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Abstract

In recent years there has been much dialogue surrounding
concepts of “responsible AI” in areas such as ethics, fairness
and risk of existential harm from generative Al. However, this
dialogue is rarely targeted at Al-based Safety Critical Sys-
tems (AI-SCS), which have many unique regulatory and dis-
ciplinary challenges compared to other domains. Safety en-
gineers are being increasingly required through regulation to
evidence responsible use of Al, but the discipline lacks the
conceptual clarity or methodology to do so.

This inter-disciplinary paper uses philosophical models of re-
sponsibility (moral, causal, role and legal) to provide clarity
for the discipline of safety engineering. We consider AI-SCS
relevant challenges, including causal responsibility gaps, the
risk of a human in the loop being unfairly blamed after an Al-
SCS accident, and the problem of “many hands” hiding re-
sponsibility during development. We propose presenting evi-
dence of responsible Al use via graphical responsibility mod-
els, suitable for safety engineers to present as evidence as part
of a system safety case. We illustrate the application of our
approach with two different contrasting examples. The first
is a retrospective accident analysis of the death of a pedes-
trian in Tempe, Arizona involving an autonomous vehicle.
The second is a predictive example for an Al-based clinical
decision support tool. We show that by using our approach
we can uncover residual risk relating to responsibility short-
falls and improve safety by allocating tasks to the most appro-
priate responsible actors. We identify complex issues around
moral answerability and causal contribution for safety tasks.
We conclude that using our models can support safety engi-
neers in demonstrating responsible use of Al

1 Introduction

Al-Based Safety-Critical Systems (AI-SCS), such as au-
tonomous vehicles, inspection drones, medical diagnosis
systems and others, are increasingly being developed and
deployed in the real world. Al-based systems provide many
technical, ethical and societal challenges for assuring their
behaviour, particularly when they include black box Ma-
chine Learning (ML) components which obfuscate their
functionality. This obfuscation makes them especially chal-
lenging to use in a safety critical environment (Ashmore,
Calinescu, and Paterson 2021). Recent discourse has em-
phasised the notion of “responsible AI” (Commission June
2024; Madaio et al. 2024; Baeza-Yates 2024; Kou 2024;

Joshi and Morley 2019; Porter et al. 2023), whether for de-
velopment, initial deployment or in use of Al in general ap-
plications. A specific issue for the AI-SCS domain is that
concrete evidence is needed to support claims about respon-
sibility (such as by analysis or appeal to process) within a
safety assurance case (SAC). This evidence will be scruti-
nised by a regulator or independent assessor, so it needs to
be robust and clearly traceable to a system’s safety proper-
ties. This means there is a need to both consider what notions
of responsibility mean in practice for AI-SCS, and further to
demonstrate who is/was responsible and for which safety is-
sues.

In common with most Al systems, AI-SCS have a
complex development chain with many actors, includ-
ing software developers, data scientists, regulators, service
providers, and suppliers (Cooper et al. 2022; Porter et al.
2023), whose roles and responsibilities all contribute to
safety during design. For many AI-SCS there is limited or
no interaction with a human operator once deployed (Su-
jan 2023; Sujan et al. 2019; Macrae 2022) and there are in-
creased gaps understanding who was responsible and/or li-
able following an incident or accident (Burton et al. 2020;
Lawton et al. 2024). These issues, and others, mean demon-
strating responsibility for AI-SCS is a complex and qualita-
tive process.

The notion of responsibility has long been studied in
a philosophy and law, usually with a backwards-looking
perspective to understand events that have occurred e.g.,
(Tadros 2018; Coeckelbergh 2016; Ryan Conmy et al. 2023;
Thompson 1980). However, it has not been studied in
depth in safety engineering, which also requires a forwards-
looking perspective to predict potential harm and prevent it
or reduce its severity or likelihood. Nor has it been practi-
cally applied in the context of AI-SCS. This paper considers
how a number of different philosophical senses of responsi-
bility (role, moral, legal and causal (Hart 2008)) apply to the
actors involved in developing, assuring, regulating and op-
erating AI-SCS. We build upon previous work (Porter et al.
2023; Lock et al. 2009; Baxter and Sommerville 2011; Stahl,
B.C. 2023), but the novelty in this paper lies in considering
senses of responsibility in harmony with safety engineer-
ing practice and culture. For this we explore how practical
graphical representation can help to uncover and clarify re-
sponsibility gaps when developing and operating AI-SCS.
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Our key research questions are as follows:

* RQL1 - can responsibility gaps during development and
deployment of complex AI-SCS be identified and char-
acterised in a meaningful way for AI-SCS?

* RQ2 - how can this be presented in a transparent way to
support a SAC?

This paper is organised as follows. In section 2 we ex-
plore related literature to motivate and ground our approach
considering RQ1. In section 3 we describe our notation for
responsibility models considering RQ2. Section 4 presents a
real-world example of a fatal collision between a pedestrian
and an autonomous car. Section 5 presents an example of an
Al-based decision support system in healthcare with a safety
issue related to biased data. Finally, we present conclusions
in section 6.

2 Related Literature and Clarity for AI-SCS

This section focuses on three areas to address RQ1. First we
describe safety-critical systems, and the ecosystem in which
they are built, regulated and operated. With this in mind, we
then consider conceptual notions of responsibility, focusing
particularly on their applicability to both safety engineering
practice and the use of Al Finally, we consider known re-
sponsibility problems for AI-SCS.

2.1 Al-Based Safety Critical Systems

Safety-critical systems are defined as those whose failure,
under certain conditions, can lead to harm to humans or the
environment (IEC 2010). AI-SCS include Al components
to replace some or all of a human function, such as driver-
less autonomous vehicles (Favaro et al. 2023; Koopman and
Wagner 2017), self-piloted inspection drones (Ryan et al.
2024, 2025), and Al-based medical image diagnostics (Oz-
turk et al. 2023; Deo et al. 2023) . An AI-SCS is subject
to differing legal and regulatory regimes, depending on do-
main, type, country of use and even degree of autonomy.
Rather than attempt to cover all these we briefly summarise
some common practices which will broadly apply when de-
veloping an AI-SCS.

