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ABSTRACT: It is commonly believed that a unitary supersymmetric quantum field theory
(QFT) involving graviton and gravitino fields on fixed 4-dimensional de Sitter spacetime
(dSy) cannot exist due to known challenges associated with supersymmetry (SUSY) in dSy.
In this paper, we contradict this expectation by presenting a new unitary supersymmetric
QFT on dS4: the free supersymmetric theory of the chiral graviton and chiral gravitino
fields. By chiral we mean that the corresponding field strengths are anti-self-dual, and the
gauge potentials are complex, each carrying a single complex propagating degree of freedom.
The global SUSY transformations are generated by the standard Dirac Killing spinors of
dSy. The theory overcomes the known obstacles to unitary global SUSY on dS; by closing
the commutator between two SUSY transformations on so(4,2) @ u(1) rather than the de
Sitter algebra so(4,1). Crucially, the so(4,2) symmetry is realised through unconventional
conformal-like transformations. This free theory cannot become interacting while preserving
SUSY in a way that makes the spin-2 sector the true graviton sector of General Relativity,
as the three-graviton coupling cannot be wu(1)-invariant.

We establish the unitarity of the free supersymmetric theory in two complementary ways.
First, by studying the action of the superalgebra generators on the space of physical gravitino
and graviton mode solutions. In particular, we introduce positive-definite, invariant inner
products and demonstrate that the SUSY representation is unitary, forming a direct sum of
two unitary irreducible representations — one with negative-helicity modes and the other
with positive-helicity modes. Second, by quantising the fields and explicitly constructing
the complex quantum supercharges Q4 and Q4. we show that the trace Y ,{Q4, Q"}
is positive-definite.

Before constructing the supersymmetric theory, we examine the free graviton and gravitino
fields on dSy, where the gravitino is known to have an imaginary mass parameter. We
introduce a Hermitian, gauge-invariant, and local Lagrangian for the free gravitino field
and explain why the requirement of unitarity forces the field to be chiral, removing half
of the propagating helicity states.
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1 Introduction

Apart from its significance in inflationary cosmology [1], de Sitter (dS) spacetime is also
relevant to the physics of our present Universe, as suggested by recent observational data



supporting an accelerated spatial expansion [2-5]. Both these eras require a quantum under-
standing [6, 7]. It is thus important to develop tools for a deeper theoretical understanding
of quantum de Sitter spacetime.

In recent times, the attempts towards a deeper theoretical understanding of dS spacetime
have manifested themselves in (at least) two main approaches. The first approach concerns
the study of lower-dimensional models in order to develop a more complete quantum un-
derstanding [8-26]. The second approach concerns the study of a large class of quantum
fields in four-dimensional (or higher-dimensional) dS spacetime [27-54]. In this approach, the
Unitary Irreducible Representations of the de Sitter algebra so(D, 1) [55-58] play a central
role because they are identified with elementary particles on D-dimensional dS spacetime, as
a generalisation of Wigner’s classification for Minkowski spacetime. In this paper, we take
the latter approach, and we uncover new features of supersymmetric quantum field theory on
four-dimensional de Sitter spacetime, placing special emphasis on group-theoretic aspects.

Four-dimensional dS spacetime (dSy), is the maximally symmetric solution of the vacuum
Einstein equations with positive cosmological constant [59],

1
R/ux - ig,uz/R + Ag;w =0, (1'1)

where A = 3R352 is the cosmological constant, Rgg is the dS radius, g, is the metric tensor,
R, = 37?,;52 g is the Ricci tensor and R is the Ricci scalar. We will work in units where
Ras = 1. Unlike in anti-de Sitter and Minkowski spacetimes, formulating supersymmetric
theories in de Sitter spacetime presents fundamental challenges. The main obstacles to the
existence of unitary, unbroken de Sitter supersymmetry (SUSY), which differ depending on
whether one considers global or local SUSY, can be summarised as follows (see for instance
the discussion in section 4 of [9]):

