ; are polynomials in yi,...,y;,e/* with
degts =dy. Furthermore, from [21], the determinant of the Jacobian matrix associated with the
change-of-variables Y; — Yj(x1,..., ;) is

5i= [ @BM/2 —emBMr2), (3.19)
BeR+

By definition, § is anti-invariant under the Weyl group action,
8(wh) = (=) @5 (h).

By orthogonal extension to h x C, the determinant of the Jacobian matrix associated with the
change-of-variables y; — y;(x1,...,x141) is

A = celittHd)ia s (3.20)
and A is, therefore, for the same reason as §, anti-invariant with respect to the Weyl group action.
Lemma 3.9. A? € A. Moreover, A? is quasi-homogeneous of degree 2(dy + - - - + dj).

Proof. We first show the invariance of A2 under the extended affine Weyl group W. It suffices
to check it on the generators, given by the Weyl reflections, the co-root lattice generators and an
extra translation

(h, x151) —> (h + 27, x141 — 270i). (3.21)

Obviously, since A is anti-invariant, A2 is a Weyl group invariant. For the invariance under the
other generators of YV, we use

5= W) 1_[ (1-— e—(ﬂ,h))’ (3.22)
BeERT

where w is the Weyl vector (2.31). An affine translation by a co-root &",
h— h+27iaY,

will leave § (and, therefore, A and A2) invariant, since (w,a") and (8,a"), B € Rt are integers.
It only remains to consider the effect of the Z-action generated by equation (3.21): under this
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translation, we have

271 (W,D) S e(d] +etd))X14 —2mi(dq +~~'+d1)e(d1 A+ )X
’ .

§—>e —e

Hence, A is invariant, using equation (2.31) and the fact that
1
(w,®) = dj, (3.23)
i=1

since d; = (w;, ®). To conclude that A2 € A4, it remains to prove boundedness of A in the limit (2.14).
From equation (3.23), the restriction of A to the locus in equation (2.14) is

celttdhxsa gl TT (1 — e~ (BMe=(Ba)T),

BeR*

This is bounded when t — 400, since (B8, ®) € Z~¢. It is finally immediate to see that AZ(x) is
quasi-homogeneous of the claimed degree, since it is monomial in e**+ with exponent 2(d; +
e d)). u

Define now (2, 1)-tensors
tow € H(Mgw, Sym* Ty, ® Tyi.,) and  Law € HOMaw, Sym* Ty, ® T3y, )

by the following expressions in the chart (y1, ..., Y14+1):

83FGW b i Y, b \ipOYp 0Nk
(EGW)(:}S = Z 7(77AW)MTXH('7AW o A

abiik 0x;0x;j0xk 0xp e 620
Yo dyp Ot LM
and (EAw)gﬂ = Z - CAW)N .
LMN oty oty dYe
Proposition 3.10. We have
At e A and  (Law)? € A. (3.25)

Proof. By equations (2.12) and (2.15), the entries of the Jacobian matrix (resp. its inverse),
Yy 1 0x;
Toi = o, resp. J,, = a,

are Laurent polynomials (resp. rational functions) in (e, ...,e"#1). Since A is the determinant of
the Jacobian matrix, the expression

X,
AK€ Cle™, ..., et
Ve
is again a Fourier polynomial in (xi,...,x141). Moreover, from equation (2.21), the triple
derivatives of the Gromov-Witten prepotential are rational functions in e .. eT¥+ with at
most first-order poles at § = 0. Hence,

A% (bgw)?P e Cle™™, ..., e*H]

is a Fourier polynomial in (x1,...,x;41), as claimed. By lemma 3.9, it remains to check that the
tensor components (EGW)‘Q“9 are YV invariant and bounded in the limit (2.14). Let

3y b Bya
no — 777 ﬂhi. 2
g %Mw[w) o, (3.26)
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By [1], g"* are elements of A. Therefore, noticing that

33F, e dyg dx
(EGW)W}_ Z i( Aw)m y ( Aw)/b yﬁik

Sy 0x;0xj0x 0xp 0Ye
93Faw  9x; 9xj dxy
B Z (ax dx;9xy 0 18 ]8 8", (327)
iikam i0Xj0Xg dYy 0Ys5 OYe

it suffices to check that
a3FGW ax; 3x]’ dxk

" 0x;0xj0x) Yy 9Ys Ye

is W invariant. Since Yo 18 W invariant for 1 <o <1, Yi+1 = X141, and the coordinates x; which
are linearly acted upon by W are contracted, verifying the W-invariance of the last expression
amounts to checking the Wh-invariance of the Gromov-Witten potential Fgy, up to an additive
quadratic shift in x. Recall that Liz(e*) = c3(z) + Liz(e %), where c3(z) is a cubic polynomial in z, as
can be seen by integrating both sides of the geometric series identity Lig(e*) =1 — Lip(e™?). Using
this to expand the sum over positive roots in equation (2.21) to a sum over all roots, we have

