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ABSTRACT
Pedestrian crossing prediction, which involves anticipating whether a pedestrian will cross the street or not, is a crucial function
in autonomous driving systems. This is also a safety requirement for the interaction of highly automated vehicles and pedestrians.
The endeavours in this research domain heavily rely on processing videos captured by the frontal cameras of autonomous vehicles
using advanced computer vision techniques and deep learning methods. While recent studies focus on the model architecture for
crossing prediction by utilising pre-trained visual feature extractors, they often encounter challenges stemming from inaccurate
input features such as pedestrian body pose and/or scene semantic information. In this study, we aim to enhance pose estimation
and semantic segmentation algorithms by using synthetic data augmentation (SDA) and domain randomisation (DR) techniques.
SDA allows for automatic annotations through predefined agents and objects in a simulated urban environment. However, it
creates a domain gap between synthetic and real-world data. To tackle this, we introduce a DR technique to generate synthetic
data mimicking various weather and ambient illumination conditions. We evaluated two training strategies on six algorithms
for both pose estimation and semantic segmentation algorithms, and ultimately, we target four deep learning architectures
for crossing prediction, including convolutional, recurrent, graph, and transformer neural networks. The proposed technique
improves the extraction of pedestrian body pose and categorical semantic information, which in turn enhances the state-of-the-
art. This results in effective feature selection as the input for the PIP task, improving prediction accuracy by 3.2%, 4.2%, and 6.3% to
reach 87.6%, 92.2%, and 73.6% against the JAAD, PIE, and FU-PIP datasets, respectively. The study indicates that using a simulated
environment with structural randomised properties can enhance the resilience of the pedestrian crossing prediction to variations
in the input data.

1 Introduction

Pedestrian safety is a central concern in the development of
autonomous vehicles (AVs), particularly at road crossings where
close interaction between vehicles and pedestrians occurs. To
ensure safe navigation, AVs must not only detect pedestrians but
also anticipate whether they intend to cross the street. Accurate
prediction of pedestrian crossing behaviour allows AVs to adjust
speed and trajectory proactively, reducing abrupt manoeuvres,
improving passenger comfort, and minimising collision risk [1].

In recent years, pedestrian crossing prediction has become a key
research focus within intelligent transportation and computer
vision. State-of-the-art approaches leverage deep learning and
data-driven methods, building on datasets such as JAAD [2],
PIE [3], STIP [4], and FU-PIP [5]. Despite significant progress,
pedestrian crossing prediction remains a particularly difficult
task for several reasons. First, pedestrian behaviour is inher-
ently complex and influenced by multiple external and social
factors, including traffic signals, nearby vehicles, and interactions
with other pedestrians. Second, short observation windows,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.
© 2025 The Author(s). IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Intelligent Transport Systems, 2025; 19:e70104
https://doi.org/10.1049/itr2.70104

1 of 13

https://doi.org/10.1049/itr2.70104
https://orcid.org/0000-0003-0737-9204
https://orcid.org/0000-0003-3892-421X
mailto:m.rezaei@leeds.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/itr2.70104
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fitr2.70104&domain=pdf&date_stamp=2025-10-23


FIGURE 1 An overview of the pedestrian crossing prediction
framework. Both Stage one and two are trained separately.

occlusions, and variations in body posture or orientation make it
challenging to infer intention reliably. Third, annotated datasets
often lack sufficient diversity, limiting the ability of models to
generalise across diverse urban environments. Together, these
challenges make crossing prediction a complex task that requires
models to capture both visual patterns and contextual decision-
making cues.

Most crossing prediction models address these challenges
through a two-stage design. In the first stage, pretrained feature
extraction methods are applied to generate structured represen-
tations of visual input, such as pedestrian location, body pose,
and semantic context [5]. In the second stage, these extracted
features are passed to a predictive classifier, often a convolutional,
recurrent, or transformer-based network, that estimates the
likelihood of crossing [1, 6]. As illustrated in Figure 1, the feature
extraction stage is typically trained independently, often using
models pretrained on generic datasets such as COCO [7] for pose
or Cityscapes [8] for semantic segmentation. Once trained, these
extractors are used in a fixed (non-trainable) manner during the
training of the crossing predictor, which functions as a binary
classifier distinguishing between ‘crossing’ and ‘not crossing’.

A notable limitation of this approach is that errors in fea-
ture extraction–caused, for instance, by slight inaccuracies in
body pose estimation or scene segmentation—propagate into
the downstream classifier, directly degrading crossing prediction
accuracy. Yet, relatively little research has examined how improv-
ing the quality of feature extractors could enhance the robustness
of crossing intention prediction.

Synthetic data provides one potential avenue to improve feature
extraction by offering scalable, controllable, and automatically
annotated samples. However, its use in crossing prediction has
historically been limited due to several challenges. First, synthetic
datasets often exhibit a domain gap relative to real-world data:
differences in texture, illumination, and behavioural realism

reduce transferability. Second, while high-fidelity simulations
can generate photorealistic images, they are computationally
expensive and still fail to capture subtle behavioural cues such
as hesitation or gaze. Third, simulated pedestrians usually follow
deterministic or rule-based scripts rather than exhibiting rich,
context-dependent decision-making of real pedestrians. Conse-
quently, models trained directly on synthetic data often perform
poorly when deployed in real-world scenarios.

In this paper, we address these challenges by focusing on the
feature extraction stage of pedestrian crossing prediction and
proposing methods to improve its accuracy and resilience. We
generate synthetic pedestrian crossing scenarios in the Carla
simulator, enabling large-scale, automatically annotated data
creation. To mitigate the domain gap, we adopt domain ran-
domisation (DR)[9], systematically varying environmental factors
such as weather, lighting, and traffic infrastructure. Additionally,
we employ synthetic data augmentation (SDA)[10] to enrich
data variability. Together, these techniques enable more robust
training of body pose estimation (BPE) and object semantic seg-
mentation (OSS) algorithms, providing higher-quality inputs for
downstream crossing prediction models and thereby enhancing
overall prediction performance.

