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Abstract—Event cameras, which capture brightness changes
with high temporal resolution, inherently generate a signifi-
cant amount of redundant and noisy data beyond essential
object structures. The primary challenge in event-based object
recognition lies in effectively removing this noise without losing
critical spatial-temporal information. To address this, we pro-
pose an Adaptive Graph-based Noisy Data Removal framework
for Event-based Object Recognition. Specifically, our approach
integrates adaptive event segmentation based on normalized
density analysis, a multifactorial edge-weighting mechanism, and
adaptive graph-based denoising strategies. These innovations
significantly enhance the integration of spatiotemporal informa-
tion, effectively filtering noise while preserving critical structural
features for robust recognition. Experimental evaluations on
four challenging datasets demonstrate that our method achieves
superior recognition accuracies of 83.77%, 76.79%, 99.30%,
and 96.89%, surpassing existing graph-based methods by up to
8.79%, and improving noise reduction performance by up to
19.57%, with an additional accuracy gain of 6.26% compared to
traditional Euclidean-based techniques.

Index Terms—event camera, denoising, GATCN, object recog-
nition

I. INTRODUCTION

The advent of artificial intelligence has propelled com-
puter vision to the forefront of real-world applications such
as autonomous driving, drone navigation, and surveillance,
where swift and accurate object recognition is paramount.
Traditional video cameras, limited by low frame rates and
excessive data redundancy, fall short in these dynamic settings.
Although high-speed cameras capture over 1,000 frames per
second, their high cost limits practicality. In contrast, event
cameras [1], which only record changes in scene brightness,
significantly minimize data redundancy and are unaffected by
motion blur. They offer microsecond-level temporal resolution
and low latency, making them ideal for environments that
demand rapid and reliable data processing.

Unlike conventional cameras that output continuous two-
dimensional images, event cameras are triggered by significant
changes in pixel brightness, efficiently eliminating most of
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irrelevant background information. However, the asynchronous
and sparse data they generate pose significant challenges for
traditional frame-based processing techniques [2]. Researchers
typically convert event streams into 2D frames or 3D voxel
grids [3]-[5], a process that compromises the data’s inherent
sparsity and temporal resolution, leading to potential informa-
tion loss. The absence of a standardized conversion method
further complicates data processing, as application-specific
needs require customized approaches, yielding inconsistent
results across different scenarios.

To fully leverage the unique characteristics of event
cameras—namely, the sparsity and asynchrony of event
data—researchers have explored innovative processing
methodologies such as temporal surface-based methods
[6], [7] and spiking neural networks (SNNs) [8], [9].
These approaches, which process data on an event-by-event
basis, are designed to maintain low latency. However,
their efficacy in complex tasks can be limited due to the
sensitivity to parameter settings and the intricacies of
their training processes. In response to these challenges,
recent advancements have introduced a more efficient
strategy involving compact graph representations [10]-[12].
These methods model event sequences as graphs within
a cloud of events using graph convolutional networks
(GCNs), which have achieved state-of-the-art performance.
Despite their successes, these graph-based approaches
primarily rely on a simplistic radius-based noise management
strategy—connecting nodes only if they are within a
predetermined Euclidean distance. This technique often
proves inadequate for effectively handling noise and lacks
the flexibility needed for adapting to dynamically changing
environments.

Based on these observations, we propose an adaptive graph
formulation-based noise reduction algorithm integrated with
a graph convolutional neural network (GCN) that incorpo-
rates attention mechanisms, enabling efficient and accurate
processing of event data. Traditional radius-based methods
rely on fixed Euclidean distances, limiting adaptability and
robustness while overlooking other informative graph features.



Our approach overcomes these limitations by incorporating
multilevel weights, dynamically adjusting weight thresholds
and leveraging a graph attention mechanism for enhanced
feature aggregation and classification.

