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A B S T R A C T

Introduction: Left atrial (LA) dilatation predicts several cardiovascular disorders. Identifying LA dilatation on computed tomography pulmonary angiography (CTPA) 
could aid diagnosis of cardiovascular disease. This study assessed an artificial intelligence (AI) segmentation model’s performance at detecting LA dilatation on CTPA.
Methods: Patients with suspected pulmonary hypertension (PH) who underwent CTPA and cardiac MRI (CMR) were retrospectively identified from a single centre 
registry. The LA was segmented by an AI tool for CTPA and a validated AI tool for CMR. LA volume measurements were categorised for LA dilatation based on 
existing threshold values. The expert radiologist’s reports of the CTPA studies were also categorised for LA dilatation. Automated CTPA LA volumes and corre
sponding radiologist reports were compared against the reference standard of CMR.
Results: 451 patients were included (mean age 64 ± 13 years, 62.5 % female, 85.8 % white). Automated LA volume measurements on CTPA showed strong positive 
correlation with those on CMR (ρ = 0.92, p < 0.001) with minimal bias on Bland-Altman analysis (-4 mL, 95 %CI − 39 to +31 mL). Automated LA measurements on 
CTPA showed higher agreement with those on CMR (κ = 0.80) than the radiologist reports (κ = 0.62). Automated LA measurements on CTPA showed higher accuracy 
metrics (sensitivity 81.0 %, specificity 96.8 %, positive predictive value (PPV) 88.5 %, negative predictive value (NPV) 94.4 %) than the radiologist reports 
(sensitivity 66.7 %, specificity 93.1 %, PPV 74.5 %, NPV 90.2 %).
Conclusion: Deep learning increases the accuracy of LA volume measurements on non-ECG gated CTPA, improving radiologist performance in detecting LA dilatation.

1. Introduction

Although CMR is considered the gold standard for non-invasive 
assessment of cardiac chamber volumes, [1] there is growing interest 
in the ability to measure chamber volumes on computed tomography 
(CT) images. Not only is CT more widely available than CMR, but it is 
also faster to acquire and often better tolerated by patients. CMR pro
vides excellent soft tissue contrast, but CT provides superior spatial 
resolution, potentially enabling more precise volumetric measurements. 
However, a limitation for accurate volumetry in many thoracic CT 
studies is the lack of ECG-gating. Thoracoabdominal CT studies are 
performed for a variety of indications and almost always capture at least 
part of the heart, offering opportunities for opportunistic screening of 
cardiac disease. CTPA is one of the most common cross-sectional im
aging studies, captures the whole heart within its field of view, and 

includes contrast within the cardiac chambers. Dilatation of the LA on 
imaging is a recognised predictor for several cardiovascular diseases, 
including atrial fibrillation, systemic embolism and cardiac failure.[2,3]
Accurate quantification of LA chamber volume on CTPA could enable 
opportunistic disease feature finding for LA dilatation, prompting 
further investigation for subclinical cardiovascular disease or the initi
ation of risk-modifying interventions such as prophylactic 
anticoagulation.

Measuring the volume of a cardiac chamber on CMR, CTPA and other 
imaging requires segmentation: the delineation of the chamber’s 
anatomical boundaries on the images. Traditionally, segmentation has 
been performed manually by cardiac imaging experts, a task that is 
laborious, repetitive and prone to both intra- and interobserver vari
ability. Even for experts, accurate assessment and delineation of the LA 
and other cardiac chambers can be challenging. Chamber morphology 
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and volume vary during the cardiac cycle and are influenced by a 
plethora of physiological and pathological factors. Cardiac motion can 
cause artefact and limit spatial resolution, and is a particular challenge 
in patients with arrhythmia. The techniques for quantifying LA volume 
differ between imaging modalities and observers, with no universally 
accepted threshold value to define dilatation.

In recent years, there has been a marked rise in the number of AI- 
based tools for the automated segmentation of cardiac structures on 
CMR,[4,5] which have aimed to improve the efficiency and reliability of 
evaluating chamber volumes and other features on CMR.[6,7] Few 
studies have attempted automated segmentation on non-ECG-gated CT 
studies such as CTPA. [6]

We have previously reported the development of a deep learning 
model for automated segmentation of the heart and great vessels on 
CTPA. [8] This study aimed to assess the performance of this CTPA AI 
segmentation model for automated segmentation and volume mea
surement of the LA on CTPA.

2. Methods

This retrospective study was approved by a local ethics committee 
and institutional review board (c06/Q2308/8). The need for dedicated 
patient consent was waived. The study flow is indicated in Figs. 1 and 2.

