Discrete ConvolutionalFixedSum

David Grifﬁnl[0000700027407770005] and Robert 1. Davisl[0000700027577270928]

Department of Computer Science, University of York, UK
{david.griffin,rob.davis}@york.ac.uk

Abstract. The ConvolutionalFizedSum (CFS) algorithm provides a gen-
eralization of the UUnifast and RandFizedSum algorithms enabling the
generation of vectors of uniformly sampled random values that sum to a
specified total, while respecting upper and lower constraints on each in-
dividual element. ConvolutionalFizedSum provides a foundational tech-
nique that is used in the generation of synthetic tasks sets that under-
pin the performance evaluation of real-time scheduling algorithms and
schedulability analysis techniques. The CFS algorithm generates contin-
uous values; however, some use cases, for example considering message
and packet scheduling on communications networks, require solutions
that are constrained to discrete values. Adapting the CFS algorithm
to the discrete case is non-trivial, with simple rounding to the nearest
lattice point producing a non-uniform distribution. In this paper, we
present the Discrete-ConvolutionalFizedSum (DCFS) algorithm, which
solves this problem.

Keywords: Task Set Generation - Random Sampling - Real-Time Sys-
tems

1 Introduction

ConvolutionalFizedSum (CFS) [14] provides a foundational technique that is
used in the generation of synthetic tasks sets that underpin the performance
evaluation of real-time scheduling algorithms and schedulability analysis tech-
niques. The CFS algorithm generates vectors of a specified length, n, comprising
uniformly sampled random values that sum to a specified total, ¢, while re-
specting a vector of upper constraints, uc, and a vector of lower constraints lc.
Specifically, if the vector returned is p, with components p; for i = 1...n, then
ELI p; =t and V; lc; < p; < uc;. CFS ensures that the vectors returned are
uniformly distributed over the valid region demarcated by the upper and lower
constraints on the individual values and the fixed sum. The CFS algorithm was
published in 2025, addressing uniformity issues found with an earlier algorithm,
Dirichlet-Rescale (DRS) [12], that aimed to solve the same problem.

In the real-time systems field, the most common use case for the DRS and
CFS algorithms is generating sets of n task utilization values that sum to a
fixed total utilization, subject to constraints that arise due to the nature of the
problem considered, e.g. mixed-criticality scheduling, multi-core scheduling etc.

2 D. Griffin and R. I. Davis

These vectors of utilization values are used in constructing the synthetic task
sets required for systematic evaluation of scheduling policies, tests, and analyses.
Some of the potential use cases for CFS are for discrete sampling problems,
rather than continuous ones. For example, work on exact analysis for global
scheduling requires the generation of task sets with small integer parameters,
enabling the evaluation of analysis techniques with very high complexity [2J6].
This leads to a requirement for discrete solutions. Other examples include the
evaluation of scheduling algorithms and schedulability tests for real-time com-
munications networks. Here, the overall network bandwidth considered is allo-
cated to recurring messages that are themselves made up of a number of fixed
length packets, again leading to a requirement for discrete solutions. Finally,
since CFS is a general-purpose algorithm, examples from other domains include
the evaluation of different approaches to patient bed allocations on admission to
hospital [I7], with an integer number of beds available per department.

Given that CFS samples from R", a simple question to ask is whether this
algorithm is appropriate for discrete sampling. This paper shows that naive
approaches to adapting CFS to the discrete problem do not necessarily yield
a uniform distribution. We therefore present Discrete-ConvolutionalFizedSum
(DCFS), which builds upon CFS, enabling the discrete sampling problem to
be solved. DCFS guarantees that the outputs form a uniform distribution with
respect to the set of discrete solutions (lattice points) contained within the valid
region demarcated by the constraints and the fixed sum.

1.1 Paper Structure

This paper is organised as follows: Section [2| briefly reviews related work, in-
cluding other sampling methods and concrete applications where this type of
sampling problem is relevant. These include examples from real-time systems as
well as other fields. Section [3]introduces a ground truth for the discrete sampling
problem in the form of enumeration sampling, which is impractical for larger
problems due to its very high complexity. The DCFS algorithm is then derived,
and the pitfalls of adapting CFS to the discrete case documented, showing that
a naive approach may yield a non-uniform distribution. Section [4] provides an
evaluation of the methods presented, and a detailed verification, showing that
the outputs of DCFS form a uniform distribution. Runtime performance char-
acteristics are also examined. Finally, Section [5] provides a summary of the work
and concluding remarks.

2 Related Work

In the real-time systems field, Bini and Buttazo [4] identified that existing ap-
proaches to evaluating schedulability algorithms for single processor systems
were biased due to task utilization values that summed to a fixed value being
generated in a non-uniform manner. To address this problem, they proposed the

Discrete ConvolutionalFixedSum 3

UUnifast algorithm [5]. The Dirichlet Distribution [2I] can also be used to the
same effect [12].

Evaluating scheduling algorithms for multiprocessor systems [I0] introduces
additional requirements, specifically that no individual task can have a utilization
greater than 1, even though the total utilization required may be as large as m,
where m is the number of processors. Davis and Burns’ initial approach to solving
this problem, referred to as UUnifast-Discard |9], simply discarded values that
violated the per task constraint. This is tractable when the number of tasks is
relatively high in relation to the total utilization required, otherwise the discard
rate becomes prohibitive. Fortunately, in such cases Stafford’s RandFizedSum
algorithm [24], identified by Emberson et al. [I1], is applicable.

The advent of mixed-criticality scheduling [7] resulted in additional require-
ments: the low-criticality utilization of each task cannot exceed its high-criticality
utilization. This translates into each variate having a separate upper constraint
when generating low-criticality utilization values, assuming that the high-criticality
values have been set first. Alternatively, it translates into each variate having a
separate lower constraint when generating high-criticality utilization values, as-
suming that the low-criticality values have been set first. RandFizedSum [24]11]
is unsuitable for this problem, since it exploits symmetry and therefore man-
dates that every variate generated must satisfy the same constraint. UUnifast-
Discard [9)] could be adapted to handle individual constraints; however, the re-
sulting discard rate renders this approach intractable for many such problems.

The Dirichlet-Rescale (DRS) algorithm introduced by Griffin et al. [I2] at-
tempted to address the problem of individual constraints, employing repeated
rescales to transform a randomly sampled point such that it lies within the region
specified by the constraints, while preserving uniformity. However, it was later
shown that there were a number of issues with DRS, rendering the resulting
distribution non-uniform in some cases [14/25].

To address the non-uniformity of DRS, Griffin and Davis [I4] proposed the
ConvolutionalFixzedSum algorithm. CFS works by observing that the region de-
scribed by a set of n arbitrary constraints can be expressed as the intersection
of two (n — 1)-dimensional simplices lying on a hyperplane in n-dimensional
space. With this knowledge, C'F'S employs convolution to calculate the volume
of the intersecting region, and then uses the Interpolate-Truncate-Project (ITP)
algorithm [20] to construct the Inverse Marginal Cumulative Distribution Func-
tion [23] of the uniform distribution over the region. This in turn enables Inverse
Transformation Sampling [23] to be used to draw from the uniform distribution.
As convolution is an operation that can be approximated, Griffin and Davis [14]
provided two implementations of CFS: an analytical version with O(2") com-
plexity, and a numerical approximation with O(n? slog(sn)) complexity, where
n is the number of dimensions, and s is proportional to the accuracy of the
approximation.