Typically the manufacturers and operators of an AI-SCS
will provide a Safety Assurance Case (SAC) that the system
is acceptably safe for use in a defined context(Kelly 1998,
2004; Bishop and Bloomfield 1998; Sujan et al. 2016). The
SAC contains a series of claims (e.g., “System is acceptably
safe””) which are decomposed into more detailed sub-claims
(e.g., “Software tests are complete and satisfied”) supported
by specific evidence (e.g., a report detailing the tests and
results) (ACWG 2021; U.K. Ministry of Defence 2017). The

!The scope of this paper is limited to cyber-physical systems
with Al functions designed for specific purpose or task. We do not
specifically consider generalised frontier AI models such as Chat-
GPT (OpenAl 2025), although many of the issues (such as many
hands 2.3) may be relevant. We note that frontier models may be
used during development, e.g., to generate code or review safety
data, but for now we assume they are not used as a primary embed-
ded decision making function in an AI-SCS. Later research may
consider this.
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SAC will be reviewed by a regulator or independent safety
assessor who may provide approval based on its content.

To show an AI-SCS is acceptably safe it should be evi-
denced that system specific risks are at least tolerable (e.g.,
likelihood and severity are below a certain threshold) and
have been reduced as far as possible both in design and oper-
ation of the system (U.K. Ministry of Defence 2017). Risk is
reduced by following established good engineering practice
and safety standards (e.g., (ISO 2019, 2018; RTCA/EURO-
CAE 2011; U.K. Ministry of Defence 2017; IEC 2010)) to
find and resolve bugs, and by design improvements, adding
operational controls, or reducing severity of accidents (e.g.,
sprinkler systems). An important issue is that consensus on
good engineering practice is not well established for AI-SCS
(Ashmore, Calinescu, and Paterson 2021), despite recent
proliferation of standards e.g., over 400 at (Institute 2023),
making it particularly difficult to present a justification of
responsible development based on agreed convention. A key
aim for this paper is how to provide this evidence (RQ1 and
RQ2).

A cultural consideration for our work is that good safety
practice encourages a just culture (Dekker 2018)(U.K. Mar-
itime and Coastguard Agency 2022)(Navestad, Storesund,
and Phillips 2018), in which reporting of incidents or safety
concerns is encouraged within an organisation, promoting
transparency without fear of blame. In this atmosphere, tak-
ing collective and personal responsibility for safety is en-
couraged, ideally preventing future accidents. We come back
to this point in the next section.

Where responsibility is documented, it is typically in a
limited sense such as via Responsible/Accountable/Consult-
ed/Informed (RACI) matrices used for project management
(Defence 2025). These are used to assign specific high level
tasks (e.g., prepare a safety case or undertake safety analy-
sis (Rismani et al. 2023)) to an individual, or describe who
needs information (e.g., end user, regulator, Tier 1 supplier).
This is not adequate to manage more nuanced and detailed
types of responsibility, such as the complex supply chain for
ML (see section 2.3), where there is no end user, and if legal
liability needs to be established (see section 2.3).

2.2 Clarifying senses of responsibility for AI-SCS

Our conceptual model of responsibility for AI-SCS draws
upon a number of different sources which we adapt for this
specific domain. This includes Porter and Stahl’s formula-
tion for responsibility (Porter et al. 2023)(Stahl, B.C. 2023)
and Smith’s concept of moral answerability (Smith 2015).
The work of Porter et al. (Porter et al. 2023) draws upon
Hart’s classic taxonomy of the different senses of respon-
sibility (Hart 2008) to identify and clarify different types
of responsibility (role, causal, legal and moral), used to de-
scribe different aspects relating to AI-SCS development and
operation. Role responsibility refers to the obligations an
agent takes on in virtue of occupying a role. These obliga-
tions can include general moral obligations, such as taking
on a duty of care, or specific tasks, such as maintaining pa-
tient records. It is typically thought that causal responsibil-
ity is another way of referring to causation (Grinfeld et al.
2020)(Sartorio 2007). The standard philosophical view is
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that to be causally responsible for some outcome is to be
a cause, or to causally contribute, to that outcome.

Legal liability responsibility includes being required to
pay financial compensation, or be subject to a legal order,
or face punishment (Porter et al. 2022)(P. Morgan. and et.
al. 2023). Discourse in moral responsibility often relates it
to both accountability (praise and blame) and attributabil-
ity (where an agent’s contribution can be considered volun-
tary but they are not necessarily worthy of praise or blame)
(Porter et al. 2022; Ryan Conmy et al. 2023). Based on our
knowledge and experience with safety engineering, just cul-
ture (Dekker 2018)(U.K. Maritime and Coastguard Agency
2022)(Navestad, Storesund, and Phillips 2018), and discus-
sion with practitioners these concepts can be overly condem-
natory and restrictive. It is important to note that there is
always residual risk associated with operation of AI-SCS.
Hence, it may not be considered fair to blame develop-
ers and/or manufacturers for an accident if they exercised
due diligence in reducing that risk as far as possible. In-
stead, in this paper we consider moral responsibility to be
grounded in answerability, where an agent is morally re-
sponsible if they are answerable for what they do. An agent
is answerable for something if they are an appropriate tar-
get of requests for justification regarding that thing (Smith
2015)(Shoemaker 2011). Importantly, however, being an-
swerable does not necessarily make an agent worthy of
blame or praise, these kinds of evaluations depend upon the
reasons the agent offers in order to justify their conduct. This
is revisited in our examples (Sections 4 and 5).

2.3 Responsibility issues

In this section we summarise literature about a number of re-
sponsibility issues which apply to AI-SCS. We do not claim
this to be a complete list of issues that will apply, but it rep-
resents well known and often discussed issues in the domain.

