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Abstract
Summary  T-scores alone are inadequate for identifying hip fracture risk. Incorporating FRAX-HFP scores and femoral 
strength improves risk assessment. Tailored interventions are needed for different ethnicities, with a focus on females due to 
higher fracture risk. Sex-specific thresholds and targeted prevention strategies are essential for effective fracture prevention.
Background  We investigated the age-related trajectories of areal bone mineral density (aBMD), fracture risk assessment 
tool (FRAX)–based 10-year probability of hip fracture (FRAX-HFP), trochanteric soft tissue thickness (TSTT), and femo-
ral strength in a multi-ethnic cohort of community-dwelling older adults in Singapore. We also examined the relationship 
between FRAX-HFP and femoral strength.
Methods  Dual-energy X-ray absorptiometry (DXA) scans were conducted for Singaporean older adults (n = 2235), enrolled 
in the Population Health and Eye Disease Profile in Elderly Singaporeans (PIONEER) study. aBMD and FRAX-HFP were 
recorded for the subjects. TSTT was derived from whole-body DXA scans. Femoral strength was derived from DXA-based 
3D finite element models. Age-related trajectories were compared for three major ethnicities in Singapore. The relationship 
between FRAX-HFP and femoral strength was examined.
Results  The study included 2204 older adults (1224 females (73.71 ± 8.37 years), 980 males (73.45 ± 8.34 years)). Age-
related trajectories for aBMD, FRAX-HFP, TSTT, and femoral strength indicated that Chinese ethnicity is at high risk for 
fracture, compared to Indians and Malays. Separately, FRAX-HFP identified 16% of males and 27% of females, and femoral 
strength identified 3% of males and 1% of females at risk. Both FRAX-HFP score and femoral strength identified 24% of 
males and 35% of females at risk.
Conclusion  Age-related trajectories for aBMD, FRAX-HFP, TSTT, and femoral strength were found to be consistent with 
the hip fracture trends in Singapore. FRAX-HFP and femoral strength identified different individuals at risk, indicating that 
each, either alone or combined with aBMD, could improve the ability to assess hip fracture risk.
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Introduction

Osteoporosis is a chronic condition leading to a weakened 
bone structure due to loss of bone mass and deterioration 
in trabecular structural arrangement. This results in greater 
bone fragility and a higher risk of hip fractures with age [1]. 
Following a hip fracture, patients experience a 3-month long 
decline in physical, mental, and emotional function leading 
to disability in about 40% of cases [2]. When compared to 
an age-matched control group, the annual mortality rate of 
hip fracture patients was higher by 8% for females and 18% 

for males [3]. The current clinical standard for the diagnosis 
of osteoporosis is to use areal bone mineral density (aBMD) 
obtained from dual-energy X-ray absorptiometry (DXA) 
scans. The DXA scan-based T-score defines how much 
bone mass differs from the bone mass of an average healthy 
25–30-year-old adult. However, 28–61% of hip incident 
fractures have been reported to occur in individuals with an 
aBMD measurement higher than the threshold defined for 
osteoporosis, which is a T-score of − 2.5 [4–6]. Thus, strati-
fying fracture risk based on aBMD alone lacks sensitivity 
for clearly identifying individuals at risk. The Fracture Risk 
Assessment Tool (FRAX) (https://​frax.​shef.​ac.​uk/​FRAX/) is 
a calculator used for predicting the 10-year probability of a 
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hip fracture or other major osteoporotic fracture considering 
12 risk factors including aBMD. FRAX scores are tailored 
to specific countries and, in some instances, ethnic groups. 
For example, in China (including Hong Kong), Malaysia 
(with distinctions for Chinese, Bhumiputera, and Indian), 
Singapore (Chinese, Malay, Indian), South Africa (African, 
Colored, Indian, White), and the USA (Caucasian, Black, 
Hispanic, Asian), ethnic variations are considered. However, 
some evidence suggests that FRAX may not perform as well 
in Asian populations, compared to Caucasian populations 
[7, 8].