To verify that the outputs of CFS form a uniform distribution, Griffin and
Davis [I4] used the volume calculations from CFS to generate a sensitive statis-
tical test of uniformity, referred to as the slices test. The slices test divides the

4 D. Griffin and R. I. Davis

valid region into a number of slices and compares the point density of these slices.
These tests were repeated across multiple test instantiations and metastatistics
employed to verify that the empirical distribution across all experiments was as
expected. While this approach is robust, one critique is that it used a standard
x? test, when it is normally preferable to use the G-test instead [19].

An alternative to the direct sampling approach of CFS is the Matrix Hit and
Run (MHAR) algorithm [8]. MHAR utilizes Monte-Carlo sampling to generate
uniform points on an arbitrary polytopeﬂ However, MHAR scales at O(2%") in
this use caseEI, and due to the use of Monte-Carlo sampling cannot yield truly
independent values, which may limit the applicability of the approach.

The problem of sampling with constraints has appeared in many research
areas; however, before the advent of the DRS and CFS algorithms, there was
no efficient solution. This resulted in other approaches being used, often without
regard for uniformity. While there are very many cases where other approaches
were used to provide continuous values, the following are a few examples of where
discrete solutions would be useful.

In their work on exact analysis for global scheduling, Baker and Cirinei [2]
commented that, “The jaggedness of the graph is due primarily to the small range
of integer values permitted for periods and execution times, which produces only a
small number of possible utilization values and makes some values more probable
than others.” Later research in this area [6] generated task periods at random,
before using an ILP to solve for a set of execution times and hence utilization
values with the minimum discrepancy from the desired total. While effective
in finding solutions, this approach did not consider the characteristics of the
distribution of utilization values so obtained.

In network scheduling, there are scenarios where long messages are split into
multiple packets that effectively have a fixed length, either as part of the protocol
employed, or for gatewaying onto another network that only supports much
shorter messages. For example, transfer of messages from TSN to CAN [26] or
the transfer of segmented (multi-packet) messages between CAN networks [1].
In both cases, the evaluation assumed that longer messages were comprised of
a fixed number of packets (e.g. 10, 20, 30, 40, ...), without considering the
characteristics of the distribution of network utilization values obtained.

Outside of the real-time systems domain, the DRS algorithm has been used
in the study of algorithms for bed allocation within hospitals [I7]. Here, the
total number of beds in a hospital was assumed fixed, and the effectiveness of
the algorithms proposed evaluated for different allocations of those beds between
departments and overflow wards. Discussing their use of the DRS algorithm, Li
et al. [I7] note that, “rounding is required since the number of inpatient beds is
an integer.”

1 A polytope is a flat sided shape in n-dimensions; a generalization of a polyhedron.

2 The authors of MHAR state that their algorithm scales at O(m*), with m being the
number of points that define the polytope; the intersection of two n-simplicies has
up to 2" points, hence an overall complexity of O(2*").

Discrete ConvolutionalFixedSum 5

The mismatch between CFS’s continuous samples and the discrete values
required can be bridged by a discretization step, i.e. by rounding the values
produced. While this is a straightforward method, as we later show, it does not
guarantee a uniform distribution. The extent of the non-uniformity is dependent
on the parameters of the problem, and may not necessarily change the conclu-
sions reached in prior research that has taken this approximate approach. Best
practice would, however, be to make use of an algorithm that guarantees a uni-
form distribution, hence making it equally likely that every possible input to the
scheduling problem of interest is considered.

2.1 Prior work in Mathematics

Barvinok’s algorithm [3] forms the foundational work in this area, providing a
means of counting the precise number of lattice points in a polytope. An im-
plementation of Barvinok’s Algorithm, called Latte, is openly availableﬂ along
with information about the supporting theory and implementation [I8]. Unfor-
tunately, Barvinok’s algorithm has complexity that is exponential in n. Initial
experiments with the Latte implementation indicated that the runtime of the al-
gorithm grows at approximately O(3"), which very quickly becomes prohibitive.

Kannan and Vempala [I5] provide a theorem about the conditions under
which the volume of a polytope approximates well the number of lattice points
that it contains. Effectively the polytope must be able to contain a ball of radius
ny/log(f) where n is the number of dimensions and f is the number of facets
(faces). If this condition holds, then sampling the lattice points within the poly-
tope can be done efficiently by sampling the real points within the polytope and
then rounding to the nearest lattice point. Translating to the problem that we
are interested in, this condition would require that the extent of the polytope,
in terms of a permitted tolerance ¢ on the total ¢ to exceed ny/log(f) times
the lattice spacing in each dimension. For n = 5 and a maximum lattice spac-
ing of 0.01, the minimum acceptable value of € would be 0.05 or 5%, which is
already beyond what may be acceptable for most schedulability analysis exper-
iments. Higher dimensionality and larger lattice spacing, would only exacerbate
the issue.

Pak [22] proposed a method of sampling lattice points that chooses a hyper-
plane that dissects the polytope into two sections, X and Y, as well as Z the
intersection between the polytope and the hyperplane. One of X, Y, and Z is
then selected using probabilities based on the number of lattice points in each
section, computed using Barvinok’s algorithm. This process then repeats, either
with a reduced number of points in X or Y or reduced dimensionality in Z, until
a single point is selected. Overall, this requires a polynomial number of calls to
Barvinok’s algorithm to evaluate the number of points in each of the smaller and
smaller polytopes considered. Unfortunately, due to the complexity and runtime
of Barvinok’s algorithm, this form of solution is not tractable for the problems
that we consider.

3 https://www.math.ucdavis.edu/latte/

https://www.math.ucdavis.edu/~latte/

6 D. Griffin and R. I. Davis

3 Solutions to the Discrete Sampling Problem

In this section we describe potential solutions to the discrete sampling problem.
In doing so, we also show why nalve approaches are insufficient.

Definition: The Discrete Sampling Problem can be defined as follows:
Take as input the number of dimensions n, a total to allocate t, a tolerance e
in achieving this total, vectors of upper and lower constraints on each random
variate uc and Ic, and a lattice. The lattice is specified via a lattice spacing vector
A, and a base lattice point A that lies within the valid region. The base lattice
point sets the lattice offset with respect to the co-ordinate system. The lattice
need not be spaced evenly in each dimension. As output, return a randomly
chosen lattice point that is valid, i.e. satisfies the constraints, the elements of
which sum to ¢, within a tolerance of +e. Further, every valid lattice point should
have an equal probability of being returned.

3.1 Tolerance

In the continuous case, n component values can always be obtained that sum
exactly to the required total t, provided only that the problem is a valid one,
i.e. with constraints that do not prevent that total from being obtained. In the
discrete case; however, a precise total ¢ may not be achievable depending on
the specified lattice spacing and offset. For example, with a lattice spacing of
[0.3,0.4], zero offset, lower constraints of zero and no upper constraints, a total
of ¢t = 0.5 cannot be precisely obtained. A degree of tolerance € is required,
permitting totals in the range [t — €,t + €]. For example, e = 0.1 would permit
lattice points where the component values sum to a total in the range [0.4,0.6],
which is possible given the lattice spacing, resulting in two valid lattice points
(0,0.4) and (0.6,0).

Even if a precise total can be achieved, the number of lattice points that
intersect with the hyperplane denoted by that total may be very small. As an
example, in a three dimensional system with ¢t = 1 and using the lattice spacing
[%7 %, %], zero offset, lower constraints of zero and no upper constraints, only the
lattice points (1,0,0), (0,1,0) and (0,0, 1) actually lie on the hyperplane ¢ = 1.
It is unlikely that this behavior is useful or even what was really intended. In this
case, the effect of including a tolerance of ¢ = 0.1, rather than 0, is to increase
the number of valid lattice points from 3 to 8, with additional valid lattice points
added at (%, %,)s <%7 %0), (%,O, %), (%,0, %>7 and (%, %, %)

In the typical use cases, generating task utilization values, the tolerance
equates to a permitted margin on the total utilization required, for example
0.5 £0.01, meaning 50% utilization +1%. For discrete problems, adding a toler-
ance of at least half of the smallest lattice spacing is typically required to obtain
meaningful outputs, without sparse areas appearing in the set of valid lattice
points.

