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ABSTRACT
This paper presents a predictive model reference adaptive system (MRAS) speed estimator for permanent magnet synchronous
machines. The speed estimator is based on the finite control set model predictive control principle. A search method is utilized
to find the best estimated speed at each sampling interval that produces the smallest speed estimation error signal. This method
replaces the PI controller which is typically employed by MRAS estimators. The speed estimator has been experimentally tested
using a 2.1 kW PMSM. Results show improved performance, especially during fast load transients for the novel method compared
to the PI-based MRAS method.

1 Introduction

The use of permanent magnet synchronous machines (PMSM) is
widespread in both industrial and high-performance applications
such as electric vehicles traction, thanks to their high efficiency,
high power density, and simple structure [1]. PMSMs are typically
controlled using field-oriented control due to its high accuracy
and fast dynamics. Accurate rotor position measurement is
required for field orientation, and encoders or resolvers are used
to provide the rotor position data. In low-cost applications, the
additional cost, size, weight, as well as the additional wiring
and associated electronics components of position sensors are
undesirable, resulting in continuous interest in sensorless control
systems. In high performance applications, where reliability is a
critical requirement, such as EV traction motors where resolvers
are typically used, sensorless estimation is often a requirement as
a backup solution in case of sensor failure, in order to increase
drive reliability and availability [2]. To address issues with the
use of sensors, sensorless control strategies have been extensively
studied. Model Reference Adaptive System (MRAS)-based esti-
mators are one of themost popular sensorless position estimation
methods [3]. Due to its simple design and good performance over
a large speed range, the fixed-gain PI controller is frequently

employed in theMRAS schemes’ adaptationmechanism to obtain
the estimated speed. However, as inverter nonlinearities and
machine parameter variation become more prevalent at low
speeds, it might not offer the desired performance over the full
speed operating range. Furthermore, tuning the PI gains may
require effort through trial-and-error procedures.

Many solutions have been proposed to replace the fixed PI con-
troller with more advanced algorithms. [4, 5] suggested replacing
the PI adaptation mechanism with a sliding mode (SM) algo-
rithm. Although these methods enhance the dynamic response
of the estimator and resilience to parameter fluctuations, the
chattering issue and the position accuracy is undermined by
high-order harmonics and external noise during the estimation
of fundamental back-EMF, especially in dynamic conditions [6,
7]. To solve the problems mentioned above, [8] introduced an
improved SMO using a sigmoid function. However, the accuracy
of speed estimation during transient period suffered because
of DC offsets. A voltage model observer-based SMO proposed
by [9] to address the problem of DC offsets that lead to a
deterioration in speed estimation. Recent works have focused on
improving sliding-mode-based sensorless control. An improved
SMO with exponential input and a disturbance observer has
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been shown to reduce chattering and enhance robustness,
while fuzzy dual sliding-mode MRAS methods use fuzzy logic
to adaptively tune gains for better accuracy under parameter
uncertainty. Both approaches improve estimation performance
but at the expense of higher system complexity [10, 11]. More
recently, [12] introduced a fuzzy integral terminal sliding-mode
observer (FITSMO) for PMSM sensorless control. This method
achieves finite-time convergence of estimation error and adap-
tively adjusts sliding-mode gains using fuzzy logic, leading to
improved robustness and position accuracy under varying oper-
ating conditions. However, the approach requires careful tuning
of fuzzy membership functions and control parameters, and the
combined fuzzy–sliding mode structure increases computational
complexity. A fast super twisting algorithm-based sliding mode
improvedMRAS observer (FSTA-SM-IMRASO) by [13], enhances
conventional MRAS by adding a feedback correction term and
adaptive gain to improve error convergence. A fast super twisting
algorithm with an exponential term replaces the PI controller,
achieving faster convergence and improved robustness under
parameter variations and disturbances. However, it still suffers
from residual chattering, requires careful tuning of sliding-
mode and adaptive feedback parameters, and has a complex
structure.

