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Abstract

Smallholder farmers in Sub-Saharan Africa are vulnerable to adverse fluctuations in rainfall, such as dry spells during
the critical early stages of the rainy season. In this study, we demonstrate that Malawi is prone to shifts from periods
with limited dry spell occurrence to more widespread dry spells later in the season. We develop a predictive model for
dry spells, aiming to provide farmers with actionable information to support agricultural decision-making and enhance
resilience. The model, based on a dynamical subseasonal prediction system and validated using reanalysis and satellite-
based data, focuses on Malawi as a case study. This model has significant skill in predicting the occurrence of at least
one dry spell within the three weeks following initialisation, consistently outperforming a climatology-based reference
model. Furthermore, we show that the model is applicable beyond Malawi, specifically in East Africa during both the
March—May “long rains” and the October—November “short rains”, highlighting its broader relevance for regions where
dry spells pose an agricultural risk. The results demonstrate that subseasonal forecasts have the potential to bridge the
gap between long-range seasonal outlooks and short-term weather forecasts. Unlike seasonal forecasts, which lack skill
at long lead times, subseasonal predictions offer both a longer planning horizon than weather forecasts and greater skill
in capturing dry spell risks at actionable lead times. By integrating subseasonal forecasts into national climate services,
policymakers and agricultural extension services could provide more timely and targeted advice, potentially helping to
mitigate the most severe impacts of dry spells on food production and rural livelihoods.
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1 Introduction

A large body of research has highlighted the broad value
of climate forecasts in agricultural decision-making (e.g.
Hansen et al. 2011; Roudier et al. 2014; White et al. 2017,
Streefkerk et al. 2022; White et al. 2022). Subseasonal
weather forecasts, which cover lead times up to about six

>4 Erik W. Kolstad
ekol@norceresearch.no

Rondrotiana Barimalala
ronb@norceresearch.no

Douglas J. Parker

d.j.parker@leeds.ac.uk
1" NORCE Research, Bjerknes Centre for Climate Research,
Bergen, Norway
Chr. Michelsen Institute, Bergen, Norway

3 National Centre for Atmospheric Science (NCAS), School of
Earth and Environment, University of Leeds, Leeds, UK

Published online: 30 October 2025

weeks, bridge the gap between weather and seasonal cli-
mate forecasts (Vitart and Robertson 2019) and play a key
role in the “ready-set-go" framework (Goddard et al. 2014).
These forecasts have a demonstrated impact on agricul-
tural planning, disaster preparedness, and water resource
management, particularly in regions where livelihoods are
highly sensitive to climatic variability (e.g. White et al.
2017; Hirons et al. 2023).

The potential benefit of climate forecasts is large in areas
with rain-fed agricultural systems, like Malawi, where
droughts have become more frequent, intense, and wide-
spread over the past two decades, with severe consequences
for food and water security, energy resources, and rural live-
lihoods (Ndlovu et al. 2024). One of the most hazardous
phenomena for farmers is the occurrence of erratic rains/
dry spells, which place pressure on rain-fed agriculture
and food security (Coulibaly et al. 2015; Chimimba et al.
2023). The need for dry spell prediction is particularly acute
around the first rains, which are often perceived as the onset
of the rainy season but may, in some cases, be followed by
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a prolonged dry period. Such “false onsets” are so common
in Malawi that they have a name: the “fire extinguisher”, or
Chizimalupsya (Department of Climate 2024). A worst-case
scenario arises when farmers plant too early after the per-
ceived onset, only for premature rains to be followed by dry
spells that kill the seeds before they can germinate. A par-
ticularly damaging example occurred in the 2012—-13 sea-
son, when farmers in central Malawi had to replant maize
six times before the onset of sustained rains (Mittal et al.
2021). The 2023-24 season was not only another instance
of delayed onset (Department of Climate 2023); it was also
characterised by prolonged dry spells following initial rain-
fall in some areas. These conditions had severe agricultural
impacts: early rains prompted planting, but the subsequent
dry spells led to widespread crop failure, contributing to a
food security crisis in which millions required humanitarian
assistance (ROSEA 2024; see also Fig. 2).

Coulibaly et al. (2015) found that onset predictions
were the most sought-after climate service among Mala-
wian farmers, underscoring their perceived importance
for agricultural planning despite inherent skill limitations
at extended lead times. As part of their response to user-
driven needs for information, the Malawian Department of
Climate Change and Meteorological Services (DCCMS)
issues seasonal forecasts in September (Department of Cli-
mate 2024). These forecasts include predictions of rainy
season onset and dry spell likelihood, despite being issued
with substantial lead time before the typical November
start of the rainy season. DCCMS seasonal forecasts rely
on analogue years with similar El Niflo—Southern Oscilla-
tion (ENSO) signatures, with predicted ENSO conditions
derived from global seasonal forecasting models. How-
ever, Demissie and Gebrechorkos (2024) demonstrated
that only southern Malawi exhibits a significant (negative)
correlation with ENSO, while northern regions show non-
significant (positive) correlations. This spatial heteroge-
neity reflects Malawi’s position at the boundary between
East Africa, where October—December rainfall correlates
positively with ENSO (Kolstad and MacLeod 2022), and
Southern Africa, where this correlation is negative (Rat-
nam et al. 2014). Given the limited skill of current seasonal
forecasts (Mittal et al. 2021), there would be considerable
potential value in developing shorter-lead-time predictions
with higher accuracy. While such forecasts may not support
long-term decisions like crop variety selection, they could
play an important role in guiding time-sensitive choices,
most notably when to plant (Streefkerk 2020).

Effectively implementing forecasts for shorter time hori-
zons than seasonal forecasts requires careful consideration
of how rainy season onset is conceptualised. A wide range
of agronomically defined onset definitions exists, typi-
cally incorporating both a rainfall threshold and a criterion
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ensuring that no dry spell follows shortly thereafter (Fitz-
patrick et al. 2015). Defining rainy season onset by com-
bining a rainfall threshold with a subsequent no-dry-spell
criterion presents two major challenges.