Discrete ConvolutionalFixedSum 7

3.2 Enumeration Sampling

A basic approach for sampling from a discrete lattice is to simply enumerate all
of the lattice points within the valid region, and use this information to derive
an appropriate sampling function.

Enumeration sampling can be implemented in a number of ways. By regular-
ising the lattice points (i.e. performing rescaling and translation such that the lat-
tice points lie in Z™), Barvinok’s algorithm [3] can be combined with a numerical
inverse method such as the ITP algorithm [20] to perform inverse transform sam-
pling in each dimension. However, Barvinok’s algorithm has a high complexity.
If we assume that the rescaled bounds of the problem fit within an n-dimensional
hyper—rectangleﬁ with dimensions denoted by the vector m, then the complex-
ity of Barvinok’s algorithm can be expressed as O(log(max(m))™!°8™) [16]. This
means that an approach based on Barvinok’s algorithm would have substantially
worse complexity than the analytical form of the CFS algorithm [I4].

Rather than use Barvinok’s algorithm, for comparison purposes we imple-
ment enumeration sampling via a simple enumeration technique that constructs
a list of all valid lattice points. Observing that the vector m used in the descrip-
tion of the complexity of Barvinok’s algorithm denotes the number of lattice
points that span the valid region in each dimension, we note that there are
[T, m; lattice points within the hyper-rectangle that bounds the valid region.
As checking if a lattice point p is within the valid region involves only a trivial
comparison against each of the constraints, enumerating every valid lattice point
is surprisingly viable, provided that the number of dimensions n is low enough
and the lattice spacing is not particularly dense, and hence the values of m; are
small. Once a list of all the valid lattice points has been constructed, sampling
from the list can be accomplished in constant time, by uniformly sampling an
index for the list and returning the associated lattice point. For problems that re-
quire multiple samples from the same set of constraints, the cost of enumerating
all valid lattice points can be amortised across all of the samples produced.

The main issue with this simple technique for enumeration sampling is gen-
erating the list of all valid lattice points, which has O(n[[_, m;) time and
O(IT}_, m;) memory cost. Hence, when the number of dimensions is high, or the
lattice spacing is dense, enumeration sampling becomes intractable. This should
not be a surprise, since the problem of counting lattice points within a polytope,
such as the valid region in our problem, is known to be NP-hard. (Kannan and
Vampala [15] showed that the problem can be reduced to determining if a graph
is Hamiltonian, a known NP-hard problem). It would therefore be desirable to
be able to draw samples without having to count or enumerate the lattice points.

3.3 Adapting Continuous Sampling

Given that enumeration-based sampling quickly becomes intractable, we aim to
adapt a faster continuous sampling method to the discrete sampling problem.

4 A hyper-rectangle is the generalization of a rectangle to higher dimensions.

8 D. Griffin and R. I. Davis

The intuition being to generate a point with a fast sampler in the continuous
domain and then round the generated point to the nearest lattice point.

In the following, we use the term bounding box to refer to a hyper-rectangle
centred on a lattice point, such that the bounding box encloses all of the continuous-
valued points that have that lattice point as their closest lattice point. In other
words, only points whose co-ordinates round to the lattice point are enclosed
within the bounding box. Since the lattice has basis vectors that are orthogonal,
the closest lattice point to any arbitrary point can be obtained by minimizing
the error in each co-ordinate independently, i.e. by rounding to the nearest dis-
crete value given by the lattice spacing and offset. This follows directly from the
formula for the Euclidian distance between two arbitrary points v and w, given
by the generalization of the Pythagorean theorem: \/(Zi:l,n(vi —w;)?).

The intuition behind the DCF'S algorithm is to define an expanded region
that contains the bounding boxes of all the valid lattice points, i.e those lattice
points that are within the valid region. The CFS algorithm is then employed
to generate a point uniformly distributed over this expanded region. Since the
distribution of points generated by the CFS algorithm is uniform over the ex-
panded region, it is also uniform over any subset of that region. Specifically, it
is uniform over a subset of the expanded region containing only the bounding
boxes of all the valid lattice points. The point generated by the CFS algorithm is
rounded to the nearest lattice point, and any such lattice points that are outside
of the valid region are discarded. In the case of a discarded lattice point, the
CFS algorithm is called again until a valid lattice point is generated. The valid
lattice point is then returned by the DCFS algorithm. As a consequence, the
DCFS algorithm generates lattice points with a uniform distribution over the
valid region. In other words, it generates all valid lattice points with the same
probability, equal to 1/N where N is the number of valid lattice points.

Figure [I] provides an illustrative example of the expansion in 2 dimensions x
and y, with a lattice spacing of [0.1, 0.08], target total of t = 0.8, and a tolerance
of € = 0.04. The lower bounds (0.1,0.08) correspond to the lattice spacing, and
the upper bounds are (1, 1). The solid black lines running diagonally across the
figure delimit the extent of the valid range of total values, in other words those
lines are x +y = t+ € = 084 and z +y = t — e = 0.76. The red dashed
line represents the target total, z +y = t = 0.8. The solid black lines running
vertically and horizontally indicate the minimum individual values, x = 0.1
and y = 0.08 respectively. In other words, the trapezium formed by the solid
black lines demarcates the valid region in terms of the values that the total
t = x +y could take. Within this valid region, there are 9 lattice points, marked
by large green dots at co-ordinates (0.08,0.7), (0.16,0.6), (0.24,0.6),(0.32,0.5),
(0.4,0.4),(0.48,0.3), (0.56,0.2),(0.62,0.2), and (0.72,0.1). Each lattice point is
at the centre of its bounding box, indicated by black dashed lines. Further, the
blue lines demarcate the expanded region that encloses the bounding boxes of
all of the valid lattice points. This expanded region increases the tolerance by
half of the sum of the lattice spacing, i.e. 0.09, thus the diagonal blue lines are
at x +y = 0.93 and = + y = 0.67. The expanded region also reduces the lower

Discrete ConvolutionalFixedSum 9

bounds by half of the lattice spacing, to x = 0.05 and y = 0.04 respectively,
and increases the upper bounds by half of the lattice spacing, to x = 1.05 and
y = 1.04 respectively. (Note, the upper bounds have no effect in this example as
they are above the total plus the expanded tolerance of 0.93).

In Figure |1} the 9 valid lattice points are shown color coded according to
a heat map representing the number of times that they are generated out of
1,000,000 samples. As expected, there is some small statistical variability (less
than 0.5%) around the average frequency at which each lattice point is returned,
however, the distribution in this case is uniform.

180,000

160,000
140,000
L[120,000
t-{ 100,000

1 |s0,000
Ieomo
J B0000
Fig. 1: Tllustrative example of expanding the constraints and the tolerance to en-
close the bounding boxes of all valid lattice points: Lattice spacing [0.1,0.08], tar-
get total t = 0.8 (dashed red line). Tolerance ¢ = 0.04, lower bounds (0.1, 0.08),
demarcating the valid region (solid black lines). Tolerance extended by 0.09,
lower bounds extended to (0.05,0.04), demarcating the expanded region (solid

blue lines). Valid lattice points (green dots) and their bounding boxes (dashed
black lines). Note, the distribution of lattice point frequencies is uniform.