2.1. Patient selection

Consecutive patients referred with newly suspected PH were retro
spectively identified from the “Assessing the Spectrum of Pulmonary 
hypertension Identified at a REferral centre” (ASPIRE) registry. [9] This 
is a database of patients evaluated for suspected pulmonary vascular 
disease at Sheffield Teaching Hospitals NHS Foundation Trust. Adult 
patients (aged ≥ 18 years) were eligible for inclusion if they had un
dergone both non-ECG-gated CTPA and CMR on the same day between 
2011 and 2019. Patients were excluded if they did not undergo both 
CTPA and right heart catheterisation (RHC) within 48 h as this would 
suggest that they had known chronic PH. Pseudo-anonymised de
mographic information, CTPA and CMR images with corresponding 
radiologist reports, and final clinical diagnosis were retrieved from the 
registry for each eligible patient. Protocols for CTPA and CMR image 
acquisition are provided in the Supplementary Materials.

2.2. Image analysis

The CTPA AI model performed automated segmentation of the LA on 
the CTPA images. Development and prior testing of the model have been 
reported previously [8] but are described here in brief. A deep con
volutional neural network architecture based on nn-UNet was trained to 
undertake segmentation of nine structures including the cardiac cham
bers, ventricular myocardium and pulmonary arteries and thoracic 
aorta. CTPA studies from 200 patients assessed for suspected PH in 
Sheffield were used for development (80/20/100 train
ing/validation/internal testing subsets) with CTPA studies from 20 pa
tients used for external testing. This external testing dataset was from 
hospitals across England and Wales. Manual contouring by consultant 
cardiac radiologists was used as the reference standard. The Dice simi
larity coefficients for segmentation of the LA were 0.91 (95 %CI 
0.90–0.92) and 0.87 (95 %CI 0.84–0.90) in the internal and external test 
sets for the final model. Failure analysis was performed for 1333 patients 
with pulmonary vascular disease, with failure of LA segmentation 
observed in only 0.6 % of cases. Automated segmentation of the LA on 
CTPA images by the AI model was performed using three-dimensional 
volumetric data, with direct calculation of LA volume. Please see Shar
key MJ et al. [8] for further details including failure analysis, compar
ison between automated and manual CTPA LA segmentation and a 
segmentation pipeline. No external validation cases have been included 
in the cohort for this study.

Automated segmentation of the LA on CMR images was performed 
by the software MASS (version 2020 EXP; Leiden University Medical 
Center, the Netherlands), which has been validated. [7] Automated 
segmentation was performed on two-chamber and four-chamber views. 
The biplanar method was used to determine maximal LA volume, with 
the atrial length and area from both the two-chamber and four-chamber 
views averaged and the LA volume calculated using the following for
mula: 0.85 x averaged atrial area / averaged atrial length. [10]

The LA appendage was excluded from segmentation on both CTPA 
and CMR. Patients for which CTPA or CMR segmentation failed (e.g. in 
due to poor contrast opacification or excessive artefact) were excluded 
post hoc. [8]

2.3. Radiological reportshttp

All CTPA studies had been reported as part of routine clinical prac
tice by specialist cardiothoracic radiologists with at least 10 years 
experience. The reports were retrospectively reviewed by two radiology 
residents (LT and AL) and categorised as either normal LA volume or LA 
dilatation. In cases where LA dilatation was not explicitly reported, 
normal LA size was assumed. The information extracted from the reports 
would likely be based on a visual assessment, possibly with the aid of 
diameter or area measurement. This reporting process was not stan
dardized and reflected routine clinical practice.Fig. 1. Study flow diagram.
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2.4. Statistical analysis

The LA volumes derived from automated LA segmentation on CTPA 
were compared to the reference standard of LA volumes derived from 
automated LA segmentation on CMR. Firstly, the automated quantita
tive measurements were compared directly using intra-class correlation 
coefficient and Bland-Altman analysis. Secondly, the volumes were 
categorised as either normal or consistent with LA dilatation; this was 
performed using threshold values of > 100 mL in females and > 112 mL 
in males based on a previous meta-analysis. [10] The agreement of these 
categorised outcomes was then assessed using Cohen’s kappa statistic 
(κ) which was interpreted according to previously reported thresholds: 
0.00–0.20 none, 0.21–0.39 minimal, 0.40–0.59 weak, 0.60–0.79 mod
erate, 0.80–0.90 strong, > 0.90 almost perfect. [11]

Additionally, the diagnostic accuracy for detection of LA dilatation of 
the automated CTPA segmentation and that of the CTPA clinical reports 
were each assessed using contingency tables with CMR as the reference 
standard. The conventional metrics of sensitivity, specificity, PPV, NPV 
and area under the curve (AUC) were derived.

