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weeks, bridge the gap between weather and seasonal cli-
mate forecasts (Vitart and Robertson 2019) and play a key 
role in the “ready-set-go" framework (Goddard et al. 2014). 
These forecasts have a demonstrated impact on agricul-
tural planning, disaster preparedness, and water resource 
management, particularly in regions where livelihoods are 
highly sensitive to climatic variability (e.g. White et  al. 
2017; Hirons et al. 2023).

The potential benefit of climate forecasts is large in areas 
with rain-fed agricultural systems, like Malawi, where 
droughts have become more frequent, intense, and wide-
spread over the past two decades, with severe consequences 
for food and water security, energy resources, and rural live-
lihoods (Ndlovu et  al. 2024). One of the most hazardous 
phenomena for farmers is the occurrence of erratic rains/
dry spells, which place pressure on rain-fed agriculture 
and food security (Coulibaly et al. 2015; Chimimba et al. 
2023). The need for dry spell prediction is particularly acute 
around the first rains, which are often perceived as the onset 
of the rainy season but may, in some cases, be followed by 

1  Introduction

A large body of research has highlighted the broad value 
of climate forecasts in agricultural decision-making (e.g. 
Hansen et al. 2011; Roudier et al. 2014; White et al. 2017; 
Streefkerk et  al. 2022; White et  al. 2022). Subseasonal 
weather forecasts, which cover lead times up to about six 
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Abstract
Smallholder farmers in Sub-Saharan Africa are vulnerable to adverse fluctuations in rainfall, such as dry spells during 
the critical early stages of the rainy season. In this study, we demonstrate that Malawi is prone to shifts from periods 
with limited dry spell occurrence to more widespread dry spells later in the season. We develop a predictive model for 
dry spells, aiming to provide farmers with actionable information to support agricultural decision-making and enhance 
resilience. The model, based on a dynamical subseasonal prediction system and validated using reanalysis and satellite-
based data, focuses on Malawi as a case study. This model has significant skill in predicting the occurrence of at least 
one dry spell within the three weeks following initialisation, consistently outperforming a climatology-based reference 
model. Furthermore, we show that the model is applicable beyond Malawi, specifically in East Africa during both the 
March–May “long rains” and the October–November “short rains”, highlighting its broader relevance for regions where 
dry spells pose an agricultural risk. The results demonstrate that subseasonal forecasts have the potential to bridge the 
gap between long-range seasonal outlooks and short-term weather forecasts. Unlike seasonal forecasts, which lack skill 
at long lead times, subseasonal predictions offer both a longer planning horizon than weather forecasts and greater skill 
in capturing dry spell risks at actionable lead times. By integrating subseasonal forecasts into national climate services, 
policymakers and agricultural extension services could provide more timely and targeted advice, potentially helping to 
mitigate the most severe impacts of dry spells on food production and rural livelihoods.
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a prolonged dry period. Such “false onsets” are so common 
in Malawi that they have a name: the “fire extinguisher”, or 
Chizimalupsya (Department of Climate 2024). A worst-case 
scenario arises when farmers plant too early after the per-
ceived onset, only for premature rains to be followed by dry 
spells that kill the seeds before they can germinate. A par-
ticularly damaging example occurred in the 2012–13 sea-
son, when farmers in central Malawi had to replant maize 
six times before the onset of sustained rains (Mittal et  al. 
2021). The 2023–24 season was not only another instance 
of delayed onset (Department of Climate 2023); it was also 
characterised by prolonged dry spells following initial rain-
fall in some areas. These conditions had severe agricultural 
impacts: early rains prompted planting, but the subsequent 
dry spells led to widespread crop failure, contributing to a 
food security crisis in which millions required humanitarian 
assistance (ROSEA 2024; see also Fig.  2).

Coulibaly et  al. (2015) found that onset predictions 
were the most sought-after climate service among Mala-
wian farmers, underscoring their perceived importance 
for agricultural planning despite inherent skill limitations 
at extended lead times. As part of their response to user-
driven needs for information, the Malawian Department of 
Climate Change and Meteorological Services (DCCMS) 
issues seasonal forecasts in September (Department of Cli-
mate 2024). These forecasts include predictions of rainy 
season onset and dry spell likelihood, despite being issued 
with substantial lead time before the typical November 
start of the rainy season. DCCMS seasonal forecasts rely 
on analogue years with similar El Niño–Southern Oscilla-
tion (ENSO) signatures, with predicted ENSO conditions 
derived from global seasonal forecasting models. How-
ever, Demissie and Gebrechorkos (2024) demonstrated 
that only southern Malawi exhibits a significant (negative) 
correlation with ENSO, while northern regions show non-
significant (positive) correlations. This spatial heteroge-
neity reflects Malawi’s position at the boundary between 
East Africa, where October–December rainfall correlates 
positively with ENSO (Kolstad and MacLeod 2022), and 
Southern Africa, where this correlation is negative (Rat-
nam et al. 2014). Given the limited skill of current seasonal 
forecasts (Mittal et al. 2021), there would be considerable 
potential value in developing shorter-lead-time predictions 
with higher accuracy. While such forecasts may not support 
long-term decisions like crop variety selection, they could 
play an important role in guiding time-sensitive choices, 
most notably when to plant (Streefkerk 2020).

Effectively implementing forecasts for shorter time hori-
zons than seasonal forecasts requires careful consideration 
of how rainy season onset is conceptualised. A wide range 
of agronomically defined onset definitions exists, typi-
cally incorporating both a rainfall threshold and a criterion 

ensuring that no dry spell follows shortly thereafter (Fitz-
patrick et  al. 2015). Defining rainy season onset by com-
bining a rainfall threshold with a subsequent no-dry-spell 
criterion presents two major challenges.

First, there is a forecast skill horizon problem: while we 
found no evaluations of subseasonal rainfall prediction skill 
for Malawi specifically, studies for East Africa suggest use-
ful skill at lead times of up to 3–4 weeks (de Andrade et al. 
2021; Kolstad et al. 2021; MacLeod et al. 2021). Given this 
limitation, predicting both the initial onset and subsequent 
dry spells is difficult because much of the skilful forecast 
horizon is already “used up” in determining the onset itself.

Second, there is a spatial coherence issue: onset dates 
derived from rainfall-based definitions tend to be highly 
variable across small spatial scales (Fitzpatrick et al. 2016; 
Young et  al. 2020), often lacking clear correlations with 
regional climatic drivers. This limits their practical utility 
for large-scale forecasting and decision-making.