In Figure|l] the bounding boxes of all of the valid lattice points are contained
within the expanded region; however, some invalid lattice points (not shown in
the figure) can also be generated by rounding, for example, invalid lattice points
(0.24,0.5), (0.32,0.4), and (0.4,0.3) among others. This is a side effect of the
expansion, and if such a lattice point is generated, then the algorithm should
discard it and simply try again. While the bounding boxes of these invalid lattice
points do not completely lie within the expanded region, as they are discarded
the probability with which they are encountered is irrelevant to the correctness

10 D. Griffin and R. I. Davis

of the method. There is, however, an obvious performance impact from having
to discard some lattice points.

Figure [2] illustrates what happens if a naive approach is taken and the valid
region is not expanded. In this case, the lattice points are not generated following
a uniform distribution, but rather their frequency of occurrence reflects the area
of the intersection between the relevant bounding box and the valid region.
Hence the lattice point (0.4,0.4) is heavily over-sampled (136% of the expected
frequency), whereas the lattice point (0.72,0.1) is heavily under-sampled (43%
of the expected frequency).

180,000

160,000

140,000

t-{ 120,000

100,000

180,000
Ieo,ooo

40,000
Fig.2: Naive use of CFS with no expansion of the valid region: Lattice spacing
[0.1,0.08], target total ¢ = 0.8 (dashed red line). Tolerance € = 0.04, lower
bounds (0.1,0.08) on the = and y co-ordinates respectively. These constraints
demarcate the valid region (solid black lines). Valid lattice points are shown as

large color-mapped dots and their bounding boxes (dashed black lines). Note,
the distribution of lattice point frequencies is non-uniform.

For efficiency, it is important to limit the amount of expansion as far as
possible, since this impacts the algorithm’s performance through the generation
of invalid lattice points that are then discarded. To achieve the minimum viable
expansion, we first round the upper and lower constraints such that the volume
of the valid region is minimized, while still containing the same set of valid
lattice points. This is achieved by mapping each lower constraint to its ceiling
value, and each upper constraint to its floor value in lattice co-ordinates. In each
dimension, this aligns the lower constraint with the lowest layer of valid lattice
points and the upper constraint with the highest layer. With the valid lattice
points now on the edge of the valid region, subsequent expansion by exactly half

Discrete ConvolutionalFixedSum 11

of the lattice spacing is the minimum required to ensure that all of the bounding
boxes of the valid lattice points are fully contained within the expanded region.
(Note, the first step of tightening the constraints is not shown in the example in
Figures (1| and [2| which already has the lower constraints aligned to the lattice).

To ensure that it is possible to generate all of the continuously-valued points
that round to valid lattice points, it is necessary to expand the tolerance value
to counteract the maximum effect of rounding on the continuous values in n
dimensions. The worst case occurs when the rounding is of the maximum value
possible in each dimension and all of the rounding is in the same direction, either
positive or negative. Hence the increase in tolerance required equates to half of
the sum of the lattice spacing over all n dimensions.

3.4 Discrete-ConvolutionalFiredSum (DCFS) Algorithm

To counter the exponential complexity of enumeration-based sampling, the DCFS
algorithm makes use of CFS for continuous sampling, which has the option of
a polynomial approximation. Addressing the issues discussed in the previous
section, the DCFS algorithm is formulated as follows:

1. DCFS takes as its input the number of dimensions n, a total to allocate ¢,
a tolerance € on that total, vectors of upper and lower constraints on each
random variate uc and lc, and a lattice. The lattice is specified via a the
lattice spacing vector A and a base lattice point A that lies within the
valid region. The base lattice point sets the lattice offset with respect to the
co-ordinate system.

2. The lower and upper constraints and the tolerance are expanded to encom-
pass a region containing all of the continuously-valued points that round

onto any valid lattice point. This is achieved as follows:

— First, the individual lower and upper constraints are tightened so that,
with respect to each dimension, they align with the lowest and highest
layer of lattice points demarcated by the original constraints. Then the
lower constraints are reduced, and the upper constraints increased by
half of the lattice spacing. This ensures that the bounding boxes for each
valid lattice point are contained within the expanded constraints, while
keeping the expansion to a minimum. Thus: Ic’ + [1Z2]A + A — A /2
and uc’ + |22 A+ A+ A/2.

— Second, the tolerance is increased by half of the sum of the lattice spacing
over all n dimensions. This ensures that the expanded region contains
all of the continuously-valued points that on subsequent rounding to the
nearest valid lattice point reduce or increase their overall sum by up to
half of lattice spacing in every dimension, and the revised sum is then

within the original tolerance specified. Thus € + ¢ + 24

3. The problem is then cast up one dimension from n to n +21, with the ex-
tra dimension representing the discrepancy between the sum of the first n
components and the required total ¢t. Thus the (n + 1)-th component of the
upper constraint vector, uc, 1 = €, and similarly for the lower constraint
vector, lepp1 = —€

12 D. Griffin and R. I. Davis

4. CFS is then called with the expanded parameters (n + 1, t, uc’, 1c’) to
generate an (n + 1)-dimensional vector. Ignoring the (n + 1)-th component,
the corresponding n dimensional vector generated in this way is uniformly
distributed over the expanded region, with the sum of its component values
(i.e. its total) in the range [t — €/, t + €’]. (The n + 1-th component makes up
the difference, so that the sum of all n + 1 components is t).

5. Map the n dimensional vector generated in the previous step to the nearest
lattice point by rounding each component value to the nearest discrete value
on the lattice.

6. Check if the lattice point is within the valid region originally specified, as
demarcated by the original constraints uc and lc and the permitted range
for the total [t — €, ¢+ €]. If not, then reject the point and goto step 4, calling
CF'S again to generate a new point, otherwise return the valid lattice point.

Algorithm 1 Discrete-Convolutional FizedSum Algorithm

Input: Number of variates to generate, n, total to allocate, t, lower constraints on
variates, lc, upper constraints on variates, uc, a lattice spacing, A, a lattice offset, A,
a tolerance value, ¢, and a maximum number of retries, m.

Output: p, a uniformly sampled point from the continuous problem described by
t, €, uc, and lc, which lies on the lattice described by A and A.

L1’ + [2TA + A — A/2 > Expand lower constraints
20 uc’ « [YA A+ A+ A/2 > Expand upper constraints
3 € e+ % > Expand tolerance
4: append —¢ to 1c’ > Append expanded tolerance to lower constraints
5: append € to uc’ > Append expanded tolerance to upper constraints
6: c<+ 0 > Set retries count to 0
7: while ¢ < m do > Quit if exceed maximum number of retries
8: p + CFS(n+1,t,1c’,uc’)

9: Discard the last element of p’ > Remove value allocated to discrepancy

10: p < p’ round to nearest lattice point described by A and A
11: if (Vile; < pi <wuei) and abs ((3pi) —t) < e then

12: return p

13: end if

14: c+—c+1

15: end while

16: return Error - Maximum number of retries exceeded.

We implement DCFS via Algorithm [I} Lines [[] and 2] expand the lower and
upper constraints on each component. Line [3] computes the expansion needed
on the tolerance, represented by dimension n + 1. This equates to the maximum
difference in the sum of the first n dimensions that can be caused by rounding.
Lines [4] and [5] set up the lower and upper constraints for the added tolerance
dimension, resulting in a new n + 1 dimensional problem. Line [§] calls CFS on
the expanded problem in n + 1 dimensions. Line [J] removes the last element of

Discrete ConvolutionalFixedSum 13

the solution returned, since this is the residual value equating to the difference
between the sum of the first n elements and the required total ¢. Line [I0] rounds
the resulting n-dimensional point to the nearest lattice point, and Line [T1] checks
if this lattice point is valid. If so, then it is returned, otherwise the point is
discarded and the loop (Lines [7 to continues, until either a valid lattice
point is found or the maximum number of retries is exceeded. In the latter case,
an error message is returned, and the user must decide if they wish to change
their problem specification to be more tractable (i.e. with fewer discards), or to
allocate more computational resources to sampling and increase the number of
retries permitted.