In addition to bone mass, bone shape, size, and bone 
material properties contribute to resistance to fracture [9]. 
Femoral strength predicted from image-based subject-spe-
cific finite element models (FEMs) has been studied in the 
past to evaluate bone’s resistance to fracture [10–17]. The 
early studies in this field seemed to suggest no improve-
ment in using femoral strength for stratifying hip fracture 
risk compared to aBMD, but more recent research has shown 
FEMs to be more effective than aBMD [11, 16, 17], even 
demonstrating consistent superiority over 16 years of follow-
up [17]. Prior studies were limited by small sample sizes, 
study designs, and short follow-up durations. However, 
advances in computational efficiency, automation, and mod-
eling technologies now make large-scale analysis of femoral 
strength possible. Despite this, CT scans are associated with 
high radiation and cost and are not systematically used for 
primary screening for osteoporosis [18]. In parallel, 2D-3D 
registration techniques to build 3D FEMs of the proximal 
femur from lower radiation dose DXA scan have been devel-
oped [19, 20]. Two studies on Caucasian participants found 
that bone strength estimated from DXA-based finite element 
models (FEMs) had superior ability to distinguish individu-
als with hip fractures compared to aBMD [21, 22]. How-
ever, further validation with a larger, more diverse sample, 
including individuals from various ethnicities, is needed. 
The 2D-3D registration process is now available in a com-
mercial software (3D-SHAPER®, Galgo Medical), which 
is increasingly being utilized in clinical practice [23]. Addi-
tionally, studies have been published where the software’s 
output has been employed to develop FEMs [24, 25].

In Asia, the number of hip fractures is estimated to rise 
from 1.12 to 2.56 million between 2018 and 2050, lead-
ing to an increase in the annual direct cost of hip fracture 
from USD 9.5 to 15 billion [26]. By the year 2050, more 
than half of the hip fractures are expected to occur in Asia 
[26]. Interestingly, Singapore has a high incidence rate of hip 
fractures, similar to that seen in Nordic countries in Europe. 
The standardized incidence rates per 100,000 population for 
individuals over 50 years old are 314.2 in Singapore, 189.5 
in South Korea, 315.9 in Denmark, 226.5 in Finland, and 
134 in the UK [27]. In our previous study involving 275 
older adults, we found that trochanteric soft tissue thickness 

(TSTT) could partially explain the differences in fracture 
rates among various ethnic groups in Singapore [Jha et. al, 
Clin. Biomech. Under review]. How differences in femoral 
strength could inform on variations in hip fracture risk in 
older adults in Singapore across different ethnic groups is 
not known. Whether femoral strength, TSTT, FRAX-HFP, 
and aBMD identify the same or different individuals at risk 
for hip fractures is also not clear. Therefore, the primary aim 
of this study is to investigate the age-related trajectories (pat-
terns or trends over time as people age) of aBMD, FRAX-
HFP, TSTT, and femoral strength in a diverse, multi-ethnic 
cohort of community-dwelling older adults in Singapore. 
A secondary aim is to examine the relationships that femo-
ral strength and FRAX-HFP have with T-scores to provide 
insight into whether the stratification using these biomark-
ers overlaps or whether a potential synergistic effect exists 
between them.

Materials and methods

Study cohort

The study involved 2643 older adults from the Popula-
tion Health and Eye Disease Profile in Elderly Singapore-
ans (PIONEER) cohort [28], which includes community-
dwelling Singaporeans aged 60 and above. Data collection 
took place from 2017 to 2022; the study was approved by 
the SingHealth Centralized Institutional Review Board 
(2016/3089). Subjects were included if their DXA scans and 
FRAX-HFP scores were available, resulting in a final sam-
ple of 2235 subjects. Demographic information collected 
included age, gender, height, weight, and ethnicity.

aBMD measurements

Subjects underwent DXA scans, using the Hologic® Hori-
zon W scanner (Hologic, Inc., Marlborough, MA, USA), of 
the proximal femur and whole body while lying in a supine 
position with their legs rotated inward at a 25° angle, as rec-
ommended by the manufacturer. This positioning is required 
to bring the femoral neck axis parallel to the plane of the 
scan table. Each scan was visually inspected for artifacts. 
The aBMD at the total hip and the T-score were retrieved 
from the scanning reports provided by the scanner software.