The main contributions of this paper are as follows:

o Multi-Factor Edge Weighting: A robust edge weighting
mechanism that incorporates Euclidean distance, velocity,
angular difference, and polarity consistency, ensuring
accurate modeling of event point relationships, even in
noisy environments.

o Adaptive graph formulation-based Noise Reduction:
A dynamic noise reduction strategy that adapts the for-
mulation of the underlying graph of event based on
the variance in node distribution, effectively filtering out
noisy events by preserving the key event data in sparse
areas and removing excess in dense regions.

o Graph Attention Convolutional Network: A GCN
guided by multi-factor edge weighting, selectively em-
phasizing relevant neighboring features and achieving
enhanced data representation and object recognition ac-
curacy.

II. RELATED WORK

Current methods for event data processing can be broadly
categorized into frame-based conversion methods, graph-based
methods, and deep learning methods. Frame-based methods,
such as those proposed by [3], [4], convert event data into
pseudo-images, but this often leads to a loss of temporal res-
olution. Graph-based methods [13], [14] maintain the sparsity
of event data but face challenges in processing efficiency. Deep
learning methods, particularly those utilizing Graph Attention
Neural Networks [15], are adept at handling complex graph-
structured data but often struggle with noisy data [16].

One approach for event cameras is to use Spiking Neu-
ral Networks (SNN) [17], again a biologically inspired de-
sign.SNNs exploit the sparsity and asynchronous nature of
event data, but due to their non-microscopic nature, training
such networks is very difficult. To improve the temporal
resolution, Zhu et al [18], [19] suggested discretizing the
temporal dimension into consecutive time segments and ac-
cumulating the events into a voxel grid by linear weighted
accumulation similar to bilinear interpolation. Messikommer
et al [20] further exploited spatial and temporal sparsity by
employing sparse convolution [21] and developing recursive
convolution formulations. However, they still operate on sparse
volumes and 3D convolution is computationally expensive for
dealing with large event clouds.

Recent studies, e.g., further use a framework similar to
PointNet [22], [23], which utilizes a multilayer perceptron
(MLP) to learn the features of each point separately and
then outputs object-level responses (e.g., categorical labels)
via a global max operation. For event processing, Sekikawa et
al [24] developed for the first time a recursive architecture
called EventNet. Specifically, it recursively represents the
dependencies of causal events on outputs through a new
temporal encoding and aggregation scheme and pre-computes
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the features of nodes that correspond to particular spatial
coordinates and polarities.

III. METHODOLOGY

Processing event videos from event cameras requires man-
aging large volumes of noisy event points [25], making direct
processing computationally demanding. To address this, we
propose an adaptive segmentation algorithm that first divides
the input data into balanced windows based on normalized
density and then subdivides each window into voxels using the
square root law to balance temporal and spatial dimensions.
For noise reduction, inspired by [26], we employ an adaptive
algorithm that dynamically adjusts the weighting radius based
on multiple event point features, filtering out noise. These
weights are then integrated with a graph attention mecha-
nism to selectively focus on relevant neighboring features,
improving object recognition performance. An overview of the
framework is shown in Figure 1.

A. Adaptive Event Point Segmentation

Event data generated by event cameras is represented as
a point cloud, denoted as & = {(zk, Yk, tk, Dk) kN‘Zl', where
each point k includes spatial coordinates (z, yx), a timestamp
tx, and a polarity py. Here, Npoinis represents the total number
of event points. Algorithm 1 outlines the preprocessing and
segmentation procedures, which are conducted as follows:

1) Normalized Density: To effectively segment event-based
data, we commence by calculating the normalized density
of data points. This calculation begins with determining the
spatial range, capturing the data’s extent in the x and y
dimensions. By evaluating the distribution of data points along
these axes, we establish the spatial boundaries essential for
understanding the overall spatial distribution.

We then assess the temporal range of the data, reflecting
the duration over which the events are recorded. This temporal
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Fig. 1: The adaptive edge weight w;;, designed to capture event point relevance, facilitates noise filtering and attention-based
feature aggregation, enhancing robust recognition by emphasizing the most informative node connections.

assessment aids in comprehending the temporal dynamics of
the event stream, enhancing our understanding of its temporal
characteristics.