To address these limitations, DCCMS provides daily, 
five-day, and weekly forecasts, along with ten-day agro-
meteorological bulletins throughout the season. However, 
while these short-term updates are valuable, they do not 
bridge the gap between seasonal outlooks and real-time 
weather forecasts. In particular, subseasonal forecasts – 
providing predictions with lead times of two to four weeks 
– could significantly enhance early warnings for dry spells 
and other agricultural risks. By offering a longer plan-
ning horizon than weather forecasts while remaining more 
up-to-date than seasonal outlooks, subseasonal products 
would better align with farmers’ decision-making needs 
(Streefkerk 2020). Yet, such forecasts are not currently part 
of DCCMS’s portfolio.

This gap in forecast provision is a key factor in farm-
ers’ reluctance to rely on predictions. Many cite discrepan-
cies between forecasted and observed weather as a reason 
for their scepticism, reinforcing fatalistic attitudes towards 
climate variability (Mkwambisi et  al. 2020). Addressing 
these challenges requires not only improving forecast skill 
but also enhancing how forecasts are communicated and 
updated. Subseasonal forecast products focused on key agri-
cultural risks, such as dry spells, could help bridge this gap 
by offering information that is both actionable and aligned 
with farmers’ planning horizons.

Acknowledging the differing lead-time requirements of 
onset and dry spell prediction, we focus here on forecast-
ing dry spells around the time of seasonal onset: arguably 
the most critical short-term prediction for farmers assess-
ing whether observed rainfall marks a true or false onset. 
Before planting, these forecasts might help farmers avoid 
the adverse effects of a false onset by informing deci-
sions on whether to delay planting until sustained rainfall 
is more likely (Streefkerk 2020). Such a proactive use of 
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probabilistic forecasts could reduce the likelihood of crop 
failure due to poor germination or early water stress. After 
planting, the forecasts would remain valuable by guiding 
adaptive measures when an increased probability of dry 
spells is indicated. For example, farmers could implement 
soil and water conservation practices, such as mulching 
or tied ridges, to retain moisture (Rockström et al. 2010; 
Marongwe et al. 2011), or prioritise supplemental irrigation 
where possible. Such applications highlight the potential of 
forecast information to support both pre-emptive and reac-
tive decision-making, ultimately enhancing resilience in the 
face of uncertain rainfall patterns.

Here we present a novel framework for leveraging sub-
seasonal forecasts from the European Centre for Medium-
Range Weather Forecasts (ECMWF), reanalysis data, and 
satellite-derived rainfall data to develop a dry spell predic-
tion model for the coming three weeks. This framework 
was developed within the interdisciplinary ARCS (Agricul-
tural Resilience through Climate Services) project, which 
focuses on tailoring climate forecasts for actionable agricul-
tural advice. Preliminary focus group interviews conducted 
in Malawi during the 2023/24 and 2024/25 rainy seasons 
confirmed that dry spells and false onsets pose a major chal-
lenge to farmers’ livelihoods.

We seek answers to three main questions. First, we 
ask how dry spells vary within a season and from year to 
year in Malawi. By taking a country-aggregated view, we 
investigate whether widespread dry spells commonly occur 
after periods with limited dry spells. Second, we question 
whether it is possible to skilfully predict the likelihood of 
dry spells in Malawi around the critical start of the rainy 
season. Third, we assess if the findings for Malawi are 
generalisable to other parts of Sub-Saharan Africa, focus-
ing on East Africa. While Malawi serves as a case study, 
the framework’s use of global data allows for adaptation to 
other regions facing similar challenges.

2  Data and methods

2.1  Forecast and reforecast data

The analysis is based on subseasonal reforecasts from the 
ECMWF’s Integrated Forecasting System (IFS), which 
combines a sophisticated data assimilation system and a 
global numerical model to produce operational forecasts for 
the extended range (days 1–46). Until 11 November 2024, 
the IFS forecasts were produced each Monday and Thurs-
day, and after this, every day. Each forecast consists of 100 
perturbed ensemble members and one control run. Here we 
only use the perturbed members.

The bulk of our analysis is based on IFS reforecasts, 
which provide a consistent baseline for evaluating forecast 
skill by offering historical forecast data that can be com-
pared against observations to correct biases and calibrate 
probabilities. Each IFS reforecast consists of 11 ensemble 
members and spans the 20 years prior to the forecast’s initial 
date. Reforecasts are produced on the fly, at the same time as 
operational forecasts.

To focus on the part of the season when dry spells are 
neither very rare nor very common (for reasons explained in 
Sect.  2.6), we only included reforecasts for reference dates 
between 15 October and 15 December. We included refore-
cast initial dates from both 2023 and 2024. While either year 
provides a full 20-year reforecast set (e.g., 2023 includes 
2003–2022), using both years increases the number of refer-
ence dates. However, this also means that edge years (2003 
and 2023) are sampled only once, resulting in slightly fewer 
reforecast instances for those years. There is also another 
source of skewness in the data. After the change to daily 
forecast production on 11 November 2024, reforecasts were 
only issued every other day (on odd dates). In our analy-
sis, we included all available reforecast dates during the 
period 15 October to 15 December, meaning that the period 
after 11 November 2024 contains more densely sampled 
data than the preceding period during the same year. This 
introduces a slight overall weighting toward the later weeks 
of the season, which we consider negligible in terms of its 
impact on results. In total, the dataset includes 43 unique 
forecast initialisation dates across 2023 and 2024. With 20 
reforecast years per initial date, this yields a total of 860 
reforecast instances, each with 11 ensemble members.

The IFS data were downloaded with a grid spacing of 
0.35 degrees, approximating the model’s original resolu-
tion of about 30  km, and we analysed daily accumulated 
precipitation from the first three weeks of each reforecast 
ensemble member. The work of Fitzpatrick et al. (2016) for 
West Africa indicates that for most locations there is enough 
spatial coherency that a spatially aggregated measure of 
interannual variabilityin onset is meaningful on the 30 km 
scale.