FRAX‑HFP calculations

FRAX-HFP scores, reflecting predicted 10-year probability 
of a hip fracture, were calculated based on 12 clinical risk 
factors for each subject (https://​frax.​shef.​ac.​uk/​FRAX/). The 
clinical risk factors include age, gender, weight, height, his-
tory of fractures, having a parent with a hip fracture, current 
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smoking, glucocorticoid use, rheumatoid arthritis, secondary 
osteoporosis, alcohol consumption, and aBMD.

TSTT calculations

Standing trochanteric soft tissue thickness (TSTT) from 
supine whole-body DXA images was estimated using a 
prediction equation developed in a previous study [Jha et. 
al, Clin. Biomech. Under review]. Supine TSTT (TSTTSUP) 
measures are used as input in the gender and ethnic (Malay, 
Indian, and Chinese) specific equations (Eq.  1). These 
TSTTSUP values were derived using a Python (v3.9) pipeline 
that processes the subject’s whole-body DXA image, utiliz-
ing the open-source Python package OpenCV (v4.6.0.66).

TSTT 	� average trochanteric soft tissue thickness in 
standing position, cm

TSTTSUP	� average trochanteric soft tissue thickness in 
supine position, cm

Slope	� Chinese (males, 0.63; females, 0.59), Indian 
(males, 0.54; females, 0.51), Malay (males, 0.53; 
females, 0.62) 

Intercept	� Chinese (males, 3.12 cm; females, 2.29 cm), 
Indian (males, 10.54 cm; females, 12.26 cm), 
Malay (males, 8.94 cm; females, 6.23 cm) 

Femoral strength calculations

The 3D volume and outer surface of the proximal femur from 
DXA scans were generated using 3D-SHAPER® (v2.11.1) 
software from the 2D DXA image [23]. The volume and 
bone mineral density obtained from the 3D-SHAPER® were 
adjusted by a post-processing algorithm to take into account 
an underestimation in femoral strength that can occur when 
converting the 2D images into 3D models. After post-pro-
cessing of the 3D-SHAPER output, the 3D femur model 
was divided into mesh elements to create a detailed repre-
sentation of the femur structure. Each element of the mesh 
is a 10-node tetrahedron with the target size for each ele-
ment being 3 mm, ensuring a detailed and accurate model. 
The material card used in this model is mesh-sensitive and 
requires an average element size of 3 mm, as validated in our 
previous study [29]. The modeling pipeline, which was auto-
mated using Python open-source packages (v3.9), utilized 
a commercial software (Ansa 22.0.1; Beta CAE Systems, 
Root, Switzerland) for meshing. The FEMs were material 

(1)TSTT = Slope ∗ TSTTSUP + Intercept

mapped as described by Enns-Bray et al., utilizing a non-
linear material model that incorporates strain rate sensitiv-
ity and accounts for tension–compression asymmetry [29]. 
Briefly, the material properties of bone were mapped to the 
mesh using the bone density data from the scans. To do this, 
bone density was calibrated to ash density which was then 
subsequently converted to apparent density, and this was 
then used to calculate Young’s modulus. Three-dimensional 
interpolation was applied following the correction of par-
tial volume artifacts using the material mapping method B 
[30]. The material mapping steps to obtain Young’s modu-
lus assigned to the elements are described by the equations 
summarized in Fig. 1A [31] [32] [33]. The conversion equa-
tion from apparent density to Young’s modulus was initially 
developed based on trabecular bone experiments but has 
since been validated for the whole range of bone densities 
in subject-specific FEMs [30, 34, 35]. Our previous study, 
which applied this conversion equation to compare FEM 
predictions with experimental data on whole-bone stiffness 
and local strain, found a slope close to unity and an offset 
near zero, with both differences being statistically insignifi-
cant [30]. Additionally, femoral strength estimates derived 
from FEMs using this density–modulus relationship have 
shown superior performance over aBMD in distinguishing 
hip fracture risk in prior in vivo studies [11, 17].

