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Abstract

Summary T-scores alone are inadequate for identifying hip fracture risk. Incorporating FRAX-HFP scores and femoral
strength improves risk assessment. Tailored interventions are needed for different ethnicities, with a focus on females due to
higher fracture risk. Sex-specific thresholds and targeted prevention strategies are essential for effective fracture prevention.
Background We investigated the age-related trajectories of areal bone mineral density (aBMD), fracture risk assessment
tool (FRAX)-based 10-year probability of hip fracture (FRAX-HFP), trochanteric soft tissue thickness (TSTT), and femo-
ral strength in a multi-ethnic cohort of community-dwelling older adults in Singapore. We also examined the relationship
between FRAX-HFP and femoral strength.

Methods Dual-energy X-ray absorptiometry (DXA) scans were conducted for Singaporean older adults (n=2235), enrolled
in the Population Health and Eye Disease Profile in Elderly Singaporeans (PIONEER) study. aBMD and FRAX-HFP were
recorded for the subjects. TSTT was derived from whole-body DXA scans. Femoral strength was derived from DXA-based
3D finite element models. Age-related trajectories were compared for three major ethnicities in Singapore. The relationship
between FRAX-HFP and femoral strength was examined.

Results The study included 2204 older adults (1224 females (73.71 £ 8.37 years), 980 males (73.45 + 8.34 years)). Age-
related trajectories for aBMD, FRAX-HFP, TSTT, and femoral strength indicated that Chinese ethnicity is at high risk for
fracture, compared to Indians and Malays. Separately, FRAX-HFP identified 16% of males and 27% of females, and femoral
strength identified 3% of males and 1% of females at risk. Both FRAX-HFP score and femoral strength identified 24% of
males and 35% of females at risk.

Conclusion Age-related trajectories for aBBMD, FRAX-HFP, TSTT, and femoral strength were found to be consistent with
the hip fracture trends in Singapore. FRAX-HFP and femoral strength identified different individuals at risk, indicating that
each, either alone or combined with aBMD, could improve the ability to assess hip fracture risk.

Keywords Hip fracture - Dual-energy X-ray absorptiometry - FRAX - Femoral strength - Finite element modeling

Introduction

Osteoporosis is a chronic condition leading to a weakened
bone structure due to loss of bone mass and deterioration
in trabecular structural arrangement. This results in greater
bone fragility and a higher risk of hip fractures with age [1].
Following a hip fracture, patients experience a 3-month long
decline in physical, mental, and emotional function leading
to disability in about 40% of cases [2]. When compared to
an age-matched control group, the annual mortality rate of
hip fracture patients was higher by 8% for females and 18%
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for males [3]. The current clinical standard for the diagnosis
of osteoporosis is to use areal bone mineral density (aBMD)
obtained from dual-energy X-ray absorptiometry (DXA)
scans. The DXA scan-based T-score defines how much
bone mass differs from the bone mass of an average healthy
25-30-year-old adult. However, 28-61% of hip incident
fractures have been reported to occur in individuals with an
aBMD measurement higher than the threshold defined for
osteoporosis, which is a 7-score of — 2.5 [4—6]. Thus, strati-
fying fracture risk based on aBMD alone lacks sensitivity
for clearly identifying individuals at risk. The Fracture Risk
Assessment Tool (FRAX) (https://frax.shef.ac.uk/FRAX/) is
a calculator used for predicting the 10-year probability of a
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hip fracture or other major osteoporotic fracture considering
12 risk factors including aBMD. FRAX scores are tailored
to specific countries and, in some instances, ethnic groups.
For example, in China (including Hong Kong), Malaysia
(with distinctions for Chinese, Bhumiputera, and Indian),
Singapore (Chinese, Malay, Indian), South Africa (African,
Colored, Indian, White), and the USA (Caucasian, Black,
Hispanic, Asian), ethnic variations are considered. However,
some evidence suggests that FRAX may not perform as well
in Asian populations, compared to Caucasian populations
[7, 8].