With both spatial and temporal ranges defined, the normal-
ized density is computed as the number of data points per unit
volume, encompassing both spatial and temporal dimensions.
The formula for normalized density is given by:

N, points
Tmax — xmin) : (ymax - ymin) : (tmax - tmin)’
where Npoinis denotes the total number of data points,
(Zmax, Tmin, Ymax, Ymin) represent the spatial boundaries, and
tmax, tmin are the temporal boundaries.

2) Determination of Adaptive Window Size: To ensure an
even distribution of data points across windows, we adaptively
adjust the window size based on the normalized density. The

number of points per window is determined by the following
heuristic:

nor — 1
P ( 1

Nwindow = Max (Nmim Prnormalized Cscale) y (2)

where Ny, is the minimum number of points per window,
ensuring that windows are not overly sparse, and Cie is
a scaling factor to control the overall window size. This
adjustment guarantees that each window contains a sufficient

number of points for robust analysis, mitigating issues such as
noise interference or sparse data regions.

After determining the optimal number of points per window,
the total number of windows required to cover all data points
is calculated as:

3)

Twindow

N .
points
Nwindows = ’7—

where [-] denotes the ceiling function, ensuring complete
coverage of all data points across the windows.

This balanced distribution of data points within each win-
dow supports adaptive segmentation and facilitates reliable
processing across varying data densities. The event point set
& is divided into multiple windows {WV,, } v

3) Determination of Adaptive Voxel Count: To further
refine segmentation within each window, the voxel count is
determined based on the square root law, which balances
both spatial and temporal spans. The square root law is a
heuristic often used in multidimensional systems to propor-
tionally balance different dimensions by taking the square root
of their product. In our approach, this allows us to determine
an optimal voxel count that preserves data resolution while
maintaining computational efficiency.



The number of voxels within each window is calculated as:
(X) - (Y)- (1), (4)

where X = Tnax — Tmin, ¥ = Ymax — Ymin, and T = tmax — tmin
represent the spatial and temporal ranges of the data within
each window. This formula ensures that the voxelization
process captures essential data characteristics. By applying
the square root law, we achieve a segmentation that is both
efficient and sufficiently detailed for subsequent analysis.

After dividing each window W,, into multiple voxels
{Vm}z‘ge{s, each voxel V,,, contains a subset of event points
characterized by their spatial, temporal, and polarity attributes.
This segmentation enables each voxel V,,, to encapsulate a
localized subset of events, represented as follows:

N, voxels —

Vm, = {(xkaykatkapk)}' (5)

Here, k represents the index of event points within voxel
Vn, and its range is determined by the number of points that
fall within V,,,. Specifically, if V,,, contains Npoines,m €vent
points, then k£ = 1,2,..., Npoints,m-

B. Adaptive Denoising

AW-GATCN applies a weight-based noise reduction method
that uses the variance of the normalized degree matrix to
improve 3D structure recognition. This approach considers
Euclidean distance, angular velocity difference, velocity mag-
nitude difference, and polarity consistency between nodes.
The optimal weight threshold is adaptively determined by
maximizing the variance in node distribution across graphs
within each voxel, unlike traditional methods with manually
set thresholds. To maintain clarity and follow common graph
processing conventions, we use k to denote event point indices
during segmentation, switching to ¢ and j for node indices in
subsequent graph-based steps.

1) Custom Weight Calculation: For each pair of event
points ¢ and j within voxel V;,, the edge weight w;; is
computed as:

w”:aD”—i-BAv”—l—’yGw—ﬁ—éP”, (6)

e D;;: The Euclidean distance between nodes i and j,
representing the spatial distance.

o Aw;;: The magnitude difference between the velocity
vectors of nodes ¢ and j.