Artificial neural networks (ANNs) have been introduced in
sensorless control to replace the conventional PI controller in
MRAS schemes, offering improved adaptability and robustness
against parameter variations. [14] Introduced an ANN-based
sensorless direct torque control (DTC) scheme, demonstrating
improved dynamic torque response and reliable sensorless opera-
tion. However, the approach increases computational complexity
and requires careful network training.

Predictive control controllers (MPCs) for sensorless applications
have attracted a lot of attention recently, and they are divided into
two categories: classical MPCs, where the controller generates a
continuous output that is applied to the system via a modulator,
and finite control set-model predictive controllers (FCS-MPCs),
where the controller selects the optimal control action from a
finite table of potential output states [15]. Due to its ease of
use and ability to incorporate any performance specifications,
FCS-MPC has been used in a wide range of applications [16]. A
sensorless induction machine control system with a predictive
current controller was suggested in [17], and it strengthens the
robustness against changes in motor parameters. In [18], speed
and current predictive controllers for a sensorless PMSM drive
system were presented, achieving fast transient responses and
good tracking performance. An FSC-MPC was used in [19] to
drive an IM fed by a matrix converter in order to increase system
efficiency, and in [20] a proposed control scheme based on pre-
dictive deadbeat algorithm showed an excellent performance for
a sensorless vector-controlled PMSG, and satisfactory robustness
against changes in parameters.

Unlike the abovementioned MPCs, [21] introduced a FS-MPC-
based position estimator for IM where the prediction principle
was applied on the design of the position estimator rather than to
the current or speed control of the drive. A rotor position search
algorithm was used to obtain the optimal position corresponding
to minimum cost function at each sampling time, eliminating the
need for PI controller.

In this paper, a FCS-MPC-based speed estimator is introduced.
In this scheme, the adaptation mechanism is based on solving
an optimization problem with the aim of minimizing, the speed
tuning error signal of the estimator over a finite number of
potential rotor speeds. A rotor speed search algorithm is used
to ensure that the optimal speed is obtained at each sampling
time. The algorithm in this method differs from the one pro-
posed in [21], which searches for the optimum position. In
contrast, the speed search-based method can be implemented
into MRAS methods, where the adaptive model is a function
of both speed and position. However, in the position search-
based method, the adaptive model must be solely a function
of position to ensure compatibility. Unlike advanced methods
such as FSTA-SM-IMRASO, the proposedFCS-MPC-basedMRAS
offers a simpler design, as it does not rely on manually tuned
gains. The control action is obtained directly by minimizing a
cost function, eliminating gain tuning, reducing implementation
effort, and improving robustness across varying operating condi-
tions. Its execution time is sufficiently low for implementation
on low-cost controllers, providing a favourable trade-off between
performance, robustness, and computational efficiency The per-
formance of the speed search-based estimator was implemented
and evaluated against the proposed PWM-based estimator (PI-
based flux MRAS). Results show the superior performance of the
predictive method particularly during transient period.

2 Machine Model

The voltage equations of a PMSM can be represented in the
estimated rotating dq-reference frame as:

𝐿𝑑
d𝑖𝑑
d𝑡

= 𝑣𝑑 − 𝑅𝑖𝑑 + 𝑤̂
(
𝜓̂𝑚𝑞 + 𝐿𝑞𝑖𝑞

)
(1)

𝐿𝑞
d𝑖𝑞

d𝑡
= 𝑣𝑞 − 𝑅𝑖𝑞 − 𝑤̂

(
𝜓̂𝑚𝑑 + 𝐿𝑑𝑖𝑑

)
(2)

where 𝑣𝑑, 𝑣𝑞, 𝑖𝑑, 𝑖𝑞 are estimated dq-axis voltages and currents,
respectively; 𝐿𝑑, 𝐿𝑞, 𝑅 are the dq-axis inductances as well as the
stator resistance, 𝑤̂ is the estimated rotor speed, 𝜓̂𝑚𝑞 is the flux
on estimated q-axis. and 𝜓̂𝑚𝑑 is the rotor PM flux linkage on the
estimated 𝑑-axis.