¢ Problems concerning the unitarity of global SUSY on a fixed de Sitter
background. This can be understood already at the level of abstract representation
theory [60, 61]. It is possible to supersymmetrise the dS algebra so(4, 1) by introducing
spinorial supercharges QEZ) , i.e. odd generators, which we take to be Dirac spinors for
the sake of the discussion. The index A is a spinor index referring to the fundamental
spinor representation of so(4, 1), and 7 is an extended SUSY index keeping track of the
number of supercharges. Alternatively, one can double the number of supercharges and
introduce a symplectic Majorana reality condition, as in [61], but this will lead to the
same representation-theoretic results. As shown in [60, 61], from the structure of the
algebra it follows that > AJ-{QEZ), Q(i)AT} = 0, and thus, all non-trivial representations
of the dS superalgebra on a Hilbert space must be non-unitary (i.e. positive-norm and
negative-norm states must exist). On the other hand, requiring that negative-norm
states do not appear implies that all the QX)’S, as well as all the dS generators, must
annihilate all states in the Hilbert space, i.e. only the trivial representation is possible.’
Super-extensions of so(2, 1), so(3,1) and so(5, 1) also exist but unitary representations
are allowed only in the case of so(2,1) [60].

'De Sitter supersymmetry has also been studied in the ambient space formalism in ref. [62]. However, since
the anti-commutator between two supercharges closes on so(4, 1), the theory is most likely non-unitary.



¢ Problems concerning the unitarity of dS; Supergravity. The explicit construction
of the N = 2 Supergravity action with a positive cosmological constant was carried
out in [61], involving a real vierbein, a real photon, and two symplectic Majorana
gravitini. The number of gravitini was doubled in order to apply the symplectic
Majorana condition because the conventional Majorana condition for the gravitino on
dSy cannot be used — see also section 3. This difficulty is related to the fact that
the mass parameter of the gravitino on dSy is imaginary. Similarly, the conventional
Majorana condition is not consistent with the Killing spinor equation on dSy, but
the sympelctic Majorana condition is. According to ref. [61], although the N = 2 dS
Supergravity action is invariant under local SUSY, the photon kinetic term has the
wrong sign, i.e. it is a ghost.

On the other hand, by relaxing the requirement of unbroken SUSY, certain solutions are
known. For example, an explicit dS4 Supergravity action invariant under spontaneously
broken local N = 1 SUSY was given in [63].? This model includes a massive gravitino
(this has a real mass parameter), and is also consistent with unitarity. Another
interesting example of stable dS vacuua corresponds to the matter-coupled Supergravity
theories with N = 2 SUSY as described in ref. [66]. The main ingredients of the
construction include non-Abelian non-compact gaugings, de Roo-Wagemans rotation
angles and Fayet-Iliopoulos terms. However, the question of whether these vacuua can
be lifted to string theory remains open.?# Interestingly, as anticipated by [60], and
shown in [9], the problems related to unitary dSs Supergravity with unbroken SUSY
can be bypassed in two dimensions.

A way out for global SUSY in dSj4. In the case of global SUSY, it is possible to have
unitary representations by enlarging the even symmetry algebra to the conformal algebra
so(4,2) D so(4,1). Now the anti-commutator of two supercharges closes on so(4,2) instead
of so(4,1), and the trace ZAJ-{QS), QA1) does not have to vanish. Thus, unitary repre-
sentations exist [73]. Such unitary representations are realised in the case of superconformal
field theories on a fixed dS4 background spacetime, like the ones constructed in [74].

1.1 New results

In this paper, we present a new unitary supersymmetric quantum field theory (QFT) on a
fixed dS, background that includes (a version of) the fields of the supergravity multiplet.
In particular, we present:

The free supersymmetric theory of the chiral graviton and chiral gravitino fields.

2See also [64, 65].

3This is not an easy task, as the no-go theorem of ref. [67] presents serious obstacles for obtaining dS4
vacuua from smooth, classical compactifications of higher-dimensional Supergravity. One possible way to
circumvent the no-go theorem of [67] is to include orientifolds in the construction. De Sitter solutions of
10-dimensional supergravity have been obtained in this way; see e.g., [68] for a review and [69] for a recent
example. Another approach is to consider time-dependent compactifications — see [70] for recent examples.

4Another important question concerns the non-perturbative existence of dS vacua in string theory — see,
e.g., [71, 72].



By ‘chiral’ we mean that the corresponding field strengths are self-dual or anti-self-dual,
and thus complex. The corresponding chiral graviton and chiral gravitino gauge potentials
are complex and carry one complex propagating degree of freedom each. In this paper, we
choose to work with the anti-self-dual case, without loss of generality. The global SUSY
transformations of the chiral graviton and chiral gravitino are generated by the standard
complex (Dirac) Killing spinors of dS;.5 However, the theory is not associated with a local
action functional as the splitting of helicities needed for the theory to become chiral can
be achieved only on-shell.

