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Abstract

The adrenal glands are a pair of endocrine organs that produce and secrete mineralocorticoids, glucocorticoids, sex hor-
mones, adrenaline, and noradrenaline. They have a vital role in a range of physiological processes including regulating
electrolyte balance, blood pressure and metabolism, immunomodulation, sexual development and the stress response.
Adrenal cortex senescence describes the ageing-related decline in the normal functioning of the adrenal cortex, character-
ised by an alteration in the output of adrenal cortical hormones, in particular reduced secretion of dehydroepiandrosterone
(DHEA) and sulfated dehydroepiandrosterone (DHEAS). Such endocrine aberrations may be implicated in adverse clinical
outcomes including mood disturbances, impairment in cognitive functioning, metabolic dysfunction and osteopenia. This
paper shall address whether adrenal cortex senescence should be recognised as an ageing-related pathology, which has
recently been defined as one that develops and/or progresses with increasing chronological age, that is associated with, or
contributes to, functional decline, and is evidenced by studies in humans.
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Introduction medulla, derived from neuroectoderm (Fig. 1). The cortex
comprises [1]:

The adrenal glands are a pair of retroperitoneal endocrine

organs that are located above the upper pole of the kidneys. e the zona glomerulosa (ZG), responsible for the produc-
Each gland measures approximately 5 x2 x 1 cm and weighs tion of mineralocorticoids, primarily aldosterone.

up to 5 g [1]. The glands are composed of two distinct e the zona fasciculata (ZF), producing glucocorticoids, of

zones, the outer cortex, of mesodermal origin, and the inner key importance is cortisol.
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Fig. 1 A The adrenal glands are encapsulated organs comprising a
cortex and medulla. They are located above the upper pole of the kid-
neys (B). C The adrenal cortex is composed of the zona glomerulosa
(ZG), zona fasciculata (ZF) and zona reticularis (ZR). The key ageing-
related changes of the adrenal cortex that have been reported in human
studies are highlighted in (C): There is suboptimal functioning of the

e the zona reticularis (ZR), producing androgens, primar-
ily dehydroepiandrosterone (DHEA), which can be sul-
fated to dehydroepiandrosterone-sulfate (DHEAS).

The adrenal medulla synthesises the catecholamines nor-
adrenaline and adrenaline [1].

The functions of the adrenal glands are related to their
hormonal output, and include regulating electrolyte balance,
blood pressure and metabolism, immunomodulation, sexual
development and the stress response [1, 2].

The adrenal cortex undergoes a range of ageing-related
structural and functional changes. In 2019, Calimport et al.
called for the systematic and comprehensive classification
of ageing-related pathologies at the metabolic, tissue, organ
and systemic levels following the World Health Organisa-
tion’s decision to officially classify ageing-related aetiology
within the International Classification of Diseases (ICD-11)
[3, 4]. To address this, the International Consortium for the
Classification of Ageing-Related Pathologies (ICCARP)
was established in 2023, led by Cardiff Metropolitan
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renin-angiotensin-aldosterone system (RAAS), there are increased
aldosterone-producing cell clusters (APCC), there is increased secre-
tion of cortisol, there is a reduction in the size of the zona reticularis,
there is reduced secretion of DHEA/ DHEAS and there is an increased
prevalence of adrenal tumours

University [5]. The ICCARP has recently defined the crite-
ria for an ageing-related pathology as one that [5]:

1. Develops and/or progresses with increasing chronologi-
cal age;

2. Should be associated with, or contribute to, functional
decline, or an increased susceptibility to functional
decline;

3. Is evidenced by studies in humans.

Here we review the evidence to determine whether adrenal
cortex senescence should be recognised and classified as an
ageing-related pathology.

Adrenal cortex senescence

We, the ICCARP Endocrine and Metabolic working group,
hypothesise that adrenal cortex senescence might be an
ageing-related pathology, as it describes an ageing-related
decline in the normal functioning of the adrenal gland,
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characterised by an alteration in the output of adrenal corti-
cal hormones, in particular a reduction in the secretion of
DHEA and DHEAS. These endocrine aberrations are asso-
ciated with adverse clinical outcomes including mood dis-
turbance, impairment in cognitive functioning, metabolic
dysfunction, and osteopenia.