The main contributions of this study are as follows:

∙ Generating diverse synthetic pedestrian crossing scenarios
usingCarla to augment real-world datasetswith automatically
annotated agents and objects;

∙ Applying domain randomisation (DR) to systematically vary
environmental conditions (lighting, weather, traffic infras-
tructures), thereby bridging the domain gap between syn-
thetic and real data;

∙ Evaluating two training strategies, hybrid (synthetic + real)
and fine-tuned hybrid (synthetic pretraining followed by real
fine-tuning), across three BPE and three OSS algorithms;

∙ Assessing the downstream impact of enriched feature extrac-
tors on six state-of-the-art crossing prediction models across
the JAAD, PIE, and FU-PIP datasets.

The remainder of this paper is organised as follows. Section 2
provides a comprehensive background on pedestrian crossing
prediction studies, highlighting the feature extractors employed
in existing models. Section 3 details our proposed methodology
for synthetic data generation, incorporating randomised param-
eters to develop candidate feature extractors. Section 4 presents
the experimental results of applying enhanced feature extractors
to candidate models for pedestrian crossing prediction. Finally,
Section 5 concludes the paper with a summary of key findings
and implications.

2 Background

Understanding and predicting pedestrian behaviour is a long-
standing challenge in autonomous driving research, where data-
driven approaches have shown great promise [2, 3, 5]. We first
review recent crossing prediction methods based on computer
vision and machine learning, highlighting their strengths as well
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as their inherent challenges. We then turn to data enhancement
and domain adaptation techniques that have been developed to
address the constraints of purely data-driven models and the
limitations of existing real-world datasets.

2.1 Pedestrian Crossing Prediction

In recent years, there has been a significant increase in the
number of studies on pedestrian crossing prediction thanks to
deep neural networks (DNNs), which demonstrate significant
ability in learning complex patterns from multimodal data, such
as video sequences, sensor information, and contextual cues.
Unlike traditionalmethods such as probabilistic trajectorymatch-
ing [11] and conditional random fields [12], which often struggle
to model temporal dependencies and high-level features, DNNs
are particularly effective in understanding pedestrian behaviour
in dynamic environments. Researchers have been leveraging
architectures like convolutional neural networks (CNNs) [13, 14],
recurrent neural networks (RNNs) [2, 15], and graph convolu-
tional networks (GCNs) [16, 17], as well as more recent advance-
ments in attention mechanisms [18] and transformer models [19,
20], to enhance crossing prediction estimation accuracy.

While supervised deep learning methods such as DNNs have
shown strong performance compare to unsupervised methods
in pedestrian crossing prediction [21], they depend on high-
quality, task-specific annotated data to effectively learn relevant
representations [22]. Although several datasets such as JAAD [2],
PIE [3], STIP [4], and FU-PIP [5] are available, many of them offer
limited annotation diversity (e.g. lacking dense pose labels or fine-
grained semantic segmentation), which restricts the training of
fully end-to-end models that depend on rich visual features. As
illustrated in Figure 1, recent crossing prediction models have
two processing stages: feature extraction and crossing classifica-
tion. Feature extraction consists of a group of computer vision
algorithms, such as pedestrian detection [23], body pose estima-
tion (BPE) [24], and object semantic segmentation (OSS) [25],
which generate structured representations of the raw data by
focusing on task-relevant features like pedestrian location, body
posture, and semantic maps of surrounding objects. These
extracted features are then fed into a crossing classifier head
to predict the pedestrian’s crossing action based on the spatial
and temporal features identified during the feature extraction
phase.

Studies have focused on selecting various features of pedestrians
and/or the environment, which are often extracted through pre-
trained algorithms or sometimes fine-tuned models, depending
on the model design [26–28], and primarily contribute to design-
ing the feature fusion and architecture of the crossing classifier
head. In terms of feature selection, key elements such as the
pedestrian’s location and size using the pedestrian bounding
box information [29], walking trajectory [30], body pose [31–34],
and environmental features [35–38] have been studied. There
has also been a study on feature importance for pedestrian
crossing prediction [39] which experiments with input features
that could potentially contribute more to enhancing prediction
performance. They have shown that the pedestrian body pose
feature has the least contribution, as it is influenced by the
accuracy of the pose estimation algorithm.

2.2 Data Enhancement and Domain Adaptation
Techniques

The performance of pedestrian crossing prediction models is
closely tied to the quality and precision of their input features,
as even small inaccuracies in extracted features (as shown in
Figure 1) can propagate through the pipeline, undermining
downstream performance. However, it remains unclear to what
extent improving the reliability of body pose estimation (BPE)
and object semantic segmentation (OSS) as the main feature
extractors of crossing prediction models can enhance overall
prediction performance. To address this open question, prior
research in related domains has explored various strategies
for strengthening feature extractors by data enhancement and
domain adaptation techniques.

Data enhancement techniques aim to improve the richness,
diversity, and quality of training data, thereby supporting more
robust and generalisable feature extractors. Standard approaches
include data augmentation strategies such as geometric trans-
formations (e.g. rotations, flipping, cropping) and photometric
changes (e.g. brightness, contrast, noise) [40]. These methods
increase variability in the training distribution and help prevent
overfitting to narrow visual contexts. More advanced forms
of augmentation include synthetic data augmentation (SDA)
[10], in which new training samples are generated or existing
ones are modified using simulation environments. For instance,
pedestrian images can be programmatically altered to introduce
background changes, occlusions, pose variations, or weather
effects [41]. Simulation platforms like Carla [42] enable the cre-
ation of richly annotated, diverse synthetic datasets that include
depth, segmentation, and pose information, useful for tasks like
BPE and OSS. These synthetic enhancements are particularly
valuable in scenarios where annotated real-world data is limited,
expensive, or ethically constrained [43, 44].

Domain adaptation techniques aim to address distribution shifts
between the source (e.g. synthetic) and target (e.g. real-world)
domains. These shifts may arise due to differences in sensor
modalities, lighting, weather, environments, or data collection
conditions [45]. Among adaptation techniques, domain randomi-
sation (DR) [9] is a widely adopted method to effectively align
the synthetic and real-world data domains. It systematically intro-
duces random variations into the synthetic data, such as changes
in lighting, texture, or object positioning, helping models become
more robust to variations when deployed in the real world. By
exposing models to a wide range of simulated conditions, DR
helps bridge the gap between synthetic and real-world data,
enhancing the model’s ability to handle unpredictable scenarios
[46].