In addition to bone mass, bone shape, size, and bone
material properties contribute to resistance to fracture [9].
Femoral strength predicted from image-based subject-spe-
cific finite element models (FEMs) has been studied in the
past to evaluate bone’s resistance to fracture [10—17]. The
early studies in this field seemed to suggest no improve-
ment in using femoral strength for stratifying hip fracture
risk compared to aBMD, but more recent research has shown
FEMs to be more effective than aBMD [11, 16, 17], even
demonstrating consistent superiority over 16 years of follow-
up [17]. Prior studies were limited by small sample sizes,
study designs, and short follow-up durations. However,
advances in computational efficiency, automation, and mod-
eling technologies now make large-scale analysis of femoral
strength possible. Despite this, CT scans are associated with
high radiation and cost and are not systematically used for
primary screening for osteoporosis [18]. In parallel, 2D-3D
registration techniques to build 3D FEMs of the proximal
femur from lower radiation dose DXA scan have been devel-
oped [19, 20]. Two studies on Caucasian participants found
that bone strength estimated from DXA-based finite element
models (FEMs) had superior ability to distinguish individu-
als with hip fractures compared to aBMD [21, 22]. How-
ever, further validation with a larger, more diverse sample,
including individuals from various ethnicities, is needed.
The 2D-3D registration process is now available in a com-
mercial software (3D-SHAPER®, Galgo Medical), which
is increasingly being utilized in clinical practice [23]. Addi-
tionally, studies have been published where the software’s
output has been employed to develop FEMs [24, 25].

In Asia, the number of hip fractures is estimated to rise
from 1.12 to 2.56 million between 2018 and 2050, lead-
ing to an increase in the annual direct cost of hip fracture
from USD 9.5 to 15 billion [26]. By the year 2050, more
than half of the hip fractures are expected to occur in Asia
[26]. Interestingly, Singapore has a high incidence rate of hip
fractures, similar to that seen in Nordic countries in Europe.
The standardized incidence rates per 100,000 population for
individuals over 50 years old are 314.2 in Singapore, 189.5
in South Korea, 315.9 in Denmark, 226.5 in Finland, and
134 in the UK [27]. In our previous study involving 275
older adults, we found that trochanteric soft tissue thickness
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(TSTT) could partially explain the differences in fracture
rates among various ethnic groups in Singapore [Jha et. al,
Clin. Biomech. Under review]. How differences in femoral
strength could inform on variations in hip fracture risk in
older adults in Singapore across different ethnic groups is
not known. Whether femoral strength, TSTT, FRAX-HFP,
and aBMD identify the same or different individuals at risk
for hip fractures is also not clear. Therefore, the primary aim
of this study is to investigate the age-related trajectories (pat-
terns or trends over time as people age) of aBMD, FRAX-
HFP, TSTT, and femoral strength in a diverse, multi-ethnic
cohort of community-dwelling older adults in Singapore.
A secondary aim is to examine the relationships that femo-
ral strength and FRAX-HFP have with T-scores to provide
insight into whether the stratification using these biomark-
ers overlaps or whether a potential synergistic effect exists
between them.

Materials and methods
Study cohort

The study involved 2643 older adults from the Popula-
tion Health and Eye Disease Profile in Elderly Singapore-
ans (PIONEER) cohort [28], which includes community-
dwelling Singaporeans aged 60 and above. Data collection
took place from 2017 to 2022; the study was approved by
the SingHealth Centralized Institutional Review Board
(2016/3089). Subjects were included if their DXA scans and
FRAX-HFP scores were available, resulting in a final sam-
ple of 2235 subjects. Demographic information collected
included age, gender, height, weight, and ethnicity.

aBMD measurements

Subjects underwent DXA scans, using the Hologic® Hori-
zon W scanner (Hologic, Inc., Marlborough, MA, USA), of
the proximal femur and whole body while lying in a supine
position with their legs rotated inward at a 25° angle, as rec-
ommended by the manufacturer. This positioning is required
to bring the femoral neck axis parallel to the plane of the
scan table. Each scan was visually inspected for artifacts.
The aBMD at the total hip and the T-score were retrieved
from the scanning reports provided by the scanner software.