Fow =Ds(x) +2v ) Lis(e™ ),
BER

for a cubic polynomial D3(x). It is straightforward to verify that D3(x) is Weyl invariant, hence
Fgw is Weyl invariant. The invariance under the extended affine action is trivial, since for each g,
el is invariant under the corresponding translation in W.

It only remains to verify the boundedness property. Under the limit (2.14), since the entries
of the Jacobian matrix 7,; are bounded, so are the coefficients of its inverse ;71,;1, and we have
already shown that A is bounded. As for the triple derivatives of the Gromov-Witten potential,
boundedness is trivial when either of i,j,k =1+ 1 by the string equation and (2.20). For ,j,k <1,

we have
—(B.h)
= Cijk + Z dl]k(ﬁ) —Bh’ (3.28)
BERT

3%Fow
000k

for constants Cijks dijk(ﬂ ), with 8 € R*. Since (8, ®) > 0, we have

lim |e—(ﬁ,X0+51>| -0
T—>+00 ’

hence equation (3.28) is bounded at infinity.

As for £aw, by [1,6], recall that when 1 <A <1, t4(y) is a polynomial in y1, ..., y; and ¥+ with
polynomial inverse y;(t), and t;11 =y;41. Moreover, (cAw)f{"(t) are polynomials in y1,...,y; and
e¥i+1, Therefore,

(KAW)gﬂ (y) € (C[yl, YL eylﬂ].
The claim then follows as y1(x), ..., y;(x) and e¥+! are generators of A. .

The square Jacobian factor AZ in AZ¢cw entered our discussion so far only in order to offset
the potential double poles of {Gw along the discriminant. However, the equality (3.17) that we
need to prove, {gw = £aw, would lead to the stronger expectation that {Gw is in fact regular at
8 =0. We now show that this is indeed the case. We start by proving the following;:

Lemma 3.11. Let
m: Ay(R) — C
® —> 1M,
be a complex-valued map on the weight lattice having finite support and Weyl-invariant fibres,

My(w) =Mw YwWeW, {w € Aw(R)|my #0}| < oo,
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and consider the Weyl-invariant Fourier polynomial

p(x):= Z meyel X e Cle®™, ..., eV,
weAL(R)

Then, for all B € A,(R), the directional derivative of p(x) along B is divisible by (1 — e=$M)Y in the ring of
Fourier polynomials,

1
Z(,B,wa)ap—(x) e(l—- eiw’}l)) Cle*™, ..., et

— 09X,
Proof. Since
ap(x
S i, p S
a (UEAZU(R) a
we have that
’ op(x)
Y B "= > my(Bweh. (3.29)
X,
a=1 weAL(R)

Letnow B € A,(R) and
I'e(B):={w e Au(R)Isgn (B, w)) = £1}.

Since (8,55(w)) = —(B, w), the Weyl reflection across Bt gives a bijection
sg: ['s(B) > I'=(B).

Moreover, using mg 4(w) = Mo, We can rewrite equation (3.29) as

Z Me(B, a))(e<w’h> _ e(sﬁ(w)rh>) — Z mw(ﬂ,a))e<‘”’h>(1 _ e—2<w,ﬁ>(ﬁ,h)/<f3/ﬁ>).
wel((B) wel ()

As 2<</§"ﬂﬁ>> is a (positive) integer, (1 — e*#/)) divides the rh.s. in C[e™™,...,e*¥]. [ |

Proposition 3.12. ((GW)‘:'S e A
Proof. From equations (2.15), (2.21) and (3.30), ((ZGW)?’3 is a polynomial in e*+1. Let then
L2 = (taw)?? 1,1 =0-

The statement would follow from showing that L?ﬁ , which a priori has double poles along § =0,
is in fact a Fourier polynomial in (x1,...,x;). By proposition 3.13, Sngﬂ is Weyl invariant, and
therefore aL‘;‘ﬁ is Weyl anti-invariant. By Bourbaki [21, Ch. VI, Section 3, Proposition 2(iii)], the
multiplication by § is a bijection from the set of Weyl-invariant Fourier polynomials onto the set
of Weyl anti-invariant Fourier polynomials. It then suffices to show that

SLY e Cle™, ..., ™).