We show that the new supersymmetric theory of the chiral graviton and chiral gravitino
avoids the obstacles [60, 61] to unitary global SUSY on dS; mentioned above because
the commutator between two SUSY variations closes on the even algebra so(4,2) @ u(1).
Interestingly, unlike in the superconformal theory of ref. [74], the so(4,2) symmetry in our
theory is realised in an unconventional way that does not correspond to standard infinitesimal
conformal transformations [75, 76].°

Another point worth emphasising is that, although the non-closure of the superalgebra
on so(4,1) is a necessary condition for unitarity, it is not sufficient. This is demonstrated
with the following example. As we discuss in detail, the theory of a standard (i.e. non-
chiral) complex graviton and a standard Dirac gravitino also carries a representation of
the same superalgebra as in the case of the chiral supermultiplet, but the representation is
non-unitary, despite the closure of the commutator between two SUSY transformations
on so(4,2) @ u(l). Interestingly, the unitarity of the theory is achieved by imposing the
anti-self-duality constraint on the field strengths which removes all negative-norm states
from the Hilbert space, i.e. it is the supermultiplet of the chiral graviton and chiral gravitino
that carries a unitary representation of SUSY. The appearance of negative-norm states for
helicity degrees of freedom that one would expect to be physical according to Minkowskian
intuition [33, 34, 76], and the necessity for the anti-self-duality (or self-duality) constraint
on the field strength to remove the negative-norm states, appears already in the quantum
theory of the free Dirac gravitino field on dSy, and we will discuss it in detail.

The unitarity of the chiral graviton-chiral gravitino supermultiplet is demonstrated in
detail in two different ways:

e Unitary SUSY on the space of mode solutions. We study the action of our
superalgebra on the space of standard gravitino [33, 34, 76] and graviton [77] physical
mode solutions on global dSy4, which furnish discrete series UIRs of the dS algebra
so(4,1). The Minkowskian short-distance behaviour of the modes allows us to distinguish
between generalised positive-frequency and negative-frequency solutions, as is customary
for field theories on global dSy [33, 34, 76, 77]. We also recall that the discrete series

5The idea of dropping the reality conditions as an attempt to construct supersymmetric theories on dSy
was first mentioned as a speculation by Deser and Waldron in ref. [43].

5Such conformal-like symmetries were first known to exist in the case of strictly massless gauge potentials
of any spin on AdSs [75]. Recently, conformal-like symmetries — the ones used in the present paper — were
found for strictly massless fermionic gauge potentials on dSs [76]. Moreover, it was shown that the strictly
massless tensor-spinor mode solutions that form the fermionic discrete series UIRs of so(4, 1), also form UIRs
of so(4,2). This result is generalised to the case of graviton modes on dSy in the present paper, and plays a
central role in the final unitary supersymmetric theory of the chiral graviton and chiral gravitino.



UIRs of so(4,1) formed by gravitino modes extend to UIRs of so(4,2) [76] with the
help of the conformal-like transformations [75, 76]. In addition, we show, for the first
time, that the same happens for the graviton modes, i.e. the graviton modes furnishing
discrete series UIRs of so(4,1) also furnish so(4,2) UIRs. Once we clarify how the
spaces of fixed-helicity graviton and gravitino modes furnish UIRs of so(4,2)( u(1)),
we show that SUSY is represented irreducibly on these spaces. That is, there is a direct
sum of two irreducible SUSY representations: a negative-helicity representation with
helicities (—2,—3/2), and a positive-helicity representation with helicities (+2,+3/2).
We show that each of these irreducible SUSY representations is a UIR according to the
group-theoretic definition of unitarity: we introduce positive-definite scalar products
that are invariant under even generators € so(4,2) @ u(1), as well as under SUSY
transformations.

Each of the two afore-mentioned SUSY UIRs can be formed by either positive-frequency
or negative-frequency modes. However, the unitary supersymmetric QFT of the chiral
graviton and chiral gravitino, discussed in section 6, includes: a positive-frequency
single-particle Hilbert space furnishing only the SUSY UIR with helicities (—2,—3/2),
and a negative-frequency single-particle Hilbert space furnishing only the SUSY UIR
with helicities (+2,43/2). Although allowed at the abstract representation theory level,
the SUSY UIR with helicities (+2,+3/2) is omitted from the positive-frequency sector,
and the SUSY UIR with helicities (—2, —3/2) is omitted from the negative-frequency
sector. These states, which are removed from the physical state space with the help of
the anti-self-duality constraint, have negative norms because of the curious features
of the quantum gravitino field on dS;. This phenomenon is discussed in detail in
subsection 3.4.