Domain randomisation has been applied in various research
fields. For example, it has been used to enable DNNs to consider
traffic context during vehicle detection [47]. Yue et al. [48],
proposes a method using simulations to perform semantic seg-
mentation in self-driving scenes without relying on data from the
target domain. Hagelskjaer et al. [49] present a method for pose
estimation that optimises configuration parameters using only
synthetic data. Pasanisi et al. [50] investigated the feasibility of
fine-tuning an object detection model in real industrial scenarios
using a fully synthetic dataset.

IET Intelligent Transport Systems, 2025 3 of 13

 17519578, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.70104 by U

niversity O
f L

eeds B
rotherton, W

iley O
nline L

ibrary on [12/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Together, DR and SDA represent powerful complementary strate-
gies for improving the generalisability of vision-basedmodels [51].
While existing works [41, 43, 44] have leveraged synthetic data
to enhance individual feature extractors, such as BPE and OSS,
for detection and tracking tasks (e.g. MOTSynth [52]), the direct
impact of domain-randomised synthetic data on the downstream
crossing prediction task remains underexplored.

3 Methodology

We aim to improve OSS and BPE modules via domain randomi-
sation (DR) and synthetic data augmentation (SDA) and directly
evaluates how it affects downstream pedestrian crossing predic-
tion models performance in real-world urban crossing scenarios
for autonomous driving systems. Figure 2 illustrates our method-
ology for enriching OSS and BPE algorithms. This section details
steps 1 to 3, focusing on DR and data generation, followed by the
candidate algorithms investigated for enhancement.

3.1 Domain Randomisation

We propose a domain randomisation strategy to generate struc-
turally consistent synthetic data with controlled variation in
visual appearance. Specifically, we create multiple instances of
each driving scenario that preserve fixed structural elements
(e.g. road layout, pedestrian posture, and object positions) while
randomising weather and lighting conditions (see the last three
rows in Figure 3). This design aims to encourage BPE and
OSS models to learn invariant representations of structural cues
(such as pedestrian pose and road geometry), while disregarding
irrelevant visual factors (e.g. rain streaks, sun glare, or shadow
artefacts).

To formalise this, let us consider 𝜃 as a set of parameters that
describe the global environmental conditions of the simulation,
including illumination (e.g. day, night, sunset), weather (e.g.
clear, cloudy, light or heavy rain), and surface conditions (e.g.
dry, wet). For each training episode, values of 𝜃 are sampled from
a predefined distribution 𝑃(𝜃), ensuring diverse but structurally
consistent scenes. The synthetic dataset ′ = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is
then generated by simulating the same task 𝜏 (e.g. OSS or BPE)
under different instantiations of 𝜃where each 𝑥𝑖 is an input image
sampled from the simulator and paired with a label 𝑦𝜏𝑖 .

The objective is to learn the set of parameters 𝜙𝜏 for the task
𝜏 that minimises the expected loss across the distribution of
environments, expressed as:

𝜙∗𝜏 = argmin
𝜙𝜏
𝔼𝜃∼𝑃(𝜃)[𝜏(𝑓

𝜏
𝜃
(𝑥𝑖, 𝜙𝜏), 𝑦

𝜏
𝑖 )] ∀𝜏 ∈ {OSS, BPE} (1)

where 𝜙∗𝜏 denotes the task-specific model trained under envi-
ronment 𝜃, and 𝑦𝜏𝑖 denotes the ground-truth label (segmentation
mask for OSS, joint coordinates for BPE). Crucially, the ground-
truth labels remain invariant across different 𝜃 values; for
instance, the same pedestrian skeleton or segmentation mask
applieswhether the scene is rendered in sunlight, rain, or at night.
This forces the model to focus on invariant structural cues, such
as road geometry, pedestrian posture, or object layout, rather than
overfitting to appearance-specific artefacts.

In the case of OSS, 𝑦OSS𝑖 ∈ ℝ𝐻×𝑊×𝐶 denotes the segmentation
mask for the 𝑖th pedestrian sample, where𝐻 and𝑊 are the mask
height and width (matching the input image size), and 𝐶 is the
number of semantic classes (e.g. 𝐶 = 19 for Cityscapes [8]: road,
sidewalk, building, car etc.). For BPE, 𝑦BPE𝑖 ∈ ℝ𝐽×2 contains the
2D coordinates (𝑥, 𝑦) of the 𝐽 body joints for the 𝑖th pedestrian
(e.g. 𝐽 = 17 for COCO [7]).

In this way, domain randomisation differs fundamentally from
conventional image-level augmentations (e.g. flipping, cropping,
or brightness adjustments). Instead of perturbing individual
pixels, DR systematically alters the entire simulated environment,
thereby encouraging robustness to broad contextual variations
while preserving semantic consistency. Figure 3 illustrates this
process, showing identical crossing scenarios generated under
diverse weather and illumination conditions.

We also observed in preliminary experiments that simply gener-
ating additional synthetic samples under fixed conditions did not
improve real-world performance. The key improvement stems
from systematically varying environmental factors (𝜃), such as
lighting and weather, which encourage models to learn invariant
structural cues (e.g. road geometry, body pose) rather than
overfitting to fixed visual appearances.

3.2 Synthetic Data Generation

We propose a synthetic data generation pipeline using the
Carla simulator to create diverse and automatically annotated
pedestrian crossing scenarios. The synthetic data are generated
to be used exclusively to train OSS and BPE models, which
serve as spatial feature extractors in downstream pedestrian
crossing prediction. Since these models operate at the frame level
and do not capture temporal dependencies, temporally realistic
behaviours are unnecessary. Hence, we acknowledge that our
simulated agents lack the humanised intention behaviours of real
pedestrians, and the downstream prediction model is aimed to
be trained on real-world datasets to capture temporal dynamics

FIGURE 2 The structure of the proposed technique including initialisation and fine-tuning of the object semantic segmentation (OSS) and body
pose estimation (BPE) algorithms.
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FIGURE 3 A sample simulated pedestrian crossing scenario, designed under various lighting and adverse weather conditions.

and intention cues, such as walking styles and social interactions,
from sequences of extracted features.