In our previous study involving 4621 subjects, the side-
ways fall configuration with a loading of –5° for the adduc-
tion angle and 0° for internal rotation, as shown in Fig. 1B, 
demonstrated greater discriminatory power for predicting 
hip fracture risk than aBMD [17]. The distal part of the 
bone was the center of the condyles of a mean femur mesh 
[36], determined by overlaying the subject’s femur onto an 
average femur. It was then hinged to allow rotation solely 
around an axis perpendicular to the femoral shaft. Two 
rigid supports were used to hold the femur in place during 
the simulation. The supports at the greater trochanter and 
femoral head were modelled as rigid bodies and offset with 
frictionless contact from the surface of the femur. The fric-
tionless contact is to ensure that the supports do not resist 
or interfere with the bone’s movement, ensuring accurate 
simulation. All degrees of freedom were constrained at the 
greater trochanter support. The femoral head support was 
allowed to move only in a downward direction with a bound-
ary prescribed motion of 1 m/s as observed in experimental 
and computational fall models [37, 38]. The FEMs were 
processed in a commercially available explicit finite element 
solver (LS-Dyna, R12.2.1, ANSYS, Inc, Canonsburg, PA, 
USA). Femoral strength was recorded as the peak resultant 
force at the femoral head during the simulation, as shown in 
Fig. 1C. Force–time curves from all simulations were visu-
ally inspected to check for potential FEM modeling errors. 
The peak force for each simulation was extracted using an 
open-source Python package, lasso-python (v 1.5.2).
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Statistical analysis

Baseline characteristics, including age, weight, height, 
BMI, and T-score, were compared across ethnicities (Chi-
nese, Malay, and Indian) separately for males and females. 
Descriptive statistics, including means and standard devia-
tions (SD), were calculated for each variable. A one-way 
analysis of variance (ANOVA) was conducted using the 
scipy Python package (v1.7.1). The p-value obtained from 
the ANOVA test indicates whether there are statistically 
significant differences in the means for continuous vari-
ables between different ethnicities. aBMD, T-score, and 
femoral strength were adjusted for age. Statistical sig-
nificance was set at a p-value of less than 0.05. Locally 
weighted scatterplot smoothing (LOWESS) [39], obtained 
using the statsmodels Python package (v0.12.2), was used 
to determine the trend between age and aBMD, FRAX-
HFP, TSTT, and femoral strength. Additionally, ANCOVA 
was performed to assess the statistical significance of these 
LOWESS trends with respect to the covariate, “Age.” A 
distribution of femoral strength based on FRAX-HFP was 
analyzed, categorized by gender and ethnicity, to explore 
whether the stratification using these biomarkers over-
laps or has a potential synergistic effect. The gender and 
ethnic relationships of FRAX-HFP and femoral strength 
were analyzed with respect to T-scores. These distribu-
tions were assessed in relation to different thresholds: the 
osteoporotic T-score threshold of − 2.5, the osteopenic 
threshold of − 1, the 2% threshold for FRAX-HFP [40], 

and the femoral strength thresholds of 3 kN for females 
and 3.5 kN for males, based on a Korean population [41].

Results

A total of 31 subjects were excluded due to motion artifacts 
in the DXA scans (n = 18) and FEM modeling errors (n = 13), 
resulting in the analysis of 2204 subjects (1224 females and 
980 males). Table 1 summarizes the demographic informa-
tion, along with aBMD, FRAX-HFP, TSTT, and femoral 
strength for the subjects. Age differences between males 
of the three ethnicities were not statistically significant 
(p = 0.6123), while this difference was significant between 
females (p < 0.0001). Differences in weight, height, BMI, 
TSTT, and FRAX-HFP were statistically significant across 
ethnicities for both genders (all p < 0.01). After adjusting for 
age, aBMD, T-score, and femoral strength continued to show 
significant differences between the three ethnic groups for 
both genders (all p < 0.0001) (Table 1). The trajectory lines 
for aBMD, TSTT, and femoral strength were comparatively 
lower for the Chinese population, while the trajectory lines 
for FRAX-HFP were higher for Chinese subjects compared 
to Malays and Indians (Fig. 2) (all p-values < 0.0001).