Ageing, DHEA and DHEAS

DHEA is the most abundant steroid hormone in primates
[6, 7]. It is produced from cholesterol, largely in the adrenal
glands, but also in the testis, ovaries, skin, and brain [7].
DHEAS is produced from DHEA in the ZR (Fig. 2) [7].
Both DHEA and DHEAS are secreted by the adrenal glands
in response to adrenocorticotropic hormone (ACTH), with
DHEAS loosely bound to plasma albumin, acting as a
DHEA reserve. DHEAS is converted in tissues by sulfo-
transferases and hydroxysteroid sulfatases back to DHEA,
which is the physiologically active steroid (Fig. 2) [7].

The adrenal glands produce large amounts of DHEA and
DHEAS during foetal development, but production falls
rapidly after birth and remains low during the first five years
of life [6, 8, 9]. Subsequently, levels rise and peak during
the second to third decades, during the ‘adrenarche’ [6, 9].
Circulating levels of DHEAS are higher than that of DHEA,
and levels are both age and sex dependent, with higher lev-
els in males than females [8]. After the third decade, there is
an age-dependent decline in circulating DHEA and DHEAS

Cholesterol side-chain
cleavage enzyme (P450scc)

[9, 10], such that by the seventh decade of life, DHEAS lev-
els may have dropped to 10-20% of their maximum con-
centration [6, 10].

Serum DHEAS concentration remains stable through-
out the day, whereas secretion of DHEA follows a diurnal
rhythm, similar to that of cortisol [6]. In addition to reduced
circulating levels of DHEA with increasing age, an attenua-
tion of the diurnal rhythm and the pulse amplitude of DHEA
secretion has also been described [6].

Functions of DHEA

DHEA is a crucial sex steroid precursor [6, 8]. It is converted
to androstenedione by the activity of 3B-hydroxysteroid
dehydrogenase (3B-HSD) and then further converted to
testosterone and oestradiol by isoenzymes of 178-HSD and
P450 aromatase, respectively [6]. DHEA is also converted
to intermediate steroids that may have distinct activity, for
example androstenediol [6]. In post-menopausal women,
ovarian production of oestrogens and DHEA falls to almost
zero, making adrenals the main source of oestrogens and
testosterone through DHEA [7].

In addition to their role in the production of sex hor-
mones, DHEA and DHEAS are proposed to have effects
in the central nervous system and on the immune system
[8]. Both DHEA and DHEAS are neuroactive steroids in the
brain, directly interacting with sigma, glutamate, N-methyl-
D-aspartate (NMDA) and y-aminobutyric acid (GABA,)
receptors [6, 8], through which they have been hypothesised
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to exert anti-depressant and anxiolytic effects [6]. Using
animal and in vitro studies, it has been shown that DHEAS
stimulates neuronal growth and development and improves
glial survival, as well as modulating cognitive functions
such as learning and memory [6].

DHEA has differential actions on human immune func-
tion, and its effects are impacted by concentrations of other
hormones [11]. DHEA may have anti-glucocorticoid activ-
ity and may modulate inflammation and cytokine responses
to stimulation in a variety of contexts [11].

Ageing-related DHEA deficiency and clinical
outcomes

Low serum levels of DHEAS that occur with ageing are
associated with multiple adverse clinical outcomes, includ-
ing an increased risk of all-cause mortality and cardiovas-
cular disease mortality in males, and poor functional status
in males [6, 12]. Low DHEAS concentrations have been
reported in systemic lupus erythematosus (SLE), dementia,
breast cancer and rheumatoid arthritis, and generally there
is an inverse relationship between serum DHEAS levels and
severity of disease [6]. DHEA deficiency is also associated
with several major neurodevelopmental and neurodegenera-
tive pathologies, including schizophrenia, bipolar affective
disorder, depression and Alzheimer’s disease [8], diabetes
[13] and low bone mineral density [14].