3 PWM-Based Speed Estimator

Considering the standard space-vector PWM switching period
in a voltage-source inverter, four voltage vectors are applied in
sequence, including two active and two zero vectors. The time
instants when these are applied can be indicated as 𝑡1 ⋯ 𝑡8, for
example, 𝑡1 and 𝑡8 are the time instants at which the zero vectors
𝑉0 and 𝑉7 are applied respectively. By discretizing Equation (1)
with a sampling time 𝑇s, the resultant relationships between two
adjacent sampling points, are given as:

𝑣𝑑(𝑡1∼(𝑡1+𝑇𝑠)) = 𝑅𝑖𝑑(𝑡1∼(𝑡1+𝑇𝑠)) + 𝐿𝑑
d

d𝑡
𝑖𝑑(𝑡1∼(𝑡1+𝑇𝑠)) − 𝑤̂𝐿𝑞𝑖𝑞(𝑡1∼(𝑡1+𝑇𝑠))

− 𝑤̂𝜓̂𝑚𝑞 (3)
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⋮

𝑣𝑑((𝑡1+(𝑛−2)𝑇𝑠)∼𝑡8) = 𝑅𝑖𝑑((𝑡1+(𝑛−2)𝑇𝑠)∼𝑡8) + 𝐿𝑑
𝑑

𝑑𝑡
𝑖𝑑(𝑡1+(𝑛−2)𝑇𝑠)∼𝑡8)

− 𝑤̂𝐿𝑞𝑖𝑞((𝑡1+(𝑛−2)𝑇𝑠)∼𝑡8) − 𝑤̂𝜓̂𝑚𝑞 (4)

Where 𝑡1 is the beginning of the PWM period, n is the integer
number of sampling points in one switching period, 𝑡8 = 𝑡1 +
(𝑛 − 1)𝑇s.

The derivative term can be obtained as:

d

d𝑡
𝑖𝑑 =

(
𝑖𝑑(𝑡1+(𝑘+1)𝑇𝑠) − 𝑖𝑑(𝑡1+𝑘𝑇𝑠)

)
∕𝑇s (5)

By assuming that 𝑤̂ is constant during one switching period, and
multiplying the 𝑛 − 1 equations by 𝑇s and adding each equation
to the next, it yields:

𝑇s

𝑛−1∑
1

𝑣𝑑(𝑗) = 𝑇s𝑅
𝑛−1∑
1

𝑖𝑑(𝑗) − 𝑡s𝑤̂𝜓̂𝑚𝑞 − 𝑤̂𝑇s𝐿𝑞
𝑛−1∑
1

𝑖𝑞(𝑗)

+ 𝐿𝑑
𝑛−1∑
1

(
𝑖𝑑(𝑘+1) − 𝑖𝑑(𝑘)

)
(6)

Where 𝑡sw = 1∕𝑓sw , 𝑓sw is the switching frequency, 𝑗 is the 𝑗th
equation and 𝑘 = 0, 1. . .𝑛 − 2.

According to [22], 𝑇s
∑𝑛−1
1
𝑣𝑑(𝑗) is equal to the average PWM

output voltage:

(𝑡3 − 𝑡2) 𝑣𝑑(𝑡3−𝑡2) + (𝑡4 − 𝑡3) 𝑣𝑑(𝑡4−𝑡3) + (𝑡6 − 𝑡5) 𝑣𝑑(𝑡6−𝑡5)

+ (𝑡7 − 𝑡6) 𝑣𝑑(𝑡7−𝑡6) = 𝑇s
𝑛−1∑
1

𝑣𝑑(𝑗) (7)

Where 𝑣𝑑(𝑡3−𝑡2), 𝑣𝑑(𝑡4−𝑡3), 𝑣𝑑(𝑡6−𝑡5) and 𝑣𝑑(𝑡7−𝑡6) are the switching
vectors on the estimated d-reference frame.