First, there is a forecast skill horizon problem: while we
found no evaluations of subseasonal rainfall prediction skill
for Malawi specifically, studies for East Africa suggest use-
ful skill at lead times of up to 3—4 weeks (de Andrade et al.
2021; Kolstad et al. 2021; MacLeod et al. 2021). Given this
limitation, predicting both the initial onset and subsequent
dry spells is difficult because much of the skilful forecast
horizon is already “used up” in determining the onset itself.

Second, there is a spatial coherence issue: onset dates
derived from rainfall-based definitions tend to be highly
variable across small spatial scales (Fitzpatrick et al. 2016;
Young et al. 2020), often lacking clear correlations with
regional climatic drivers. This limits their practical utility
for large-scale forecasting and decision-making.

To address these limitations, DCCMS provides daily,
five-day, and weekly forecasts, along with ten-day agro-
meteorological bulletins throughout the season. However,
while these short-term updates are valuable, they do not
bridge the gap between seasonal outlooks and real-time
weather forecasts. In particular, subseasonal forecasts —
providing predictions with lead times of two to four weeks
— could significantly enhance early warnings for dry spells
and other agricultural risks. By offering a longer plan-
ning horizon than weather forecasts while remaining more
up-to-date than seasonal outlooks, subseasonal products
would better align with farmers’ decision-making needs
(Streefkerk 2020). Yet, such forecasts are not currently part
of DCCMS’s portfolio.

This gap in forecast provision is a key factor in farm-
ers’ reluctance to rely on predictions. Many cite discrepan-
cies between forecasted and observed weather as a reason
for their scepticism, reinforcing fatalistic attitudes towards
climate variability (Mkwambisi et al. 2020). Addressing
these challenges requires not only improving forecast skill
but also enhancing how forecasts are communicated and
updated. Subseasonal forecast products focused on key agri-
cultural risks, such as dry spells, could help bridge this gap
by offering information that is both actionable and aligned
with farmers’ planning horizons.

Acknowledging the differing lead-time requirements of
onset and dry spell prediction, we focus here on forecast-
ing dry spells around the time of seasonal onset: arguably
the most critical short-term prediction for farmers assess-
ing whether observed rainfall marks a true or false onset.
Before planting, these forecasts might help farmers avoid
the adverse effects of a false onset by informing deci-
sions on whether to delay planting until sustained rainfall
is more likely (Streefkerk 2020). Such a proactive use of
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probabilistic forecasts could reduce the likelihood of crop
failure due to poor germination or early water stress. After
planting, the forecasts would remain valuable by guiding
adaptive measures when an increased probability of dry
spells is indicated. For example, farmers could implement
soil and water conservation practices, such as mulching
or tied ridges, to retain moisture (Rockstréom et al. 2010;
Marongwe et al. 2011), or prioritise supplemental irrigation
where possible. Such applications highlight the potential of
forecast information to support both pre-emptive and reac-
tive decision-making, ultimately enhancing resilience in the
face of uncertain rainfall patterns.

Here we present a novel framework for leveraging sub-
seasonal forecasts from the European Centre for Medium-
Range Weather Forecasts (ECMWF), reanalysis data, and
satellite-derived rainfall data to develop a dry spell predic-
tion model for the coming three weeks. This framework
was developed within the interdisciplinary ARCS (Agricul-
tural Resilience through Climate Services) project, which
focuses on tailoring climate forecasts for actionable agricul-
tural advice. Preliminary focus group interviews conducted
in Malawi during the 2023/24 and 2024/25 rainy seasons
confirmed that dry spells and false onsets pose a major chal-
lenge to farmers’ livelihoods.

We seek answers to three main questions. First, we
ask how dry spells vary within a season and from year to
year in Malawi. By taking a country-aggregated view, we
investigate whether widespread dry spells commonly occur
after periods with limited dry spells. Second, we question
whether it is possible to skilfully predict the likelihood of
dry spells in Malawi around the critical start of the rainy
season. Third, we assess if the findings for Malawi are
generalisable to other parts of Sub-Saharan Africa, focus-
ing on East Africa. While Malawi serves as a case study,
the framework’s use of global data allows for adaptation to
other regions facing similar challenges.

2 Data and methods
2.1 Forecast and reforecast data

The analysis is based on subseasonal reforecasts from the
ECMWF’s Integrated Forecasting System (IFS), which
combines a sophisticated data assimilation system and a
global numerical model to produce operational forecasts for
the extended range (days 1-46). Until 11 November 2024,
the IFS forecasts were produced each Monday and Thurs-
day, and after this, every day. Each forecast consists of 100
perturbed ensemble members and one control run. Here we
only use the perturbed members.

The bulk of our analysis is based on IFS reforecasts,
which provide a consistent baseline for evaluating forecast
skill by offering historical forecast data that can be com-
pared against observations to correct biases and calibrate
probabilities. Each IFS reforecast consists of 11 ensemble
members and spans the 20 years prior to the forecast’s initial
date. Reforecasts are produced on the fly, at the same time as
operational forecasts.

To focus on the part of the season when dry spells are
neither very rare nor very common (for reasons explained in
Sect. 2.6), we only included reforecasts for reference dates
between 15 October and 15 December. We included refore-
cast initial dates from both 2023 and 2024. While either year
provides a full 20-year reforecast set (e.g., 2023 includes
2003-2022), using both years increases the number of refer-
ence dates. However, this also means that edge years (2003
and 2023) are sampled only once, resulting in slightly fewer
reforecast instances for those years. There is also another
source of skewness in the data. After the change to daily
forecast production on 11 November 2024, reforecasts were
only issued every other day (on odd dates). In our analy-
sis, we included all available reforecast dates during the
period 15 October to 15 December, meaning that the period
after 11 November 2024 contains more densely sampled
data than the preceding period during the same year. This
introduces a slight overall weighting toward the later weeks
of the season, which we consider negligible in terms of its
impact on results. In total, the dataset includes 43 unique
forecast initialisation dates across 2023 and 2024. With 20
reforecast years per initial date, this yields a total of 860
reforecast instances, each with 11 ensemble members.

The IFS data were downloaded with a grid spacing of
0.35 degrees, approximating the model’s original resolu-
tion of about 30 km, and we analysed daily accumulated
precipitation from the first three weeks of each reforecast
ensemble member. The work of Fitzpatrick et al. (2016) for
West Africa indicates that for most locations there is enough
spatial coherency that a spatially aggregated measure of
interannual variabilityin onset is meaningful on the 30 km
scale.