However, association does not equate to causation, and
further research is required to determine whether low circu-
lating DHEA/DHEAS is contributing to functional decline
or whether it is a physiological component of ageing. It is
feasible that low circulating DHEA/DHEAS is merely asso-
ciated with end organ pathology, or it may be a consequence
of a disease process, as chronic disease can lead to a shift in
intra-adrenal biosynthesis away from DHEA/DHEAS pro-
duction and towards cortisol secretion [6].

Clinical trials that have been carried out in individuals
considered to be healthy, older adults to determine whether
oral DHEA may have an effect on parameters such as
well-being, mood, cognition, sexual function and activi-
ties of daily living have largely reported that DHEA does
not have a significant beneficial therapeutic effect [15-18].
While previous work documented a possible improvement
in physical and psychological well-being following DHEA
supplementation, a meta-analysis of eight studies (=661
participants) failed to demonstrate a conclusive effect for
DHEA on muscle strength and physical function in older
adults [19]. Studies on bone health with DHEA supplemen-
tation have shown a possible benefit in older women but no
effect was observed in men [20]. However, these findings
were far from conclusive due to the limited number of study
participants and the heterogeneity across studies. Others
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have shown improvement in carotid augmentation index,
suggesting a potential benefit on vascular health [21] but
hard vascular outcome studies are lacking. Overall, studies
on DHEA supplementation are, on the whole, inconclusive,
which can be attributed to different factors. First, the num-
ber of participants in the various studies to date tended to
be small and therefore they were not adequately powered to
demonstrate an effect. Second, studies were conducted over
a short period of time, some as short as weeks, and there-
fore it is unclear whether an extended treatment would have
had an effect. Third, many studies focused on subjective end
points, such as measures of well-being, and more work is
needed to investigate hard clinical outcomes. Finally, it is
possible that a lack of efficacy could be related to selec-
tion bias, as generally only seemingly healthy subjects with
excellent performance status at baseline were included in
the studies.

Pathophysiology of reduced secretion of DHEA/
DHEAS

Adrenal glands in older individuals have a smaller ZR than
in younger individuals, which could equate to a reduced
number of DHEA-secreting cells [6, 9, 22]. Furthermore,
research in non-human primates (NHP) has demonstrated
that there are ageing-associated transcriptional changes
in the cells of the ZR, which has a major impact on lipid
metabolism [1]. The low-density lipoprotein receptor gene
(LDLR) is one of the prominently downregulated genes [1].
The lipoprotein receptor is vital in internalising lipoprotein
particles and is a carrier for cholesterol. In cultured human
cells, LDLR knockdown results in reduced intracellular cho-
lesterol, which is the precursor for steroid hormones, and
decreased secretion of DHEAS [1].

SULT2A1 is another example of a downregulated gene in
the ZR. It encodes the steroid sulfotransferase that catalyses
DHEA sulfation [1] so its downregulation could be another
factor contributing to reduced secretion of DHEAS [1].

Ageing and aldosterone

The trajectory of aldosterone secretion with increasing age
remains controversial, with some evidence of an ageing-
related decline [23] and some evidence of greater autono-
mous aldosterone secretion with ageing [24].

Aldosterone production is primarily regulated by angio-
tensin (Ang) II, circulating potassium levels and ACTH
[24]. The renin-angiotensin-aldosterone system (RAAS)
contributes towards the homeostatic regulation of blood
pressure and serum sodium concentration [25]. The RAAS
is under feedback control via the release of renin from the
renal juxtaglomerular cells, that is in turn influenced by
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Table 1 The correlation between Renin and aldosterone levels and
chronological age

<35 years >62 P Value Refer-
old years old ences
Renin (ng/ml?) 41.1+4.1 264 + <0.05 [27]
5.7
Aldosterone (ng/dI®) 12.6 £2.6 5.6+0.8 <0.05
Aldosterone reduction ~ 0.18-0.25 ND * [28]

per year (ng/dl)
*Millilitre; ®Decilitre; ND=not determined

numerous factors including blood pressure, renal perfusion
pressure and hyponatraemia [25].