One practical consideration when implementing this algorithm is the use
of floating points. Floating points are necessary to express non-integer lattice
spacings. However, efficient implementations of the rounding operation on Line
[I0] are particularly susceptible to floating point inaccuracy. Therefore, care is
needed when implementing this step. One effective mitigation is to substitute
the first comparison on Line with V,lc} + % < pi < ud, — %, which still
filters lattice points that do not meet the original constraints, while being robust
against floating point error.

In general, it is not possible to know exactly what the discard rate will be,
without enumerating all of the valid lattice points, which has a very high com-
plexity. It is however possible to derive a very pessimistic bound on the discard
rate by observing that for any valid problem, there is at least one valid lattice
point. In the worst case, if this is the only such lattice point, then the discard
rate is given by the volume of the expanded region divided by the volume de-
fined by the lattice spacing. Considering the analytical complexity, it is possible
to construct degenerate problem instances with zero tolerance and only a single
solution, i.e. only a single valid lattice point, with an exponentially high discard
rate. Such degenerate cases correspond to examples used to prove that the Sub-
set Sum Problem is NP—completﬁﬂ In practical cases, the discard rate is typically
much lower, as illustrated in the evaluation that follows.

4 Evaluation

In this section, we first report on a case study highlighting the pitfalls of convert-
ing from continuous to discrete solutions, and the need for both of the expansion
steps described in Section [3] We then provide a systematic evaluation of DCFS
in terms of the uniformity of the results produced, and also examine the runtime
performance of the algorithm. The evaluation considers four sampling methods:

Enumeration: Enumerate all valid lattice points, and randomly select one.

Naive CFS: No expansion; generate points using CFS, then round to the
nearest lattice point.

Intermediate CFS: Expand the constraints, but not the tolerance; gener-
ate points using CFS, then round to the nearest lattice point.

DCFS': Generate lattice points using the DCFS algorithm.

® https://en.wikipedia.org/wiki/Subset_sum_problem

https://en.wikipedia.org/wiki/Subset_sum_problem

14 D. Griffin and R. I. Davis

4.1 Case Study

The case study is based on a 3-dimensional problem with lower constraints set to
0, upper constraints set to (0.9,0.7,0.5), lattice spacing [0.1,0.1,0.1], a required
total of ¢ = 1, and a tolerance of ¢ = 0.1.

Figure[3|provides a 3-D projection showing the results. The lower constraints,
are represented by the blue simplex (triangle), and the upper constraints by the
red simplex. The area within these constraints, on the hyperplane t = x+y+2z =
1 plus or minus the tolerance of 0.1 is the valid region. With the projection used,
some of the valid lattice points shown appear to be outside of the valid region.
This is however an artefact of the projection used; due to the tolerance value,
these lattice points lie on a different hyperplane to the one, with ¢t = 1, on which
the constraints simplices are drawn.

Figure[3(a)|represents, via a heat map, the normalized frequency of each valid
lattice point as generated by enumeration sampling. As enumeration sampling
simply lists every valid lattice point and then selects one at random for each
sample, the resultant distribution is highly uniform, with a normalised frequency
of 1. As expected there is still statistical variation in the frequencies; however,
this is too small to see with the color map used.

Figure shows the results for the naive CFS approach, without any ex-
pansion to the region in which continuously-valued points are generated. This
clearly illustrates an issue: lattice points near the edge of the region are substan-
tially less likely to be generated. As previously discussed, this is due to these
lattice points having bounding boxes only part of which lie within the region that
CFS generates points on. While lattice points near the edge of the valid region
are under-represented, those near the centre of the region are over-represented.
The overall distribution is far from uniform.

Figure shows the results for the intermediate CFS approach with ex-
panded constraints, but no expansion of the tolerance. While the overall dis-
tribution is much improved, some lattice points in the centre of the region are
oversampled, and many more are slightly undersampled. Careful investigation
revealed that the oversampled points lie on the hyperplane x + y + z = 1 where
the tolerance is 0. Any points lying on the hyperplanes + y + z = 0.9 or
r+y+z = 1.1, where the tolerance is 0.1, are slightly undersampled, which also
explains why not every point in the center of Figure is oversampled.

Finally, Figure shows the normalised frequency of lattice points sampled
via the DCFS algorithm. As both of the causes of lattice point bounding boxes
exceeding the continuous sampling region are addressed by DCFS, we once again
have a highly uniform distribution. However, the trade-off compared to naive
CFS is an increase in execution time due to the DCFS algorithm having to retry
when it samples a point outside of the valid region. In this case, approximately
40% of the points generated had to be discarded and a new sample drawn.

4.2 Uniformity Testing

To test uniformity, we built upon the concept of the slices test [T4/I3] for the
continuous sampling problem. The slices test examines the average density of

Discrete ConvolutionalFixedSum

15

.%.

7 AXis

S

N,

W
N

% \\\
LS [N

(b) Naive CFS
N) 4+

R [N
LR [\ S

7 AXis
7 AXis

(c) Intermediate CFS

Normalised Frequency
0.00 0.580 1.10

2.20

Fig. 3: Case study showing the uniform distribution of lattice points produced by
sampling via (a) Enumeration and (d) DCFS; and the non-uniform distribution

of lattice points produced by sampling via (b) Naive CFS, with no expansion
and (c) intermediate CFS with constraint expansion only.

16 D. Griffin and R. I. Davis

points within 10 slices of the valid region each with equal volume, with the slicing
aligned to the chosen dimension, and the test repeated for all n dimensions. In the
continuous case, the equal volumes of the slices ensure that the expected number
of points generated in each slice is equal, assuming a uniform distribution. In the
discrete case, however, there is the potentially for a highly variable number of
valid lattice points within each equal volume slice, which makes the comparison
much more complex. To counter this, rather than use equal volume slices, we
partitioned the lattice points returned by exhaustive enumeration into 10 groups
containing, as far as possible the same number of lattice pointﬁﬂ

The groupings were aligned to each dimension in turn, using a rotated vec-
tor ordering of the lattice points, starting with the component for the chosen
dimension. As a simple example of the ordering used, consider the lattice points
(1,2,3), (1,2,4), (1,1,4), (2,2,2), (2,3,2). For the first dimension, ordering by
the first component, then breaking ties according to the second then third compo-
nents, results in the ordering: (1,1,4), (1,2,3), (1,2,4), (2,2,2), (2, 3,2). For the
second dimension, ordering by the second component, then breaking ties accord-
ing to the third then first components, results in the ordering: (1,1,4), (2,2,2),
(1,2,3), (1,2,4), (2,3,2). Finally, for the third dimension, ordering by the third
component, then breaking ties according to the first then second components,
results in the ordering: (2,2,2), (2,3,2), (1,2,3), (1,1,4), (1,2,4). Once the list
of lattice points was ordered, then it was simply partitioned into 10 approxi-
mately equal sets. The statistical tests then examined the frequency at which
the 10 sets of lattice points were sampled. This discrete slices test is analogous
to the slices test for the continuous sampling problem, and is similarly sensitive
to any non-uniformity around the edges of the valid region in any dimension.