2.2 Observational data

Observational datasets, while crucial for ground truth, are
often hampered by issues such as undercatch (Adam and
Lettenmaier 2003), data gaps, varying instrument quality,
inconsistencies in measurement techniques, gaps in station
coverage, and interpolation uncertainties, particularly in
regions with sparse observational networks. These limita-
tions introduce uncertainties that can complicate model
evaluation.
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To validate and calibrate the model forecasts, we used
precipitation data from the ERAS reanalysis (Hersbach et al.
2020). Reanalysis products offer the advantage of being
both temporally and physically consistent. Since ERAS is
produced using the same IFS model as the forecasts, the
validation effectively compares the model against a version
of itself. This setup provides a controlled environment to
isolate and assess the model’s intrinsic performance, with
minimal influence from observational uncertainties.

In addition to ERAS, we used version 7 (V07) of the Inte-
grated Multi-satellite Retrievals for GPM (IMERG) data-
set (Huffman et al. 2023) to validate and bias-correct the
forecast model. IMERG provides precipitation estimates at
high temporal resolution based on a combination of micro-
wave and infrared satellite data. Unlike similar products like
TAMSAT (Maidment et al. 2017) and CHIRPS (Funk et al.
2015), which rely on the disaggregation of multi-day rain-
fall estimates to produce daily values, IMERG offers native
daily precipitation fields. This feature makes it well-suited
for assessing dry spell conditions at daily resolution. How-
ever, IMERG is not free of uncertainty. IMERG products,
including V07, tend to overestimate light rainfall events,
which is a common issue across different versions and
regions (Yang et al. 2020; Li et al. 2021; Wei et al. 2025).
While the Final Run product (which we used) includes a
monthly bias correction using gauge data, this adjustment is
temporally coarse and often limited in regions with sparse
observational coverage, such as Malawi.

To upscale the IMERG data from their native 0.1° reso-
lution to the target 0.35° grid, we employed a Gaussian-
weighted interpolation scheme using the nine nearest
neighbours of each target grid point. The weights were based
on the distances in degree-space. To prevent numerical insta-
bility and ensure meaningful contribution from neighbouring
points, we applied a minimum threshold ¢ = 0.04° (about
4 km) to all distances before the weight calculation, so that
d; = max(e, d}), where d} is the actual distance to the i-
th neighbour, and d; is the effective distance. The weights

for each neighbour were calculated as w; = exp (f%),
where o = 0.07° is the bandwidth parameter. This approach
ensured that even exact coordinate matches received at most
30% of the total weight, thereby providing spatial smooth-
ing appropriate for upscaling precipitation fields. The values
of e and o were determined through empirical testing of sev-
eral parameter combinations. A more rigorous optimisation
of the interpolation technique would be recommended for
operational purposes.

Itisimportantto acknowledge thatusing ER A5 also entails
limitations. Reanalysis products are hampered by scarcity
in the observations that drive them, and in Malawi there
are relatively few observations available for assimilation.
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Studies indicate that ERAS tends to overestimate the num-
ber of wet days (> 1 mm) in Europe (Bandhauer et al. 2022;
Gomis-Cebolla et al. 2023), associated with an excessive
frequency of very light rain (Ahn et al. 2024). Similar biases
are found in Africa. Specifically, Lavers et al. (2021) found
a wet bias for the IFS model in dry regions, while Lavers
et al. (2022) reported that ERAS overestimates precipita-
tion on dry days, with biases in southeastern Africa ranging
from 0 to 0.5 mm per day in October. To account for this, we
adopt a relatively high wet/dry threshold of 2 mm per day,
a choice also made in previous studies (e.g. Haghtalab et al.
2019; Streefkerk et al. 2022). Lower thresholds (1 and 1.5
mm) produced qualitatively similar results.

Ultimately, while ERAS is not a perfect ground truth,
it provides a physically consistent and spatially complete
dataset for model calibration and validation. For operational
applications, local observations should be incorporated to
refine forecasts and correct systematic biases. The method
presented here should therefore be viewed as a preliminary
assessment of subseasonal predictability rather than a sub-
stitute for observation-based calibration.

2.3 Bias-correction

Any forecast model, including IFS, has biases that can stem
from factors such as inaccurate topography representation,
poor soil moisture feedbacks, or circulation biases. Forecast
models are also known to experience drift with increas-
ing lead times (Hermanson et al. 2021), which represents
another bias with respect to observational data. It was there-
fore necessary to bias-correct the IFS data and to account
for varying lead times within a forecast. We employed a
method similar to quantile mapping. Specifically, for each
valid time of each reforecast, we pooled reforecast data for
the same calendar day across all the years. With 11 ensemble
members available for each date, we matched these pooled
IFS data with ERAS data for the same dates. To maintain
consistent sample sizes between IFS and ERAS, we used
an 11-day window centred on each calendar day for ERAS.
We then computed the percentile corresponding to 2 mm of
precipitation in the ERAS data. This percentile was used to
identify the equivalent lead time-dependent precipitation
threshold in the IFS data, such that IFS precipitation values
below this threshold were classified as no precipitation.
When investigating the forecast model based on IMERG,
we bias-corrected the model with respect to these data,
using a no-rain threshold of 1 mm rather than 2 mm. This
lower threshold was selected because the IMERG algorithm
does not have the same tendency to produce excessive light
rain as ERAS. This quantile mapping approach revealed
large differences between IMERG and IFS. The IFS thresh-
old values based on the same quantile that corresponded to
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I mm in IMERG were typically in the range between 2.5
and 3 mm.

2.4 Defining dry spells

The dry spell definition used in this study is a period of
seven consecutive dry days (CDD), meaning no single day
within this period exceeds 2 mm of precipitation. Locally
tailored dry spell definitions vary by region, climatologi-
cal conditions, and time of the year (e.g. Sivakumar 1992;
Sharma 1996; Barron et al. 2003; Thoithi et al. 2021). For
instance, DCCMS considers period with nine CDDs when
they issue dry spell forecasts with a 10-day lead time. Only
minor differences were seen when we repeated the analysis
herein for nine-day dry periods.