Aldosterone is the primary mineralocorticoid and is
synthesised within the ZG of the adrenal cortex [24]. Aldo-
sterone acts within the renal tubule to increase sodium reten-
tion, thereby maintaining intravascular volume and blood
pressure [24]. The synthesis of aldosterone within the ZG
is regulated by Ang II and serum potassium concentration
[24]. It generated from cholesterol through a series of enzy-
matic reactions that include cholesterol side-chain cleav-
age (CYP11A1), type 2 3B-hydroxysteroid dehydrogenase
(HSD3B2), 21-hydroxylase (CYP21A2), and CYP11B2

5

[24] (Fig. 3). CYP11B2 is expressed specifically in the ZG
such that aldosterone production is confined to the ZG [24].

In contrast to DHEA and DHEAS, relatively little is
known about the ageing-related changes in aldosterone
synthesis/secretion from the adrenal cortex [24]. However,
there is a correlation between age and RAAS activity in
humans, with levels of plasma renin activity and plasma
aldosterone being highest in the newborn, and lowest in the
elderly population [26-28] (Table 1). RAAS function is also
influenced by race and sex [26].

Older age appears to be associated with a blunted ability
to secrete aldosterone in response to its regulators, Ang II
and potassium [24]. The reductions of plasma renin activ-
ity and plasma aldosterone levels with increasing age are
usually modest, and do not usually associate with changes
in fluid and electrolyte homeostasis [26]. However, subop-
timal functioning of the RAAS in older people can result
in increased vulnerability to any concurrent compromise to
haemodynamic function or additional diminishment of the
RAAS [26]. This can result from, for example, heart fail-
ure, or the use of Angiotensin-Receptor Blocking (ARB)
or Angiotensin-Converting Enzyme (ACE) inhibitor thera-
pies, respectively. In addition to the clinical implications
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of an ageing-related decline in RAAS function, such age-
ing-related changes in the RAAS have implications for the
accurate diagnosis of RAAS dysfunction. Although not
commonly used within lab-based reporting, there is an argu-
ment for age-related normal ranges for plasma renin activity
and plasma aldosterone levels to assist clinical decision-
making in relation to the correction of age-related RAAS
dysfunction.

To complicate the picture of serum aldosterone levels
with ageing, there are ageing-related histological changes
in the expression of adrenal CYP11B2, the enzyme respon-
sible for aldosterone synthesis within the ZG [24]. Indeed,
non-neoplastic foci of aldosterone-producing cell clusters
(APCC) that express CYP11B2 are a common occurrence
in normal human adrenals, and histopathological studies
show an association between older age and greater adrenal
APCC content [29-31] with progressive autonomous aldo-
steronism. Furthermore, there is an ageing-related decline in
CYP11B2 expression in the ZG [24], whilst transcriptome
analysis of APCC has demonstrated that APCC messenger
RNA (mRNA) profiles have similar characteristics to those
of ZG but with higher CYP11B2 expression, indicating an
increased capacity to produce aldosterone [29].

Therefore, with advancing age there seems to be a tran-
sition from continuous expression of CYP11B2 within the
ZG to APCC predominance [24, 29], and a concomitant
migration from normal physiological aldosterone regulation
through the RAAS towards autonomous and renin-indepen-
dent aldosterone secretion [24]. This scenario may underlie
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some of the age-related increase in hypertension and risk for
CV disease [24]. However, most research on human APCC
has been carried out either on postmortem adrenal glands or
adrenal glands containing lesions, therefore the biochemi-
cal phenotype of APCC has not been specifically quantified
[29].

In summary, with increasing age, there seems to be a jux-
taposition between a general decline in RAAS functioning,
that can manifest in a general reduction in serum aldoste-
rone levels and vulnerability to hypotension and cardiovas-
cular compromise, and concurrently an ageing-associated
dissociation of aldosterone synthesis from RAAS control
to autonomy that can also result in hypertension and con-
tribute to cardiovascular disease. Interestingly, the impact
of aberrant aldosterone levels is not just confined to the car-
diovascular and urinary systems. Presbyacusis is associated
with reduced aldosterone levels, suggesting that aldosterone
may have a protective effect on hearing [32]. Aldosterone
plays a role in the maintenance of key ion pumps, including
the Na-K-Cl co-transporter 1 or NKCC1, which is involved
in homeostatic maintenance of the endocochlear potential
[33].