2.2  Observational data

Observational datasets, while crucial for ground truth, are 
often hampered by issues such as undercatch (Adam and 
Lettenmaier 2003), data gaps, varying instrument quality, 
inconsistencies in measurement techniques, gaps in station 
coverage, and interpolation uncertainties, particularly in 
regions with sparse observational networks. These limita-
tions introduce uncertainties that can complicate model 
evaluation.
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Studies indicate that ERA5 tends to overestimate the num-
ber of wet days (> 1 mm) in Europe (Bandhauer et al. 2022; 
Gomis-Cebolla et  al. 2023), associated with an excessive 
frequency of very light rain (Ahn et al. 2024). Similar biases 
are found in Africa. Specifically, Lavers et al. (2021) found 
a wet bias for the IFS model in dry regions, while Lavers 
et  al. (2022) reported that ERA5 overestimates precipita-
tion on dry days, with biases in southeastern Africa ranging 
from 0 to 0.5 mm per day in October. To account for this, we 
adopt a relatively high wet/dry threshold of 2 mm per day, 
a choice also made in previous studies (e.g. Haghtalab et al. 
2019; Streefkerk et al. 2022). Lower thresholds (1 and 1.5 
mm) produced qualitatively similar results.

Ultimately, while ERA5 is not a perfect ground truth, 
it provides a physically consistent and spatially complete 
dataset for model calibration and validation. For operational 
applications, local observations should be incorporated to 
refine forecasts and correct systematic biases. The method 
presented here should therefore be viewed as a preliminary 
assessment of subseasonal predictability rather than a sub-
stitute for observation-based calibration.

2.3  Bias-correction

Any forecast model, including IFS, has biases that can stem 
from factors such as inaccurate topography representation, 
poor soil moisture feedbacks, or circulation biases. Forecast 
models are also known to experience drift with increas-
ing lead times (Hermanson et  al. 2021), which represents 
another bias with respect to observational data. It was there-
fore necessary to bias-correct the IFS data and to account 
for varying lead times within a forecast. We employed a 
method similar to quantile mapping. Specifically, for each 
valid time of each reforecast, we pooled reforecast data for 
the same calendar day across all the years. With 11 ensemble 
members available for each date, we matched these pooled 
IFS data with ERA5 data for the same dates. To maintain 
consistent sample sizes between IFS and ERA5, we used 
an 11-day window centred on each calendar day for ERA5. 
We then computed the percentile corresponding to 2 mm of 
precipitation in the ERA5 data. This percentile was used to 
identify the equivalent lead time-dependent precipitation 
threshold in the IFS data, such that IFS precipitation values 
below this threshold were classified as no precipitation.

When investigating the forecast model based on IMERG, 
we bias-corrected the model with respect to these data, 
using a no-rain threshold of 1 mm rather than 2 mm. This 
lower threshold was selected because the IMERG algorithm 
does not have the same tendency to produce excessive light 
rain as ERA5. This quantile mapping approach revealed 
large differences between IMERG and IFS. The IFS thresh-
old values based on the same quantile that corresponded to 

To validate and calibrate the model forecasts, we used 
precipitation data from the ERA5 reanalysis (Hersbach et al. 
2020). Reanalysis products offer the advantage of being 
both temporally and physically consistent. Since ERA5 is 
produced using the same IFS model as the forecasts, the 
validation effectively compares the model against a version 
of itself. This setup provides a controlled environment to 
isolate and assess the model’s intrinsic performance, with 
minimal influence from observational uncertainties.

In addition to ERA5, we used version 7 (V07) of the Inte-
grated Multi-satellite Retrievals for GPM (IMERG) data-
set (Huffman et  al. 2023) to validate and bias-correct the 
forecast model. IMERG provides precipitation estimates at 
high temporal resolution based on a combination of micro-
wave and infrared satellite data. Unlike similar products like 
TAMSAT (Maidment et al. 2017) and CHIRPS (Funk et al. 
2015), which rely on the disaggregation of multi-day rain-
fall estimates to produce daily values, IMERG offers native 
daily precipitation fields. This feature makes it well-suited 
for assessing dry spell conditions at daily resolution. How-
ever, IMERG is not free of uncertainty. IMERG products, 
including V07, tend to overestimate light rainfall events, 
which is a common issue across different versions and 
regions (Yang et al. 2020; Li et al. 2021; Wei et al. 2025). 
While the Final Run product (which we used) includes a 
monthly bias correction using gauge data, this adjustment is 
temporally coarse and often limited in regions with sparse 
observational coverage, such as Malawi.

To upscale the IMERG data from their native 0.1◦ reso-
lution to the target 0.35◦ grid, we employed a Gaussian-
weighted interpolation scheme using the nine nearest 
neighbours of each target grid point. The weights were based 
on the distances in degree-space. To prevent numerical insta-
bility and ensure meaningful contribution from neighbouring 
points, we applied a minimum threshold ϵ = 0.04◦ (about 
4 km) to all distances before the weight calculation, so that 
di = max(ϵ, d∗

i ), where d∗
i  is the actual distance to the i-

th neighbour, and di is the effective distance. The weights 
for each neighbour were calculated as wi = exp

(
− d2

i

2σ2

)
, 

where σ = 0.07◦ is the bandwidth parameter. This approach 
ensured that even exact coordinate matches received at most 
30% of the total weight, thereby providing spatial smooth-
ing appropriate for upscaling precipitation fields. The values 
of ϵ and σ were determined through empirical testing of sev-
eral parameter combinations. A more rigorous optimisation 
of the interpolation technique would be recommended for 
operational purposes.

It is important to acknowledge that using ERA5 also entails 
limitations. Reanalysis products are hampered by scarcity 
in the observations that drive them, and in Malawi there 
are relatively few observations available for assimilation. 
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1 otherwise. We then revisited each date to check for the 
occurrence of any dry spells (seven consecutive days of 1’s) 
during the subsequent three weeks. For each date, a new 
binary variable, denoted as δ, was assigned a value of 1 if 
at least one seven-day dry spell occurred during these three 
weeks, and 0 if there were no dry spells.

We illustrate how δ was calculated in Fig.  1. In the top 
row, the daily rainfall for a random grid point (marked in the 
maps in the bottom row of the figure) in Malawi is shown 
for three 21-day periods in 2009. During the first of these 
periods, illustrated in Fig.  1a, all the days up to day 13 had 
less than 2 mm. Consequently, the δ variable for the starting 
date of this period (18 October) was set to 1. In the sec-
ond period, there were at most four days in a row with rain 
below 2 mm, resulting in δ = 0 for the reference date of 2 
November. During the final period, starting on 17 Novem-
ber and shown in Fig.  1c, there were seven dry days at the 
end, yielding a δ value of 1.