FRAX-HFP calculations

FRAX-HFP scores, reflecting predicted 10-year probability
of a hip fracture, were calculated based on 12 clinical risk
factors for each subject (https://frax.shef.ac.uk/FRAXY/). The
clinical risk factors include age, gender, weight, height, his-
tory of fractures, having a parent with a hip fracture, current
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smoking, glucocorticoid use, rheumatoid arthritis, secondary
osteoporosis, alcohol consumption, and aBMD.

TSTT calculations

Standing trochanteric soft tissue thickness (TSTT) from
supine whole-body DXA images was estimated using a
prediction equation developed in a previous study [Jha et.
al, Clin. Biomech. Under review]. Supine TSTT (TSTTgp)
measures are used as input in the gender and ethnic (Malay,
Indian, and Chinese) specific equations (Eq. 1). These
TSTTgyp values were derived using a Python (v3.9) pipeline
that processes the subject’s whole-body DXA image, utiliz-
ing the open-source Python package OpenCV (v4.6.0.66).

TSTT = Slope = TSTT g;p + Intercept (1)

TSTT average trochanteric soft tissue thickness in

standing position, cm

average trochanteric soft tissue thickness in
supine position, cm

TSTTgyp

Slope Chinese (males, 0.63; females, 0.59), Indian
(males, 0.54; females, 0.51), Malay (males, 0.53;
females, 0.62)

Intercept Chinese (males, 3.12 cm; females, 2.29 cm),

Indian (males, 10.54 cm; females, 12.26 cm),
Malay (males, 8.94 cm; females, 6.23 cm)

Femoral strength calculations

The 3D volume and outer surface of the proximal femur from
DXA scans were generated using 3D-SHAPER® (v2.11.1)
software from the 2D DXA image [23]. The volume and
bone mineral density obtained from the 3D-SHAPER® were
adjusted by a post-processing algorithm to take into account
an underestimation in femoral strength that can occur when
converting the 2D images into 3D models. After post-pro-
cessing of the 3D-SHAPER output, the 3D femur model
was divided into mesh elements to create a detailed repre-
sentation of the femur structure. Each element of the mesh
is a 10-node tetrahedron with the target size for each ele-
ment being 3 mm, ensuring a detailed and accurate model.
The material card used in this model is mesh-sensitive and
requires an average element size of 3 mm, as validated in our
previous study [29]. The modeling pipeline, which was auto-
mated using Python open-source packages (v3.9), utilized
a commercial software (Ansa 22.0.1; Beta CAE Systems,
Root, Switzerland) for meshing. The FEMs were material

mapped as described by Enns-Bray et al., utilizing a non-
linear material model that incorporates strain rate sensitiv-
ity and accounts for tension—compression asymmetry [29].
Briefly, the material properties of bone were mapped to the
mesh using the bone density data from the scans. To do this,
bone density was calibrated to ash density which was then
subsequently converted to apparent density, and this was
then used to calculate Young’s modulus. Three-dimensional
interpolation was applied following the correction of par-
tial volume artifacts using the material mapping method B
[30]. The material mapping steps to obtain Young’s modu-
lus assigned to the elements are described by the equations
summarized in Fig. 1A [31] [32] [33]. The conversion equa-
tion from apparent density to Young’s modulus was initially
developed based on trabecular bone experiments but has
since been validated for the whole range of bone densities
in subject-specific FEMs [30, 34, 35]. Our previous study,
which applied this conversion equation to compare FEM
predictions with experimental data on whole-bone stiffness
and local strain, found a slope close to unity and an offset
near zero, with both differences being statistically insignifi-
cant [30]. Additionally, femoral strength estimates derived
from FEMs using this density—modulus relationship have
shown superior performance over aBMD in distinguishing
hip fracture risk in prior in vivo studies [11, 17].