Ageing and cortisol

Glucocorticoids are steroid hormones produced mainly in
the ZF, with cortisol being the most potent and responsible
for 95% of all glucocorticoid activity [34]. In response to
stress, the hypothalamus secretes corticotropin-releasing
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hormone (CRH), which enters the hypothalamic-hypophy-
sial portal circulation and stimulates the anterior pituitary
gland to release ACTH [30]. ACTH then triggers the adrenal
gland’s secretion of adrenocortical hormones [34]. Cortisol
exhibits a pulsatile and diurnal secretion pattern, with the
highest concentration secreted in the morning and the low-
est in the evening [34]. Cortisol exhibits negative feedback
on both the hypothalamus and the pituitary gland, and has
multiple physiological actions, including stimulating glu-
coneogenesis and glycogen storage, inducing lipolysis and
proteolysis, an anti-inflammatory role and anti-osteoblastic
effects [34].

Cortisol secretion appears to increase with advancing age,
with mean cortisol levels increasing by 20-50% between
the ages of 20 and 80 years in both males and females [35].
Premenopausal women have slightly lower mean levels
than men in the same age range, primarily because of lower
morning maxima [35]. Furthermore, whilst the diurnal
rhythmicity of cortisol secretion is preserved with increas-
ing age, the relative amplitude is dampened, and the timing
of the circadian elevation is advanced [35].

In one of the most robust studies that addresses how
cortisol levels change with ageing, Moffat et al. measured
24-hour urinary free cortisol (UFC) and creatinine (Cr) in
1,814 individuals from the Baltimore Longitudinal Study of
Ageing for a follow-up period of up to 31 years [36]. The
pattern and slope of cortisol levels were assessed from ages
20 to 90 years and older [36]. UFC/Cr followed a U-shaped
pattern across the life span, with decreases in UFC/Cr in
the 20s and 30s, relative stability in the 40s and 50s, and
increases thereafter [36].

It has also been shown that with ageing, reduced sensitiv-
ity to glucocorticoid feedback signals is acquired [37]. Forty
men, with a mean age of 69 +/- 5 years, and 20 younger
individuals, with a mean age of 34 +/- 8 years underwent
a combined dexamethasone suppression/CRH-stimulation
test. The study participants were pre-treated with dexameth-
asone (DEX) and were then administered CRH. Following
this intervention, the older men released significantly more
cortisol than the younger cohort, and in the older group
only, there was a positive correlation between basal, DEX-
pretreated cortisol concentration and post-CRH steroid
responses [37].

The mechanisms for increased cortisol secretion need to
be further evaluated. As described above, it has been pro-
posed that with ageing there is reduced negative feedback to
endogenous corticosteroid levels [36, 37], and animal mod-
els have demonstrated reduced number of glucocorticoid
receptors in the hippocampus, prefrontal cortex, and hypo-
thalamus [38]. Furthermore, proinflammatory cytokines
that are secreted in a range of ageing-associated metabolic,
somatic, and psychiatric conditions may act on multiple

levels of the hypothalamic—pituitary—adrenal system ulti-
mately increasing glucocorticoid secretion [36].

Increased cortisol with ageing is associated with impair-
ment in some aspects of cognitive functioning, such as
tasks measuring explicit memory and selective attention
[39]. This is proposed to be driven by an increased cortisol:
DHEA ratio, with chronically high cortisol levels exerting
a catabolic neurotoxic effect, leading to reduced dendrite
length and neuronal death [40]. Furthermore, higher cortisol
levels are significantly associated with smaller left hippo-
campal volumes and are negatively correlated with memory
function through hippocampal volume [41]. Higher cortisol
levels are also associated with lower grey matter volume in
the temporal and parietal areas in the left hemisphere [40].