3.2.1 Simulation Environment

Carla [42] is a widely used open-source driving simulator that
enables the creation of custom driving scenarios in diverse
urban environments. While hyper-realistic simulations [53–55]
can provide photorealistic visual fidelity, they also introducemore
complex and detailed visual effects that may act as confounding
variables during training, especially for tasks where structure
is more relevant than appearance. In our case, Carla offers
an effective trade-off: it supports sufficient visual diversity for
domain randomisation, while maintaining runtime efficiency,
reproducibility, and precise control over structural configuration.
This makes it particularly suitable for our objective of training
BPE andOSSmodels as robust feature extractors under varied but
controlled visual conditions.

3.2.2 Scenarios

In this study, we generated 36 driving scenarios simulating
diverse pedestrian crossing events. An ego vehicle, equippedwith
a front-facing RGB camera mounted with zero pitch, yaw, or
roll, that is oriented straight ahead to place the horizon line
near the centre of the image (Figure 3), was navigated using

Carla’s autopilot to ensure consistent vehicle behaviour and
collision avoidance. The ego vehicle approaches a pedestrian from
a uniformly random distance between 20 and 30 m, and travels
at a speed randomly selected between 15 and 30 mph. These
ranges were selected to reflect typical mid-range urban driving
conditions and interaction distances found in real datasets such as
PIE and JAAD. Prior studies have shown that crossing predictive
models perform with higher stability and accuracy when the
longitudinal distance between the pedestrian and the ego vehicle
is approximately less than 25m [56]. The simulation environment
includes 36 distinct locations: 16 intersections, 10 straight roads,
6 curved roads, and 4 roundabouts, covering a range of typical
urban layouts (see the first row in Figure 3).

A total of 48 pedestrian avatars, which are all the available
avatars in the simulator, were included to capture variability
in age, body shape, and clothing style (see the second row
in Figure 3). To achieve consistent, reproducible, and visu-
ally diverse pedestrian movements across scenarios, pedestrian
agents were programmed to follow a manually defined sequence
of 3D spatial coordinates (i.e. waypoints), enabling precise control
over their crossing trajectories, directions, walking speeds, and
waiting times. This approach overrides Carla’s default behaviour,
which enforces legal crossings and vehicle-aware pauses before
crossing, and allows more flexible configurations. Therefore,
in each scenario, the crossing direction (left-to-right or right-
to-left), waiting time before crossing (uniformly sampled from
0 to 4 s), and walking speed (walking or running) were also

IET Intelligent Transport Systems, 2025 5 of 13
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randomly assigned. These variations were introduced intention-
ally to diversify visual and motion patterns for data enrichment
purposes, rather than to simulate realistic pedestrian decision-
making processes.

3.2.3 Randomised Parameters (𝜽)

Each scenario for each pedestrian at each location is repeated 21
times to involve three different ambient illumination conditions
(during the night, noon, and sunset), and six different weather
conditions (clear, cloudy, heavy rain, moderate rain, light rain,
damp overcast, and wet). This is shown in Figure 3 in the last
three rows.

The weather and lighting conditions used in the synthetic data
generation process were selected to reflect common urban driv-
ing scenarios, while introducing controlled visual diversity for
domain randomisation. Specifically, we included various weather
conditions, along with daytime and nighttime lighting, based on
their presence in real-world datasets such as PIE, JAAD, and FU-
PIP, and their ability to simulate visually distinct environments.

3.2.4 Data Collection

Each scenario was recorded for approximately 10 s with 2 fps
until the pedestrian finished the crossing or the vehicle passed the
pedestrian. This provides sufficient spatial sampling for training
frame-level OSS and BPE models, while allowing more effective
variability in appearance and motion through DR augmentation.
This design choicewas validated during preliminary experiments,
where increasing the frame rate did not yield significant per-
formance gains but substantially increased training time and
reduced DR effectiveness.

For each frame, with a resolution of 1920×1080, a body pose of
the pedestrian is automatically generated by the Carla simulator,
which provides access to ground-truth 2D joint coordinates of the
pedestrian rendered in the scene. The full skeleton includes 67
points representing the location of joints, however, we ignore the
hands and foots’ keypoints and just extract 17 points of body joints.
The high-quality mask labels for pedestrians, roads, pavements,
cars, trucks, buses, buildings, sky, traffic signs, traffic lights,
and poles are also automatically extracted from the semantic
segmentation sensor (shown in Figure 3 rows three).

Ultimately, 648 scenarios (36× 21) have been generated consisting
of 15,120 (756× 10× 2) annotated frames for semantic information,
and 725,760 (15,120 × 48) frames of pedestrians plus the keypoints
representing their body joints.

3.3 Model Investigation

We evaluate six state-of-the-art models, three in the area of object
semantic segmentation (OSS) and three in body pose estimation
(BPE), to test our hypothesis on domain randomisation and
synthetic data augmentation techniques. Thesemodels have been
chosen for their architectural diversity and performance in their
respective tasks.

The OSS models were trained on the Cityscapes dataset [8], with
mean intersection over union (mIoU) as the evaluation metric.
IoU is defined as TP

(TP+FP+FN)
, where TP, FP, and FN are the true

positive, false positive, and false negative pixels for each class,
respectively. The candidate OSS models are as follows:

∙ EfficientPS [57] features a semantic head built upon an opti-
mised encoder and a two-way feature pyramidnetwork,which
adaptively fuses fine and contextual features for improved
segmentation.

∙ ViT-Adapter [58] uses vision transformers, this model learns
dense visual representations from large-scale data, which are
then used for fine-grained semantic predictions.

∙ InternImage [59] employs deformable convolution as its core
operator and adaptive spatial feature aggregation to enlarge
the receptive field and improve segmentation accuracy.

TheBPEmodelswere trained on theCOCOpose datasets [7], with
average precision (AP) based on object keypoint similarity (OKS)
as the evaluation metric. The following candidate models were
selected for their distinct architectural approaches:

∙ HRNet [60] integrates multi-level fusion to produce detailed,
high-resolution keypoint representations for human pose
estimation.

∙ YOLO-Pose [61] uses an end-to-end approach to unify object
detection and human pose estimation at lower computational
complexity.

∙ RTMPose [62] utilises parameter optimisation to perform real-
time multi-person pose estimation.