Responsibility gap The first issue is the so-called re-
sponsibility gap” for AI-SCS (Burton et al. 2020; Matthias
2004; Gunkel 2012; P. Morgan. and et. al. 2023) where it
is difficult for developers and manufacturers to be held re-
sponsible for behaviour of an AI-SCS which contributes to
harm. Responsibility gaps can appear in traditional non-Al
domains (Da Silva 2024), but there are two particular fea-
tures of AI-SCS that compound the problem a) ensuring safe
behaviour of black-box AI component, and b) defining pre-
cise operating domains (Ashmore, Calinescu, and Paterson
2021). In (Yazdanpanah et al. 2022), the authors argue for
the Al-based system itself to be programmed to be respon-
sible, although practical methods to do this are unknown.

Munch (Munch, Mainz, and Bjerring 2023), notes that
a responsibility gap could be viewed positively, because it
avoids unfairly blaming individuals, and replacing human
agency with Al can remove the burden of decision making.
We reject the idea of not attempting to clarify and, if pos-
sible, reduce responsibility gaps. This is not to punish indi-
viduals, but to avoid putting people in the situation where
they could face unfair blame, and so that we can learn from
mistakes and avoid them in future.
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Liability Sink Another related, and contrasting, responsi-
bility issue is when the operator (not developer) of an Al-
SCS becomes a liability sink (Lawton et al. 2024). When
there are accidents, the operator may absorb blame for the
consequences of AI-SCS outputs they weren’t responsible
for creating, and may not have sufficient understanding to
avoid or mitigate their consequences. This also applies when
the operator may be required to only make interventions
when the AI-SCS cannot, increasing cognitive load (Bain-
bridge 1983; Weaver and DeLucia 2022).

Lawton et al. (Lawton et al. 2024) describe the situation
where a clinician includes the recommendation of a clinical
decision support system as part of their decision making for
a patient. They may be unduly influenced by the system, or
ignore it, and in either case could be held morally answer-
able and/or legally liable for the output of the Al In (Porter
et al. 2022) it is argued that the Al should provide informa-
tion rather than decisions, and that the patient should be at
the heart of decision making. We explore a similar scenario
in section 5.

Many hands The “problem of many-hands” was intro-
duced by Thompson in (Thompson 1980) and later studied
for conventional high-criticality systems (Thompson 2017;
Nissenbaum 1996). To summarise: because many individu-
als and groups of individuals contribute to decisions, activ-
ities and outcomes in complex networks and organisations,
it is difficult even in principle to determine who is responsi-
ble for them. Thompson notes that some may unfairly avoid
blame and others unfairly take blame. Both Cooper (Cooper
et al. 2022) and Thompson (Thompson 2017) argue that re-
sponsibility should be designed into organisations while sys-
tems are developed. Using a role responsibility model, such
as the one we propose, is one way this can be achieved for
AI-SCS.

The problem of many hands, and the difficulties in
identifying responsible agents for machine learning in
a non-safety environment is explored in (Cooper et al.
2022)(Cobbe, Veale, and Singh 2023), noting the many dif-
ferent responsible agents. Cooper (Cooper et al. 2022) notes
that the inevitability of ML bugs can be used to excuse
responsibility for non-safety systems. It is standard safety
practice, for traditional software, to perform activities to re-
duce bugs, such as by static code analysis. In fact most reg-
ulatory regimes require it and it should be evidenced as part
of a SAC (Hawkins 2013; ACWG 2021; RTCA/EUROCAE
2011). Therefore, we do not think responsibility will or can
be avoided by developers of AI-SCS, however it is much
more difficult to provide compelling evidence for Al due to
its black box nature and complexity.

If we are to be clear about the responsibility of actors dur-
ing the development of AI-SCS, we need to understand the
complex supply, development and operation chain for Al
(Edwards 2022; Cooper et al. 2022). During development
and operation of an AI-SCS there will be multiple devel-
opers, engineers, suppliers of components and data, project
managers, operators, investors, regulators etc. and it is in-
feasible to document and link all decisions they make which
could contribute to safety. However, if we model key rela-
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tionships and responsibilities with more clarity, we could
understand and resolve some issues (such as conflicts, gaps
and duplicated responsibilities), prevent safety problems in
the future, as well as support accident investigation.

Legal pitfalls and soft law One key aspect is that of le-
gal responsibility and liability following an accident. Safety
engineers typically follow “good practice” for developing
and operating traditional safety-critical systems, e.g., (RT-
CA/EUROCAE 2011; IS0 2019, 2018). Not following these
could lead to sanction, even if the standards are not legally
required, and hence is related to responsibility. One prob-
lem for AI-SCS is that there is limited consensus and little
evidence of what constitutes good practice for developing
safe ML (Ashmore, Calinescu, and Paterson 2021), despite
a recent proliferation AI/ML standards (Institute 2023), and
an increasing volume of research in this area (e.g.,(Hawkins
et al. 2021; Buhl et al. 2024; Ashmore, Calinescu, and Pa-
terson 2021; Favaro et al. 2023)). Therefore, a strong case
demonstrating due diligence in reducing risk will be needed.

From a legal perspective, one way of describing the pur-
pose of a SAC is a proactive means of justifying and ex-
plicitly detailing the roles and responsibilities of the vari-
ous individuals involved in a system’s lifecycle. This clar-
ifies their duties and outlines their subsequent responsibil-
ities. The SAC works in two ways: both forward-looking
and backward-looking. The forward-looking intention is to
assess potential risks from the outset and identify the rel-
evant roles responsible for mitigating such harms. How-
ever, in the event something goes wrong, the SAC will be
used backwards-looking in legal proceedings to assess how
and where the risk materialised. In complex negligence-
based cases, of specific pertinence to AI-SCS, industry stan-
dards and expert evidence may be used to assess the scope
of duties, any deviations from the standard, and negligent
conduct. Published material or guidance forming the gen-
eral corpus of knowledge in the field may also be used
as a reference and can be the deciding factor in liability
claims. Importantly, if a person actively and diligently as-
sesses risks, implements safety procedures, and ensures the
relevant guidelines are followed, the person is said to have
taken reasonable measures to ensure the safety of their con-
duct. In the event something undesirable occurs, to the ex-
tent that liability is based on fault (and not with strict lia-
bility claims), it can be argued it would be unreasonable to
find someone who diligently follows good safety practice
guidelines (and the law, more generally) liable — so long as
they have evidently carried out their responsibility, so far as
is reasonably practicable or possible (U.K. General Public
Acts 1974).