For each dataset (IFS and ERAS), we first calculated a
binary variable for each date and grid point, assigning a
value of 0 if the daily accumulated total precipitation (bias-
corrected for IFS; see previous section) exceeded 2 mm, and

1 otherwise. We then revisited each date to check for the
occurrence of any dry spells (seven consecutive days of 1°s)
during the subsequent three weeks. For each date, a new
binary variable, denoted as J, was assigned a value of 1 if
at least one seven-day dry spell occurred during these three
weeks, and 0 if there were no dry spells.

We illustrate how ¢ was calculated in Fig. 1. In the top
row, the daily rainfall for a random grid point (marked in the
maps in the bottom row of the figure) in Malawi is shown
for three 21-day periods in 2009. During the first of these
periods, illustrated in Fig. 1la, all the days up to day 13 had
less than 2 mm. Consequently, the § variable for the starting
date of this period (18 October) was set to 1. In the sec-
ond period, there were at most four days in a row with rain
below 2 mm, resulting in § = 0 for the reference date of 2
November. During the final period, starting on 17 Novem-
ber and shown in Fig. Ic, there were seven dry days at the
end, yielding a § value of 1.

a 2009-10-18; 6 =1 b 2009-11-02; 6=0 < 2009-11-17;6=1
15 15
€
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~ 2 ----- -- ---- - -~ 2 o ———
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Fig. 1 Illustration of § (top row) and & (bottom row). (a—c) Daily
accumulated precipitation for a randomly selected grid point within
Malawi (marked in d—f) for each of the 21 days following the dates
in the captions. The captions also indicate the ¢ values for that grid
point. (d—f) Maps of § for each grid point for the same dates as in

(a—c), with the captions denoting 4, i.¢., the mean of § within Malawi’s
borders. The yellow lines represent the borders of the three regions
of Malawi (Northern, Central, and Southern), and the thin lines show
lake boundaries
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In Sect. 3.1, we analyse dry spells for Malawi as a
whole. To facilitate this analysis, we define ¢ as the mean
0 value across all grid points in the country. This variable
is illustrated in the bottom row of Fig. 1, where § values
are mapped for each grid point for the same reference dates
as those in the top row. The first panel in Fig. 1d shows
that most of the grid points within Malawi’s borders had
6 = 1 during the first period, including the reference grid
point from Fig. la, yielding § = 0.86. The map for the
second reference date indicates that dry spells during this
period were mainly confined to the Southern region, which
resulted in § = 0.32. By the final date, only scattered areas
of Malawi experienced dry spells, and & was 0.24.

2.5 Dry spell prediction models

A key objective of this study is to assess the skill of the IFS
model in predicting dry spells. To do this, we constructed
two probabilistic dry spell prediction models: one based on
post-processed IFS data and the other based on ERAS data.
The latter will be referred to as the climatology-based model
henceforth. For this model a forecast is fixed by location and
day of year.

The prediction models were developed using a leave-one-
out cross-validation approach. For each year, IFS precipita-
tion data were bias-corrected using reforecast and reanalysis
data from the other 19 years, applying the methodology
described in Sect. 2.3. We then used these bias-corrected
precipitation data to compute ¢ for the initial date of each
grid point and each ensemble member of each reforecast.
This binary ¢ variable indicates whether any dry spells were
predicted during the first three weeks of the forecast period.

The probabilistic IFS-based dry spell prediction for each
reforecast was calculated as the fraction of ensemble mem-
bers (out of 11) for which 6 = 1, i.e., those that predicted at
least one dry spell during the first three weeks. This fraction
is equivalent to the mean of the binary § values across the
ensemble members. A value of 1 indicates that all ensemble
members predicted a dry spell, while a value of 0 means
that none did. For the climatology-based prediction using
ERAS, we predicted the chance of dry spells as the climato-
logical frequency (leaving the prediction year out).

To avoid inflating the skill of this model, which has 19
available years compared to the 11 ensemble members of
the IFS-based model, we followed Miiller et al. (2005) and
Weigel (2011) and computed the frequency based on 11 ran-
dom years (with replacement) out of the 19 available years
1,000 times and used the average frequency as the predicted
dry spell probability.

@ Springer

2.6 Forecast performance metrics

The Brier Score (Brier 1950) is a proper scoring rule that
quantifies the accuracy of probabilistic predictions. For a
binary event (like the occurrence or non-occurrence of dry
spells), the Brier Score is defined as:

1
BS =+ Z(fi —0;)? (1)

where N is the number of predictions, f; is the forecast prob-
ability of the event occurring for the i-th case, and o; is the
observed outcome (1 for occurrence, 0 for non-occurrence).
Here “observed” refers to ERAS data.

The Brier Score ranges from 0 to 1, with 0 indicating
perfect forecasts and 1 indicating the worst possible fore-
casts. A useful benchmark can be derived from a model that
always predicts a 50% chance of occurrence: this model
gets a Brier Score of 0.25 no matter what happens in reality.

The Brier Skill Score (BSS) (Wilks 2019) is a normalised
measure that compares the Brier Score of a forecast to that
of a reference forecast (the climatological forecast based on
ERAS in our case) and is defined as:

_ BSy
BSS =1 por 2)

where the “M” and “C” subscripts denote “Model” and
“Climatology”, respectively. A BSS of 1 indicates perfect
skill, while a BSS of 0 indicates no skill relative to the refer-
ence forecast. A negative BSS suggests that the forecast is
worse than the reference.

The Brier Score, and consequently the BSS, are known
to be less informative for rare events (Lawson et al. 2024).
This limitation arises because the Brier Score is sensitive to
climatological frequencies: when an event is rare, a naive
forecast that simply reflects its low climatological probabil-
ity can achieve a good score. Since the event rarely occurs,
even an unskilled model predicting near-zero probabilities
will appear accurate. A similar effect is seen for very fre-
quent events. In such circumstances the BSS struggles to
distinguish genuinely skilful models from those merely
capturing event frequency (Brocker and Smith 2007; Wilks
2019).