To further evaluate these models, we employed two distinct
training strategies: 1) Hybrid data training strategy involves
combining the synthetic and real-world data and training the
model only once; 2) Fine-tuned hybrid strategy entails training
each model on the synthetic data, and subsequently fine-tuning
it using real-world data.

To choose the feature extractors used downstream, we adopt
the following criteria: (C1) accuracy on real-world benchmarks
after DR/SDA enrichment, (C2) generalisation to an external
dataset with diverse illumination/weather, (C3) training sta-
bility and convergence efficiency under DR/SDA, and (C4)
inference practicality (throughput/memory) for integration into
crossing predictors.

4 Experiment

In this section, we retrain the object semantic segmentation
(OSS) and body pose estimation (BPE) algorithms on the gener-
ated synthetic data, aiming to achieve the highest performance
improvements. We then evaluate the effectiveness of various
augmentation strategies applied during training. Finally, we
assess the impact of using these enriched baseline models on the
overall performancemetrics of state-of-the-art (SOTA) pedestrian
crossing crossing prediction methods.

6 of 13 IET Intelligent Transport Systems, 2025
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4.1 Experimental Setup

All experiments were conducted on a workstation equipped
with an Intel Core i9-13900 CPU, 64 GB RAM, and an NVIDIA
RTXA6000 GPU, using TensorRT in half-precision floating-point
(FP16) format.

Cityscapes dataset [8] was used to train and validate the OSS
models. It contains 5000 finely annotated urban street images
split into 2975 for training, 500 for validation, and 1525 for
testing. We standardise our OSS benchmarking on Cityscapes
for comparability across candidates, including EfficientPS [57],
ViT-Adapter [58], and InternImage [59].

COCO keypoint dataset [7] was used for BPE model training
and validation following the COCO 2017 keypoints protocol.
The dataset comprises ∼57,000 train images with keypoint
annotations (totalling ∼150k person instances), 5000 validation
images, and 40,670 images test images. This setup aligns with the
training/evaluation protocols used by our BPE candidates HRNet
[60], YOLO-Pose [61], and RTMPose [62].

PIE dataset [3] contains about 6 h of driving video (≈1.6M frames)
with 1,842 pedestrian instances annotated for crossing intention.
We follow the official split of 1484 pedestrians for training and 358
for testing.

JAAD dataset [2] provides 2785 video clips (≈346,000 frames)
with 686 pedestrian crossing instances. Following prior work, we
adopt an 80/20 split with 2420 clips for training and 365 clips
for testing.

FU-PIP dataset [5], a subset of the Waymo Open Dataset [63],
consists of 1,082 annotated frames with semantic masks, crossing
labels, and 2D body keypoints (13 joints), covering 541 pedes-
trian instances. FU-PIP (Frontal Urban-PIP) is derived from the
Urban-PIP collection, which spans diverse operational condi-
tions (daylight and nighttime) and multiple weather regimes
(sunny, cloudy, rainy, foggy), captured in varied urban/rural
scenes and intersections [5]. While the source dataset includes
a multi-camera, multi-sensor platform (front-left, front, front-
right cameras; LiDAR, radar, IMU), we use only the front camera
frames for evaluation to ensure compatibility with single-camera
baselines [5]. As no official train/val/test split is provided, FU-PIP
is used exclusively for evaluation in our experiments.

Finally, our domain-randomised synthetic dataset (Section 3.2.4)
contains 15,120 annotated semantic frames and 725,760 pose-
labelled frames across 648 simulated crossing scenarios. These
were used to initialise and fine-tune the OSS and BPE models
prior to evaluation on real-world datasets.

4.2 Training of Candidate SOTAModels

We use default optimiser selection andmomentum configuration
for each baseline as provided in their source code repository.
The learning rate (𝜂), the total number of epochs (𝜉), and the
batch size (𝛽) are mentioned in Table 1. In all experiments, the
training process was stopped once themodel had reached a stable
convergence with no further improvements. The epoch number

at which convergence was observed has been denoted by 𝜉∗ in
Table 1.

The results for OSS models in Table 1 indicate that all three
models achieved high accuracy on the Cityscapes dataset. Intern-
Image achieved the highest accuracy, with an mIoU score
of 86.9%. ViT-Adapter achieved an mIoU score of 85.1%, and
EfficientPS achieved an mIoU score of 84.7%

In the comparison of BPE models using COCO, the APR values
for the RTMPose model after fine-tuning reached the highest
accuracy (80.3%), followed by YOLO-Pose (73.8%) and HRNet
(72.1%). Considering the AP𝑅 values on a hybrid dataset of both
synthetic and real-world data, RTMPose achieved the highest
accuracy again (76.1%), followed by YOLO-Pose (72.7%) and
HRNet (71.4%). This indicates that RTMPose is the most suitable
model for the BPE task when themodel is trained by adapting the
fine-tuned hybrid strategy.

4.3 Augmentation Strategy

Two training strategies, hybrid training (synthetic + real) and
fine-tuned hybrid training (synthetic pretraining followed by
real fine-tuning), are evaluated in Table 1 across the candidate
BPE and OSS models. As shown in Table 1, models initialised
with synthetic data exhibit rapid early improvements (owing
to the relative simplicity of synthetic samples); however, their
performance on real-world data remains poor, underscoring the
persistent domain gap between synthetic and real distributions.

Notably, when synthetic data were generated without weather or
lighting variations, performance on real-world datasets remained
limited despite using a comparable number of training sam-
ples. By contrast, domain-randomised synthetic data consistently
improved convergence and robustness. This confirms that the
reported gains are not merely due to the presence of synthetic
data, but specifically attributable to environmental variability
introduced through domain randomisation.

To explore the effect of the synthetic-to-real data ratio, we
conducted additional experiments varying the proportion of
synthetic data used during training. Quantitatively, we found that
a rough ratio of 5:1 (synthetic:real) for OSS and 3:1 for BPE, during
initial training and fine-tuning phases, respectively, provides
the best trade-off between convergence speed and accuracy.
Ratios with significantly less synthetic data reduce the benefits
of domain randomisation, while excessively high synthetic data
proportions without fine-tuning lead to degraded real-world
performance due to domain gaps.