Statistical analysis was performed using R version 4.2.2. The 

significance threshold was set at p = 0.05.

3. Results

3.1. Characteristics of included patients

451 consecutive patients were included (mean age 64 ± 13 years, 
62.5 % female, 85.8 % white). The demographics and clinical charac
teristics are presented in Tables 1 and 2. LA dilatation was identified by 

Fig. 2. CT with segmentation. Example case: CTPA LA volume reported as normal by radiologist. CTPA AI LA volume: 125 mL. CMR AI LA volume: 106 mL. RHC 
wedge pressure: 29 mmHg.

Table 1 
na.

Demographics

Age, years ± SD 64 ± 13
Female, % (n) 62.5 (282/451)
Ethnicity % (n) ​
White 85.8 (399/451)
Asian 4.4 (20/451)
Black 2.0 (9/451)
Any other ethnic group 1.1 (5/451)
Not documented 4.0 (18/451)
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the reference standard of automated LA segmentation on CMR in 23.2 % 
of cases.

3.2. Performance of automated left atrial segmentation on CTPA

The failure rate for LA segmentation on CTPA was 0.6 %. Failures 
were predominantly associated with low or no contrast in the chamber. 
Other causes included pericardial effusions and chamber dilatation. [9]

3.3. Comparison of LA volume measurements derived from automated 
segmentation on CTPA and CMR

Automated segmentation yielded mean LA volumes of 82 ± 42 mL 
on CTPA and 86 ± 46 mL on CMR. The LA volumes on CTPA demon
strated a strong and statistically significant positive correlation (ρ =
0.92, p < 0.001) with those on CMR (Fig. 3). Bland-Altman analysis 
indicated a mean difference of only − 4 mL (95 %CI − 39 to +31 mL) 
between LA volumes on CTPA and CMR (Fig. 4).

Strong agreement was identified between the categorised LA vol
umes derived automatically from CTPA and CMR (κ = 0.80, 95 % CI=
0.73–0.86, p < 0.001). Moderate agreement was found between the 
categorised radiologist CTPA reports and categorised LA volumes 
derived automatically from CMR (κ = 0.62, 95 % CI= 0.53–0.7, 
p < 0.001).

3.4. Comparison of categorised LA volumes derived from automated 
segmentation on CTPA and CMR

Diagnostic accuracy metrics for automated detection of LA dilatation 
was as follows: sensitivity 81.0 % (95 % CI: 72.1–88.0 %), specificity 
96.8 % (95 % CI: 94.4–98.4 %), PPV 88.5 % (95 % CI: 80.4–94.1 %), 
NPV 94.4 % (95 % CI: 91.4–96.5 %) (Table 3).

3.5. Comparison of categorised CTPA reports and categorised LA volumes 
derived from automated segmentation on CMR

In comparison the sensitivity for expert reader detection of LA dila
tation was 66.7 % (95 % CI: 56.8–75.6 %) and specificity 93.1 % (95 % 
CI: 89.9–95.5 %). PPV: 74.5 % (95 % CI: 64.4–82.9 %). NPV: 90.2 % 
(95 % CI: 86.6–93.1 %) (Table 4).

3.6. ROC analysis

The ROC curve for the LA volumes derived by automated segmen
tation on CTPA is shown in Fig. 5. The AUC for the automated seg
mentation was 0.975 (95 % CI: 0.963–0.987, p < 0.001). The sensitivity 
and specificity of the categorised CTPA reports was plotted as a single 
point for comparison as there was no equivalent continuous variable.

4. Discussion

This study assessed the performance of a deep learning model for 
automated LA segmentation, volume quantification and detection of 
dilatation on CTPA. Patients who underwent both CTPA and CMR on the 
same day were retrospectively identified from the ASPIRE registry. The 

Table 2 
na.

Diagnoses % (n)

Pulmonary arterial hypertension 19.5 (88/451)
Left heart disease 18.1 (82/451)
Lung disease 15.7 (71/451)
Chronic thromboembolic disease 31.5 (142/451)
Unclear / multifactorial 2.0 (9/451)
Not pulmonary hypertension 13.1 (59/451)

Fig. 3. Shows a scatterplot of CT LA volume against CMR LA volume measures.

Fig. 4. Bland Altman plot of LA volumes derived from CTPA against CMR.

Table 3 
Diagnostic accuracy, sensitivity, specificity, PPV and NPV for CT AI prediction of 
LA dilatation.