The recent EU AI Act (Commission June 2024) is in-
tended to close some legal responsibility gaps. However,
the Act has been criticised for not considering some of the
unique problems of Al, including its dynamic nature, its
complex lifecycle, understanding end user rights (Edwards
2022), and not tracing responsibility back to Al developers
(Watch 2023). The EU Al Liability Directive (Parliament
February 2023) is intended to provide means of pursuing
civil liability, but legal review suggests technical issues of
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identifying causal responsibility (responsibility gaps) are not
addressed (P. Morgan. and et. al. 2023).

3 Responsibility Notation

In this section we describe a notation, and give a brief
overview of how to develop and analyse models for AI-SCS
to address RQ2.

Our formulation for representing responsibility is: Ac-
tor(A) is (type) Responsible for Occurrence(O). An Actor
(A) could be an Al-based system, an individual involved in
development or operation, or an institution (e.g., company).
For AI-SCS it is important to distinguish between human
actors and Al-actors as the latter has no agency(Zafar 2024)
and cannot be morally answerable, only causally responsi-
ble. We also include institutions involved in SCS develop-
ment as these often have key responsibilities which impact
on safety, e.g., regulatory bodies and sub-system suppliers.

Occurrences are characterised as either Decisions, Ac-
tions or Omissions. An asterisk (*) is used to indicate
where the Occurrence (O) is attributed to an Al-based actor.
For example, Automated Driving System (A) is (task)role-
responsible for executing the dynamic driving task whilst
activated™(0).

Our notation elements are shown in Figure 1. These are
adapted from existing human task modelling approaches
which have been previously for safety engineering (Lock
et al. 2009; Baxter and Sommerville 2011) but are limited
to physical operational tasks (e.g., human tasks for man-
aging a fire). The novelty in our models is both that they
are much more wide ranging, considering Al development
chains, regulatory responsibilities, and operation, and also
that they show many more types of responsibility for more
types of actors. In Figure 1 the three different actor types
have different symbols, and an Occurrence is represented
by a rectangle. Resources, i.e., outputs or outcomes from
Actors and Occurrences, are represented using the standard
flow chart symbol for documents. One nuance is considera-
tion of whether resource is needed immediately (for exam-
ple, an Al autonomous car braking system) or at a later un-
known date (for example, an Al safety regulation policy).
Importantly, there may not be a direct interaction between
responsible Actors, other than via a common resource.

The relationships between the elements are as follows:

* (type) responsibility for - this specifies variations on the
four types of responsibility described in section 2.2

* uses - indicates where a resource or occurrence is used by
another actor. This can add insight where problems with
the resource (which may be due to prior issues undertak-
ing the task to manage it) may have safety implications.
We note that although a resource may be used it may
not necessarily be required for an actor to complete their
task.

* subordinate to - this represents where there is a power
relationship or hierarchy between elements

* association - this is used where there is a non-specific
relationship between elements, for example, a resource
associated with an occurrence
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Actors: Relationships: Outputs:
5 P {type) resp for—» ( )
L/ Occurrence
D 000 O—uses \ J
Al-based J subordinate to— ( )
system Individual human  Institution __association— Reso/uEiJ

Figure 1: Responsibility model elements

We have introduced the concept of two distinct model
types to track responsibility (and responsibility shortfall)
throughout the AI-SCS lifecycle. An initial model captures
the planned roles, duties, tasks and resources identified for
the AI-SCS. This is then used as a template for a series of
one or more analysed models, which consider failure modes
associated with the occurrences, resources and outputs, thus
illuminating where responsibility issues may lie. A simple
illustration is in Figure 2 where an Al-based system has the
(task)role of monitoring whether there is a pedestrian on a
potential collision path. If so it creates a collision warning
(resource) which is used by the Safety Driver. The safety
driver is responsible for intervening to try and prevent a col-
lision when a warning is issued (if necessary).

The initial model is shown in the top line (A) where the
actors and their tasks are described. In the bottom row (B),
we show the responsibility contributions following a colli-
sion. The Al-based system has a causal link only to the in-
sufficient prediction and associated warning (due to lack of
agency). It’s warning (or lack of warning) conflicts with the
safety drivers situational awareness. The safety driver inter-
venes too late to prevent a collision. They are thus morally
answerable for their actions even if the Al-based system
causally contributed to their actions. This highlights a re-
sponsibility gap between a causal factor and the driver, as
well a potential liability sink 2.3. There may be many differ-
ent responsibility models, with different potential outcomes,
dependent on the issues uncovered. For example, the Warn-
ing of potential collision* in Figure 2 could be Late or Miss-
ing, with different consequences. SCS practice requires the
development of forwards-looking analysis models, such as
fault trees or hazard logs. These are key pieces of evidence
in the SAC, where they are used to demonstrate how poten-
tial and credible risks have been identified and how they will
be managed (typically looking at physical or functional de-
sign). Forwards-looking responsibility models can be used
in the same way, this time to identify risks associated actors
responsibilities and demonstrate how they will be managed.