In the fine-tuned hybrid training approach, we observed faster
convergence and improvement in performance, suggesting that
domain-randomised synthetic data helps models learn struc-
tural representations more efficiently. For instance, InternImage
reached 86.9% mIoU on real data samples in only 1803 epochs
(992 train + 811 fine-tune), compared to 86.1% in 2606 epochs
using hybrid training. Similarly, RTMPose achieved 80.3% AP in
305 epochs, outperforming its hybrid training counterpart (76.1%
in 323 epochs). This shows overall faster convergence time and
training stability.

IET Intelligent Transport Systems, 2025 7 of 13
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TABLE 1 Performance comparison of selected SOTA models, under two training strategies: Fine-tuned hybrid (the first row for each model), and
Hybrid training (the second row for each model). The second and third columns from left are the baseline models’ performance.

OSS
Model (𝜼, 𝝃 , 𝜷) 𝐦𝐈𝐨𝐔R 𝐦𝐈𝐨𝐔S Train 𝝃 ∗ 𝐦𝐈𝐨𝐔R 𝐦𝐈𝐨𝐔S Fine-tune 𝝃 ∗ 𝐦𝐈𝐨𝐔𝑹 𝐦𝐈𝐨𝐔𝑺

EfficientPS (2×10−2, 200, 16) 84.2% 63.52% Synthetic 133 62.3% 87.4% Cityscapes 94 84.7% 80.8%
Hybrid training (synthetic + Cityscapes) 164 83.1% 87.0%

ViT-Adapter (2×10−5, 3k, 16) 85.2% 61.5% Synthetic 943 66.4 % 88.2% Cityscapes 880 85.1% 81.9%
Hybrid training (synthetic + Cityscapes) 2711 83.7% 85.1%

InternImage (2×10−5, 3k, 16) 86.1% 60.7% Synthetic 992 66.8% 88.7% Cityscapes 811 86.9% 83.2%
Hybrid training (synthetic + Cityscapes) 2606 82.2% 87.3%

BPE
Model (𝜼, 𝝃 , 𝜷) 𝐀𝐏R 𝐀𝐏S Train 𝝃 ∗ 𝐀𝐏R 𝐀𝐏S Fine-tune 𝝃 ∗ 𝐀𝐏𝑹 𝐀𝐏𝑺

HRNet (1×10−3, 140, 32) 72.3% 59.2% Synthetic 77 51.2% 89.1% COCO 65 72.1% 79.8%
Hybrid training (synthetic + COCO) 109 71.4% 82.0%

YOLO-Pose (1×10−3, 150, 40) 74.7% 55.8% Synthetic 88 52.4% 86.3% COCO 61 73.8% 77.0%
Hybrid training (synthetic + COCO) 118 72.7% 80.0%

RTMPose (4×10−3, 420, 64) 75.3% 54.2% Synthetic 172 56.4% 90.1% COCO 133 80.3% 76.9%
Hybrid training (synthetic + COCO) 323 76.1% 74.9%

Notations: mIoU and AP with subscripts 𝑅/𝑆 for real/synthetic test sets, 𝜂: Learning rate, 𝜉: Number of epochs, 𝛽: Batch size, 𝜉∗: Converged epoch number.

Moreover, initialisation on synthetic data can encourage models
to learn features that are invariant to randomisation (e.g. road lay-
out and posture). Correspondingly, the model can learn to focus
on the important features of the input data that are relevant to the
task at hand, rather than relying on specific patterns or properties
that may be affected by weather and lighting conditions. On
the other hand, when adopting the hybrid training strategy,
synthetic data is regarded as a form of data augmentation. As a
result, models often achieve moderate but limited generalisation
on real data, even after numerous epochs. This is due to the
simplicity of the synthetic data, which may reduce the models’
ability to learn the complexity of real data. This emphasises
that utilising our structurally generated data is preferable for
initialisingmodels since augmentation usually leads to decreased
performance compared to the baseline performance.

4.4 Generalisation

Since FU-PIP spans diverse illumination (day/night) andweather
(sunny, cloudy, rainy, foggy) conditions, improvements observed
on FU-PIP provide an external check on the source of gains.

Table 2 reports the base performance of models (the original
real-data model) and the performance of enriched models (fine-
tuned hybrid training) using 5:1 (OSS) and 3:1 (BPE) synthetic:real
ratios, across the FU-PIP dataset. As shown, the enriched models
consistently outperform their baseline counterparts across both
OSS and BPE tasks. For OSS, improvements are observed in all
models, with InternImage achieving the highest absolute gain
(80.3% to 81.2% mIoU). For BPE, similar trends are seen, where
RTMPose improves from 69% to 69.6% AP, and YOLO-Pose shows
a modest but consistent increase from 67.6% to 68.5% AP.

TABLE 2 Performance comparison of algorithms on FU-PIP
(Waymo) for OSS and BPE under base and enriched settings.

OSS (mIoU %) BPE (AP %)
Model Base Enriched Model Base Enriched
EfficientPS 77.5 79.1 HRNet 67.2 68.4
ViT-Adapter 78.1 78.7 YOLO-Pose 67.6 68.5
InternImage 80.3 81.2 RTMPose 69.0 69.6

Although the margins are relatively small, these results demon-
strate that domain-randomised synthetic data improves model
robustness and generalisation, particularly in complex urban
scenarios. This supports our hypothesis that training feature
extractors under structurally consistent but visually varied con-
ditions helps models learn to ignore irrelevant appearance
changes while preserving scene structure, a key requirement for
downstream pedestrian crossing prediction.

4.5 Model Selection

Guided by the criteria in Section 3.3, we select InternImage
(OSS) and RTMPose (BPE) as downstream feature extractors.
For (C1), InternImage attains the highest Cityscapes mIoU post-
enrichment and RTMPose the highest COCO AP (Table 1); for
(C2), both yield the strongest scores on the external FU-PIP
benchmark spanning day/night and multiple weather regimes
(Table 2), indicating robustness beyond dataset-specific effects;
for (C3), fine-tuned hybrid training achieves faster, stable con-
vergence (InternImage: 992+811 vs. 2606 total epochs; RTMPose:
305 vs. 323; Section 4.2, Table 1); and for (C4), all OSS candidates
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TABLE 3 Performance comparison between SOTA and enriched SOTA models on PIE, JAAD, and FU-PIP datasets.