Further, we added an extra ordering based on the total for each lattice point,
since due to the tolerance this total can vary. In this case the total was used
for initial sorting, with each of the m-dimensions in turn used to break ties.
In the running example, this results in the following ordering: (1,1,4), (1,2, 3),
(2,2,2), (1,2,4), (2,3,2). With the addition of tolerance-based ordering, the
discrete slices test is also sensitive to non-uniformity across lattice points with
different total values, i.e. residing on different hyperplanes.

Verifying uniformity requires a large number of systematic test cases. To
produce these test cases, we generated randomized problems as described below.
Without loss of generality, we assumed that all the lower constraints were zer(ﬂ
The number of dimensions, n, was varied between 3 and 10, we generated upper
constraints, uc, using UUnifast-Discard, with these constraints summing to 1.5.
For the lattice spacing A, we generated values according to the formula 0.2 +
0.3 - uc; - random(), where random() returns a value in the range [0, 1]. This

5 In the case that the total number of valid lattice points did not exactly divide by
10, then some of the groups had one more lattice point than others.

" The implementation of DCFS transforms each problem into one where the lower
constraints are zero, and reverses this transformation prior to returning the results.
Hence starting with the lower constraints set to zero has no impact on uniformity
testing, provided that the other parameters are varied appropriately.

Discrete ConvolutionalFixedSum 17

corresponds to the hyper-rectangle containing the valid region having between 2
and 5 lattice points along each dimension. For 10 dimensions, this results in at
most 59 lattice points, which is approximately 10,000,000. The lattice offset A
was set to A-random(), and finally, the tolerance was randomly chosen between
1 and 3 times the minimum lattice spacing over all of the dimensions.

0.005
0.101 Il Empirical Distribution EEE Empirical Distribution
— X*(9.DoF) 0.004 ~—— X’ (9 DoF)
>0.08*
>
= £0.003
20.06 2
8 g
£ .04 £0.002
0.001
0.000
10 15 0 1000 2000 3000
x? Statistic x? Statistic
(a) Enumeration (b) Naive CFS
0.10+ Em Empirical Distribution 0.10 Em Empirical Distribution
= (9 DoF) —— X2 (9 DoF)
0.08+
2 =
5 0.061 3
© ©
Q Q
o o
a 0.04 a
0.024
0.00-
10 15 20 25 30 10 15 20 25 30
x? Statistic x? Statistic
(c) Intermediate CFS (d) DCFS

Fig. 4: Meta-statistics: discrete slices test results verifying uniformity for sam-
pling via: (a) Enumeration and (d) DCFS; and highlighting non-uniformity for
sampling via: (b) Naive CFS with no expansion and (c) intermediate CFS with
constraint expansion only.

For each dimensionality n from 3 to 10, we performed 1,000 randomly gener-
ated experiments, with the parameters as described above. For each experiment,
we generated 10,000 lattice points, and so each discrete slices test compared
against an expected distribution with approximately 1,000 samples per slice.
In each experiment, the discrete slices test was applied aligned to each of the
n dimensions in turn, and also aligned to the (n + 1)-th dimension giving the
tolerance. With the slices determined and the empirical frequencies recorded, a

18 D. Griffin and R. I. Davis

x? 9 Degrees of Freedom (9-DoF) test was used to determine if the distribution
obtained matched that expected. The expected frequency for each discrete slice
was given by S K; /N, where S is the number of samples, N is the total number
of valid lattice points, and K; is the number of lattice points in that slice.

The systematic tests described above resulted in a total of 60,000 x? tests for
each of the four methods considered. We employed the meta-statistics approach
proposed by Griffin and Davis [I4] on this data in order to verify uniformity. The
60,000 x? statistics for each method formed an empirical distribution, which was
compared to the theoretical distribution of the 9-DoF y? statistic using a KS-
test. Figure 4] shows the empirical distribution for the x? statistic obtained via
each of the four methods as a bar chart, overlaid with a line representing the
theoretical distribution that it should match.

Figure shows the results from using enumeration sampling, and as ex-
pected, the empirical data matches the theoretical x? distribution, with a KS-
test p-value of 0.08, which is above the 0.05 significance threshold. However, the
same is not true of either Figures or corresponding the Naive CFS
and Intermediate CF'S methods, both of which fail the KS-test with a p-value of
0. These failures are due to substantial and consistent undersampling of edges
with Naive CF'S, and large excursions from expected sampling frequencies with
Intermediate CFS. Finally, the results for DCFS are shown in Figure DCFS
exhibits the same uniformity properties as enumeration sampling, passing the
KS-test with a p-value of 0.38 in this case.

4.3 Performance Testing

The amount of computation required to sample a point with DCFS is propor-
tional to two things: the complexity of the associated CFS problem, and the
number of discards that occur. The complexity of CFS is documented [14] as
being O(2") for the analytical method and O(n3 slog(sn)) for the numerical
method, where n is the number of dimensions, and s is proportional to the ac-
curacy of the approximation used. Note, using DCFS, n is increased by 1 due
to the addition of the tolerance. In this subsection, we first examine the discard
rate, and then the overall runtime performance of DCF'S.

For any specific problem, the discard rate is given by the volume of the
expanded region divided by the volume of the bounding boxes of all of the valid
lattice points, hence, there are three main factors that affect the discard rate:

1. The dimensionality n. Expansion of the constraints by half of the lattice
spacing in each dimension and expansion of the tolerance by half of the sum
of the lattice spacing over all dimensions increases the ratio between these
two volumes with increasing n.

2. The lattice spacing in relation to the volume of the valid region. If the lattice
spacing is dense, then the expansion of the valid region will be proportion-
ately smaller in relation to its volume.

3. How the lattice spacing divides into the total plus or minus the tolerance,
t £ e. If the lattice spacing divides these values exactly, then this results in

Discrete ConvolutionalFixedSum 19

a layer of lattice points along the two hyperplanes given by ¢t — € and ¢ + €.
As a consequence, more of the expanded region is covered by the bounding
boxes of the valid lattice points, and so the discard rate is lower. (See Figure
in Section [3] for an illustration of how lattice points on these boundaries
have more of their bounding boxes extending into the expanded region).

The discard rate can be approximated by the ratio of the volume of the
expanded region to that of the valid region, with the latter used to approximate
the volume of the bounding boxes of all the valid lattice points. Consider a
scenario with a regular lattice with equal spacing in each of the n dimensions,
with each lower and upper constraints separated by mA where A is the lattice
spacing, and a tolerance e = A. The volume of the valid region is proportional to
2m™, while the volume of the expanded region is proportional to (2+n)(m-+1)".
Hence the discard rate is O((14%)(14-)"), i.e. exponential in n, with a growth
rate that depends on (1 + %), where the metric m reflects the lattice density.

To investigate the effect that the three factors listed above have on the discard
rate, we carried out experiments conducting a parameter sweep over the number
of dimensions and the lattice spacing. In each of the experiments, we set the lower
constraints to 0, and specified no upper constraints (i.e. the upper constraints
were equal to the total plus the tolerance). Figure illustrates how the discard
rate varies with n, for a required total ¢ = 1.0, and tolerance ¢ = 0.1. The
results show the exponential growth in the discard rate as n increases. Figure
illustrates the discard rate for n = 10, a required total ¢ = 1.0, and a
tolerance € = 0, with the lattice spacing A varying from % to % and hence the
lattice density metric m varying from 15 to 3. In this experiment, the lattice
spacing always exactly divides the total plus tolerance. The results show how
the discard rate increases as the lattice density decreases. Figure illustrates
the discard rate for n = 10, a required total ¢ = 1.0, and a tolerance ¢ = %,
with the lattice spacing A varying from 11—1 to % and hence the lattice density
parameter m varying from 11 to 9. In this experiment, only the values of ﬁ, %
% for the lattice spacing exactly divide the total. The resulting discard rates for
these values (shown in blue) are smaller than those (shown in orange) for the
intermediate lattice spacings that do not exactly divide the total. These results
show how having layers of lattice points in the expanded region that are close
to the two hyperplanes given by ¢ — € and ¢ + € result in more of the expanded
region being covered by the bounding boxes of valid lattice points and hence
a lower discard rate. While the discard rate of DCFS increases at small lattice
densities, such problems have a relatively small number of valid lattice points
and so become more amenable to the enumeration technique. The maximum
discards parameter of DCFS can be used to check if DCFS is unsuited to a
particular problem, and if necessary attempt to use the enumeration technique.