Additionally, when event occurrence varies seasonally
— being rare in some periods and frequent in others — this
imbalance further reduces the BSS’s effectiveness in assess-
ing forecast skill. To address this, we restricted our analysis
to initial dates around the start of the rainy season, from
the middle of October to the middle of December. This
avoids periods when dry spells are either ubiquitous (before
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the rainy season begins) or nearly absent (once it is fully
underway), ensuring that the BSS more effectively differen-
tiates meaningful skill from background climatology. Note
that we do not investigate the normal cessation period from
March to May, even though dry spells may also be relevant
for agricultural decisions during this time.

Reliability and sharpness diagrams provide complemen-
tary insights into the quality of probabilistic forecasts. A
reliability diagram assesses how well forecast probabilities
correspond to observed frequencies, with a perfect forecast
following the 1:1 diagonal line. Deviations from this line
indicate where probabilities systematically overestimate
or underestimate the likelihood of an event. Sharpness, on
the other hand, measures the concentration of forecasts in
extreme probability bins, with a higher sharpness indicating
a stronger tendency to issue confident predictions. However,
sharpness alone does not imply useful forecasts: a forecast
may be sharp but poorly calibrated, or reliable but lack dis-
criminatory power; that is, it fails to distinguish between
events and non-events.

Receiver Operating Characteristic (ROC) curves com-
pare the discriminatory skill of the models by plotting the
Probability of Detection (or Hit Rate) against the False
Alarm Rate across various decision thresholds. In the con-
text of forecasting, ROC curves illustrate how well a model
distinguishes between different binary outcomes (e.g.
occurrence vs. non-occurrence of dry spells). Each point on
the ROC curve represents a different threshold; the specific
value of forecast probability that serves as a cut-off for mak-
ing a decision about the occurrence of an event. The ROC
curve illustrates the trade-off between correctly identifying
positive events (hits) and incorrectly identifying negative
events (false alarms). A curve that is closer to the top left
corner signifies higher accuracy, as it indicates both high
sensitivity (ability to detect true positives) and high speci-
ficity (ability to avoid false positives). The Area Under the
Curve (AUC) quantifies this performance; a higher AUC
indicates a model with better discriminatory skill.

By presenting the BSS alongside reliability, sharpness,
and ROC curve diagrams, we provide a comprehensive
comparison between the IFS-based and climatology-based
prediction models. Together, these metrics highlight the
trade-offs between forecast certainty, accuracy, and useful-
ness for decision-making.

2.7 Significance testing

To assess statistical significance, we applied a bootstrapping
approach, generating confidence intervals (CIs) through
random resampling with replacement. To preserve the tem-
poral structure and autocorrelation of dry spells within sea-
sons, resampling was performed along the year dimension.

For example, when evaluating a metric such as the Brier
Skill Score over a 20-year hindcast period, each iteration
involved randomly selecting 20 years (with replacement),
retaining the full seasonal cycle within each year. A value
was deemed significantly positive or negative if its CI did
not contain zero. We conducted 1,000 bootstrap iterations
and used a 5% significance level (based on 95% CIs). Addi-
tional details are provided where relevant.

2.8 Colour maps

We used colour maps designed by Fabio Crameri (Crameri
et al. 2020) to ensure accessibility and reproducibility.

3 Results
3.1 Observed dry spells

To explore the interannual and intraseasonal variability of
dry spells in Malawi, we computed & (see Sect. 2.4) for
each day between 1 September and 1 January for the years
in the period 1980-2024, using ERAS data. Note that this
period is longer than the reforecast period.

The daily ¢ values shown in Fig. 2 point to several peri-
ods that may have posed risks to agricultural planning. In
2024 and several other years, periods with limited dry spells
(blue cells) were followed by widespread dry spells condi-
tions (beige cells) sometime later in the season. The figure
also highlights other notable features, such as the persistence
of moderate dry spells (green cells) extending to 1 January
2016. The 2015/2016 season was marked by widespread
drought conditions in southern Malawi (Mkwambisi et al.
2021). A daily dry spell chart for the Southern Region (not
shown) exhibits widespread dry spells (beige cells) during
the three-week periods beginning in late December 2015.

Any transition from moderate or limited dry spells to
more widespread dry spells — i.e. from blue to green or
beige, or from green to beige in Fig. 2 —represents a poten-
tial agricultural risk. Such transitions occurred 35 times
over the 45 seasons shown in Fig. 2, nearly once per year on
average. The high frequency of these shifts likely heightens
farmers’ receptiveness to subseasonal dry spell forecasts.

A regional breakdown for Malawi’s three regions —
Northern, Central, and Southern; see borders in Figure 1
— revealed 44, 33, and 56 such transitions, respectively,
highlighting that within-season rainfall volatility in recent
decades has been most (least) pronounced in the Southern
(Central) Region.
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Spatial Extent of Dry Spells in Malawi (1980—2024)
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Fig. 2 Fraction of grid points in Malawi experiencing at least one
seven-day dry spell during the 21 days following each date on the
x-axis, shown for each year from 1980 (bottom row) to 2024 (top row).

3.2 Forecasting dry spells
3.2.1 lllustration of dry spell forecasts

In this section we provide visual examples of dry spell
predictions, occurrence and model accuracy, for both the
climatology-based and the IFS-based models. Note that the
IFS-based probabilistic forecasts were based on the 100
ensemble members of the operational forecasts, whereas the
model performance analysis later in the paper was based on
the 11 reforecast ensemble members.

Figure 3 presents the climatology-based forecasts. This
model relies on only 20 years of data, giving it an effec-
tive ensemble size of 20 — far smaller than the IFS-based
model, which has 100 ensemble members. A lower skill is
therefore expected. Nevertheless, these examples illustrate
a key feature, namely how the climatology-based dry spell
probabilities gradually decrease from high at the start of the
period (Fig. 3a) to low at the end (Fig. 3e). These changes
in probability occur independently of the actual weather
conditions, as they reflect only the average evolution across
the past 20 years.