 0;;: The angle difference between the velocity vectors or
planar vectors of nodes ¢ and j.

e P;;: Polarity consistency, a binary indicator representing
whether the polarities of nodes ¢ and j are consistent (0
if consistent, 1 if inconsistent).

The velocity vector v; for each event point is computed
based on the spatial and temporal differences between neigh-
boring event points. For two event points e; = (z;, y;, t;) and
e;j = (z;,y;,t;), the velocity vector is defined as:

Fig. 2: The circular region represents the optimal threshold
T determined by maximizing variance. Purple nodes indicate
high-correlation points with weights w;; less than T, while
teal nodes are excluded.

vi = (?_f‘?_f) )
gl Tl
This vector represents the “movement” of event point e;
through space and time. When ¢; = t;, only the angular
and magnitude differences in the 2D plane velocity vectors
are calculated; if ¢; # t;, both spatial and temporal velocity
differences are computed. Since polarity does not influence
velocity vector calculations, it is omitted here.
The angular difference between two velocity vectors de-
scribes their variation in motion direction and is given by:

Vi‘Vj

®)

0 = vl
where v; - v, denotes the dot product, and |v;|, |v;| are
the magnitudes of the vectors. A smaller angle 6;; implies
similar motion directions, while a larger angle indicates more
pronounced directional differences.

In the weight calculation (see Equation (6)), the angular
difference between velocity vectors plays a crucial role, as
6;; captures the similarity in motion directions. This term
aids in identifying local motion patterns, such as sliding or
rotating edges. By incorporating angular differences into the
weight function, the method more accurately captures dynamic
relationships between event points, thereby enhancing overall
performance.

After conducting experiments, we finalized the weight pa-
rameters = 0.7, = 0.1, v = 0.1, and § = 0.1, as these val-
ues demonstrated effective performance in capturing dynamic
relationships between event points (see Section IV-C1).

2) Dynamic Threshold Adjustment Based on Normalized
Degree Distribution: ~ Each voxel contains both event points
and noise. To establish full connectivity for noise reduction,
we first apply the Minimum Spanning Tree (MST) algorithm
to determine the minimum weight that connects all event
points within the voxel. This weight serves as the upper limit
for the noise reduction threshold, ensuring that all points are
fully connected. To effectively filter out noise while preserving



Algorithm 2 Computing Optimal Threshold T’

1. forn=0tom—1do > m is the number of voxels

2: V., <= Voxel n containing event points

3: t < Upper threshold for MST of V,,

4: for §=0to ¢ do > Threshold range from O to ¢

5: ®s + Node degree distribution at threshold §

6: d5 — D5/ max(Ps) > Normalize distribution

7: 0% « Variance of ®;

8: end for

9: T, + argmaxs(c3) > Maximize variance

10: end for

11: return {T,,}" > Set of optimal thresholds for all
voxels

significant connections, the threshold ¢ is dynamically adjusted
based on the normalized degree distribution of the graph. This
process involves calculating the degree distribution for each
voxel at various values of §, where the distribution captures
the number of connections within each voxel and reflects its
relevance in the graph structure. This process is illustrated in
Algorithm 2

The degree distribution is then normalized to a range
of [0,1] to ensure consistency across different scales. This
normalization is achieved by dividing the degree distribution
®s by its maximum value:

By — 20 ©)

max(Ps)’

After normalization, the variance O'g of the normalized

degree distribution is computed for each threshold §. This vari-
ance reflects the spread of the degree distribution, providing
insight into the diversity of voxel connections within the graph.
The optimal threshold 7' is determined by selecting the
value of ¢ that maximizes the variance ag, formulated as:

T = arg m(.;;tx(ag). (10)

Selecting the threshold that maximizes variance ensures that
T preserves the most meaningful connections between nodes
while effectively filtering out noise.