1 mm in IMERG were typically in the range between 2.5 
and 3 mm.

2.4  Defining dry spells

The dry spell definition used in this study is a period of 
seven consecutive dry days (CDD), meaning no single day 
within this period exceeds 2 mm of precipitation. Locally 
tailored dry spell definitions vary by region, climatologi-
cal conditions, and time of the year (e.g. Sivakumar 1992; 
Sharma 1996; Barron et al. 2003; Thoithi et al. 2021). For 
instance, DCCMS considers period with nine CDDs when 
they issue dry spell forecasts with a 10-day lead time. Only 
minor differences were seen when we repeated the analysis 
herein for nine-day dry periods.

For each dataset (IFS and ERA5), we first calculated a 
binary variable for each date and grid point, assigning a 
value of 0 if the daily accumulated total precipitation (bias-
corrected for IFS; see previous section) exceeded 2 mm, and 

Fig. 1  Illustration of δ (top row) and δ̄ (bottom row). (a–c) Daily 
accumulated precipitation for a randomly selected grid point within 
Malawi (marked in d–f) for each of the 21 days following the dates 
in the captions. The captions also indicate the δ values for that grid 
point. (d–f) Maps of δ for each grid point for the same dates as in 

(a–c), with the captions denoting δ̄, i.e., the mean of δ within Malawi’s 
borders. The yellow lines represent the borders of the three regions 
of Malawi (Northern, Central, and Southern), and the thin lines show 
lake boundaries
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2.6  Forecast performance metrics

The Brier Score (Brier 1950) is a proper scoring rule that 
quantifies the accuracy of probabilistic predictions. For a 
binary event (like the occurrence or non-occurrence of dry 
spells), the Brier Score is defined as:

BS = 1
N

N∑
i=1

(fi − oi)2� (1)

where N is the number of predictions, fi is the forecast prob-
ability of the event occurring for the i-th case, and oi is the 
observed outcome (1 for occurrence, 0 for non-occurrence). 
Here “observed” refers to ERA5 data.

The Brier Score ranges from 0 to 1, with 0 indicating 
perfect forecasts and 1 indicating the worst possible fore-
casts. A useful benchmark can be derived from a model that 
always predicts a 50% chance of occurrence: this model 
gets a Brier Score of 0.25 no matter what happens in reality.

The Brier Skill Score (BSS) (Wilks 2019) is a normalised 
measure that compares the Brier Score of a forecast to that 
of a reference forecast (the climatological forecast based on 
ERA5 in our case) and is defined as:

BSS = 1 − BSM

BSC
,� (2)

where the “M” and “C” subscripts denote “Model” and 
“Climatology”, respectively. A BSS of 1 indicates perfect 
skill, while a BSS of 0 indicates no skill relative to the refer-
ence forecast. A negative BSS suggests that the forecast is 
worse than the reference.

The Brier Score, and consequently the BSS, are known 
to be less informative for rare events (Lawson et al. 2024). 
This limitation arises because the Brier Score is sensitive to 
climatological frequencies: when an event is rare, a naive 
forecast that simply reflects its low climatological probabil-
ity can achieve a good score. Since the event rarely occurs, 
even an unskilled model predicting near-zero probabilities 
will appear accurate. A similar effect is seen for very fre-
quent events. In such circumstances the BSS struggles to 
distinguish genuinely skilful models from those merely 
capturing event frequency (Bröcker and Smith 2007; Wilks 
2019).

Additionally, when event occurrence varies seasonally 
– being rare in some periods and frequent in others – this 
imbalance further reduces the BSS’s effectiveness in assess-
ing forecast skill. To address this, we restricted our analysis 
to initial dates around the start of the rainy season, from 
the middle of October to the middle of December. This 
avoids periods when dry spells are either ubiquitous (before 

In Sect.   3.1, we analyse dry spells for Malawi as a 
whole. To facilitate this analysis, we define δ̄ as the mean 
δ value across all grid points in the country. This variable 
is illustrated in the bottom row of Fig.  1, where δ values 
are mapped for each grid point for the same reference dates 
as those in the top row. The first panel in Fig.  1d shows 
that most of the grid points within Malawi’s borders had 
δ = 1 during the first period, including the reference grid 
point from Fig.   1a, yielding δ̄ = 0.86. The map for the 
second reference date indicates that dry spells during this 
period were mainly confined to the Southern region, which 
resulted in δ̄ = 0.32. By the final date, only scattered areas 
of Malawi experienced dry spells, and δ̄ was 0.24.

2.5  Dry spell prediction models

A key objective of this study is to assess the skill of the IFS 
model in predicting dry spells. To do this, we constructed 
two probabilistic dry spell prediction models: one based on 
post-processed IFS data and the other based on ERA5 data. 
The latter will be referred to as the climatology-based model 
henceforth. For this model a forecast is fixed by location and 
day of year.

The prediction models were developed using a leave-one-
out cross-validation approach. For each year, IFS precipita-
tion data were bias-corrected using reforecast and reanalysis 
data from the other 19 years, applying the methodology 
described in Sect.  2.3. We then used these bias-corrected 
precipitation data to compute δ for the initial date of each 
grid point and each ensemble member of each reforecast. 
This binary δ variable indicates whether any dry spells were 
predicted during the first three weeks of the forecast period.

The probabilistic IFS-based dry spell prediction for each 
reforecast was calculated as the fraction of ensemble mem-
bers (out of 11) for which δ = 1, i.e., those that predicted at 
least one dry spell during the first three weeks. This fraction 
is equivalent to the mean of the binary δ values across the 
ensemble members. A value of 1 indicates that all ensemble 
members predicted a dry spell, while a value of 0 means 
that none did. For the climatology-based prediction using 
ERA5, we predicted the chance of dry spells as the climato-
logical frequency (leaving the prediction year out).

To avoid inflating the skill of this model, which has 19 
available years compared to the 11 ensemble members of 
the IFS-based model, we followed Müller et al. (2005) and 
Weigel (2011) and computed the frequency based on 11 ran-
dom years (with replacement) out of the 19 available years 
1,000 times and used the average frequency as the predicted 
dry spell probability.
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For example, when evaluating a metric such as the Brier 
Skill Score over a 20-year hindcast period, each iteration 
involved randomly selecting 20 years (with replacement), 
retaining the full seasonal cycle within each year. A value 
was deemed significantly positive or negative if its CI did 
not contain zero. We conducted 1,000 bootstrap iterations 
and used a 5% significance level (based on 95% CIs). Addi-
tional details are provided where relevant.