In our previous study involving 4621 subjects, the side-
ways fall configuration with a loading of —5° for the adduc-
tion angle and 0° for internal rotation, as shown in Fig. 1B,
demonstrated greater discriminatory power for predicting
hip fracture risk than aBMD [17]. The distal part of the
bone was the center of the condyles of a mean femur mesh
[36], determined by overlaying the subject’s femur onto an
average femur. It was then hinged to allow rotation solely
around an axis perpendicular to the femoral shaft. Two
rigid supports were used to hold the femur in place during
the simulation. The supports at the greater trochanter and
femoral head were modelled as rigid bodies and offset with
frictionless contact from the surface of the femur. The fric-
tionless contact is to ensure that the supports do not resist
or interfere with the bone’s movement, ensuring accurate
simulation. All degrees of freedom were constrained at the
greater trochanter support. The femoral head support was
allowed to move only in a downward direction with a bound-
ary prescribed motion of 1 m/s as observed in experimental
and computational fall models [37, 38]. The FEMs were
processed in a commercially available explicit finite element
solver (LS-Dyna, R12.2.1, ANSYS, Inc, Canonsburg, PA,
USA). Femoral strength was recorded as the peak resultant
force at the femoral head during the simulation, as shown in
Fig. 1C. Force-time curves from all simulations were visu-
ally inspected to check for potential FEM modeling errors.
The peak force for each simulation was extracted using an
open-source Python package, lasso-python (v 1.5.2).
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Fig.1 A Material mapping steps for the finite element models of the
proximal femur. p_K,HPO,, bone mineral density in g/cm®; p,,, ash

density; p,,,, apparent density; E, Young’s modulus. B Sample finite

Statistical analysis

Baseline characteristics, including age, weight, height,
BMI, and T-score, were compared across ethnicities (Chi-
nese, Malay, and Indian) separately for males and females.
Descriptive statistics, including means and standard devia-
tions (SD), were calculated for each variable. A one-way
analysis of variance (ANOVA) was conducted using the
scipy Python package (v1.7.1). The p-value obtained from
the ANOVA test indicates whether there are statistically
significant differences in the means for continuous vari-
ables between different ethnicities. aBMD, T-score, and
femoral strength were adjusted for age. Statistical sig-
nificance was set at a p-value of less than 0.05. Locally
weighted scatterplot smoothing (LOWESS) [39], obtained
using the statsmodels Python package (v0.12.2), was used
to determine the trend between age and aBMD, FRAX-
HFP, TSTT, and femoral strength. Additionally, ANCOVA
was performed to assess the statistical significance of these
LOWESS trends with respect to the covariate, “Age.” A
distribution of femoral strength based on FRAX-HFP was
analyzed, categorized by gender and ethnicity, to explore
whether the stratification using these biomarkers over-
laps or has a potential synergistic effect. The gender and
ethnic relationships of FRAX-HFP and femoral strength
were analyzed with respect to 7T-scores. These distribu-
tions were assessed in relation to different thresholds: the
osteoporotic T-score threshold of —2.5, the osteopenic
threshold of — 1, the 2% threshold for FRAX-HFP [40],
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element model from the PIONEER cohort with boundary conditions
for sideways fall loading. C Sample femur head force-time response
recorded to measure femoral strength at the peak

and the femoral strength thresholds of 3 kN for females
and 3.5 kN for males, based on a Korean population [41].

Results

A total of 31 subjects were excluded due to motion artifacts
in the DXA scans (n=18) and FEM modeling errors (n=13),
resulting in the analysis of 2204 subjects (1224 females and
980 males). Table 1 summarizes the demographic informa-
tion, along with aBMD, FRAX-HFP, TSTT, and femoral
strength for the subjects. Age differences between males
of the three ethnicities were not statistically significant
(p=0.6123), while this difference was significant between
females (p <0.0001). Differences in weight, height, BMI,
TSTT, and FRAX-HFP were statistically significant across
ethnicities for both genders (all p <0.01). After adjusting for
age, aBMD, T-score, and femoral strength continued to show
significant differences between the three ethnic groups for
both genders (all p <0.0001) (Table 1). The trajectory lines
for aBMD, TSTT, and femoral strength were comparatively
lower for the Chinese population, while the trajectory lines
for FRAX-HFP were higher for Chinese subjects compared
to Malays and Indians (Fig. 2) (all p-values <0.0001).