We compared the classification of hip fracture risk 
between FRAX-HFP and femoral strength (Fig. 3), FRAX-
HFP and T-score (Fig. 4), and femoral strength and T-score 
(Fig. 5) by gender and ethnicity. In both the pooled male 
and pooled female groups, FRAX-HFP and femoral strength 
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ρash (g/cm3) = 0.95 * ρ_K2HPO4 + 0.0457 [31]Bone mineral density ( ρ_K2HPO4) calibration to ash density ( ρash)1

ρapp (g/cm3) = ρash / 0.6 [ 32]Ash density (ρash) normalization to apparent density ( ρapp)2

E (MPa) = 6850 * ( ρapp)1.49 [33]Apparent density ( ρapp) conversion to Young’s modulus (E)3
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Fig. 1   A Material mapping steps for the finite element models of the 
proximal femur. ρ_K2HPO4, bone mineral density in g/cm3; ρash, ash 
density; ρapp, apparent density; E, Young’s modulus. B Sample finite 

element model from the PIONEER cohort with boundary conditions 
for sideways fall loading. C Sample femur head force–time response 
recorded to measure femoral strength at the peak
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identified different subjects above the selected thresholds 
[40, 41], with FRAX-HFP flagging a higher percentage 
of females (62%) compared to males (40%), while femo-
ral strength identified 36% of females and 27% of males as 
above the thresholds. The T-score threshold identified fewer 
subjects at risk, with 15% in males and 18% in females. 
Additionally, FRAX-HFP identified 25% more males and 
44% more females at risk compared to T-score, while femo-
ral strength flagged an additional 14% of males and 19% of 
females. Across all methods, Chinese subjects were consist-
ently identified as the highest risk group, followed by Malays 
and Indians, regardless of gender.

Discussion

The primary aim of this study was to investigate the age-
related trajectories of aBMD, FRAX-HFP scores, TSTT, 
and femoral strength in a diverse, multi-ethnic (Chinese, 
Indian, Malay) cohort of community-dwelling older adults 
in Singapore. Additionally, we examined the relationship 
between femoral strength and FRAX-HFP with T-score 
thresholds—the latter being the current clinical stand-
ard for a densitometric diagnosis of osteoporosis. We 
found that the age-related trajectories of aBMD, FRAX-
HFP, TSTT, and femoral strength differed by gender and 

ethnicity. Specifically, compared to Malays and Indians, 
Chinese individuals showed higher risk metrics, such as 
lower aBMD, higher FRAX-HFP, thinner TSTT, and lower 
femoral strength. With respect to the secondary aim, the 
study showed that osteopenic or normal T-score partici-
pants were among the at-risk individuals identified by both 
biomarkers and that FRAX-HFP and femoral strength do 
not always identify the same individuals at risk, i.e., some 
individuals flagged by one measure (e.g., high FRAX-
HFP) may not be flagged by the other. Combining these 
measures may provide a more nuanced approach to frac-
ture risk estimation.

We found that females exhibited lower aBMD, higher 
FRAX-HFP, thinner TSTT, and lower femoral strength, 
all of which are associated with an increased risk of hip 
fractures. Furthermore, the trajectory lines for FRAX-HFP 
and TSTT for both genders clearly separated Chinese from 
other ethnic groups studied. Chinese ethnicity has lower 
aBMD, higher FRAX-HFP, thinner TSTT, and lower femoral 
strength in both genders compared to Indians and Malays. 
These results are in line with population data showing that 
Chinese females had a higher age-adjusted hip fracture rate 
than Indian and Malays in the Singaporean population [42]. 
These findings emphasize the importance of taking gender 
and ethnicity into account when determining hip fracture 
risk.