2.8  Colour maps

We used colour maps designed by Fabio Crameri (Crameri 
et al. 2020) to ensure accessibility and reproducibility.

3  Results

3.1  Observed dry spells

To explore the interannual and intraseasonal variability of 
dry spells in Malawi, we computed δ̄ (see Sect.   2.4) for 
each day between 1 September and 1 January for the years 
in the period 1980–2024, using ERA5 data. Note that this 
period is longer than the reforecast period.

The daily δ̄ values shown in Fig.  2 point to several peri-
ods that may have posed risks to agricultural planning. In 
2024 and several other years, periods with limited dry spells 
(blue cells) were followed by widespread dry spells condi-
tions (beige cells) sometime later in the season. The figure 
also highlights other notable features, such as the persistence 
of moderate dry spells (green cells) extending to 1 January 
2016. The 2015/2016 season was marked by widespread 
drought conditions in southern Malawi (Mkwambisi et al. 
2021). A daily dry spell chart for the Southern Region (not 
shown) exhibits widespread dry spells (beige cells) during 
the three-week periods beginning in late December 2015.

Any transition from moderate or limited dry spells to 
more widespread dry spells – i.e. from blue to green or 
beige, or from green to beige in Fig.  2 – represents a poten-
tial agricultural risk. Such transitions occurred 35 times 
over the 45 seasons shown in Fig.  2, nearly once per year on 
average. The high frequency of these shifts likely heightens 
farmers’ receptiveness to subseasonal dry spell forecasts.

A regional breakdown for Malawi’s three regions – 
Northern, Central, and Southern; see borders in Figure  1 
– revealed 44, 33, and 56 such transitions, respectively, 
highlighting that within-season rainfall volatility in recent 
decades has been most (least) pronounced in the Southern 
(Central) Region.

the rainy season begins) or nearly absent (once it is fully 
underway), ensuring that the BSS more effectively differen-
tiates meaningful skill from background climatology. Note 
that we do not investigate the normal cessation period from 
March to May, even though dry spells may also be relevant 
for agricultural decisions during this time.

Reliability and sharpness diagrams provide complemen-
tary insights into the quality of probabilistic forecasts. A 
reliability diagram assesses how well forecast probabilities 
correspond to observed frequencies, with a perfect forecast 
following the 1:1 diagonal line. Deviations from this line 
indicate where probabilities systematically overestimate 
or underestimate the likelihood of an event. Sharpness, on 
the other hand, measures the concentration of forecasts in 
extreme probability bins, with a higher sharpness indicating 
a stronger tendency to issue confident predictions. However, 
sharpness alone does not imply useful forecasts: a forecast 
may be sharp but poorly calibrated, or reliable but lack dis-
criminatory power; that is, it fails to distinguish between 
events and non-events.

Receiver Operating Characteristic (ROC) curves com-
pare the discriminatory skill of the models by plotting the 
Probability of Detection (or Hit Rate) against the False 
Alarm Rate across various decision thresholds. In the con-
text of forecasting, ROC curves illustrate how well a model 
distinguishes between different binary outcomes (e.g. 
occurrence vs. non-occurrence of dry spells). Each point on 
the ROC curve represents a different threshold; the specific 
value of forecast probability that serves as a cut-off for mak-
ing a decision about the occurrence of an event. The ROC 
curve illustrates the trade-off between correctly identifying 
positive events (hits) and incorrectly identifying negative 
events (false alarms). A curve that is closer to the top left 
corner signifies higher accuracy, as it indicates both high 
sensitivity (ability to detect true positives) and high speci-
ficity (ability to avoid false positives). The Area Under the 
Curve (AUC) quantifies this performance; a higher AUC 
indicates a model with better discriminatory skill.

By presenting the BSS alongside reliability, sharpness, 
and ROC curve diagrams, we provide a comprehensive 
comparison between the IFS-based and climatology-based 
prediction models. Together, these metrics highlight the 
trade-offs between forecast certainty, accuracy, and useful-
ness for decision-making.

2.7  Significance testing

To assess statistical significance, we applied a bootstrapping 
approach, generating confidence intervals (CIs) through 
random resampling with replacement. To preserve the tem-
poral structure and autocorrelation of dry spells within sea-
sons, resampling was performed along the year dimension. 
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poorly because the weather deviated from the climatologi-
cal evolution. The final forecast is particularly inaccurate, 
with a mean (f − o)2 value of 0.74 across Malawi (Fig.  3j). 
The reason for this poor performance is the re-emergence 
of widespread dry spells seen in Fig.  2: dry spells occurred 
throughout the country, as shown by the filled circles in 
Fig.  3e. This was unexpected according to the climatology 
and highlights a key limitation of the climatology-based 
model: its inability to reflect real-time anomalies makes it 
unreliable when conditions diverge from the seasonal norm.

The IFS-based forecasts shown in Fig.   4 consistently 
perform better than the climatological model. Although this 
model also performs relatively poorly for the last three-week 
period (Fig.  4j), its mean (f − o)2 value of 0.46 is better 
than the higher value of 0.74 for the climatological forecast. 
We note that the model adjusts to higher rather than lower 
probabilities compared to the previous period (see change 
from Fig.  4d to Fig.  4e), demonstrating that the IFS-based 
model predicts actual weather developments.

A key thing to note is that the IFS forecasts are sharper 
than the forecasts by the climatology-based model, mean-
ing that they produce more probabilities that are either close 
to 0 or to 1. This is particularly evident when comparing 
Fig.  4d to Fig.  3d. As mentioned in Sect.  2.6, sharpness is 
a desirable trait in a forecast model.

To better understand the nuances of the models’ skill, reli-
ability, sharpness and discrimination between hits and false 
alarms, we now perform an investigation of their aggregated 
performance over the whole reforecast period.

3.2  Forecasting dry spells

3.2.1  Illustration of dry spell forecasts

In this section we provide visual examples of dry spell 
predictions, occurrence and model accuracy, for both the 
climatology-based and the IFS-based models. Note that the 
IFS-based probabilistic forecasts were based on the 100 
ensemble members of the operational forecasts, whereas the 
model performance analysis later in the paper was based on 
the 11 reforecast ensemble members.