We compared the classification of hip fracture risk
between FRAX-HFP and femoral strength (Fig. 3), FRAX-
HFP and T-score (Fig. 4), and femoral strength and 7-score
(Fig. 5) by gender and ethnicity. In both the pooled male
and pooled female groups, FRAX-HFP and femoral strength
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Table 1 Descriptive statistics

. Variable Pooled Chinese Indian Malay p-value
for the cohort in the study

Number of males 980 494 213 273

Age (years) 73.45+8.34 73.70+8.14 73.32+8.82 73.10+8.31 0.6123
Weight (kg) 67.98+12.58 65.29+10.65 71.17+1433  70.37+13.30 <0.0001
Height (cm) 164.80+£6.75 164.66+6.74 166.01+7.06 164.12+6.41 0.0073
BMI (kg/m?) 25.00+4.24 24.09+3.87 25.71+4.32 26.08 +4.47 <0.0001
TSTT (cm) 2.68+0.74 2.31+0.60 3.13+0.69 2.99+0.67 <0.0001
FRAX-HFP (%) 2.00+1.81 2.56+2.05 1.34+1.27 1.52+1.34 <0.0001
aBMD (g/em?)* 0.89+0.14 0.86+0.13 0.95+0.15 0.91+0.14 <0.0001
T-score* -132+1.10 —-157+1.00 -088+120 —1.22+1.08 <0.0001
Femoral strength (kN)*  4.99+1.97 4.56+1.76 5.89+2.28 5.05+1.82 <0.0001
Number of females 1224 594 305 325

Age (years) 73.71+8.37 74.20+8.30 74.67+8.61 71.91+8.01 <0.0001
Weight (kg) 59211279  55.08+9.50 62.74+12.84  63.46+15.39 <0.0001
Height (cm) 151.74+640 152.84+6.06 152.07+6.70  149.41+6.12 <0.0001
BMI (kg/m?) 25.71+£5.32 23.57+3.83 27.07+4.98 28.35+6.31 <0.0001
TSTT (cm) 3.61+1.27 2.95+0.92 4.21+1.06 4.25+1.37 <0.0001
FRAX-HFP (%) 4.23+4.50 5.64+5.03 2.66+2.67 3.14+4.01 <0.0001
aBMD (g/cm?)* 0.75+0.12 0.72+0.11 0.78+£0.13 0.75+0.13 <0.0001
T-score* —-146+1.08 —-1.64+099 —-1.13+1.11 —-143+1.12 <0.0001
Femoral strength (kN)*  3.67+1.25 3.54+1.13 4.06+1.39 355+1.24 <0.0001

BMI body mass index, aBMD areal bone mineral density at Total hip, FRAX-HFP fracture risk assessment
tool probability of hip fracture over a 10-year period; TSTT trochanteric soft tissue thickness

*Adjusted for age

identified different subjects above the selected thresholds
[40, 41], with FRAX-HFP flagging a higher percentage
of females (62%) compared to males (40%), while femo-
ral strength identified 36% of females and 27% of males as
above the thresholds. The T-score threshold identified fewer
subjects at risk, with 15% in males and 18% in females.
Additionally, FRAX-HFP identified 25% more males and
44% more females at risk compared to 7-score, while femo-
ral strength flagged an additional 14% of males and 19% of
females. Across all methods, Chinese subjects were consist-
ently identified as the highest risk group, followed by Malays
and Indians, regardless of gender.

Discussion

The primary aim of this study was to investigate the age-
related trajectories of aBMD, FRAX-HFP scores, TSTT,
and femoral strength in a diverse, multi-ethnic (Chinese,
Indian, Malay) cohort of community-dwelling older adults
in Singapore. Additionally, we examined the relationship
between femoral strength and FRAX-HFP with T-score
thresholds—the latter being the current clinical stand-
ard for a densitometric diagnosis of osteoporosis. We
found that the age-related trajectories of aBMD, FRAX-
HFP, TSTT, and femoral strength differed by gender and

ethnicity. Specifically, compared to Malays and Indians,
Chinese individuals showed higher risk metrics, such as
lower aBMD, higher FRAX-HFP, thinner TSTT, and lower
femoral strength. With respect to the secondary aim, the
study showed that osteopenic or normal 7-score partici-
pants were among the at-risk individuals identified by both
biomarkers and that FRAX-HFP and femoral strength do
not always identify the same individuals at risk, i.e., some
individuals flagged by one measure (e.g., high FRAX-
HFP) may not be flagged by the other. Combining these
measures may provide a more nuanced approach to frac-
ture risk estimation.