CMR dilated CMR non-dilated

CTPA AI dilated 85 11 PPV: 88.5 %
CTPA AI non-dilated 20 335 NPV: 94.4 %
​ Sensitivity: 81.0 % Specificity: 96.8 % ​

Table 4 
Diagnostic accuracy, sensitivity, specificity, PPV and NPV for Radiologist pre
diction of LA dilatation.

CMR dilated CMR non-dilated

CTPA reader dilated 70 24 PPV: 74.5 %
CTPA reader non- 

dilated
35 322 NPV: 

90.2 %
​ Sensitivity: 

66.7 %
Specificity: 
93.1 %

​
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LA was segmented automatically on CTPA by the deep learning model, 
and on CMR by previously validated software, yielding chamber vol
umes which were categorised for dilatation according to existing 
thresholds. There was a strong positive correlation between the auto
mated volume measurements on CTPA and CMR, with minimal bias on 
Bland-Altman analysis. When compared against those on CMR, the 
automated volume measurements on CTPA showed strong agreement by 
Cohen’s κ, greater than that of the categorised radiologist reports. Our 
study demonstrates the ability of a deep learning model for segmenta
tion of cardiac structures on CTPA to yield accurate measurements of LA 
volume that can be used to reliably determine the presence of LA dila
tation. More broadly, our study highlights the feasibility of AI-based 
tools to perform accurate segmentation and meaningful assessment of 
cardiac chambers on non-ECG-gated CT examinations - indicating a 
potential avenue of opportunistic screening for chamber dilatation.

The categorised LA volumes obtained from automated segmentation 
on CTPA yielded universally higher values across all diagnostic accuracy 
metrics (i.e. sensitivity, specificity, PPV and NPV) than the categorised 
radiologist reports when compared against the reference standard of 
CMR. ROC analysis showed a high AUC for automated segmentation. 
The results suggest that the CTPA AI segmentation model could 
outperform expert readers at the detection of LA dilatation, and use of 
the model in reporting might assist evaluation of the LA and possibly 
other cardiac chambers during routine CTPA reporting.

The patients included from the ASPIRE registry all underwent both 
CTPA and CMR within 48 h. This is a major strength of our study, as it 
minimises the risk of confounding physiological factors (such as hy
dration status) on chamber volume. As aforementioned, the threshold 
values used to classify chamber volumes as dilated or non-dilated can 
vary. We used threshold values from a published meta-analysis [10], 
improving the external validity of the study design. Threshold values 
can be changed as clinical guidance evolves, and implementing such 
changes is likely to be more straightforward and reliable in an auto
mated pipeline than for human reporters.

We recognise the limitations of our study. Patients were included 
from a single centre registry. All patients had been referred for evalua
tion of suspected PH and therefore had a higher prevalence of LA dila
tation compared to the general population. [12] However, this study 
primarily aimed to demonstrate the feasibility of a segmentation model 
for accurately quantifying LA volume and detecting LA dilatation on 

CTPA - further research will be required to determine whether the 
performance demonstrated generalises to the broader patient popula
tion, such as those patients undergoing CTPA for suspected acute pul
monary embolism. The increased prevalence of LA dilatation in our 
study cohort could potentially contribute to overestimation of the CTPA 
AI segmentation model’s performance, and again further testing in a 
more unselected patient cohort is important for verifying general
isability. Cases in which automated segmentation on either CTPA or 
CMR were excluded, although these were few in number and are un
likely to have had significant impact on the results. Automated seg
mentation of the LA on CMR by a validated AI-based tool was used to 
provide the reference standard. Although CMR is the gold standard 
investigation for non-invasive measurement of chamber volumes, there 
is no universally agreed technique for doing so; the biplane method is 
most common and has been used here. Lastly, the performance of the 
expert readers may have been underestimated due to the use of histor
ical reports rather than prospective blinded evaluation. In routine 
practice the expert readers would routinely evaluate the LA and 
comment if it was abnormal. We postulate a general radiologist would 
comment even less frequently.

The study findings support further evaluation of the CTPA AI seg
mentation model. Volume measurements and classification of dilatation 
could also be evaluated for the other cardiac chambers. Diagnostic ac
curacy metrics of the model outperformed those of the radiologist re
ports, and prospective evaluation of radiologist reporting with and 
without the model would help to determine potential benefits to clinical 
practice. The model could also be tested alongside other tools for cardiac 
segmentation on CT in a comparative study.

5. Conclusion

This study assessed the performance of an AI deep learning model for 
automated LA volumetry on CTPA. The model had good agreement with 
the current gold standard which is CMR. It yielded accurate LA volumes, 
and outperformed radiologist reports at the detection of LA dilatation. 
We have demonstrated the feasibility of using automated segmentation 
on non-ECG-gated CT studies to measure LA volume.
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