Figure 3 presents the climatology-based forecasts. This 
model relies on only 20 years of data, giving it an effec-
tive ensemble size of 20 – far smaller than the IFS-based 
model, which has 100 ensemble members. A lower skill is 
therefore expected. Nevertheless, these examples illustrate 
a key feature, namely how the climatology-based dry spell 
probabilities gradually decrease from high at the start of the 
period (Fig.  3a) to low at the end (Fig.  3e). These changes 
in probability occur independently of the actual weather 
conditions, as they reflect only the average evolution across 
the past 20 years.

The accuracy of the climatology-based predictions 
fluctuates strongly across the different initial dates. For 
instance, the mean (f − o)2 value within Malawi for the 
first initial date is 0.01 (Fig.  3f). This forecast was excellent 
because the predicted period was as dry as expected given 
the climatology. In contrast, subsequent forecasts, which 
reflect the climatological transition from high to low dry 
spell probabilities across the country, perform increasingly 

Fig. 2  Fraction of grid points in Malawi experiencing at least one 
seven-day dry spell during the 21 days following each date on the 
x-axis, shown for each year from 1980 (bottom row) to 2024 (top row). 

The fractions, δ̄, are classified into three categories: Widespread Dry 
Spells (δ̄ ≥ 2/3), Moderate Dry Spells (1/3 ≤ δ̄ < 2/3), and Limited 
Dry Spells (δ̄ < 1/3)
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by the initial date, in Fig.  5b. The first pair of bars show 
results for all the initial dates, and the bars to the right of 
the dashed vertical dividing line show data for different 
segments of the season. The first orange bar shows that the 
mean base rate is 47%, and the first blue bar repeats the 
average BSS of 0.26 indicated in the caption of Fig.  5a.

The blue bars to the right of the dashed line reveal fluc-
tuations in the BSS throughout the season, but it remains 
significantly positive from start to end. Although not shown 
in the figure, the Brier Scores in the first and last of these 
bins are very low for both models: around 0.06 for both in 
the first bin, and 0.10 for IFS versus 0.15 for climatology 
in the last bin. This supports the point made in Sect.  2.6, 
namely that the Brier Score is not a useful metric for com-
mon or rare events. The low scores arise because dry spells 
are common at the beginning of the season and rare when 
the rainy season has taken hold (the base rate is 94% in the 

3.2.2  Forecast performance

Figure 5a presents a map of the Brier Skill Score (BSS) at 
each grid point, derived from the full reforecast dataset. The 
average BSS within Malawi’s borders is 0.26, with a 95% 
CI of [0.18,  0.35] (estimated through bootstrapping; see 
Sect.  2.7). As the CI does not include zero, the aggregated 
BSS is significant at the 5% level. At the grid level, the BSS 
for most points in Malawi is significant. This confirms that 
the IFS model’s prediction of actual weather conditions, 
which Sect.  3.2.1 demonstrated anecdotally as favourable 
compared to the climatology-based model’s gradual adapta-
tion to seasonal dry spell patterns, translates into an overall 
higher skill.

Figure 5a does not yield information about the variability 
of the BSS within the season. To study this, we show the 
base rate of dry spells and the BSS for five bins, organised 

Fig. 3  Top row: A spatial representation of the climatology-based dry 
spell forecast for initial times during the 2024 season. The colours 
represent the probability for at least one seven-day dry spell during 
the three weeks following the initial date. Filled circles indicate grid 

points in Malawi where at least one dry spell was observed according 
to ERA5, and open circles denote locations where there were no dry 
spells. Bottom row: Grid point values of (f − o)2 for the forecasts in 
the row above. Yellow lines show country borders
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three-week window (0.26). To account for the variations 
in BSS across the rainy season, we ensured that the fore-
cast evaluation period consisted of exactly the same part 
of the season as the period used to evaluate the three-week 
window. This was done by including hindcast initial dates 
up to 22 November for the two-week window and up to 8 
November for the four-week window. As expected, the BSS 
is higher (0.30; 95% CI: [0.23, 0.36]) for the two-week win-
dow and lower for the four-week window (0.23; 95% CI: 
[0.15,  0.32]). These variations are entirely attributable to 
differences in the Brier Score of the IFS-based model, as 
the Brier Score of the climatological model does not vary 
with lead time.

An arguably more robust way to assess how forecast 
skill varies with lead time is to compare the BSS for two-
week windows positioned further from the forecast initial 
date than those evaluated previously. All earlier windows 
began at the initial date; the BSS of 0.30 cited above corre-
sponds to the two-week period spanning days 1–14 (weeks 

first bin to the right of the dividing line and 18% in the last 
bin). During these periods dry spell probabilities are usually 
easy to predict, barring unseasonal weather fluctuations. 
The superiority of the IFS-based model lies in its ability to 
predict many of the departures from the average seasonal 
cycle.

The two middle bins right of the vertical divider in 
Fig.  5b correspond to a part of the season where dry spells 
are neither very frequent nor very rare. These are arguably 
the most critical periods, as farmers are typically consid-
ering whether to plant but remain uncertain about the risk 
of dry spells. It is encouraging that the IFS-based model 
outperforms the climatology-based model during these key 
windows of decision-making.

A point of interest not addressed in Fig.   5 is whether 
the skill of the model varies with lead time. To investigate 
this, we evaluated the BSS for dry spell forecasts covering 
two- and four-week periods after the initial date of the fore-
casts and compared these scores to the BSS for the standard 

Fig. 4  As Fig.  3, but for the IFS-based prediction model
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Figure  6 shows the BSS for an IFS-based model bias-
corrected against IMERG, compared to a model based on 
IMERG climatology. Recalling from Sect.   2.3 the large 
corrections needed when adjusting the biases in IFS rela-
tive to IMERG, we note that the climatological model has 
an advantage compared to the IFS-based model in that it is 
better calibrated to the IMERG data. Still, even with this 
handicap, the IFS-based model performs better than the cli-
matological model: Figure 6a and the first bin in Fig.  6b 
show that the average BSS value in Malawi is 0.12 (95% CI: 
[0.02, 0.23]). This aggregated BSS is significant, but at the 
grid-point level it is only in the northern part of the country 
that the BSS is mainly and significantly positive.