Table 1   Descriptive statistics 
for the cohort in the study

BMI body mass index, aBMD areal bone mineral density at Total hip, FRAX-HFP fracture risk assessment 
tool probability of hip fracture over a 10-year period; TSTT trochanteric soft tissue thickness
*Adjusted for age

Variable Pooled Chinese Indian Malay p-value

Number of males 980 494 213 273
Age (years) 73.45 ± 8.34 73.70 ± 8.14 73.32 ± 8.82 73.10 ± 8.31 0.6123
Weight (kg) 67.98 ± 12.58 65.29 ± 10.65 71.17 ± 14.33 70.37 ± 13.30  < 0.0001
Height (cm) 164.80 ± 6.75 164.66 ± 6.74 166.01 ± 7.06 164.12 ± 6.41 0.0073
BMI (kg/m2) 25.00 ± 4.24 24.09 ± 3.87 25.71 ± 4.32 26.08 ± 4.47  < 0.0001
TSTT (cm) 2.68 ± 0.74 2.31 ± 0.60 3.13 ± 0.69 2.99 ± 0.67  < 0.0001
FRAX-HFP (%) 2.00 ± 1.81 2.56 ± 2.05 1.34 ± 1.27 1.52 ± 1.34  < 0.0001
aBMD (g/cm2)* 0.89 ± 0.14 0.86 ± 0.13 0.95 ± 0.15 0.91 ± 0.14  < 0.0001
T-score*  − 1.32 ± 1.10  − 1.57 ± 1.00  − 0.88 ± 1.20  − 1.22 ± 1.08  < 0.0001
Femoral strength (kN)* 4.99 ± 1.97 4.56 ± 1.76 5.89 ± 2.28 5.05 ± 1.82  < 0.0001
Number of females 1224 594 305 325
Age (years) 73.71 ± 8.37 74.20 ± 8.30 74.67 ± 8.61 71.91 ± 8.01  < 0.0001
Weight (kg) 59.21 ± 12.79 55.08 ± 9.50 62.74 ± 12.84 63.46 ± 15.39  < 0.0001
Height (cm) 151.74 ± 6.40 152.84 ± 6.06 152.07 ± 6.70 149.41 ± 6.12  < 0.0001
BMI (kg/m2) 25.71 ± 5.32 23.57 ± 3.83 27.07 ± 4.98 28.35 ± 6.31  < 0.0001
TSTT (cm) 3.61 ± 1.27 2.95 ± 0.92 4.21 ± 1.06 4.25 ± 1.37  < 0.0001
FRAX-HFP (%) 4.23 ± 4.50 5.64 ± 5.03 2.66 ± 2.67 3.14 ± 4.01  < 0.0001
aBMD (g/cm2)* 0.75 ± 0.12 0.72 ± 0.11 0.78 ± 0.13 0.75 ± 0.13  < 0.0001
T-score*  − 1.46 ± 1.08  − 1.64 ± 0.99  − 1.13 ± 1.11  − 1.43 ± 1.12  < 0.0001
Femoral strength (kN)* 3.67 ± 1.25 3.54 ± 1.13 4.06 ± 1.39 3.55 ± 1.24  < 0.0001
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Fig. 2   Gender and ethnic specific age-related trajectories in A, B; 
aBMD, C, D; FRAX-HFP score, E, F; TSTT, G, H; femoral strength, 
for males and females, respectively. The shaded regions indicate the 
95% confidence interval for a given trajectory line. aBMD, areal bone 

mineral density; FRAX-HFP, fracture risk assessment tool probability 
of hip fracture over a 10-year period; TSTT, trochanteric soft tissue 
thickness
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Fig. 3   Gender and ethnic specific distribution of femoral strength as 
a function of FRAX-HFP score. A, B, Pooled; C, D, Chinese; E, F, 
Indian; G, H, Malay; for males and females, respectively. Solid red 
line (vertical): FRAX-HFP threshold at 2% [40]. Dashed blue line 