Model
Input
features

PIE JAAD FU-PIP
Acc AUC F1 Acc AUC F1 Acc AUC F1

SFGRU (2020) P, L, B, M 0.871 0.854 0.783 0.832 0.794 0.630 0.652 0.651 0.553
Enriched SFGRU P+, L, B, M 0.878 0.865 0.784 0.844 0.797 0.642 0.665 0.659 0.565
CAPformer (2021) P, L, B, M 0.897 0.860 0.805 0.834 0.825 0.634 0.641 0.598 0.554
Enriched CAPformer P+, L, B, M 0.907 0.867 0.816 0.844 0.839 0.646 0.652 0.615 0.562
PCIP (2022) S, P, L, B, M 0.897 0.866 0.807 0.836 0.826 0.633 0.634 0.611 0.514
Enriched PCIP S+, P+, L, B, M 0.916 0.885 0.809 0.858 0.869 0.657 0.668 0.648 0.547
GraphPlus (2022) S, P, L, M 0.895 0.904 0.818 0.868 0.854 0.748 0.639 0.608 0.572
Enriched GraphPlus S+, P+, L, M 0.914 0.913 0.857 0.878 0.867 0.764 0.660 0.630 0.591
LGCF (2023) S, P, L, B, O 0.795 0.774 0.686 0.836 0.843 0.729 0.644 0.645 0.677
Enriched LGCF S+, P+, L, B, O 0.815 0.803 0.715 0.869 0.860 0.742 0.666 0.671 0.693
PIP-Net (2025) S, P, L, B, O, D 0.917 0.895 0.846 0.848 0.834 0.735 0.732 0.709 0.690
Enriched PIP-Net S+, P+, L, B, O, D 0.922 0.915 0.857 0.876 0.869 0.757 0.736 0.712 0.703

Features: S: Semantic segmentation, B: Bounding box, L: Local context, M: Ego-vehicle speed, O: Optical flow, D: Depth information, P: body Pose. +:
Enriched feature.

fit our memory budget at 𝛽=16, while among BPE models
RTMPose sustains the largest training batch on our A6000 GPU
(𝛽=64 vs. 32 for HRNet and 40 for YOLO-Pose), reflecting
a favourable throughput/memory trade-off without sacrificing
accuracy. Consequently, we adopt InternImage and RTMPose to
produce the enriched semantic and pose features (𝐒+, 𝐏+) used
by the downstream crossing predictors (Table 3), with qualitative
examples illustrated in Figure 4.

4.6 Impact on Crossing Prediction Models

We integrated enhanced feature extractors into a modular frame-
work, allowing us to experiment with six different crossing
prediciton models, including stack fused gated recurrent unit
(SFGRU) [15], crossing action prediction via transformers (CAP-
former) [19], pedestrian crossing intention prediction using 3D
convolutions (PCIP) [18], graph convolutional neural networks
(GraphPlus) [17], local and global contextual fusion (LGCF) [64],
and pedestrian crossing prediction network (PIP-Net) [5].

4.6.1 Implementation Details

In the implementation of the crossing prediction models, each
pedestrian instance is represented by six observation sequences,
where each sequence consists of 16 consecutive data frames
(including features like bounding boxes, local context, body pose
etc.) extracted from the pedestrian’s full observation time. The
sequences for each pedestrian instance have 40% (6 frames)
overlap to capture temporal continuity and ensure smoother
transitions between segments while preserving contextual infor-
mation across time. Each sequence is associated with a time-
to-event (TTE) value, starting from 0 to 60, which indicates the
temporal distance (in frames) from the critical moment. The
critical moment is defined as either the first frame in which a

crossing pedestrian steps onto the street or the last observable
frame for a non-crossing pedestrian.

To provide a consistent evaluation, we compute performance
by averaging predictions across all TTEs for each pedestrian
instance. This differs from some original implementations, which
often report performance at a specific TTE (typically the closest to
the crossingmoment), where the prediction task can be easier due
to richer contextual cues. Our approach on using six observation
sequences ensures that model evaluation reflects performance
across the full available temporal range for pedestrian instances
across both datasets.

All listed predictive models were retrained from scratch using
their publicly available source codes. We modified the input
features by replacing the original pose and/or semantic segmen-
tation inputs with those extracted from our enriched versions of
InternImage as an OSS and RTMPose as a BPE.

Pedestrian body pose estimation is known to degrade in perfor-
mance under complex conditions, particularly when pedestrians
are partially occluded or located in crowded scenes. To address
these challenges, RTMPose incorporates a comprehensive set
of data augmentation techniques during training, including
mosaic augmentation, colour jittering, random geometric trans-
formations, and MixUp [65]. These augmentations enhance
the model’s robustness by exposing it to a wider variety of
appearance conditions. Moreover, our downstream evaluation
datasets naturally contain numerous occlusion scenarios, such
as pedestrians partially obscured by other individuals or vehicles,
thereby offering a realistic assessment of performance under such
conditions. This design choice ensures that our evaluation setup
accounts for the practical limitations of pose estimation models
in real-world environments.

The training configurations, including learning rate, number of
epochs, batch size, and optimiser, initialisation random seed,

IET Intelligent Transport Systems, 2025 9 of 13
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FIGURE 4 Results of BPE via enhanced RTMPose and OSS via InternImage (second row) models on traffic scenes with single and multiple
pedestrians in sunny, cloudy, and foggy weather. The third row represents the OSS results from InternImage before enrichment

were kept consistent with the default or reported settings in each
model’s original implementation. For all models, training was
governed by an early stopping strategy based on validation set
performance, as predefined in their original code.

Each model was independently trained and evaluated on the
PIE [3] and JAAD [2] datasets using their standard train/test
splits. For the FU-PIP dataset, as the number of pedestrian
instances (541) was insufficient for training, we evaluated the
models trained on PIE directly on FU-PIP, as recommended by
the authors of FU-PIP [5].