We have annotated the tasks and resources with indicative
guidewords where a safety shortfall is highlighted. Guide-
words are widely used in safety analysis methods e.g., (Mc-
Dermid et al. 1995; IEC 2016; Leveson N., and Thomas J.
2018; Rismani et al. 2023), to suggest categories of fail-
ure. For example, Too Much could suggest oversupply of
a particular chemical in a processing plant or instead a re-
peated data signal sent to a car accelerator. A safety engineer
will consider the consequences of these failures, which are
highly context specific and relate to risk. We have adopted
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their use here as a familiar tool for safety engineers, regula-
tors, and managers. Having added the failures we then con-
sider any transformations from one type of responsibility to
another, e.g. from task(role) or moral(obligation) responsi-
bility to causal. Generally speaking, an individual human
or institution could have a responsibility transformation to
(answerability)moral, causal or different types of liability
where applicable. However, an Al Actor can only become
causally responsible as it has no agency. Where there was no
shortfall in a responsibility no transformation may be neces-
sary. For example, an individual may carry out their task as
expected and there still be an adverse outcome due to an ear-
lier responsibility problem or resource failure. One impor-
tant point to note is that the transformation in responsibility
may or may not considered fair to that Actor, particularly if
they are a potential liability sink. The models can make such
issues transparent so that they can be mitigated if necessary.

In the next sections we extend from a simple model and
analysis to include the actor(s) responsible for designing and
regulating the AI-SCS, or who provided training data, etc.,
and build a chain of actors and relationships.

Prediction Warning of Intervene
(task) role—» of possible poll‘enl\ai — —(task) role—»{ to prevent
(A) collision

collision* collisions
Al-based g

system

(Insufficient) VEI(;?nrmlgd())f (Late) ]
(B) Prediction (answerability) | Intervene
—causal of possible potential (O " moral to prevent

collision* collision* collisions
Al-based J D J

system

Safety driver

Safety driver

Figure 2: Example of the initial and second analysed respon-
sibility models

4 Example 1 - Fatal collision with an
Autonomous Vehicle in Tempe, Arizona

The aim of this section is to show how our models can
provide evidence relating to the responsible development
and deployment of AI-SCS. We illustrate with a backwards-
looking perspective of the fatal collision of an Uber Ad-
vanced Technologies Group (ATG) vehicle with an auto-
mated driving system (ADS) and a pedestrian pushing a bi-
cycle across a highway in Tempe, Arizona in 2018. The Na-
tional Transportation Safety Board (NTSB) issued an acci-
dent report (National Transportation Safety Board 2019) de-
scribing contributory factors from different actors and high-
lighting safety shortfalls. After the accident Uber ATG de-
scribed improved safety processes to address some of these
(ATG 2018). A sociotechnical analysis of the accident can
be found in (Macrae 2022) which also points at many un-
desirable organisational factors relevant to safety. These re-
ports were the main sources of information for our models.
Uber ATG (an institution) were responsible for develop-
ing the ADS, which was an adaptation added to a Sport
Utility Vehicle (SUV) from a third-party supplier. The ADS
(an Al actor) used a number of ML components to detect
and classify objects in the vehicle’s path, and also to predict
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their trajectories. The accident report states that the classifier
failed to consistently categorise the object as a pedestrian
with a bicycle. Each time the classification changed, infor-
mation on the pedestrian’s path was lost, and so the ADS
could not predict the pedestrian’s path correctly to provide
a collision warning. The ADS had limited braking capabil-
ity and relied on driver intervention. The safety driver (hu-
man actor) in the vehicle was trained to disengage the ADS
in emergency situations and take avoidance action. She was
found to be distracted during the accident and intervened
too late to prevent the collision. The accident report noted
inadequate regulatory control from the National Highway
Traffic Safety Administration (NHTSA) over operation of an
autonomous vehicle (National Transportation Safety Board
2019).

In 2019, prosecutors said Uber ATG was not criminally
liable in the crash. Uber ATG also settled the civil case
brought by the victim’s family out of court. Uber ATG pre-
ferred to use the word “resolved” in place of settled, as they
did not admit liability (Fulbrook 2021), although settlements
which compromise a dispute often contain provisions that
a party does not accept liability. In our opinion, the out of
court settlement represents a missed opportunity to test im-
portant questions of civil liability and responsibility for in-
cidents involving AI-SCS. Indeed a party may wish to settle
a civil claim to prevent a precedent from being set, but also
to remove the forensic eye of tort litigation from their oper-
ations.

As per section 3 we have two models of role responsi-
bility. The first model shows the actors, and linked tasks
(Figure 3), and the second model shows the responsibility
findings and shortfalls after the accident (Figure 4).

4.1 First model - example 1

On the left hand side of the initial model (Figure 3) is the
regulator NHTSA who have oversight of testing automated
vehicles. The production of a safety assessment was volun-
tary in accordance with the NHTSA regulations, but Uber
ATG are still subordinate to the regulator as indicated. We
recommend that compliance and legal obligations should be
included in every initial AI-SCS responsibility model due to
their importance in development and operation, and specif-
ically due to grey areas around legal liability (see section
2.3).

We have modelled Ensuring just safety culture as a (moral
obligation) role. This reflects the obligation to embed safety
culture within an institution (a concept as well as a set of
individual tasks), in accordance with general societal expec-
tations and norms. No individual actor is named as respon-
sible for this, firstly as there are no named individuals in the
accident report (potentially a many hands issue), but also
we consider it to be a collective obligation for Uber ATG.
We note that an individual’s degree of responsibility may
depend on authority and seniority (Dekker 2018)(Navestad,
Storesund, and Phillips 2018). Other tasks without named
individuals (task) roles relate to engineering (e.g., Risk anal-
ysis of experimental systems and Developing ADS) and op-
erational occurrences and resources (e.g, Monitoring safety
driver attentiveness, Training safety driver). The ADS has
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a task of Warning of collision. The ADS and safety drivers
are shown as separate actors as they have distinct functional
roles during operation and are named. The safety driver is
sub-ordinate to Uber ATG monitoring, as their procedures
allowed for reprimand or other punitive measures if the
safety driver was not vigilant to the degree expected.