As the switching period consists of two symmetrical switching
combinations, it can be proven that:

(𝑡3 − 𝑡2) 𝑣𝑑(𝑡3−𝑡2) = (𝑡7 − 𝑡6) 𝑣𝑑(𝑡7−𝑡6) (8)

(𝑡4 − 𝑡3) 𝑣𝑑(𝑡4−𝑡3) = (𝑡6 − 𝑡5) 𝑣𝑑(𝑡6−𝑡5) (9)

Therefore, Equation (7) now becomes:

2 [(𝑡3 − 𝑡2) ∗ 𝑣𝑑(𝑡3−𝑡2) + (𝑡4 − 𝑡3) ∗ 𝑣𝑑(𝑡4−𝑡3)] = 𝑇s
𝑛−1∑
1

𝑣𝑑(𝑗) (10)

Substitute Equation (10) into Equation (6) and rearrange to
calculate 𝜓̂𝑚𝑞 for vector controlled PMSM drive (𝑖𝑑 = 0)

𝜓̂𝑚𝑞 =
𝑓sw
𝑤̂

[
− 2 ((𝑡3 − 𝑡2) ∗ 𝑣𝑑(𝑡3−𝑡2) + (𝑡4 − 𝑡3) ∗ 𝑣𝑑(𝑡4−𝑡3))

− ŵ𝑇s𝐿𝑞
𝑛−1∑
1

î𝑞(𝑗)

]
(11)

The switching vectors 𝑣𝑑(𝑡3−𝑡2), 𝑣𝑑(𝑡4−𝑡3) and the time differences
(𝑡3 − 𝑡2) and (𝑡4 − 𝑡3) are calculated at the beginning of the PWM

FIGURE 1 Block diagram of the PI-based MRAS estimator.

FIGURE 2 Flowchart of the rotor speed search algorithm.

period based on the location of the rotating voltage reference
vector on the space vector diagram. Therefore, the voltage
reference on 𝛼𝛽 frame (𝑣∗𝛼 , 𝑣∗𝛽) should take the form of a rotating
space vector.

The actual flux is 𝜓𝑚 on the real d-axis and 0 on the real q-axis,
and the magnitude of the cross product of the flux components,
ε, is fed into a PI controller to estimate the speed, which is then
integrated to obtain the estimated position as shown in Figure 1.

𝜀 = 𝜓𝑚𝑑 .𝜓̂𝑚𝑞 − 𝜓𝑚𝑞 .𝜓̂𝑚𝑑 = 𝜓𝑚.𝜓̂𝑚𝑞 (12)

4 Predictive MRAS Estimator

The predictive rotor speed estimator is based on the FCS-MPC
concept for designing the adaptation mechanism. The flowchart
of the algorithm is illustrated in Figure 2, while the block diagram
of the predictive estimator is depicted in Figure 3. The traditional
MRAS minimizes the rotor flux error by utilizing a PI controller,

The Journal of Engineering, 2025 3 of 11
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FIGURE 3 Block diagram of the predictive estimator.

whose output is the estimated speed 𝜔̂. Similarly, in the proposed
FCS-MPC-MRAS method, the estimated speed is the output of
a minimization problem, which consists of minimizing a cost
function proportional to the rotor flux error, by selecting the
estimated speed from a finite set of options that is iteratively
narrowed down until convergence is reached.

Since the rotor speed is a continuous signal, it is necessary to
discretize it into a finite number of potential speeds to allow the
evaluation of the cost function in a discrete number of steps as
required by the finite control setMPCmethodology. An algorithm
is employed to discretize the rotor speed and calculate the cost
function for each of these discrete speeds. The algorithm initiates
by calculating the initial cost function at the starting speed (𝑤𝑏,0 =
0 rad∕s). The discretization of the speed begins by starting from
the initial speed and then displacing this speed by a displacement
(Δ𝑤𝑖) which is calculated as follows:

Δ𝑤𝑖 = 236 ⋅ 2−𝑖 (13)

where 𝑖 is the order of the iteration and 236 is chosen because the
rated speed of the tested machine is approximately 944 rad/s in
electrical. The displacement of the base speed (𝑤b) is iterated to
produce nine discrete rotor speeds as follows:

𝑤𝑖,𝑗 = 𝑤b + Δ𝑤𝑖. (𝑗 − 4) (14)

where 𝑗 is the order of the displacement = 0⋯8

In the initial iteration (𝑖 = 0), Δ𝑤𝑖 = 236. Applying Equation (14)
will produce nine discrete speeds in electrical rad/s: 944, 708, 472,
236, 0, −236, −472, −708, and −944. Each of these discrete speeds
is used to calculate the fluxes on estimated q-axis, 𝜓̂𝑚𝑞 in Equation
(11), corresponding to each individual speed. Consequently, the
cost function, 𝜀𝑖,𝑗 in Equation (12), is calculated for each speed.
The speed corresponding to the minimum cost function of the
nine speeds is chosen as the base speed for the next iteration.