It is also feasible that raised cortisol could have a caus-
ative role in increasing the risk of diseases such as diabe-
tes, obesity, hypertension, osteoporosis and cardiovascular
disease [42]. For example, a prospective cohort study in a
non-clinical population of over 60s found that disturbances
in diurnal cortisol secretion, as well as raised evening corti-
sol levels, were associated with type II diabetes onset [43].
However, research exploring the association of cortisol lev-
els and body mass index (BMI) found no correlation [44],
suggesting that the role of cortisol in metabolic syndrome
is still unclear. It has also been shown that patients with
autonomous cortisol secretion, due to adrenal hyperplasia
or the presence of an adenoma, exhibit reduced suppres-
sion of post-dexamethasone suppression test (DST) corti-
sol, 11-deoxycortisol, and corticosterone, with post-DST
cortisol and corticosterone being associated with a higher
prevalence of severe/resistant hypertension [45]. It is also
plausible that ageing-related hypercortisolism influences
immune dysfunction, potentially increasing the risk of
infections [46].

Structural and functional changes of the adrenal
glands with increasing age

Animal models have helped to progress our understanding
of the structural and functional changes of the adrenal gland
that occur with ageing. Research in non-human primates
(NHP) demonstrated an accumulation of p21“P!-positive
cells in the ZG, ZF, ZR and medulla, along with deposi-
tion of aggresome, which is regarded as a marker of tissue
ageing [2]. Furthermore, it has been shown that there is an
abnormal accumulation of amyloid-f peptide, in the ZR, ZG
and medulla of aged adrenal glands, along with increased
expression of GPNMB, a seno-antigen expressed by senes-
cent cells, in ZR, ZG, ZF and medulla. Abnormal deposition
of lipofuscin is also identified in the ZR [2].

Other observations in aged NHP adrenal glands are
that there is impaired cortical differentiation, resulting in
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impaired formation of the ZR, and there are increased num-
bers of T cells and macrophages. This is associated with dys-
regulation of cell-cell communication and may contribute to
enhanced inflammatory responses [2]. Transcriptome analy-
sis has shown that genes involved in hormone metabolism
are downregulated, whereas genes associated with cytokine
production and leukocyte cell—cell adhesion are activated in
aged adrenal tissues [2].

With increasing age, there is an increase in the prevalence
of adrenal tumours. It has been reported that more than 90%
of adrenal tumours are found in patients older than 40 years
of age, with a median age at diagnosis of 62 years (n=1287)
[47].

Thus far, research into the structural changes of the age-
ing adrenal glands have largely been carried out using ani-
mal models. There is a paucity of data from human studies,
therefore future research in humans should be a research
priority.

Is adrenal cortex senescence an ageing-related
pathology?

Adrenal cortex senescence is an emerging entity which
appears to fulfil the criteria for an ageing-related pathology:

1. Functional changes are observed with increasing chron-
ological age, in particular there is reduced secretion of
DHEA and DHEAS, and there is increased output of
cortisol.

2. Such changes are associated with a range of adverse
clinical outcomes, including an increased risk of prema-
ture mortality, SLE, dementia, breast cancer, rheuma-
toid arthritis, schizophrenia, bipolar affective disorder,
depression, Alzheimer’s disease, diabetes and low bone
mineral density.

3. These findings have been reported in studies carried out
in humans.

However, further evidence is required before adrenal cor-
tex senescence can be definitively regarded as such. Whilst
numerous diseases are associated with low serum DHEA/
DHEAS, this may just be an association, or a consequence
of the disease process. It remains to be determined whether
reduced secretion of DHEA/DHEAS has any pathological
outcomes.

Similarly, it is important to advance the understanding of
whether the increased cortisol output observed with increas-
ing age mediates any adverse clinical effects, its underlying
pathophysiology, and to better characterise the ageing-
related changes in aldosterone secretion.

Furthermore, much of the research considering the struc-
tural and morphological changes of the ageing adrenal gland
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has been carried out in animal models, and evidence from
human studies is relatively scarce.

Summary

Our hypothesis is that structural and functional changes
of the adrenal cortex develop and progress with increas-
ing age, resulting in reduced secretion of DHEA/DHEAS
and increased secretion of cortisol. It is important to obtain
further evidence to better characterise the degenerative
changes of the adrenal cortex, and to elucidate the clinical
consequences of this.

If adrenal cortex senescence is to be considered as an
ageing-related pathology, methods for its diagnosis and
staging would need to be determined. This could then lead
to opportunities to develop interventions to halt, reverse, or
slow its progression, to improve the quality of life of indi-
viduals and to promote healthy longevity.
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