We have included other road users as a human actor with
the qualifier (/..N) to indicate that there will be many such
individuals. They also bear responsibility in preventing acci-
dents, e.g., by following the rules of the road and monitoring
for potential collisions. This does not necessarily indicate a
many hands problem, as individuals involved in accidents
can typically be identified, although their actions could con-
flict making it hard to understand causal contribution. We
have assumed they are all human actors, but it could be the
case that there are other AI-SCS actors with this role.

Although they are named (with no contribution to the
severity of outcome) in the accident report, the emergency
services are not shown as they do not specifically have
a role in preventing collisions, which is the scope of our
model. Their task instead is to respond following an incident,
with the potential to reduce the severity of outcome, e.g.,
by treating those involved. Whilst a model with a broader
scope could potentially include these measures, Uber ATG’s
risk assessment should not rely upon these as good practice
would be to prevent an incident wherever possible.

4.2 Second model - example 2

Our model has been adapted in Figure 4 to show findings
from (National Transportation Safety Board 2019; Macrae
2022; ATG 2018; Wired 2023; Independent 2023). As de-
scribed in Section 3 we use HAZOP style guidewords to
indicate failures. For example, Warning of collision™* be-
comes (Late) Warning of collision*. Then we have trans-
formed each of the relationship arrow annotations to reflect
the findings, e.g., (task) role becoming causal or (answer-
ability) moral depending on the types of actor involved.

From the prosecution (Independent 2023; Wired 2023;
Shepardson 2023) and the accident report, we show that
the safety driver’s role can be considered as (answerability)
moral responsible for (Insufficient) Monitoring for poten-
tial collisions and the late intervention. We have also added
the (criminal) liability occurrence of Endangerment to our
model to reflect the outcome of the legal case (Wired 2023;
Independent 2023).

For someone to be held morally answerable for an occur-
rence, it is considered a necessary condition for them to both
have moral agency and some causal contribution (Porter
etal. 2023; Hart 2008; Smith 2015). The ADS has no agency
and hence is presented with causal contribution only. This is
one area where a potential responsibility gap is highlighted -
depending on whether it could be demonstrated that a lack of
due diligence from the safety engineers directly contributed
to the poor performance. The nature of Al (and in fact any
physical system) means there is a chance of random failures
(Cooper et al. 2022; Burton et al. 2020). However, principles
of risk reduction mean that all reasonable means to reduce
the risk should be considered where practicable and possi-
ble (Section 2). This is a key area where safety engineers
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are encouraged to demonstrate due diligence in their roles
and where we believe these models can evidence targeted
efforts to reduce responsibility gaps by showing they have
maximised risk reduction.

Uber ATG are considered (answerability) moral respon-
sible, in that they have agency and it is reasonable for them
to justify their actions (as an institution). However, McCrae
(Macrae 2022) notes that there was both pressure to de-
liver (based on fears that the organisation’s existence was
at stake) and individual staff were disempowered or discour-
aged from speaking about safety concerns. Hence, individ-
uals might justify that the (Insufficient) risk assessment was
due to significant pressure on them. The safety issue is that
this affects the quality of the ADS, as the risk assessment
was not an adequate source of ADS safety requirements to
be implemented (the association between the three elements
is shown in Figure 4). As noted, Uber ATG are represented
as an institution, with no specified individuals. Hence, this is
an example of the many hands problem (section 2.3) where
we don’t have traceability to individual decisions or actions,
nor transparency on who would be answerable within the
organisation.

One change to our original model is that the specific
pedestrian has been included (instead of /..N road users),
with a causal contribution. The accident report (National
Transportation Safety Board 2019) notes that "The pedes-
trian’s unsafe behavior in crossing the street in front of the
approaching vehicle at night and at a location without a
crosswalk violated Arizona statutes and was possibly due
to diminished perception and judgment resulting from drug
use”. Therefore, if the pedestrian had survived instead they
would be held answerable for their actions. The addition of
criteria to our analysis method for determining issues such
as moral answerability is a potential avenue for further re-
search and may be based on relative importance of causal
contributions.

Uber ATG were found not to have monitored the safety
driver’s awareness, due to underestimation of automation
complacency, i.e., where the safety driver trusted the ADS to
such an extent that they paid less attention. Also, as noted,
there was a complex chain of related occurrences from prob-
lems with risk assessment, impacting on the ADS perfor-
mance, leading to a late warning from the ADS to the driver.
This removed a layer of design mitigation that should have
reduced the risk of operating the vehicle, and would have re-
duced the cognitive load on the safety driver. A more prompt
warning would have provided mitigation against automation
complacency (Bainbridge 1983) and given more time for the
safety driver to intervene.

The second model highlights where omissions and short-
falls from a number of responsible actors has increased the
burden of risk on the safety driver (thus increasing likeli-
hood of them becoming a liability sink). With greater trans-
parency an operator may be able to better understand the
safety responsibility they are taking on (Lawton et al. 2024).
We note though, that this example model is based on pre-
existing knowledge of an accident. In the next section we
explore whether the models can be used identify potential
credible responsibility problems.
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S Example 2 - Diabetes co-morbidity clinical
decision support

Our second example is an Al-based diabetes co-morbidity
predictor (AI-DCP) being developed to assist clinical diag-
noses of patients with Type II diabetes (Ozturk et al. 2023;
Ryan Conmy, Ozturk, and Habli 2023; Alonso-Morén et al.
2014). The example demonstrates a forwards-looking re-
sponsibility analysis performed during development of an
AI-SCS. The aim is to uncover potential safety related fail-
ures relating to responsibility gaps, and take mitigating ac-
tions where possible. Additionally, we can be transparent
about where responsibility gaps remain. As discussed in sec-
tion 2.1, the SAC should describe and justify any residual
risk associated with the system. In a complex AI-SCS sup-
ply, development and operating chain with many (poten-
tially) responsible actors residual risks will inevitably re-
main. The forwards-looking analysis will provide evidence
for the SAC that steps have been made to identify these in
advance of deployment. The analysis can be revised and up-
dated during operation if required.