1–2). We now evaluate forecasts for weeks 2–3 and weeks 
3–4. For this extended analysis, we also adjusted the set of 
hindcast initial dates to ensure that the evaluation periods 
matched the original analysis window exactly. The result-
ing mean BSS over Malawi for weeks 2–3 was found to be 
0.08, with a 95% CI of [0.02, 0.15], demonstrating that the 
forecast skill for these weeks remains significantly positive. 
For weeks 3–4, however, the BSS dropped to 0.02 (95% CI: 
[−0.03, 0.06]), which is not significant. These results con-
firm that most of the skill in the three-week forecasts stem 
from the first two weeks after initialisation.

In the remainder of the analysis, we revert to studying 
three-week forecasts for days 1–21 after the initial date. 

Fig. 6  As Fig.  5, but for the 
IFS-based model bias-corrected 
against IMERG instead of ERA5, 
using a no-rain threshold of 1 mm. 
This model was validated against 
IMERG data

 

Fig. 5  (a) Brier Skill Score (BSS) for Malawi, aggregated for all initial 
dates between 15 October and 15 December. Dots indicate BSS values 
within Malawi that are significantly different to zero at the 5% level 
according to a bootstrapping test. Yellow lines show country borders. 
(b) Orange bars: the climatological base rate of dry spells for 15-day 

bins relative to the initial dates of the model runs. Blue bars: BSS for 
IFS-based vs. climatology-based forecasts for the same bins. The first 
bars show the base rate and BSS for all the data, and whiskers show 
95% CIs based on bootstrapping
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about 10% of the time – similar to what a randomised model 
would do over time. Although it uses the highest probabil-
ity bin marginally more frequently, its overall use remains 
limited. This conservative tendency stems from the model’s 
reliance on historical averages. In contrast, the IFS-based 
model demonstrates markedly greater sharpness; it issues 
forecasts in one of the two most extreme probability bins 
about 60% of the time. Compared to the climatology-based 
model, these high-stakes forecasts are more likely to spur 
action, increasing their potential value in decision-making 
contexts.

Figure 7c shows that the ROC curve for the IFS-based 
model consistently lies above that of the climatology-based 
model. The AUC of the former is 0.91 (95% CI: [0.89, 0.92]) 
compared to 0.84 for the latter model. In other words, the 
AUC of the IFS-based model is significantly higher than 
the AUC of the climatological model. This superior per-
formance of the IFS-based model reflects another desirable 
forecasting property: the ability to achieve high detection 
rates while maintaining low false alarm rates, thereby reduc-
ing both missed events and unnecessary warnings.

3.3  Applicability to other regions

This section includes a short, preliminary analysis of the 
usefulness of the dry spell forecast model in other regions 
than Malawi. We choose to focus on East Africa and the 
March–May “long rains” (Camberlin and Philippon 2002), 
and the October–December “short rains” (Palmer et  al. 
2023). For the long rains we used all initial dates between 
1 March and 10 May 2024, and for the short rains we used 
all initial dates between 1 October and 10 December 2024. 
Figure 8 presents the BSS for these seasons.

The within-season breakdown in Fig.   6b shows that 
the IFS-based model performs steadily better once the 
rainy season gets underway and the base rate of dry spells 
drops. It is only in the last bin that the BSS is significantly 
positive. These results contrast with those based on ERA5, 
where the BSS is higher and significant in all the bins (cf. 
Fig.  5), reflecting the consistency between forecast model 
and reference dataset. Still, the performance of the IMERG-
calibrated model is noteworthy given that the climatological 
benchmark is derived directly from IMERG and thus per-
fectly calibrated. We repeat here that we did not perform a 
thorough optimisation of the interpolation of the IMERG 
data to the forecast model’s grid, nor did we apply a sophis-
ticated bias-correction; further optimisations might yield 
better skill than the model presented in Fig.  6.

We now return to the IFS-based model that was bias-
corrected using ERA5 and the ERA5-based climatological 
model. Figure  7a displays a reliability diagram for these 
models. This diagram illustrates the relationship between 
forecast probabilities and observed frequencies. The clima-
tology-based model is generally well-calibrated, which is a 
trivial result. It is more interesting that the IFS-based model 
also exhibits good calibration, with points generally closely 
aligned to the diagonal. However, forecast probabilities up 
to 0.6 tend to slightly but systematically underestimate the 
observed frequency: a sign of underconfidence. Conversely, 
the model overestimates frequencies above 0.6; in this seg-
ment the model is mildly overconfident.

In the forecast examples shown in Fig.   3 and 4, the 
IFS-based model was noticeably sharper than the clima-
tology-based model. Figure 7b confirms that this holds in 
the aggregate, highlighting pronounced differences between 
the models. The climatology-based model exhibits poor 
sharpness, assigning the lowest probabilities (0−0.1) only 

Fig. 7  (a) Reliability diagram comparing the IFS-based and clima-
tology-based forecast models, showing observed frequency versus 
forecast probability across bins of [0, 0.1), [0.1, 0.2), and so on. (b) 
Sharpness diagram illustrating the distribution of forecast probabili-
ties for both models within the same probability bins, highlighting the 

tendency of each model to issue forecasts across the probability range. 
(c) ROC curves for the two models, depicting the trade-off between 
hit rate and false alarm rate, with the area under the curve (AUC; indi-
cated in parentheses in the legend) indicating overall discriminatory 
skill
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spells are more common, their agricultural impact inten-
sifies later in the season when farmers start committing 
resources to planting.

A critical challenge in agricultural planning is distin-
guishing between genuine rainy season onset and false 
onset, i.e. brief rainfall followed by detrimental dry spells. 
Traditional onset definitions typically combine rainfall 
thresholds with dry spell absence requirements (Fitzpatrick 
et al. 2015). Our findings suggest improved outcomes when 
separating rainfall onset occurrence analysis from dry spell 
risk assessment. The limited forecast horizon of a maximum 
of 3–4 weeks makes it difficult to predict both the initial 
onset (based on rainfall thresholds) and the subsequent risk 
of dry spells with sufficient lead time for decision-making. 
Our approach of considering seasonally varying dry spell 
prediction separately from the rainfall onset criterion gets 
away from this mismatch of timescales.