The accuracy of the climatology-based predictions
fluctuates strongly across the different initial dates. For
instance, the mean (f — 0)? value within Malawi for the
first initial date is 0.01 (Fig. 3f). This forecast was excellent
because the predicted period was as dry as expected given
the climatology. In contrast, subsequent forecasts, which
reflect the climatological transition from high to low dry
spell probabilities across the country, perform increasingly
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The fractions, 5, are classified into three categories: Widespread Dry
Spells (0 > 2/3), Moderate Dry Spells (1/3 < 6 < 2/3), and Limited
Dry Spells (6 < 1/3)

poorly because the weather deviated from the climatologi-
cal evolution. The final forecast is particularly inaccurate,
with a mean (f — 0)? value of 0.74 across Malawi (Fig. 3j).
The reason for this poor performance is the re-emergence
of widespread dry spells seen in Fig. 2: dry spells occurred
throughout the country, as shown by the filled circles in
Fig. 3e. This was unexpected according to the climatology
and highlights a key limitation of the climatology-based
model: its inability to reflect real-time anomalies makes it
unreliable when conditions diverge from the seasonal norm.

The IFS-based forecasts shown in Fig. 4 consistently
perform better than the climatological model. Although this
model also performs relatively poorly for the last three-week
period (Fig. 4j), its mean (f — 0)? value of 0.46 is better
than the higher value of 0.74 for the climatological forecast.
We note that the model adjusts to higher rather than lower
probabilities compared to the previous period (see change
from Fig. 4d to Fig. 4e), demonstrating that the IFS-based
model predicts actual weather developments.

A key thing to note is that the IFS forecasts are sharper
than the forecasts by the climatology-based model, mean-
ing that they produce more probabilities that are either close
to 0 or to 1. This is particularly evident when comparing
Fig. 4dto Fig. 3d. As mentioned in Sect. 2.6, sharpness is
a desirable trait in a forecast model.

To better understand the nuances of the models’ skill, reli-
ability, sharpness and discrimination between hits and false
alarms, we now perform an investigation of their aggregated
performance over the whole reforecast period.
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Fig. 3 Top row: A spatial representation of the climatology-based dry
spell forecast for initial times during the 2024 season. The colours
represent the probability for at least one seven-day dry spell during
the three weeks following the initial date. Filled circles indicate grid

3.2.2 Forecast performance

Figure 5a presents a map of the Brier Skill Score (BSS) at
each grid point, derived from the full reforecast dataset. The
average BSS within Malawi’s borders is 0.26, with a 95%
CI of [0.18, 0.35] (estimated through bootstrapping; see
Sect. 2.7). As the CI does not include zero, the aggregated
BSS is significant at the 5% level. At the grid level, the BSS
for most points in Malawi is significant. This confirms that
the IFS model’s prediction of actual weather conditions,
which Sect. 3.2.1 demonstrated anecdotally as favourable
compared to the climatology-based model’s gradual adapta-
tion to seasonal dry spell patterns, translates into an overall
higher skill.

Figure 5a does not yield information about the variability
of the BSS within the season. To study this, we show the
base rate of dry spells and the BSS for five bins, organised

0.5 0.7 0.9

points in Malawi where at least one dry spell was observed according
to ERAS, and open circles denote locations where there were no dry
spells. Bottom row: Grid point values of (f — 0)? for the forecasts in
the row above. Yellow lines show country borders

by the initial date, in Fig. 5b. The first pair of bars show
results for all the initial dates, and the bars to the right of
the dashed vertical dividing line show data for different
segments of the season. The first orange bar shows that the
mean base rate is 47%, and the first blue bar repeats the
average BSS of 0.26 indicated in the caption of Fig. Sa.
The blue bars to the right of the dashed line reveal fluc-
tuations in the BSS throughout the season, but it remains
significantly positive from start to end. Although not shown
in the figure, the Brier Scores in the first and last of these
bins are very low for both models: around 0.06 for both in
the first bin, and 0.10 for IFS versus 0.15 for climatology
in the last bin. This supports the point made in Sect. 2.6,
namely that the Brier Score is not a useful metric for com-
mon or rare events. The low scores arise because dry spells
are common at the beginning of the season and rare when
the rainy season has taken hold (the base rate is 94% in the
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Fig.4 As Fig. 3, but for the IFS-based prediction model

first bin to the right of the dividing line and 18% in the last
bin). During these periods dry spell probabilities are usually
easy to predict, barring unseasonal weather fluctuations.
The superiority of the IFS-based model lies in its ability to
predict many of the departures from the average seasonal
cycle.

The two middle bins right of the vertical divider in
Fig. 5b correspond to a part of the season where dry spells
are neither very frequent nor very rare. These are arguably
the most critical periods, as farmers are typically consid-
ering whether to plant but remain uncertain about the risk
of dry spells. It is encouraging that the IFS-based model
outperforms the climatology-based model during these key
windows of decision-making.

A point of interest not addressed in Fig. 5 is whether
the skill of the model varies with lead time. To investigate
this, we evaluated the BSS for dry spell forecasts covering
two- and four-week periods after the initial date of the fore-
casts and compared these scores to the BSS for the standard
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three-week window (0.26). To account for the variations
in BSS across the rainy season, we ensured that the fore-
cast evaluation period consisted of exactly the same part
of the season as the period used to evaluate the three-week
window. This was done by including hindcast initial dates
up to 22 November for the two-week window and up to 8
November for the four-week window. As expected, the BSS
is higher (0.30; 95% CI: [0.23, 0.36]) for the two-week win-
dow and lower for the four-week window (0.23; 95% CI:
[0.15, 0.32]). These variations are entirely attributable to
differences in the Brier Score of the IFS-based model, as
the Brier Score of the climatological model does not vary
with lead time.

An arguably more robust way to assess how forecast
skill varies with lead time is to compare the BSS for two-
week windows positioned further from the forecast initial
date than those evaluated previously. All earlier windows
began at the initial date; the BSS of 0.30 cited above corre-
sponds to the two-week period spanning days 1-14 (weeks
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Fig.5 (a) Brier Skill Score (BSS) for Malawi, aggregated for all initial
dates between 15 October and 15 December. Dots indicate BSS values
within Malawi that are significantly different to zero at the 5% level
according to a bootstrapping test. Yellow lines show country borders.
(b) Orange bars: the climatological base rate of dry spells for 15-day

a Mean BSS = 0.12

Fig.6 As Fig. 5, but for the
IFS-based model bias-corrected
against IMERG instead of ERAS,
using a no-rain threshold of 1 mm.
This model was validated against

IMERG data
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1-2). We now evaluate forecasts for weeks 2—3 and weeks
3—4. For this extended analysis, we also adjusted the set of
hindcast initial dates to ensure that the evaluation periods
matched the original analysis window exactly. The result-
ing mean BSS over Malawi for weeks 2—-3 was found to be
0.08, with a 95% CI of [0.02, 0.15], demonstrating that the
forecast skill for these weeks remains significantly positive.
For weeks 3—4, however, the BSS dropped to 0.02 (95% CI:
[—0.03,0.06]), which is not significant. These results con-
firm that most of the skill in the three-week forecasts stem
from the first two weeks after initialisation.