We found that females exhibited lower aBMD, higher
FRAX-HFP, thinner TSTT, and lower femoral strength,
all of which are associated with an increased risk of hip
fractures. Furthermore, the trajectory lines for FRAX-HFP
and TSTT for both genders clearly separated Chinese from
other ethnic groups studied. Chinese ethnicity has lower
aBMD, higher FRAX-HFP, thinner TSTT, and lower femoral
strength in both genders compared to Indians and Malays.
These results are in line with population data showing that
Chinese females had a higher age-adjusted hip fracture rate
than Indian and Malays in the Singaporean population [42].
These findings emphasize the importance of taking gender
and ethnicity into account when determining hip fracture
risk.
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(horizontal): FRAX-HFP threshold at 2% [40]. The red arrows repre-
sent at-risk region based on the respective threshold
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T-score thresholds have been observed to have lower sen-
sitivity in capturing hip fracture risk [4—6, 17]. Both FRAX-
HFP (which considers 12 clinical risk factors) and femoral
strength (which is shown to have better discriminatory power
than aBMD [11, 16, 17, 20]) identified individuals at risk
in the osteopenic and normal 7T-score range in our study.
The analysis also indicated that FRAX-HFP and femoral
strength identified different individuals at risk for the speci-
fied thresholds. For the subset of individuals identified as
at risk, FRAX-HFP identified a higher number of individu-
als compared to femoral strength for the Chinese ethnicity,
while this was reversed in the case of Indian and Malays.
The higher number of Chinese individuals identified by
FRAX-HFP may be attributed to the demographic factors
included in the FRAX-HFP score calculations. Our findings
also suggest that femoral strength captures the biomechani-
cal properties of the femur, which contributes to fracture
risk independently of gender and ethnicity. Both FRAX-HFP
scores and femoral strength reflected the overall population
trend, with the Chinese being identified at higher risk than
Indians and Malays. These results should be further vali-
dated with actual fracture outcomes to better understand the
specified thresholds and their significance across different
genders and ethnic groups.

This study has several limitations. First, the cohort lacks
data on incident fractures, which could have been useful
in validating the findings. Additionally, the Korean femo-
ral strength thresholds [41] were applied to a multi-ethnic
Singaporean population investigated in this study, but since
these thresholds have not been validated with incident frac-
ture data, further validation is needed to assess their dis-
criminatory capacity. Despite these limitations, this study is
the first to investigate age-related trends in bone health risk
factors within a diverse Singaporean population, compar-
ing FRAX-HFP scores with FEM-derived femoral strength.
Future studies incorporating incident fracture data are neces-
sary to confirm these findings.

Conclusion

This study has several clinical and public health-related
implications. It reinforces that 7T-scores, while valuable, are
insufficient as a standalone measure for identifying indi-
viduals at high risk of hip fractures. Incorporating femo-
ral strength and FRAX-HFP scores into clinical workflows
could enhance risk stratification. Femoral strength, derived
from DXA-based finite element models, provides biome-
chanical insights that are independent of clinical risk factors.
The observed age-related trends are consistent with hip frac-
ture rates in the Singaporean population. The pronounced
vulnerability of Chinese participants to fractures calls for
tailored interventions and preventive strategies, including

@ Springer

targeted screening and public health initiatives to address
modifiable risk factors. For Indians and Malays, lower
FRAX-HFP scores and stronger femurs indicate a poten-
tially lower fracture burden, yet individual risk assessments
remain essential. The findings also highlight the need for
sex-specific thresholds and interventions. Special attention
should be given to women, particularly those who are post-
menopausal in fracture prevention programs, given their
higher FRAX-HFP scores and lower femoral strength. Vali-
dation through long-term epidemiological data and incident
fracture outcomes is necessary to confirm these findings.
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