The AI-DCP predicts a patient’s risk of developing a
diabetes co-morbidity or having a potentially catastrophic
event, such as myocardial infarction (heart attack), within
the next six months. It is used during a patient consultation
by the clinician, and has been built using an ensemble of
ML components (Ozturk et al. 2023) to process recent pa-
tient test data and make a prediction of "High” or "Low” risk
of a particular co-morbidity. The clinician can choose not to
act on predictions made by AI-DCP if they disagree with its
assessment or if they have other information, for example,
about the patient’s preferred treatment, which make alterna-
tive courses of action more appropriate (Lawton et al. 2024).
The AI-DCP is intended to function as an independent ‘sec-
ond opinion’ during consultations, and doesn’t specifically
recommend treatments. It could influence the decision of
the clinician though, either by confirming or contradicting
their assessment (Sujan 2023). Therefore, it contributes to
the overall safety risk to the patient. A False Negative could
lead to no treatment and a False Positive could lead to unec-
essary medical intervention.

There are larger numbers of missing data values for pa-
tients with higher levels of deprivation compared with pa-
tients with low deprivation. This could be due to, for exam-
ple, more difficulties accessing healthcare, or different data
gathering procedures. As a consequence this could lead to
worse (biased) performance for those patients (Alderman
and et al. 2025)(Bender et al. 2021)(Ryan Conmy, Ozturk,
and Habli 2023) as aspects of their clinical health are not
as well represented in the training data. Management and
reduction of bias is guiding principle for the development
of Al medical devices in both the U.K. and U.S. (Food and
Drug Administration (FDA) and Medicines and Healthcare
products Regulatory Agency (MHRA) 2024), and within the
EU AI Act (Commission June 2024). Bias can be partially
mitigated by careful curation of the training data by the Al
developer (Zainuri, Jemain, and Muda 2015; Ozturk et al.
2023), however the impact of some issues cannot be fully
understood prior to deployment, nor can we exhaustively test
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the Al as there isn’t a precise specification for what consti-
tutes high and low risk. Ultimately, there could be an in-
equitable distribution of safety risk. We explore this issue in
our analysis, to uncover tasks and responsible actors for both
missing training data and resolving it.

5.1 First models - example 2

This section discusses development of the initial models,
separated over development (Figure 5) and deployment (Fig-
ure 6) for ease of presentation. We have included actors in-
fluencing the AI development process, regulators and op-
erators and modelled each of their outputs as occurrences
and/or resources.

Some of the modelled human actors (Clinical Staff) have
the qualifier (/..N). This indicates where there are many ac-
tors which we do not have detailed information for, and they
are not attached to a specific institution. This is another po-
tential example of the many hands issue (section 2.3). For
example, the Training patient database (Sohal et al. 2022)
is a resource that has been contributed to over many years,
by different clinics with different staff, each performing a
Maintaining patient database occurrence. The Al software
tools have been developed by many different institutions;
for example, commercial tool vendors or open source ini-
tiatives. We could extend the model to consider some or all
of these individually if, for example, one particular supplier
had a more significant role. Multiple institutions would rep-
resent many instances of many hands problems.

For regulatory oversight we have listed the health regu-
lator (e.g., Medicines and Healthcare products Regulatory
Agency (MHRA) in the UK) and National Institute for
Health and Care Excellence (NICE). MHRA provide ap-
proval for medical device safety assessments, and NICE pro-
vide clinical guidelines which were used to assist in deter-
mining the high/low risk factors of different co-morbidities.
We have a task for Al development good practice, which is
also assumed to be assigned to the health regulator. There
are, for example, guiding principles developed jointly be-
tween the US Food and Drug Administration (FDA), Canada
and MHRA (U.S. Food and Drug Administration Oct 2021;
Food and Drug Administration (FDA) and Medicines and
Healthcare products Regulatory Agency (MHRA) 2024),
and regulatory plans from the UK (Transformation Direc-
torate Jan 2025).

In Figure 6 we show the clinician performing a consul-
tation with a patient, using the AI-DCP and electronic and
non-electronic patient records for additional information.
The patient is included as they have a role during consulta-
tion, answering questions about their condition and general
health for the clinician. We include that the clinician has a
(moral obligation) role for Duty of care.

5.2 Second model - example 2

In this section we demonstrate how a forwards-looking anal-
ysis of the initial models helps develop a revised model with
additional tasks (Figure 7) to reduce the safety impact of bi-
ased training data. For reasons of space we present a subset
of the elements in the figure. The full model(s) can be used
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as evidence in a SAC that we have considered the safety re-
sponsibility issues for this system. We identify credible but
hypothetical issues with both occurrences and resources, and
think about how they may impact on safety and responsibil-
ities of the actors developing and deploying an AI-SCS. The
scope of our analysis is on the impact of problems in the
training database, but similar models could be built for, e.g.,
problems with AI/ML software. As previously discussed, we
use guidewords to highlight issues, as well as considering
responsibility issues.

Clinical
egligence]
Clinical staff
(1..N) (nsuff 9 (answerability)— %
1 nsufficien moral X
(answerability) ICompensatiory dev:IIoper Ii(:tla‘illlilt)y
moral for bias
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Figure 7: Excerpt from revised model

(Part of) Maintaining patient database implies (Bias)
Training patient database as data is skewed towards a par-
ticular demographic. As noted previously, considering T2D
records where the patient demographic was documented we
discovered both many more data records from patients with
lower levels of deprivation than high (20:1), and, in these
cases, a much higher level of missing data (~15% compared
to ~5%). This has a safety and ethical impact as it poten-
tially leads to higher likelihood of incorrect co-morbidity
prediction for some patients as their clinical data is poorly
represented in training and test sets. The severity of out-
come from incorrect treatment remains the same for all (high
for myocardial infarction). The exact reasons for the imbal-
ance are unclear, some may be due to different reporting and
testing procedures in different clinics (due to funding), and
some due to more difficulty accessing healthcare in areas of
higher deprivation. In any case, it is good safety practice to
reduce a known contribution to risk if possible, even though
the distribution of risk across all patients will never be equal
due to other individual variability factors (e.g, age, fitness).
The model helps identify who might be responsible for risk
reduction tasks.