(horizontal): fragile bone threshold (females, 3 kN; males, 3.5 kN) 
[41]. The red arrows represent at-risk region based on the respective 
thresholds
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Fig. 4   Gender and ethnic specific distribution of FRAX-HFP with 
respect to T-score. A, B, Pooled; C, D, Chinese; E, F, Indian; G, H, 
Malay; for males and females, respectively. Solid red line (vertical): 
osteoporotic T-score threshold (T-score = − 2.5). Dashed green line 

(vertical): normal T-score threshold (T-score = − 1). Dashed blue line 
(horizontal): FRAX-HFP threshold at 2% [40]. The red arrows repre-
sent at-risk region based on the respective threshold
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Fig. 5   Gender and ethnic specific distribution of femoral strength 
with respect to T-score. A, B, Pooled; C, D, Chinese; E, F, Indian; G, 
H, Malay; for males and females, respectively. Solid red line (verti-
cal): osteoporotic T-score threshold (T-score = − 2.5). Dashed green 

line (vertical): normal T-score threshold (T-score = − 1). Dashed blue 
line (horizontal): fragile bone threshold (females, 3 kN; males, 3.5 
kN) [41]. The red arrows represent at risk region based on the respec-
tive threshold
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T-score thresholds have been observed to have lower sen-
sitivity in capturing hip fracture risk [4–6, 17]. Both FRAX-
HFP (which considers 12 clinical risk factors) and femoral 
strength (which is shown to have better discriminatory power 
than aBMD [11, 16, 17, 20]) identified individuals at risk 
in the osteopenic and normal T-score range in our study. 
The analysis also indicated that FRAX-HFP and femoral 
strength identified different individuals at risk for the speci-
fied thresholds. For the subset of individuals identified as 
at risk, FRAX-HFP identified a higher number of individu-
als compared to femoral strength for the Chinese ethnicity, 
while this was reversed in the case of Indian and Malays. 
The higher number of Chinese individuals identified by 
FRAX-HFP may be attributed to the demographic factors 
included in the FRAX-HFP score calculations. Our findings 
also suggest that femoral strength captures the biomechani-
cal properties of the femur, which contributes to fracture 
risk independently of gender and ethnicity. Both FRAX-HFP 
scores and femoral strength reflected the overall population 
trend, with the Chinese being identified at higher risk than 
Indians and Malays. These results should be further vali-
dated with actual fracture outcomes to better understand the 
specified thresholds and their significance across different 
genders and ethnic groups.

This study has several limitations. First, the cohort lacks 
data on incident fractures, which could have been useful 
in validating the findings. Additionally, the Korean femo-
ral strength thresholds [41] were applied to a multi-ethnic 
Singaporean population investigated in this study, but since 
these thresholds have not been validated with incident frac-
ture data, further validation is needed to assess their dis-
criminatory capacity. Despite these limitations, this study is 
the first to investigate age-related trends in bone health risk 
factors within a diverse Singaporean population, compar-
ing FRAX-HFP scores with FEM-derived femoral strength. 
Future studies incorporating incident fracture data are neces-
sary to confirm these findings.

Conclusion

This study has several clinical and public health-related 
implications. It reinforces that T-scores, while valuable, are 
insufficient as a standalone measure for identifying indi-
viduals at high risk of hip fractures. Incorporating femo-
ral strength and FRAX-HFP scores into clinical workflows 
could enhance risk stratification. Femoral strength, derived 
from DXA-based finite element models, provides biome-
chanical insights that are independent of clinical risk factors. 
The observed age-related trends are consistent with hip frac-
ture rates in the Singaporean population. The pronounced 
vulnerability of Chinese participants to fractures calls for 
tailored interventions and preventive strategies, including 

targeted screening and public health initiatives to address 
modifiable risk factors. For Indians and Malays, lower 
FRAX-HFP scores and stronger femurs indicate a poten-
tially lower fracture burden, yet individual risk assessments 
remain essential. The findings also highlight the need for 
sex-specific thresholds and interventions. Special attention 
should be given to women, particularly those who are post-
menopausal in fracture prevention programs, given their 
higher FRAX-HFP scores and lower femoral strength. Vali-
dation through long-term epidemiological data and incident 
fracture outcomes is necessary to confirm these findings.
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