In the remainder of the analysis, we revert to studying
three-week forecasts for days 1-21 after the initial date.
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Brier Skill Score
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Initial Dates (Days after 16 October)
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bins relative to the initial dates of the model runs. Blue bars: BSS for
IFS-based vs. climatology-based forecasts for the same bins. The first
bars show the base rate and BSS for all the data, and whiskers show
95% Cls based on bootstrapping

Base Rate and Brier Skill Score, Binned by Initial Dates
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Figure 6 shows the BSS for an IFS-based model bias-
corrected against IMERG, compared to a model based on
IMERG climatology. Recalling from Sect. 2.3 the large
corrections needed when adjusting the biases in IFS rela-
tive to IMERG, we note that the climatological model has
an advantage compared to the IFS-based model in that it is
better calibrated to the IMERG data. Still, even with this
handicap, the IFS-based model performs better than the cli-
matological model: Figure 6a and the first bin in Fig. 6b
show that the average BSS value in Malawi is 0.12 (95% CI:
[0.02, 0.23]). This aggregated BSS is significant, but at the
grid-point level it is only in the northern part of the country
that the BSS is mainly and significantly positive.
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The within-season breakdown in Fig. 6b shows that
the IFS-based model performs steadily better once the
rainy season gets underway and the base rate of dry spells
drops. It is only in the last bin that the BSS is significantly
positive. These results contrast with those based on ERAS,
where the BSS is higher and significant in all the bins (cf.
Fig. 5), reflecting the consistency between forecast model
and reference dataset. Still, the performance of the IMERG-
calibrated model is noteworthy given that the climatological
benchmark is derived directly from IMERG and thus per-
fectly calibrated. We repeat here that we did not perform a
thorough optimisation of the interpolation of the IMERG
data to the forecast model’s grid, nor did we apply a sophis-
ticated bias-correction; further optimisations might yield
better skill than the model presented in Fig. 6.

We now return to the IFS-based model that was bias-
corrected using ERAS and the ERAS-based climatological
model. Figure 7a displays a reliability diagram for these
models. This diagram illustrates the relationship between
forecast probabilities and observed frequencies. The clima-
tology-based model is generally well-calibrated, which is a
trivial result. It is more interesting that the IFS-based model
also exhibits good calibration, with points generally closely
aligned to the diagonal. However, forecast probabilities up
to 0.6 tend to slightly but systematically underestimate the
observed frequency: a sign of underconfidence. Conversely,
the model overestimates frequencies above 0.6; in this seg-
ment the model is mildly overconfident.

In the forecast examples shown in Fig. 3 and 4, the
IFS-based model was noticeably sharper than the clima-
tology-based model. Figure 7b confirms that this holds in
the aggregate, highlighting pronounced differences between
the models. The climatology-based model exhibits poor
sharpness, assigning the lowest probabilities (0—0.1) only

about 10% of the time — similar to what a randomised model
would do over time. Although it uses the highest probabil-
ity bin marginally more frequently, its overall use remains
limited. This conservative tendency stems from the model’s
reliance on historical averages. In contrast, the IFS-based
model demonstrates markedly greater sharpness; it issues
forecasts in one of the two most extreme probability bins
about 60% of the time. Compared to the climatology-based
model, these high-stakes forecasts are more likely to spur
action, increasing their potential value in decision-making
contexts.

Figure 7c shows that the ROC curve for the IFS-based
model consistently lies above that of the climatology-based
model. The AUC of the former is 0.91 (95% CI: [0.89, 0.92])
compared to 0.84 for the latter model. In other words, the
AUC of the IFS-based model is significantly higher than
the AUC of the climatological model. This superior per-
formance of the IFS-based model reflects another desirable
forecasting property: the ability to achieve high detection
rates while maintaining low false alarm rates, thereby reduc-
ing both missed events and unnecessary warnings.

3.3 Applicability to other regions

This section includes a short, preliminary analysis of the
usefulness of the dry spell forecast model in other regions
than Malawi. We choose to focus on East Africa and the
March—May “long rains” (Camberlin and Philippon 2002),
and the October—December “short rains” (Palmer et al.
2023). For the long rains we used all initial dates between
1 March and 10 May 2024, and for the short rains we used
all initial dates between 1 October and 10 December 2024.
Figure 8 presents the BSS for these seasons.

a Reliability b Sharpness C Discrimination (ROC curves)
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Fig. 7 (a) Reliability diagram comparing the IFS-based and clima-
tology-based forecast models, showing observed frequency versus
forecast probability across bins of [0, 0.1), [0.1, 0.2), and so on. (b)
Sharpness diagram illustrating the distribution of forecast probabili-
ties for both models within the same probability bins, highlighting the
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Forecast Probability

False Alarm Rate

tendency of each model to issue forecasts across the probability range.
(¢) ROC curves for the two models, depicting the trade-off between
hit rate and false alarm rate, with the area under the curve (AUC; indi-
cated in parentheses in the legend) indicating overall discriminatory
skill
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Fig. 8 As Fig. 5a, but for the East African long rains (a) and short
rains (b). Grid points with a base rate of less than 0.15 or greater than
0.85 were masked in both maps. The mean scores in the captions were

As discussed previously, the Brier Score is unsuitable for
events that are either very rare or frequent. Consequently,
in Fig. 8 we masked grid points where the average clima-
tological base rate was lower than 15% or higher than 85%.
For comparison, the base rate for Malawi, averaged across
all initial dates and grid points, was 47% (see first orange
bar in Fig. 5b).

Figure 8 demonstrates that the significant skill of the dry
spell forecast model extends beyond Malawi, covering large
parts of East Africa during both the long and short rains.
The mean BSS values for non-masked grid points within
the East African reference region are comparable to those
observed over Malawi. This suggests that a properly bias-
corrected and calibrated prediction model could be devel-
oped for this region.