The runtime performance of DCFS depends on the performance of the un-
derlying CF'S algorithm used, either analytical or numerical, and the rate of
discards (retries). Figure shows the execution time of enumeration sam-
pling and DCFS, using the analytical and numerical implementations (signal
size s = 10,000) of CFS, using the randomized experiments conducted for uni-

20 D. Griffin and R. I. Davis
1751
«» 150
B 1501 °
g 8125
%125 5
“ %5 100+
© 100 C
g g 75
£ 759 g
2 € 501
c 501 c
s S sl
= 251 =
0- 071111111111111
3456 7 8 9101112131415 514131211109 8 7 6 5 4 3
Dimensions Lattice Spacing

(a) Varying the number of dimensions n,
required total ¢ = 1.0, lattice spacing A =
0.1 and tolerance € = 0.1, discard rate av-
eraged over 1,000 generated lattice points

(b) Varying the lattice spacing for n = 10
dimensions, required total ¢ = 1.0, toler-
ance € = 0, lattice spacing exactly divides
the total plus and minus the tolerance

30 ,é, 10!
§25 &
S S 100
@ b=
220 &
8 21g—lO‘1
815 «
©
£ c
210 $ 10-2
c & 10
© =
() 5 ©
= Q
=103
0 3 5 7 9 11 13 15 17 19
Dimensions
— Enumeration —— DCFS (Analytic)y —— DCFS (Numeric)

(c¢) Varying the lattice spacing for n = 10
dimensions, required total ¢ = 1.0, toler-
ance A = é, showing intermediate points
between exactly dividing lattice spacings

(d) Mean runtime required to generate
1 lattice point with randomised con-
straints and spacing, using the Enu-
meration method and DCFS

Fig. 5: Performance of DCFS characterized by the discard rate and runtime.

formity testing. As these experiments use relatively sparse lattices, they are close
to the worst case for DCFS. This experiment was conducted on a PC with an
AMD 9800X3D processor. Here, DCFS behaves as expected given the complex-
ity of CF'S and the number of retries required. Numeric DCFS is faster for large
n, while analytical DCF'S is more performant for small n. Enumeration sampling
may also be a valid approach for sparse lattices. Enumeration sampling has one
advantage over DCF'S as the complexity is in the enumeration, not the sampling,
meaning that sampling any number of lattice points for the exact same prob-
lem has virtually the same cost as generating a single lattice point. However,
enumeration has the disadvantage of substantially higher base complexity, and
a dependency on cache and memory speed due to the amount of data created.

Discrete ConvolutionalFixedSum 21

5 Conclusions

Recent work on ConvolutionalFizedSum [14] provided a foundational technique
that can be used in the generation of synthetic tasks sets that underpin the per-
formance evaluation of real-time scheduling algorithms and schedulability anal-
ysis techniques. CFS effectively replaced the previous DRS algorithm [12] that
was aimed at solving the same problem, but later shown to have issues, in that
the outputs from DRS do not necessarily form a uniform distribution [I4125].

The CFS algorithm solves the problem of generating vectors of n component
values that sum to a fixed total, subject to individual upper and lower constraints
on those values. Further, the vectors produced are uniformly distributed over
the valid region demarcated by the constraints and the fixed sum. While CFS
generates continuous values, there are use cases that require solutions that are
constrained to discrete values, i.e. lattice points.

In this paper, we showed that adapting the CFS algorithm to the discrete
case is non-trivial, with simple rounding to the nearest lattice point producing
a non-uniform distribution. To solve this problem, we developed the Discrete-
ConvolutionalFizedSum (DCFS) algorithm. DCFS takes the same parameters
as CFS, along with a lattice spacing and a lattice offset. To address the issue
of lattice spacings that do not exactly sum to the target total, DCFS also takes
a tolerance, allowing vectors to be generated with components that sum to the
required total within plus or minus the permitted tolerance.

To test that the outputs from DCFS form a uniform distribution over all
of the valid lattice points, we performed randomized testing that exhaustively
enumerated all of the valid lattice points for each problem and then partitioned
them into equal sized groups along each dimension using rotated vector order-
ing. This formed the discrete slices test, analogous to the slices test used to
verify CFS [14]. We recorded the outputs of DCF'S against the groups of lattice
points, and then used y? tests on each data set, along with meta-statistics on
the distribution of the x?2 statistic to verify uniformity. Finally, we examined
how the performance of the DCFS algorithm is dependent on the efficiency of
the underlying CFS algorithm and the rate at which discards occur and hence
retries are required.

The DCFS algorithm provides complementary technology to the CFS algo-
rithm, solving a similar problem, but one where discrete rather than continuous
solutions are required. Similar to the CFS algorithm, DCFS scales sufficiently
well to provide a technique that can be used in generating the sets of synthetic
tasks or messages required for the performance evaluation of scheduling algo-
rithms and analyses. In this case, where the parameters are such that discrete
solutions are required. Given the general purpose nature of the DCFS algorithm,
it is likely that it will also prove useful in other domains, outside of the real-time
systems field.

The source code for the algorithms and tests presented in this paper is
available as part of the ConvolutionalFizedSum package, available on PyPI and
Github [I3].

22

D. Griffin and R. I. Davis

Acknowledgements

This research was funded in part by the MARCH Project (EP/V006029/1),
Innovate UK SCHEME project (10065634) and the CHEDDAR Communications
hub (EP/Y037421/1, EP/Y036514/1, EP/X040518/1). EPSRC Research Data
Management: No new primary data was created during this study.

References

10.

Ekain Azketa, J. Javier Gutiérrez, J. Carlos Palencia, Michael Gonzalez Harbour,
Luis Almeida, and Marga Marcos. Schedulability analysis of multi-packet messages
in segmented CAN. In Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies € Factory Automation, ETFA 2012, Krakow, Poland,
September 17-21, 2012, pages 1-8. IEEE, 2012. doi:10.1109/ETFA.2012.6489578.

. Theodore P. Baker and Michele Cirinei. Brute-force determination of multipro-

cessor schedulability for sets of sporadic hard-deadline tasks. In Eduardo Tovar,
Philippas Tsigas, and Hacéne Fouchal, editors, Principles of Distributed Systems,
11th International Conference, OPODIS 2007, Guadeloupe, French West Indies,
December 17-20, 2007. Proceedings, volume 4878 of Lecture Notes in Computer
Science, pages 62-75. Springer, 2007. [doi:10.1007/978-3-540-77096-1_5|
Alexander I. Barvinok. A polynomial time algorithm for counting integral points
in polyhedra when the dimension is fixed. Math. Oper. Res., 19(4):769-779, 1994.
doi:10.1287/moor.19.4.769.