Second, the IFS-based model demonstrates significant 
forecast skill at a three-week lead time from mid-October 
onwards, whether validated against reanalysis or against 
IMERG data. By dynamically incorporating real-time atmo-
spheric conditions, the IFS-based model consistently out-
performs a simple climatology-based model across multiple 
verification metrics, including Brier Score, forecast sharp-
ness, and discriminatory skill. This superior performance 
supports potential operational deployment of the model for 
mitigating risks associated with false onsets.

As discussed previously, the Brier Score is unsuitable for 
events that are either very rare or frequent. Consequently, 
in Fig.  8 we masked grid points where the average clima-
tological base rate was lower than 15% or higher than 85%. 
For comparison, the base rate for Malawi, averaged across 
all initial dates and grid points, was 47% (see first orange 
bar in Fig.  5b).

Figure 8 demonstrates that the significant skill of the dry 
spell forecast model extends beyond Malawi, covering large 
parts of East Africa during both the long and short rains. 
The mean BSS values for non-masked grid points within 
the East African reference region are comparable to those 
observed over Malawi. This suggests that a properly bias-
corrected and calibrated prediction model could be devel-
oped for this region.

4  Discussion

Our study addresses three key questions: (1) How do dry 
spells vary within a season and from year to year in Malawi? 
(2) Can dry spells around the start of the rainy season be 
skilfully predicted? (3) Are our findings applicable beyond 
Malawi to other parts of Sub-Saharan Africa?

In response to the first question, we showed that dry spells 
in Malawi exhibit pronounced seasonality, with the highest 
frequency in early October, followed by a gradual decline 
through November and December. While early-season dry 

Fig. 8  As Fig.   5a, but for the East African long rains (a) and short 
rains (b). Grid points with a base rate of less than 0.15 or greater than 
0.85 were masked in both maps. The mean scores in the captions were 

calculated for all the non-masked grid points inside the boxed region, 
which is the same as the reference region in Palmer et  al. (2023): 
between 5◦S and 10◦N, and from 30◦E to 50◦E
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study should be viewed as a proof of concept, demonstrat-
ing the feasibility of IFS-based subseasonal dry spell fore-
casting using a physically consistent reanalysis dataset as a 
benchmark. Future work should focus on integrating obser-
vational data to improve site-specific reliability and enhance 
the practical applicability of subseasonal dry spell forecasts.

Another suggestion for future studies is to address key 
gaps to enhance the practical value of subseasonal fore-
casts. Investigating the differential impact of predictable 
climate modes, such as the Madden-Julian Oscillation 
(MJO), which has been linked to enhanced forecast skill for 
rainfall in many regions (e.g. Vitart 2014; Lim et al. 2018; 
Nsubuga et  al. 2021), could facilitate the development of 
hybrid forecast approaches, combining dynamical models 
with statistical post-processing to address systematic biases. 
Furthermore, quantifying the economic value of subsea-
sonal forecasts using robust methods such as randomised 
controlled trials would be valuable. Such experiments are 
currently underway in Malawi and Ethiopia as part of our 
ARCS project. Complementing this quantitative approach, 
qualitative research should explore the forecast value across 
different agricultural decision contexts (planting timing, 
variety selection, input application).

By demonstrating the feasibility of subseasonal dry spell 
forecasting in Malawi and East Africa, this study provides a 
foundation for integrating probabilistic forecasts into agri-
cultural decision-making. For operational use, subseasonal 
forecasts should be tailored to local decision-making needs, 
requiring investment in institutional capacity, communi-
cation strategies, and stakeholder engagement. A crucial 
prerequisite is to strengthen institutional capacity within 
national meteorological services to interpret and custom-
ise subseasonal model outputs. Effective implementation 
depends on co-production with local stakeholders, ensur-
ing forecasts complement traditional knowledge systems 
and existing advisory services. This collaborative approach 
would enhance usability, accessibility, and trust among end 
users (Streefkerk et al. 2022).
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It is important to emphasise that most of the skill appears 
to stem from the first two weeks or so after the initial time. 
Although the skill was found to be significant for weeks 
2–3, the model showed no significant skill during weeks 
3–4. This degradation highlights a familiar forecaster’s 
dilemma. There is likely a strong desire for forecasts that go 
beyond two or three weeks, but should the forecaster oblige 
and provide these forecasts? A mitigating factor is that the 
IFS-based model still performs as well as the climatological 
model at longer lead times, and climatology is not a poor 
predictor in this context. In our opinion there is no right or 
wrong solution to this dilemma. What matters is that the 
limitations and decline in forecast skill with lead time are 
communicated clearly and transparently to users.

The fact that the IFS-based model retains positive skill 
even when calibrated against and validated using IMERG 
is a promising result. IMERG is independent of the fore-
cast model, and yet a basic quantile-based bias correction 
yields a forecast model that outperforms climatology. This 
is despite the fact that the IFS forecasts typically require 
large adjustments (e.g., the 1  mm threshold in IMERG 
corresponds to about 3 mm in IFS). It is likely that more 
sophisticated bias correction methods could further enhance 
performance.

The proven skill of subseasonal dry spell forecasts posi-
tions them as a crucial bridge between seasonal outlooks, 
which provide broad probabilistic guidance, and short-
term weather forecasts, which lack lead time for agricul-
tural planning. While seasonal forecasts offer insights into 
rainfall anomalies (e.g. ENSO-driven patterns; Nicholson 
2017), they lack the accuracy for onset characterisation. 
This underscores a need for an integrated approach that 
blends seasonal outlooks with subseasonal updates, real-
time monitoring and improved communication strategies. 
Farmers should not only receive probabilistic onset fore-
casts at the start of the season; they should also get updates 
on the evolving progress of the rains. The need for such 
updates was stressed by Streefkerk (2020) and might ensure 
that early planting decisions remain flexible in the face of 
forecast uncertainty. Integration of subseasonal forecasts 
into the portfolio of DCCMS could enhance trust in fore-
casts and support the design of confident decision-making.

Third, our findings indicate that dry spells are predict-
able during the main East African rainy seasons as well as 
in Malawi. However, since forecast skill is likely modulated 
by local land-atmosphere interactions and regional circu-
lation patterns that vary significantly across the continent, 
region-specific verification studies are needed before gener-
alising our findings to other agricultural regions.

A caveat of our work is that it did not use actual observa-
tions, relying instead on reanalysis data, which are known 
to be biased towards producing too much light rain. Our 
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