From equation (3.24), we have

PFewW |, b b i _
5Lgﬁ = E (nAw)m(nAWbeaajﬁkael 8 ’
Sy 9x;0x;0x%
1) 1A, xl+1:0

where the r.h.s. has in principle simple poles at § =0. Since A =det 7, 8.7kj| x1.1=0 is regular at
8 =0, therefore it would be sufficient to show that

PFGw | b i
Z 0x;0xj0xx (aw)" Taa
L X141=0
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is pole-free at § = 0. By equation (2.21), the triple derivatives of the prepotential are pole-free along
the discriminant unless 7,7,k <1, in which case®

3 Few

1
o Vi
9700y = Gijk +2v Z (Brei )P Wg’ak) elBI)

BERT

By lemma 3.11 with p(x) = y(x), we have that, for all B € R", >, (B, @a) Jua has a simple zero at

(B,h) =0. Hence, using (Tli)gw)ab = —Cyp for a, b, <1 by equation (2.11), the expression

1
m Z(’B’aiv)(c_l)iajau

ia

is regular on the discriminant § = 0, concluding the proof. |

Proposition 3.13. For any «, B, €, (EGW)?'S and (EAW)?ﬂ are quasi-homogeneous polynomials in
Yi,...,yyand e¥+1 of degree do, 4+ dg — de.

Proof. The polynomiality statement follows from propositions 2.2, 3.10 and 3.12. The
homogeneity property for £gw can be read off from equation (3.27): firstly, from (3.26), ¢"® and
gw are quasi-homogeneous of degree d, + ds and ds + dg, respectively. The triple derivatives of
Fgw are quasi-homogeneous of degree zero, and, therefore, each nonzero term of (EGW)(;”3 has the
same degree dy 4+ dg — de. As for £aw, by [1], ta is a quasi-homogeneous polynomial of degree
dp for 1 <A<l and t;11 =y;41. Thus, recalling that d;,1 =0, 9y, /dt4 is quasi-homogeneous of
degree d, — d4, and likewise dtg/dyg, has quasi-homogeneous degree dg — dg. Furthermore, by
[1], (cAW) M(t) is quasi-homogeneous of degree d;, + dj; — dy. Therefore, each nonzero term of

Yy dYp Otn
B _ o oM
(aw)e’ = Z E ™ a

LM
will be of the same degree:
(do —dL) + (dp — dm) + (AN — de) + (dL + dp — dN) =do +dp — de,
concluding the proof. |
Define a grading on C[Y7, ..., Y;] by degy Y; =d; for 1 <i <. Writing
D:=max{(d, +ds —de)l1 <n,8,e <I+1}, (3.30)

we will write
Voam == {FeCIY1,...,YlIdegy F<D}, Sadm:=1(m,...,n) e 0|an<D ,

for, respectively, the finite-dimensional vector subspace of polynomials in (Y1,...,Y]) of degree
less than or equal to D, and the set of monic monomials in U,qy. We will refer to S,qp, as the set
of admissible exponents of the root system R, and to the corresponding monomial basis of U,4p, as
the set of admissible monomials. In particular, for N = (n1, .. .,1j) € Saqm, we will use the shorthand
multi-index notation

1
N — 1_[ Y?'
i=1
Corollary 3.14. We have

5 s
LW 1120 € Vadm,  LaW)?’ lx.1=0 € Vadm-

Proof. Immediate from proposition 3.13. |

8For A; with a general 2-torus action, the expression is the same upon relacing 2v — vy + vy.
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Table 2. Degree bounds and size of the set of initial conditions for the exceptional series E;, | = 6,7, 8.

/ ) |5adm|

By corollary 3.14, the Weyl-invariant Fourier polynomials (ZGW)Z‘Slx, .1=0 and (€ Aw)2‘3| X11=0
are elements of the same finite-dimensional vector space U,qm, with dimc V,gm = [Sagm|- This
reduces the verification of the functional relation (3.17) to checking the numerical relation

(W) () = (£aw)P (x80)

for finitely many points {x(, ..., x(Sam} in h, each providing a linear constraint on the coefficients
of either side of equation (3.17) as an element of U,qp,. If these points are chosen generically, the
resulting linear system will have maximal rank and determine the (2,1) tensors {gw and £aw
uniquely.