e Unitary SUSY on the QFT Fock space. We quantise the chiral graviton and chiral
gravitino fields by fully fixing the gauge, and then, we construct the quantum operators
corresponding to the four complex SUSY Noether charges Q[e] = 7*Q4 — one for each
Dirac Killing spinor € (5.21) of dS4. Unitarity is demonstrated by showing that these
quantum charges generate the afore-mentioned SUSY UIRs by acting on single-particle
states: a negative-helicity UIR in the positive-frequency sector, and a positive-helicity
UIR in the negative-frequency sector. We also demonstrate the desired positivity of the
anti-commutator of spinorial supercharges ijl{Q A, QAT}.

1.2 Key ingredients, new results as by-products, and outline

Before presenting the new unitary supersymmetric theory, we will discuss its key ingredients
in detail: the free graviton and gravitino fields on global dSy, their so(4,1) and so(4,2)
representation-theoretic properties, their quantisation, and the properties of the (Dirac)
Killing spinors on d.Sy. In the process of discussing these ingredients, we will present various
new results as by-products which will play a significant role in our unitary supersymmetric
theory. Let us give the outline of the paper with emphasis on the new results that appear
as by-products:



e In section 2, we review the basics about the geometry of global dS4, and we give our
notation and conventions.

e In section 3, we study the gravitino field on dSy. We introduce an alternative local
action functional (3.8) for the Dirac gravitino that is hermitian, unlike the naive
conventional Rarita-Schwinger action which is non-hermitian because of the imaginary
mass parameter. In subsection 3.1, we review how the gravitino modes with helicities
—3/2 and +3/2 on global dS4 form a direct sum of two discrete series UIRs of so(4, 1) [33,
34]. Then, in subsection 3.2, we review how the gravitino modes with helicities —3/2
and +3/2 on global dS; form a direct sum of two UIRs of the conformal-like algebra
so(4,2) [76]. In subsection 3.3, we show, for the first time, that the hermitian action (3.8)
is not only dS-invariant but also invariant under conformal-like transformations. In
subsection 3.4, we study the quantisation of the Dirac gravitino on global dSy, for the
first time — a preliminary study of this question was initiated in [78]. We explain why
unitarity requires the quantum gravitino field to be chiral. In particular, we show that
the gravitino QFT associated with the hermitian local action functional (3.8) has a
curious feature: half of the propagating helicities have negative norm and the other half
have positive norm, as was already suggested by the mode analysis in refs. [34, 76]. We
thus introduce the anti-self-duality constraint on the gravitino field strength, rendering
the gravitino chiral, and this restricts the theory to its positive-norm sector.”

e In section 4, we study the graviton field on dS4, with special emphasis on the chiral
graviton, as this is the superpartner of the chiral gravitino needed for our unitary
supersymmetric theory. In subsection 4.1, we review how the standard graviton modes
with helicities —2 and +2 on global d.S4 form a direct sum of two discrete series UIRs of
so(4,1) [77]. In subsection 4.2, we discuss the conformal-like symmetry of the graviton
on dS4. In particular, in subsection 4.2.1, we present the expressions for the conformal-
like transformations of the real graviton field on dS; generated by the five non-Killing
conformal Killing vectors. We show that these are symmetries of the field equations.
We also show that the symmetry algebra closes on so(5,1) up to gauge transformations.
Interestingly, the conformal-like transformations preserve neither the linearised Einstein-
Hilbert action nor the Klein-Gordon inner product. In subsection 4.2.2, we discuss
the conformal-like symmetry of the complex graviton (complex strictly massless spin-2
field). Redefining the conformal-like transformations of the real graviton by introducing
a factor of i = /=1, we show that the symmetry algebra for the complex graviton
closes on so(4,2) up to gauge transformations. The complex graviton field equations are
shown to be invariant under the conformal-like symmetries. We also show, for the first
time, that the hermitian action functional for the complex graviton (4.49) is invariant
under the conformal-like symmetries, and so is the Klein-Gordon inner product. In
subsection 4.2.3, we show, for the first time, that the graviton modes of helicity —2
and +2 on global dSs furnish a direct sum of two so(4,2) UIRs. In subsection 4.3, we
quantise the chiral graviton field.

"This comes in contrast with the gravitino in Minkowski and AdS spacetimes, where choosing a chiral
gravitino field is optional rather than necessary.