At the next iteration (𝑖 = 1), the speed displacement is decreased
to Δ𝑤𝑖 = 236 ⋅ 2−1 = 118, which increases the search accuracy by
a factor of 2. The search starts again from the new base speed𝑤𝑏,1
to find the speed that generates theminimum cost function in the
second iteration. After each iteration, the search algorithm gets
closer to the optimal speed, and by the end of the tenth iteration
(Δ𝑤8 = 0.46) the optimal speed can be found with 0.46 accuracy.
Finally, the position is estimated by integrating the speed.

TABLE 1 Machine parameters.

Quantity Unit Value

Pole-pairs — 3
Rated power kW 2.1
Stator resistance ohm 2.19
Rated current A 4.2
Base speed rpm 3000
Rated torque Nm 6.7
Torque constant Nm/A 1.6
PM flux linkage V/Hz 0.356
d-axis inductance mH 12.5
q-axis inductance mH 15
Inertia Kg m2 0.00077

As the rotor speed does not change significantly between
two-time samples, the search algorithm can be initialized by
the output of the algorithm at the end of the last sampling
instant (previous output speed) without affecting the estimation
accuracy. This considerably reduces the execution time of the
algorithm from 8 to 3 µs on the Speedgoat controller (1.99 GHz
clock). Meanwhile, the TMS320F28335 microcontroller (150 MHz
clock), which is a low-cost option, executes the algorithm in
roughly 39 µs, compared to roughly 15 µs required for the classical
method. To minimize execution time, sine and cosine functions
in the reference frame transformations are replaced with a one-
period look-up table, which executes much faster than standard
high-level function calls.

A fixed gain PI controller may be unable to maintain optimal
performance under all different operating conditions. At low
speeds the PI gains need to be tuned to small values to prevent
significant oscillations in the estimated speed. However, for the
system to operate smoothly and satisfactorily during transient
operation conditions, when a sudden change occurs in load
or speed, the PI bandwidth and gains need to be increased.
Therefore, an adaptive PI controller may be required for a
satisfactory performance, however, this is a difficult process that
requires trial and error. The effect of the PI controller gains
on the estimated speed was experimentally tested in [23]. The
results showed that by using high PI gains, the estimated speed
oscillation increase, but implementing high gains improved the
dynamic performance and had a faster response compared to the
response when low PI gains were applied. Unlike PI-basedMRAS
methods the predictive method does not need any gain tuning,
which makes it simpler and guarantees optimum performance.

5 Simulation Results

The predictive method was tested for various conditions by using
MATLAB/Simulink. It was assumed that neither the inverter
nonlinearity nor the dead time effectswere considered. Themotor
parameters are shown inTable 1. In Figure 4, themachine is tested
at low speeds under 20% of rated torque. The reference speed
initially set to 5 rad/s and then set to −5 rad/s at 0.5 s and then set
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FIGURE 4 Predictive method at low speeds, (a) speed, (b) position
error.

FIGURE 5 Performance at rated torque (a) speed, (b) position error.

FIGURE 6 Effect of q-inductance change for the predictivemethod,
(a) speed error, (b) corresponding position error.

FIGURE 7 Experimental setup.

back to 5 rad/s as shown in Figure 4a, whichmeans that themotor
is properly working in both motoring mode and regenerative
mode. From Figure 4b, it can be seen that the position accuracy is
not affected even at low speeds Figure 5 shows the performance
at rated torque. In Figure 5a, the reference speed is established at
40 rad/s, and the torque is initially set to zero, and then the rated
torque is applied at 1 s. It can be noticed that when the torque is
applied the estimated speed takes about 0.3s to track the reference
speed. Also, the angle error during the transient period does not
exceed 0.05 rad as depicted in Figure 5b.