Definition 3.15. A set of |Syqm| points (x®, .., x(1Saaml)y C M3y will be called a set of initial
conditions for M?&W if the [Sadm!| X |Sadm| generalized Vandermonde matrix minor

N M)N MeS i
is non-singular,

N /. .(M)
det(N () 0. (3.31)

Checking (3.17) on a set of initial conditions is poorly suited to a general proof of theorem 3.1
for all marked pairs (R, @). On the other hand, it can be performed highly effectively on a case-
by-case basis. As it just remains to prove theorem 1.1 for R = E;, we will construct sets of initial
conditions to verify equation (3.17) directly in these three exceptional cases.

(ii) Proof of theorem 3.1for the E; series

It is straightforward to compute the degree bound D and the number |S,qm| of admissible
monomials for the exceptional series E;. These are reproduced in table 2.

Configurations of |S,qm | points that are not initial have measure zero in Sym'sad"‘ Iy, since (3.31)
is an open condition. Due to the small size of S,qp, for R = E, it is straightforward to construct an
initial set by picking a configuration of |S,qm | points in the Cartan subalgebra and then checking
a posteriori that the generalized Vandermonde minor (3.31) is indeed non-zero for them. Having
constructed a set of initial conditions J, we are then just left with verifying directly the numerical
identities

(tew)?P ) = (aw)P (), k=1,...,13].
Proposition 3.16. For all (R, ®) with R = E|, there exists a set of initial conditions J such that, Vx € J,
(taw)y? (1) = (Caw)y’ (). (3.32)
Proof. Direct calculation. |

Example 3.17 (R =Eg). We will sketch here the main elements entering the verification of
equation (3.32) for R = E¢. The Lh.s. of equation (3.17), as a function of x = (x1, .. ., x7) is explicitly
computed by equation (2.21). As for the rhs,, (”;w)iu is given by (2.11), and all we need
to compute are the Jacobian matrix of the change-of-variables t — t(x), its inverse, and the
(2,1) multiplication tensor caw in flat coordinates. For the latter, the prepotential of Maw was
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computed in [6] to be

e?” 8t 1 6,03, 3 2, 15,
Faw = 7 + Ze t1ts + Ee (tl +i5+ 3f6) + Ee t1tets

1 4022, 2 2 e g 3, 52
+ ﬁe 7(10t1t5 + 17ty — tot5 — fatg) + Etdtl — bty + 5 + 2ty + tats)

e ts5td — 2totst? + (£ + 2412 + 3612t5 + 12)H + At L 2 — 1) (£2 + ta)t,
+m(51_ 251+(5+ als + 65"’4)1""25)"‘59(1_2)(54'4)6
B+ b -t 45— B+ (bh -ttty fh el la

38880 7776 2592 36 192 86T 43"

from which (CAw)éB in equation (3.18) is immediately computed as an explicit polynomial in

t1,...,ts and e’7. The flat coordinates are related to the fundamental traces in equation (2.13) as
(6]
1 2
h=WgWi, t=W(Wi—6W,—12Ws), t3=WoW1Ws+ W3+ 3We+3),

2 1 1
ty= W5 (-W2 + 12W; +6Wy), ts=W;Ws, te=W;(We+2), t7 , (3.33)

_ log(Wo)
-6
where furthermore Wy = e!/%7. The fundamental traces W7 and Wj in, respectively, the ‘27’ and
‘78’ (adjoint) representation can be computed from the respective weight and root system, and
their expressions are given in the Supplementary Online Material. The remaining traces can be
computed from the following relations in the representation ring of Eg,

Wix) =We_i(—x), i=1,...,5
and

W)= 5 (W@ = Wi(20) and Wa() = 5 (Wa@)Wix) ~ Wi()Wh (22) + Wi (30)

expressing, respectively, the fact that p;=7,_; for 1<i<5 and p; = Alp; for i=2,3. Plugging
the resulting expressions into equation (3.33) gives the change-of-variables t — f(x), from which
the Jacobian coefficients dy,f4 could then in principle be computed as explicit, if cumbersome,
Fourier polynomials with a few thousand terms. The resulting matrix inversion computing o, x;
as rational trigonometric functions of x is far out of reach of modern symbolic computation
packages. On the other hand, evaluating on a (rational) set of initial conditions J dramatically
reduces the unwieldy expressions above in the field Q(e',...,e") to eminently manageable
manipulations of rational numbers. The exact inversion of the numerical 7 x 7 matrix dt, Xil—y®
over Q for x(X) € J takes now a fraction of a second in Mathematica on an entry-level desktop
computer’, as does the evaluation of all the other quantities entering equation (3.17). This allows
for a straightforward and fast verification of equation (3.17) over J, and therefore, by propositions
3.13 and corollary 3.14, on the whole of Maw.