4 Discussion

Our study addresses three key questions: (1) How do dry
spells vary within a season and from year to year in Malawi?
(2) Can dry spells around the start of the rainy season be
skilfully predicted? (3) Are our findings applicable beyond
Malawi to other parts of Sub-Saharan Africa?

In response to the first question, we showed that dry spells
in Malawi exhibit pronounced seasonality, with the highest
frequency in early October, followed by a gradual decline
through November and December. While early-season dry

calculated for all the non-masked grid points inside the boxed region,
which is the same as the reference region in Palmer et al. (2023):
between 5°S and 10°N, and from 30°E to 50°E

spells are more common, their agricultural impact inten-
sifies later in the season when farmers start committing
resources to planting.

A critical challenge in agricultural planning is distin-
guishing between genuine rainy season onset and false
onset, i.e. brief rainfall followed by detrimental dry spells.
Traditional onset definitions typically combine rainfall
thresholds with dry spell absence requirements (Fitzpatrick
et al. 2015). Our findings suggest improved outcomes when
separating rainfall onset occurrence analysis from dry spell
risk assessment. The limited forecast horizon of a maximum
of 3—4 weeks makes it difficult to predict both the initial
onset (based on rainfall thresholds) and the subsequent risk
of dry spells with sufficient lead time for decision-making.
Our approach of considering seasonally varying dry spell
prediction separately from the rainfall onset criterion gets
away from this mismatch of timescales.

Second, the IFS-based model demonstrates significant
forecast skill at a three-week lead time from mid-October
onwards, whether validated against reanalysis or against
IMERG data. By dynamically incorporating real-time atmo-
spheric conditions, the IFS-based model consistently out-
performs a simple climatology-based model across multiple
verification metrics, including Brier Score, forecast sharp-
ness, and discriminatory skill. This superior performance
supports potential operational deployment of the model for
mitigating risks associated with false onsets.
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It is important to emphasise that most of the skill appears
to stem from the first two weeks or so after the initial time.
Although the skill was found to be significant for weeks
2-3, the model showed no significant skill during weeks
3-4. This degradation highlights a familiar forecaster’s
dilemma. There is likely a strong desire for forecasts that go
beyond two or three weeks, but should the forecaster oblige
and provide these forecasts? A mitigating factor is that the
IFS-based model still performs as well as the climatological
model at longer lead times, and climatology is not a poor
predictor in this context. In our opinion there is no right or
wrong solution to this dilemma. What matters is that the
limitations and decline in forecast skill with lead time are
communicated clearly and transparently to users.

The fact that the IFS-based model retains positive skill
even when calibrated against and validated using IMERG
is a promising result. IMERG is independent of the fore-
cast model, and yet a basic quantile-based bias correction
yields a forecast model that outperforms climatology. This
is despite the fact that the IFS forecasts typically require
large adjustments (e.g., the 1 mm threshold in IMERG
corresponds to about 3 mm in IFS). It is likely that more
sophisticated bias correction methods could further enhance
performance.

The proven skill of subseasonal dry spell forecasts posi-
tions them as a crucial bridge between seasonal outlooks,
which provide broad probabilistic guidance, and short-
term weather forecasts, which lack lead time for agricul-
tural planning. While seasonal forecasts offer insights into
rainfall anomalies (e.g. ENSO-driven patterns; Nicholson
2017), they lack the accuracy for onset characterisation.
This underscores a need for an integrated approach that
blends seasonal outlooks with subseasonal updates, real-
time monitoring and improved communication strategies.
Farmers should not only receive probabilistic onset fore-
casts at the start of the season; they should also get updates
on the evolving progress of the rains. The need for such
updates was stressed by Streefkerk (2020) and might ensure
that early planting decisions remain flexible in the face of
forecast uncertainty. Integration of subseasonal forecasts
into the portfolio of DCCMS could enhance trust in fore-
casts and support the design of confident decision-making.

Third, our findings indicate that dry spells are predict-
able during the main East African rainy seasons as well as
in Malawi. However, since forecast skill is likely modulated
by local land-atmosphere interactions and regional circu-
lation patterns that vary significantly across the continent,
region-specific verification studies are needed before gener-
alising our findings to other agricultural regions.

A caveat of our work is that it did not use actual observa-
tions, relying instead on reanalysis data, which are known
to be biased towards producing too much light rain. Our
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study should be viewed as a proof of concept, demonstrat-
ing the feasibility of IFS-based subseasonal dry spell fore-
casting using a physically consistent reanalysis dataset as a
benchmark. Future work should focus on integrating obser-
vational data to improve site-specific reliability and enhance
the practical applicability of subseasonal dry spell forecasts.

Another suggestion for future studies is to address key
gaps to enhance the practical value of subseasonal fore-
casts. Investigating the differential impact of predictable
climate modes, such as the Madden-Julian Oscillation
(MJO), which has been linked to enhanced forecast skill for
rainfall in many regions (e.g. Vitart 2014; Lim et al. 2018;
Nsubuga et al. 2021), could facilitate the development of
hybrid forecast approaches, combining dynamical models
with statistical post-processing to address systematic biases.
Furthermore, quantifying the economic value of subsea-
sonal forecasts using robust methods such as randomised
controlled trials would be valuable. Such experiments are
currently underway in Malawi and Ethiopia as part of our
ARCS project. Complementing this quantitative approach,
qualitative research should explore the forecast value across
different agricultural decision contexts (planting timing,
variety selection, input application).

By demonstrating the feasibility of subseasonal dry spell
forecasting in Malawi and East Africa, this study provides a
foundation for integrating probabilistic forecasts into agri-
cultural decision-making. For operational use, subseasonal
forecasts should be tailored to local decision-making needs,
requiring investment in institutional capacity, communi-
cation strategies, and stakeholder engagement. A crucial
prerequisite is to strengthen institutional capacity within
national meteorological services to interpret and custom-
ise subseasonal model outputs. Effective implementation
depends on co-production with local stakeholders, ensur-
ing forecasts complement traditional knowledge systems
and existing advisory services. This collaborative approach
would enhance usability, accessibility, and trust among end
users (Streefkerk et al. 2022).
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