To assess the robustness against variations in motor parameters,
the q-inductance was changed by 20% at 0.3 s and then by 40%

The Journal of Engineering, 2025 5 of 11
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FIGURE 8 Predictive method performance for sensorless mode, (a)
speed response, (b) estimated and measured positions, (b) position error,
(d) phase currents, (e) d–q currents.

FIGURE 9 Conventionalmethod performance for sensorlessmode,
(a) speed response, (b) estimated and measured positions, (b) position
error, (d) phase currents, (e) d–q currents.

6 of 11 The Journal of Engineering, 2025
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FIGURE 10 Reverse speed performance for sensorless mode of the
predictive method at no load, (a) speed response, (b) measured and
estimated positions, (c) position error.

as shown in Figure 6. It is clear that both position and speed
accuracy remain unaffected by the inductance variation as shown
in Figure 6a,b respectively.

6 Experimental Setup

The experimental platform (Figure 7) consists of two identical
2.1 kW PMSMs, each with moderate saliency (saliency ratio 1.2).
The motor parameters are presented in Table 1. One is connected
to a three-phase two-level inverter (Semikron IGBTmodule stack)
and controlled by a Speedgoat real-time controller. The second
drive unit is controlled by a Nidec Unidrive 700 M drive. The
two motors can be used in both speed control or torque control
modes. A 4096 counts/rev quadrature encoder is used to measure

FIGURE 11 Reverse speed performance for sensorless mode of the
conventional method at no load, (a) speed response, (b) measured and
estimated positions, (c) position error.

the rotor position, and two current sensors (TA189) are used
for current measurements. The inverter switching frequency is
3.125 kHz with a dead time of 0.5 µs, and the control strategy FOC
is implemented with a sampling time of 80 µs. The PI controller
gains of the conventionalMRAS are set toKi> = 200 andKi = 1000
by using the trial-and-error method.

7 Experimental Results

The performance of the proposed estimator is experimentally
tested in sensorless mode and compared with the conventional
MRAS scheme. In position-sensorless mode of operation, the
FOC scheme is driven by the estimated speed. The sensorless
performance of the predictive observer shows oscillations in the

The Journal of Engineering, 2025 7 of 11
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FIGURE 12 The predictive method with regenerative mode, (a)
speed, (b) positions, (c) position error, (d) phase currents (e) d–q currents.

FIGURE 13 The conventional method with regenerative mode, (a)
speed, (b) positions, (c) position error, (d) Phase currents (e) d–q currents.
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TABLE 2 Quantitative performance of the two methods.

Metric Operating point PI-based MRAS FCS-MPC

Peak position error 30 to 70 rad/s step 0.7 rad 0.2 rad
Crossing zero speed 1.7 rad 0.3 rad

Load step from 30% to 0% of rated load 0.5 rad 0.12 rad
Speed ripples 30 rad/s 3.5% 0.5%

70 rad/s 1.4% 0.2%
50 rad/s at 15% of rated load 0.5% 1%

Settling time 30 to 70 rad/s step 0.9s 0.45s
Step from 30% to 0% of rated load 1.2s 1s

Overshooting 30 to 70 rad/s step 10% 2%
Step from 0% to 15% of rated load 14% 11%

THD 30 to 70 rad/s step 9.6% 5.7%
Execution time TI C2000 (150 MHz) 15 µs 39 µs

estimated speed, especially at low speeds. Interestingly, an LPF
with a 2 Hz cut-off frequency is tested with the predictive method
and successfully reduces the estimated speed oscillations without
affecting the running drive even when a disturbance is applied
(e.g. speed change). Therefore, an adaptive low-pass filter can be
used to reduce the cut-off frequency gradually to the minimum
in the steady state for higher filtering quality and set it to 10 Hz
for a faster dynamic response during transient operation. It is
worth noting that both estimators are combined with open-loop
or signal injection methods to switch to sensorless at sufficiently
high speeds.