The denoised graph G(T') = (V,&r) is generated by
retaining only edges with weights w;; < T'. This filtering pro-
cess removes irrelevant edges, enhancing the graph’s structure.
The components of G(T') are:

o Nodes (Event Points): Each node i € V represents an
event point with feature vector:

Y

o Edges (Connections): The edge set & contains pairs
(1,7) satisfying:

fi = (@i, vi, ti, ps)-

Er ={(i,4) | wi; <T7}. 12)

o Edge Weights: Each edge weight w;;(see Equation (6))

C. AW-GATCN Network Architecture

1) Graph Convolutional Layer with Attention Mechanism:

In AW-GATCN, the graph convolutional layer employs an
attention mechanism that dynamically adjusts edge weights,
emphasizing the most relevant connections. The attention
weight «ay;; for each edge between nodes ¢ and j is computed
based on the features of the target node f; and its neighboring
node f;, using a combination of learnable attention parameters
and edge weights. In this framework, smaller edge weights
indicate stronger correlations, prompting an inverse adjustment
in the attention coefficient «;;; based on edge weight, thereby
enhancing the model’s ability to capture meaningful relation-
ships between nodes.

exp (o (aT 2] - 1))
Qi = p( ( il = )
Srenn o5 (o (72l - o))

where o is the LeakyReL U activation function, a is a learnable
parameter vector that captures the importance of neighboring
nodes, and z;; = W f; || W f; represents the concatenation
of the transformed feature vectors of nodes ¢ and j via the
weight matrix W. The edge weight w;;, calculated through
our adaptive weighting method, incorporates wi“ to emphasize
edges with stronger correlations (i.e., smaller weights), thereby
improving feature aggregation. In the denominator, A (z) de-
notes the set of neighboring nodes of i, and k iterates over
each neighboring node in A/ (7) for normalization.

The attention coefficients «;; are then used to aggregate
features from neighboring nodes, improving each node’s rep-
resentation by focusing on the connections with the highest
correlation. The aggregated feature for node 4, denoted by f/,
is computed as:

13)

i =

Z aiijj.

JEN(4)

(14)

By dynamically adjusting each neighbor’s influence based
on the computed attention weights, this approach allows
the network to selectively emphasize informative connections
while suppressing less relevant ones. This results in a more
accurate representation of the event-based data, ultimately ben-
efiting tasks like object recognition by enhancing robustness
against noise.

IV. PERFORMANCE EVALUATION
A. Experimental Setup

We evaluate AW-GATCN on four event-based datasets:
N-Caltech101, CIFAR10-DVS, MNIST-DVS, and N-CARS.
Event data are segmented using adaptive windows based on
normalized density and further voxelized via a square root law
to balance spatial-temporal granularity. Graphs are constructed
within each voxel with edge weights incorporating Euclidean
distance, velocity, angular difference, and polarity consistency.
Noise is filtered by maximizing the variance of the normalized
degree distribution. AW-GATCN employs graph attention for



TABLE I: Comparison of object recognition accuracy across four datasets using various methods.

Method Representation N-Caltech101 CIFAR10-DVS MNIST-DVS N-CARS
H-First Spike 5.4 7.7 59.5 56.1
Gabor-SNN Spike 19.6 245 82.4 78.9
HOTS TimeSurface 21.0 27.1 80.3 62.4
HATS TimeSurface 64.2 52.4 98.4 90.2
DART TimeSurface 66.4 65.8 98.5 -
YOLE VoxelGrid 70.2 - 96.1 92.7
AsyncNet VoxelGrid 74.5 66.3 99.4 944
NVS-B Graph 67.0 60.2 98.6 91.5
NVS-S Graph 67.0 60.2 98.6 91.5
EvS-B Graph 76.1 68.0 99.1 93.1
EvS-S Graph 76.1 68.0 99.1 93.1
AW-GATCN (Ours) Graph 83.77 76.79 99.3 96.89

feature aggregation, with fixed weight parameters o = 0.7,
8 =01, v = 0.1, and 6 = 0.1. All models are trained
using PyTorch with 400 epochs under 5-fold cross-validation.
Accuracy is used as the evaluation metric.