The training time forOSSmodels ranged from 7 to 12 h,while BPE
models took approximately 5 to 7 h, depending on the architecture
and training setup. The fine-tuned hybrid approach can reduce
this time by approximately 30 and 170 min for RTMPose and
InternImage, respectively. The pedestrian crossing prediction
models, using extracted features, required an additional 4 to 6
h. These durations confirm the computational efficiency of our
pipeline and its feasibility for practical applications.

4.6.2 Results

The evaluation metrics used are crossing intention accuracy
(Acc), area under the curve (AUC), and F1 scores. The Acc
measures how well the model correctly identifies whether a
pedestrian intends to cross the street. The AUC is used to evaluate
the model’s capability to differentiate between the ‘crossing’ and

‘not crossing’ classes. A high AUC score signifies the model’s
adeptness in prioritising instances that are more likely to involve
crossing. The F1 score is the harmonic mean of precision and
recall. A high F1 score means the model effectively reduces both
false positives (incorrectly predicting a pedestrian will cross) and
false negatives (failing to predict a crossing estimation), thereby
enhancing pedestrian safety by minimising these types of errors.

Table 3 demonstrates the comparison between the original mod-
els and boosted models on the two specific datasets of pedestrian
crossing prediction. The results show that providing more accu-
rate input features, enhanced through domain randomisation
and synthetic data augmentation, can boost the performance
of pedestrian crossing prediction models. The enriched models
consistently outperformed their baselines across all performance
metrics (accuracy, AUC, and F1 score) on both the PIE and JAAD
datasets, validating the impact of improved feature extraction on
crossing prediction accuracy. Moreover, the consistent boosts of
enrichedmodels on FU-PIP support that environmental diversity
induced by DR underpins the observed generalisation improve-
ments.

While the observed improvements from enrichment are modest
in some cases, this variability can be attributed to several factors.
First, certain predictive models already demonstrate strong
baseline performance, which may limit the extent of measurable
gains, particularly given the complexity of pedestrian crossing
prediction. This task often requires more than visual cues
alone and may benefit from additional input modalities such as
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TABLE 4 Confidence delta (confΔ) for each model across datasets.
Each cell reports max/average confidence change between consecutive
predictions. Lower values indicatemore stable predictions across different
TTEs.

Model PIE JAAD FU-PIP

SFGRU 0.10 / 0.04 0.17 / 0.07 0.13 / 0.09
Enriched SFGRU 0.09 / 0.03 0.14 / 0.07 0.10 / 0.07
CAPformer 0.12 / 0.05 0.18 / 0.08 0.15 / 0.06
Enriched CAPformer 0.12 / 0.04 0.15 / 0.07 0.12 / 0.05
PCIP 0.14 / 0.08 0.20 / 0.09 0.16 / 0.07
Enriched PCIP 0.14 / 0.07 0.17 / 0.08 0.13 / 0.06
GraphPlus 0.16 / 0.07 0.21 / 0.14 0.18 / 0.11
Enriched GraphPlus 0.16 / 0.06 0.20 / 0.12 0.15 / 0.10
LGCF 0.17 / 0.07 0.23 / 0.10 0.19 / 0.08
Enriched LGCF 0.16 / 0.06 0.22 / 0.09 0.16 / 0.07
PIP-Net 0.13 / 0.06 0.19 / 0.09 0.17 / 0.07
Enriched PIP-Net 0.13 / 0.05 0.18 / 0.08 0.14 / 0.07

multi-sensor fusion or traffic-aware features (e.g. traffic light state
or contextual information about designated vs. non-designated
crossing environments). In this context, architectures that rely
more heavily on spatial detail, such as PPCI and PIP-Net, tend
to benefit more from enriched modules like BPE and OSS,
which provide fine-grained structural cues. Furthermore, it is
important to emphasise that even marginal improvements can
be meaningful in the context of pedestrian intention estimation,
where decisions are safety-critical and prediction robustness
plays a vital role in real-world deployment.

To further investigate the impact of enriched modules, we
evaluate the stability of model confidence across TTEs using con-
fidence delta (confΔ). For each pedestrian instance, we compute
the change in model confidence for a given class between two
consecutive sequences and report both themaximumand average
delta, defined as:

confΔ = 1

𝑛 − 1

𝑛−1∑
𝑖=1

|||conf𝑐𝑖 − conf𝑐𝑖+1
|||, (2)

where 𝑛 is the number of sequences for a given pedestrian
instance, and conf𝑐𝑖 is the model’s predicted confidence for class
𝑐 at sequence 𝑖. Lower values of confΔ indicate more stable and
consistent predictions over time. Table 4 presents the average and
maximum confidence deltas across models and datasets.

5 Conclusion

The study indicates that using a simulated environment with
structural randomised properties can enhance the resilience of
the pedestrian crossing prediction to variations in the input data.
The study aimed at improving the precision and accuracy of
semantic information and posture feature extraction algorithms
which successfully affected the accuracy of predicting the cross-
ing of pedestrians, as well. Furthermore, the evaluation results

revealed a performance gap between different training modes
based on real and synthetic data for both semantic segmentation
and body pose estimation. We show using synthetic data as an
augmentation technique may not necessarily lead to a sensible
enhancement of existing semantic segmentation algorithms.

We suggested domain randomisation technique by generating a
parameter-randomised synthetic dataset to bridge the domain
gap between synthetic and real-world based training models. The
final outcomes of our experiments (as per Table 1) proved that all
evaluated SOTAmodels have been improved (with no exception)
against all performance metrics.

We utilised Carla simulation to generate a wide range of synthetic
environmental conditions including diversity of weather and
ambient light. The study found that when the models were
trained with synthetic data only, they showed poor performance
on real-world data; however, when the models were adapted
with subsequent real-world data training and tuning, a higher
generalisability and performance were achieved compared to the
original model. The experimental results indicate improvements
in the accuracy, AUC and F1 scores for both JAAD and PIE
datasets, showing the promising potential of using synthetic data
for improving the prediction of pedestrian crossing in AVs.

In summary, our findings demonstrate that the observed
improvements are not merely the result of incorporating syn-
thetic data, but are primarily driven by the structured diversity
introduced through domain randomisation. By systematically
varying weather and illumination, the models are better pre-
pared to handle unseen real-world conditions, thereby enhanc-
ing both robustness and generalisation in pedestrian crossing
prediction.
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