Figures 8 and 9 show the performance of the two methods in
sensorless mode at 2 s when the reference speed is changed from
30 to 70 rad/s at no load. In Figures 8a and 9a, it is evident that
the predictive estimator provides a more accurate estimation of
speed, especially at lower speeds. Moreover, Figures 8b,c and 9b,c
show that the angle error during the transient period is lower
for the predictive method, at nearly 0.21 rad, compared to about
−0.7 rad for the classical method. This can be noticed from
the currents produced by the two methods during the transient
period which are higher in the classical method compared to the
predictive method as shown in Figures 8d,e and 9d,e.

Figures 10 and 11 show the two methods’ performance for
sensorless operation at 5 s when the reference speed crosses zero,
representing the reverse speed response from positive to negative
speed at no load. In Figure 10a, it is shown that the drive can
cross zero speed with a smoother response during the transient
period compared to the conventionalmethod. In the conventional
method, a speed rate limiter is needed for a smooth transient
response, as seen in Figure 11a. The position error produced by the
predictive method during the transient period is about −0.3 rad
compared to about −1.8 rad with the conventional method, as
shown in Figures 10b,c and 11b,c, respectively.

Figures 12 and 13 show the classical and predictive performance in
the regenerativemode for sensorless operation at 5 s. At the speed
reference of 50 rad/s, 15% of the rated load is applied initially,
followed by an increase to 30% of the rated torque, and finally a

fall to 15% as shown in Figures 12a and 13a. It is shown that the
speed oscillation slightly increases, and the position error does as
well for both methods. During the transient period, the position
error increases significantly in the conventionalmethodwhen the
load changes, while in the predictive scheme, the error increases
only slightly, as shown in Figures 12b,c and 13b,c. This is clearly
demonstrated in Figures 12d,e and 13d,e, which show that the
current is almost unaffected during the transient period in the
predictive method, while it increases significantly in the classical
method.

Table 2 presents a comparative experimental analysis between the
classical flux-based MRAS and the proposed PWM-based MRAS
under identical test conditions. It achieves lower peak position
error during transients, reduced speed ripple, faster settling times,
and significantly smaller overshoot values. For example, during
a speed step from 30 to 70 rad/s, the position error decreases
from 0.7 to 0.2 rad, the overshoot from 10% to 2%, and the
THD from 9.6% to 5.7%. The only case where PI-based MRAS
shows an advantage is at light-load operation (50 rad/s, 15% load),
where it achieves slightly lower speed ripple. Overall, FCS-MPC
demonstrates better dynamic performance.

8 Conclusion

In this paper, a predictive speed estimator is implemented for the
proposed PWM-based estimator. The estimator is based on the
FCS-MPC principle to minimize the speed tuning error signal of
the MRAS scheme and eliminate the PI controller in the speed
estimator. The experimental results show that the speed oscilla-
tion at low speeds can be significantly reducedwith the predictive
estimator by using an LPF with a very low cut-off frequency
without affecting the system performance, in comparison with
the classical MRAS. In addition, during the transient period, the
predictive scheme demonstrates a significantly lower position
error during fast load transients compared to the conventional
PI-based MRAS scheme. The proposed estimator operates over
an adjustable speed range from below 5 rad/s, since no integrator
is used in the voltage model of MRAS, up to ±944 rad/s electrical
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(rated speed). However, because the command voltages generated
by the controller are used instead of the measured voltages,
inverter nonlinearity and dead-time effects are not considered.
At very low speeds, these effects become more pronounced,
leading to noticeable speed oscillations. Therefore, compensation
strategies for inverter nonlinearity and dead-time effects should
be investigated in future work to improve accuracy in this
operating region.Moreover, according to [24], the PI-basedMRAS
estimator has demonstrated satisfactory performance for id ≠ 0,
confirming its ability to operate in the flux-weakening region.
Notably, [24] employed the same motor as in this paper, a
surface-mounted permanent magnet (SPM) synchronous motor
with moderate saliency. Accordingly, it is recommended that the
predictive method presented in this paper also be extensively
tested on PMSMs under flux-weakening conditions to further
validate its robustness.
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