B. Comparison with Graph-based Methods for Object Recog-
nition

With optimal weight parameters (o« = 0.7, = 0.1,y =
0.1,6 = 0.1), we evaluated our AW-GATCN model against
state-of-the-art methods on four event-based object recognition
benchmarks: N-Caltech101, CIFAR10-DVS, MNIST-DVS,
and N-CARS. N-Caltech101, CIFAR10-DVS, and MNIST-
DVS are derived from frame-based datasets by displaying
moving images on a monitor and recording events with a
fixed camera or monitor. N-Caltech101 matches the original
Caltech101 in structure, with 8,246 samples across 101 classes.
CIFAR10-DVS contains a sixth of the original CIFARIO
dataset, totaling 60,000 samples (6,000 per class). MNIST-
DVS uses 10,000 symbols from MNIST, displayed at three
scales, for a total of 30,000 samples. In contrast, N-CARS is
captured directly with an event camera in real-world scenes,
containing 12,336 car and 11,693 non-car samples.

As shown in Table I, AW-GATCN achieved top-tier ac-
curacy across all datasets, significantly outperforming exist-
ing approaches. Specifically, our model attained recognition
accuracies of 83.77%, 76.79%, 99.3%, and 96.89% on N-
Caltech101, CIFAR10-DVS, MNIST-DVS, and N-CARS, re-
spectively. On challenging datasets such as N-Caltech101 and
CIFARI10-DVS, AW-GATCN outperformed previous methods
by a substantial margin, underscoring its robustness and effec-
tiveness in complex, asynchronous event-based environments,
where noise and heterogeneous data often pose significant
challenges.

The results validate the effectiveness of the selected weight
parameters from Experiment 1, which balanced edge factors
to optimize both feature representation and noise reduction.
The adaptive weighting approach allows AW-GATCN to dy-
namically adjust to diverse data characteristics, enabling it to
perform well across different data domains.

In summary, these findings demonstrate the efficacy of AW-
GATCN asynchronous event processing, establishing it as a
robust and accurate model for event-based object recognition.
By achieving high accuracy and resilience to noise across
diverse settings, AW-GATCN shows significant potential to
advance the state-of-the-art in event-driven applications.

C. Ablation Study

1) Determination of Weight Parameters: We conducted
experiments to optimize the weight parameters for multi-factor
edge weighting across three datasets: N-END, D-END [30],
and N-CARS, aiming to identify the optimal parameter con-
figuration to maximize classification accuracy. The Event
Noisy Dataset (END) consists of two parts: D-END (Daytime)
and N-END (Night), providing diverse conditions to evaluate
performance across different lighting environments.

The four evaluated weight configurations are as follows:

e Combl:a=1,=0,vy=0,0=0

e Comb 2: «=0.8,58=0.1,y=0.05,6 = 0.05

e Comb3: =0.7,=0.1,y=10.1,6 =0.1

e Comb 4: «=0.6,5=0.2,y=0.1,§ =0.1

These configurations reflect our approach, which leverages
multiple factors for noise reduction rather than relying solely
on Euclidean distance. Euclidean distance retains a higher
weight as the primary criterion for noise determination, while
additional factors provide supplementary information. Comb
2 assigns the highest auxiliary weight to velocity vector
difference as it is the most relevant secondary factor. Comb 1,
using only Euclidean distance, serves as a baseline.

Each configuration was tested using five-fold cross-
validation, with the dataset split into five folds. Each fold was
used as a test set once, while the remaining four folds formed
the training set. The mean accuracy across the five runs was
recorded for each configuration.

As shown in Table II, the configuration in Comb 3 achieved
the highest accuracy on the D-END and N-CARS datasets,
with scores of 93.65% and 96.89%, respectively. This balanced
configuration, where Euclidean distance serves as the primary
factor and auxiliary factors assist with noise reduction, proved
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Fig. 3: Compared to Original Data, Comb 3 effectively reduces the number of event points while retaining the primary structure

of the recognized object.