The same Mathematica calculations take a couple of minutes for R =Ey, and a few hours for
R =Eg with the same setup. The Wolfram Language code used to verify proposition 3.16 is
available to the reader in the Supplementary Online Material.

Corollary 3.18. Theorems 3.1 and 3.2 hold for (R, ®) with R = Ej.

Proof. Theorem 3.1 follows from propositions 3.16, 3.13 and corollary 3.14, and it implies
theorem 3.2 by theorem 2.5. ]

Example 3.19 (Landau-Ginzburg mirror symmetry for the Eq du Val resolution). Let R =
Eg, so that @ = w3 is the highest weight of its 2925-dimensional fundamental representation. By
theorem 3.2 and (2.30), the T-equivariant quantum cohomology of the du Val resolution of type Eg

9 Absolute clock-times based on a setup with Intel Core i7-8700 @3.20 GHz processor and 16 GB RAM.
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is mirror to a one-dimensional Landau—-Ginzburg model with a log-meromorphic superpotential
log A and logarithmic primitive form
% = Y dl ’
3\ !

where 1 and p are the two Cartesian projections on the family of plane algebraic curves over
h™& @ C in equation (2.29) given by

Py, -y7; 0, 1) =0,

and we took w := w1 in equation (2.29) to be the highest weight of the 27-dimensional fundamental
representation p;. Expressing the characters of the exterior powers of p; in terms of fundamental
characters Wy, ... We (see [26, Eq. (6.21)]), and further relating the latter to the basic invariants as

Wi=Y1, Wr=Yr+5Y5, W3z=Y3+4Y1Y5—9Y¢ — 63,

and
Wy=Y4+5Y1, Ws=Ys We=Ys+6,

as can be ascertained from a direct inspection of the fundamental weight systems I (i=1...6),
we compute from equations (2.29)—(2.30) that

Ply;r, n)=Q(Y, },L)|Yu:yue—day7 + e*x7/(2v)Q[1](Y, M))‘IYQ:yue*daW + efx7/v'u9(ldc3 _ 1)3A2,
where Q is the characteristic polynomial in equation (2.28), and

QM =1 2421 + 13 (3Y6 +20) + pu* (Y] = 2Y2 — 13Y5) — 12 (Y6 Y1 +9Y1 + Ya)
+ 182Y3 +12Y1Ys5 — 21Y — 150) 4 17 (5Y2 — 10Y3 — YaY1 +24Y5 — Y5Y¢)
+ 18(Y5Y2 +3YgY1 4+ 26Y1 — 13Y2 + Yy — 2Y,Y5)
+12(6YsY1 — Y5 +3Y2Y1 — 6Y3 4+ 3Y4 Y5 + 48Y¢ + 343)
+ 11045 — 4Y2 — 2Y2Y] — Y4Y1 — 3Y2 +3Y5Ye)

+ (1 — (P Y1 e Vs, Yo e Vo),
As a check, from equation (2.32), the dual pairing on Maw >~ Mg is
) 1 Saxi)ﬁaxj)» du 1 ngi)LSaxjA du
.0, 3xj) =- ZResp;{ =" Z Resp —————.
6% I T Mudud p

For 1 <i,j <|, it is straightforward to check that the only non-vanishing residues arise from the
zeroes of A, i.e. when u = el @ for o' € I. We find

12 -6 O 0 0 0
-6 12 -6 0 0 0

g
m
=
>
=
(o5
=
>
=
g
m
=
o o (e} o
o
|
o)
—_
N
|
[e)Y
()

and therefore
b
nLG(ax,'/ an) =new(ei, (/J]) = _Cij/

recovering the expression for the 2-point intersection pairing on Z in equation (2.20).
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Data accessibility. The Wolfram Language code used to verify proposition 3.16 is available to the reader in the
Supplementary Online Material.

The data are provided in electronic supplementary material [27].
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