Enrico Bini and Giorgio C. Buttazzo. Biasing effects in schedulability measures. In
16th Euromicro Conference on Real-Time Systems (ECRTS 2004), 80 June - 2 July
1004, Catania, Italy, Proceedings, pages 196-203. IEEE Computer Society, 2004.
URL: https://doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7, |doi:10.
1109/ECRTS.2004.7.

Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability
tests. Real Time Syst., 30(1-2):129-154, 2005. URL: https://doi.org/10.1007/
$11241-005-0507-9, doi:10.1007/511241-005-0507-9.

Artem Burmyakov, Enrico Bini, and Chang-Gun Lee. Towards a tractable exact
test for global multiprocessor fixed priority scheduling. IEEE Trans. Computers,
71(11):2955-2967, 2022. |doi:10.1109/TC.2022.3142540.

Alan Burns and Robert I. Davis. A survey of research into mixed criticality systems.
ACM Comput. Surv., 50(6):82:1-82:37, 2018. doi:10.1145/3131347.

Mario Vazquez Corte and Luis V. Montiel. Novel matrix hit and run for
sampling polytopes and its GPU implementation. Comput. Stat., 40(6):3067—
3104, 2025. URL: https://doi.org/10.1007/s00180-023-01411-y, |doi:10.
1007/S00180-023-01411-Y.

Robert 1. Davis and Alan Burns. Priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems. In Theodore P. Baker,
editor, Proceedings of the 30th IEEE Real-Time Systems Symposium, RTSS 2009,
Washington, DC, USA, 1-4 December 2009, pages 398-409. IEEE Computer Soci-
ety, 2009. doi:10.1109/RTSS.2009.31.

Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput. Surv., 43(4):35:1-35:44, 2011. |doi:
10.1145/1978802.1978814.

https://doi.org/10.1109/ETFA.2012.6489578
https://doi.org/10.1007/978-3-540-77096-1_5
https://doi.org/10.1287/moor.19.4.769
https://doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7
https://doi.org/10.1109/ECRTS.2004.7
https://doi.org/10.1109/ECRTS.2004.7
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/S11241-005-0507-9
https://doi.org/10.1109/TC.2022.3142540
https://doi.org/10.1145/3131347
https://doi.org/10.1007/s00180-023-01411-y
https://doi.org/10.1007/S00180-023-01411-Y
https://doi.org/10.1007/S00180-023-01411-Y
https://doi.org/10.1109/RTSS.2009.31
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Discrete ConvolutionalFixedSum 23

Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In Proceedings International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS), pages
6-11, July 2010. URL: https://retis.sssup.it/waters2010/waters2010.pdf#
page=6.

David Griffin, Iain Bate, and Robert 1. Davis. Generating utilization vectors for
the systematic evaluation of schedulability tests. In 41st IEEE Real-Time Systems
Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020, pages 76—88.
IEEE, 2020. |doi:10.1109/RTSS49844.2020.00018,

David Griffin and Robert I. Davis. ConvolutionalFixedSum Software, March
2025. URL: https://github.com/dgdguk/convolutionalfixedsum/, |doi:10.
5281/zenodo.15107012.

David Griffin and Robert I. Davis. Convolutionalfixedsum: Uniformly generating
random values with a fixed sum subject to arbitrary constraints. In 81st IEEE Real-
Time and Embedded Technology and Applications Symposium, RTAS 2025, Irvine,
CA, USA, May 6-9, 2025, pages 270-282. IEEE, 2025. doi:10.1109/RTAS65571.
2025.00034.

Ravi Kannan and Santosh S. Vempala. Sampling lattice points. In Frank Thomson
Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6,
1997, pages 696-700. ACM, 1997. doi:10.1145/258533.258665.

Matthias Koppe, Sven Verdoolaege, and Kevin M. Woods. An implementation of
the barvinok—woods integer projection algorithm. In Matthias Dehmer, Michael
Drmota, and Frank Emmert-Streib, editors, Proceedings of the 2008 International
Conference on Information Theory and Statistical Learning, ITSL 2008, Las Vegas,
Nevada, USA, July 14-17, 2008, pages 53—59. CSREA Press, 2008.

Jie Li, Sichen Li, Jun Luo, and Haihui Shen. Simulation optimization for inpatient
bed allocation with sharing. Journal of Systems Science and Systems Engineering,
2024. |[doi:10.1007/s11518-024-5625-9.

Jestus A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida.
Effective lattice point counting in rational convex polytopes. J. Symb. Comput.,
38(4):1273-1302, 2004. |doi:10.1016/j.jsc.2003.04.003.

John H McDonald. Handbook of biological statistics. Sparky House Publish-
ing, Baltimore, Maryland. USA, 2014. URL: https://www.biostathandbook.com/
gtestgof .html.

Ivo F. D. Oliveira and Ricardo H. C. Takahashi. An enhancement of the bisection
method average performance preserving minmax optimality. ACM Trans. Math.
Softw., 47(1):5:1-5:24, 2021. doi:10.1145/3423597.

Ingram Olkin and Herman Rubin. Multivariate beta distributions and indepen-
dence properties of the wishart distribution. Annals of Mathematical Statistics,
35(1):261-269, March 1964. doi:10.1214/aoms/1177703748.

Igor Pak. On sampling integer points in polyhedra. Foundations of Computa-
tional Mathematics, pages 319-324, 2002. URL: https://www.math.ucla.edu/
~pak/papers/barv2.pdf, ldoi:10.1142/9789812778031_0013|

Murray R Spiegel and Larry J Stephens. Schaum’s outline of statistics. McGraw
Hill Professional, 2017.

Roger Stafford. Random vectors with fixed sum. Technical Re-
port Available at https://www.mathworks.com/matlabcentral/fileexchange/
9700-random-vectors-with-fixed-sum, MathWorks, 2006.

https://retis.sssup.it/waters2010/waters2010.pdf#page=6
https://retis.sssup.it/waters2010/waters2010.pdf#page=6
https://doi.org/10.1109/RTSS49844.2020.00018
https://github.com/dgdguk/convolutionalfixedsum/
https://doi.org/10.5281/zenodo.15107012
https://doi.org/10.5281/zenodo.15107012
https://doi.org/10.1109/RTAS65571.2025.00034
https://doi.org/10.1109/RTAS65571.2025.00034
https://doi.org/10.1145/258533.258665
https://doi.org/10.1007/s11518-024-5625-9
https://doi.org/10.1016/j.jsc.2003.04.003
https://www.biostathandbook.com/gtestgof.html
https://www.biostathandbook.com/gtestgof.html
https://doi.org/10.1145/3423597
https://doi.org/10.1214/aoms/1177703748
https://www.math.ucla.edu/~pak/papers/barv2.pdf
https://www.math.ucla.edu/~pak/papers/barv2.pdf
https://doi.org/10.1142/9789812778031_0013
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum

24

25.

26.

D. Griffin and R. I. Davis

Rick S. H. Willemsen, Wilco van den Heuvel, and Michel van de Velden. Generating
random vectors satisfying linear and nonlinear constraints, 2025. URL: https:
//arxiv.org/abs/2501.16936, |arXiv:2501.16936.

Wufei Wu, Huijuan Huang, Wenhao Li, Ruihua Liu, Yong Xie, and Saiqin Long.
Real-time analysis and message priority assignment for TSN-CAN gateway. IEEE
Trans. Intell. Transp. Syst., 25(11):16133-16144, 2024. doi:10.1109/TITS.2024.
34255111

https://arxiv.org/abs/2501.16936
https://arxiv.org/abs/2501.16936
https://arxiv.org/abs/2501.16936
https://doi.org/10.1109/TITS.2024.3425511
https://doi.org/10.1109/TITS.2024.3425511

	Discrete ConvolutionalFixedSum