TABLE II: Recognition accuracy (%) for various weight
parameter combinations across different datasets (D-END, N-
CARS, and N-END).

Dataset Comb1 Comb2 Comb3 Comb4
D-END 89.15 91.73 93.65 90.81
N-CARS 90.63 94.64 96.89 91.57
N-END 79.52 81.71 80.40 80.97

particularly effective for complex datasets. For the N-END
dataset, Comb 2 achieved slightly higher accuracy at 81.71%,
suggesting that emphasizing Euclidean distance is beneficial
for datasets with similar characteristics.

As shown in Figure 3, Comb 3 effectively reduces the
number of event points compared to other configurations,
achieving an optimal balance between noise reduction and
structural preservation. This configuration retains the essential
characteristics of the object, allowing the network to capture
critical spatial and temporal patterns necessary for accurate
recognition. By selectively filtering out redundant or irrelevant
data points, Comb 3 creates a more concise and refined
representation of events, enhancing recognition performance
without compromising the object’s primary structure. This bal-
ance between noise reduction and structural integrity accounts
for Comb 3’s superior accuracy across most datasets.

These results indicate that while Comb 3’s balanced multi-
factor approach generally provides optimal performance, ad-
justing the weight distribution, as in Comb 2, may yield
improvements for specific datasets. Overall, a balanced config-
uration combining Euclidean distance with secondary factors

is robust across diverse data conditions.

2) Verification of Denoising Effectiveness: To assess the
impact of denoising, we conducted a comparative test of
recognition accuracy using Comb 3, evaluating performance
with and without denoising across the D-END, N-CARS, and
N-END datasets. As shown in Table III, the denoising process
significantly enhances recognition accuracy on all datasets.
Specifically, denoising improved accuracy by 17.19% on D-
END and 19.57% on N-CARS, demonstrating the robustness
of AW-GATCN in complex background scenarios where noise
can obscure essential features.

For N-END, which primarily consists of data captured at
night, the low-light conditions make the structure of objects
less distinct, creating a complex noise environment. Denoising
led to a 12.2% improvement in accuracy, which, although
smaller compared to more challenging datasets, underscores
the generalizability of the denoising approach across various
data complexities. By reducing noise interference, our model
facilitates more accurate feature extraction, allowing the at-
tention mechanism to prioritize meaningful connections over
noise, which is essential for object recognition tasks in low-
visibility scenarios.

These results validate the role of denoising in the AW-
GATCN model, showing that the adaptive noise reduction
strategy not only improves robustness in complex environ-
ments but also contributes to higher recognition accuracy
across diverse data conditions. This ablation study underscores
the effectiveness of incorporating denoising within a graph-
based neural network framework, emphasizing its impact on
model performance.



TABLE III: Recognition accuracy (%) with and without de-
noising, using the Comb 3 weight configuration on D-END,
N-CARS, and N-END datasets.

Comb Group D-END N-CARS N-END
With Denoising 93.65 96.89 80.40
Without Denoising 76.46 77.32 68.2
Improvement 17.19 19.57 12.2

V. CONCLUSIONS

We introduced AW-GATCN, an Adaptive Weighted Graph
Attention Convolutional Network tailored for event-based
data processing, excelling in denoising and object recogni-
tion. By integrating adaptive event point segmentation, multi-
factor edge weighting, and an adaptive graph formulation-
based noise reduction approach, AW-GATCN achieves supe-
rior accuracy and robustness, especially on noisy, heteroge-
neous event camera data. Experimental results show that AW-
GATCN outperforms state-of-the-art methods with significant
accuracy gains on challenging datasets. The optimized weight
parameters and attention mechanism effectively prioritize es-
sential connections, capturing spatiotemporal relationships that
enhance noise resilience, feature aggregation, and recognition
performance.
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