We note that when an individual patient has not had data
recorded (e.g., due to missing a test appointment) this has
a small impact on the overall data set, meaning it would be
hard to point to the actions of a single clinician in failing
to secure it as having a significant causal contribution. This
is not only an instance of the many hands problem, but is
also analogous to the problem of “insignificant hands” (Hin-
driks 2022) where one individual makes limited difference,
but a large number of them will. A future area to consider is
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the proportional relationship between an individuals causal
contribution on safety and depth of justification (moral an-
swerability) of their actions it is reasonable to ask for. There
is a responsibility gap as the clinical staff are not gathering
data for the purposes of training Al rather this task is part
of normal patient record keeping. In other words, no one is
directly responsible for gathering data for training Al, rather
the records have been repurposed for this task. We could still
ask for a justification a clinicians data keeping actions if by
doing so we uncovered an understanding of behaviour and
it led to changes in practice to improve the data. This would
be in keeping with the principles of a just safety culture.

Here we propose an additional task in Figure 7 of Com-
pensation for bias. This can be reasonably assigned to the
Al Developer, as they have the skills to use data imputa-
tion (Luo et al. 2022; Ryan Conmy, Ozturk, and Habli 2023)
to synthesise additional data to compensate for missing in-
formation during training. In Figure 7, we hypothesise that
by Part of performance of this task they are (answerabil-
ity) moral responsible for (Insufficient) Training and Assur-
ance of Al. Importantly, the Al developer may be able to jus-
tify this insufficiency if they are still reducing the safety risk
from bias as far as possible, but cannot completely eradicate
it (Aler Tubella et al. 2023; Alderman and et al. 2025). Thus
they have undertaken due diligence in their role by both act-
ing to reduce risk and making transparent the residual risk
from bias in the system. This is the essence of risk accep-
tance supported by a SAC which provides evidence and jus-
tification about residual risks, and the measures taken to re-
duce them, for the AI-SCS. Hence it also supports decision
makers who need to accept that risk (e.g., regulators or clin-
icians).

Following on from this, the bias problem is shown as po-
tentially contributing to (Opposite) Summary of prediction*
and to (Incorrect) Clinical Decision and Treatment. In this
situation the clinician would be considered (answerability)
moral responsible for an incorrect diagnosis and treatment
plan. In effect, they act as a liability sink, potentially with
(civil) liability. Using the model they have better informa-
tion to understand the burden of risk and its causes. Further,
they have knowledge to question the validity of AI-DCP out-
puts for patients with high deprivation, and power to justify
their actions if they disagree with the prediction (also con-
sidering the patient’s preferences).

Establishing a unequivocal causal link between problems
with training data and poor predictive performance is not
possible due to the black box nature of ML. However, in
this section we have illustrated that by introducing a new
occurrence/task into our model we can demonstrate that the
Al has been developed responsibly to reduce potential bias
issues.

6 Conclusions

The key aims of this paper were to present an approach to
providing evidence supporting responsible use and develop-
ment of Al in safety critical systems. We first established
a set of responsibility concepts, drawing from philosophi-
cal foundations, but considering safety culture and practice
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(RQ1). Then we used this to inform the creation of a graphi-
cal notation, presenting responsibilities and relationships be-
tween different actors with specific roles in AI-SCS (RQ2).
We illustrated with two different examples of how it can be
used to highlight, and improve, known responsibility issues
for AI-SCS, including the problem of many hands and re-
sponsibility gaps. An example of bias leading to a safety
issue in an AI-DCP was shown, and we illustrated the ques-
tions this raises around moral answerability and causal con-
tribution. Here we reflect on the findings and validity of our
research in meeting our aims.

We noted that there is a large amount of rapidly evolv-
ing regulation for Al, including requirements on demon-
strating safe and responsible use of Al. The rapid pace of
change may impact on key responsibility issues and tasks
which should be included (e.g., for monitoring operational
behaviour of AI-SCS, or remote intervention and operation
of autonomous shipping (Porter et al. 2023; Kim, Perera, and
Sollid 2022)). Much of this regulation also covers wider is-
sues including ethics, transparency and security rather than
specifically safety. We have not addressed these directly in
our models (although the issue of bias is a cross-cutting eth-
ical concern), but they could be extended and adapted to do
SO.

Initial feedback from our discussions with experts in the
field has been positive, but a formal study with feedback
from industrial safety practitioners, or trial on a real system
safety case, would be valuable in demonstrating the practi-
cality of the approach. For additional validation we could re-
visit the healthcare responsibility models (section 5) follow-
ing an incident or accident. We could test whether the model
and analysis had uncovered relevant issues and/or provided
valuable evidence relating to responsibility for developers,
clinicians and regulators.

In future work we will develop the analysis methodol-
ogy further, including criteria for, e.g., determining where
responsibility could be considered as moral answerability
or simply causal. In this paper we have not explored rel-
ative causal contribution, for example, including severity
and likelihood of safety impact when not performing a role,
or other causation theories (Tadros 2018; Bernstein 2017,
Lagnado, Gerstenberg, and Zultan 2013), which also relate
to answerability and liability (Hitchcock and Knobe 2009).
This is a complex area with much disagreement amongst
both philosophers and safety practitioners.

Finally, our work is potentially generalisable to other SCS
or frontier Al but our focus was on cyber-physical AI-SCS
due to the known issues around responsibility and immediate
regulatory concern amongst safety practitioners.
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