¢ In section 5, we review the basics about Dirac Killing spinors, and their bilinears, on
dSy. We explain how explicit expressions for Killing spinors on dS4 can be obtained by
analytically continuing Killing spinors on S*. We also explain, for the first time, how
the conformal-like so(4,2) symmetry acts on dS Killing spinors.

e Section 6 focuses on our main result: the supersymmetric QFT of the chiral graviton and
chiral gravitino on dSy is unitary. This is discussed in subsection 6.2. However, before
presenting the unitary theory, in subsection 6.1 we begin by discussing the non-chiral
supersymmetric theory of a complex graviton and a complex gravitino on dSy4, each
with two complex propagating degrees of freedom. Although we show that this theory
is non-unitary, many of its features will be inherited by its unitary chiral counterpart.
Therefore, in subsection 6.1, we begin by presenting the global SUSY transformations
for the non-chiral theory. We show that the field equations are SUSY-invariant, and so
is the hermitian action functional of the theory. Then, we find the Noether charges and
currents associated with SUSY invariance. We also calculate the commutator of two
SUSY transformations, and we show that the SUSY algebra closes on so(4,2) @ u(1).
We also find the SUSY transformations of the gauge-invariant field strengths. We
show that duality transformations commute with SUSY transformations. Then, the
non-unitarity of the non-chiral theory is discussed. Finally, in subsection 6.2, we present
our unitary supersymmetric theory of the chiral graviton and chiral gravitino, and we
clarify which features are inherited from the non-chiral theory of subsection 6.1. The
unitarity of our chiral supersymmetric theory is demonstrated explicitly at the level of
mode solutions in subsection 6.2.1. The unitarity of the theory in the supersymmetric
QFT Fock space is demonstrated in subsection 6.2.2.

e In section 7, we discuss possible future directions.
There are five appendices. In appendix A, we review the classification of the so(4, 1) UIRs. The
rest of the appendices focus on technical details that have been omitted from the main text.
2 Background material on global dS geometry, notation, and conventions

The solutions of the field equations used in this paper will be expressed in the global slicing
of dSy. In these coordinates, the line element of dSy is expressed as [7]

ds? = —dt? + cosh? t dQ2. (2.1)
We have denoted the line element of S? as d2?, which can be parameterised as
d? = b3 + sin® 0 (d03 + sin” 0, 6} ), (2.2)

where 0 < 0; < 7 (for j = 2,3) and 0 < 0; < 2r. We will also use the following notation
for a point on S3: @3 = (#3,62,01). The conformal time 7 is defined by tan7 = sinht
(—7m/2 < 7 < 7/2), and the metric (2.1) can also be given as

ds* = sec® T (—dr? + d0?). (2.3)



The ‘curved space gamma matrices’, v# (), are defined with the use of the vierbein fields
as Y (x) = " ,(z)7°, where 4° (b =0,1,2,3) are the flat-space gamma matrices. The gamma
matrices y#(x) satisfy the anti-commutation relations

Py + 47y = 29" 1, (2.4)

where 1 is the 4-dimensional spinorial identity matrix. The vierbein and co-vierbein fields
satisfy

e,ua eubnab = Guv, eua eub = 527 (25)
where 74, = diag(—1,1,1,1). The fifth gamma matrix 7% is determined as [79)
,Y[a,yb,yc,)/ | _ —igade'yE)’ (26)

where €, are the components of the dS; volume element. In the vierbein basis, we

have €928 = —1, while in the coordinate basis we have 010203 = —\/%79, where ¢ is the
determinant of the dS metric. Equivalently
7° = =iy (2.7)

The matrix +° anti-commutes with the other four gamma matrices, and, hence, with the
Dirac operator on dSjy.
Our sign convention for the ‘vierbein postulate’ is:

0ue’y +17,e% —w,pe’c = 0. (2.8)
The covariant derivative acts on vector-spinors as
v, = (9,42 Gl P 2
Vo, n = v+ 4("‘)1/1)0’7 iz v A ( 9)

where wype = Wype] = €v"wabe are the components of the spin connection. The gamma
matrices are covariantly constant, V,v, = 0. This can be easily checked by computing
their covariant derivative as

1
VV'Y,U, = 01/7# + Zwubc['ybca 'Y,LL] - F/\y;fy)\‘

Details on the Christoffel symbols, spin connection, and vierbein on global de Sitter, as well
as our representation of gamma matrices, can be found in appendix B.

De Sitter spacetime has ten Killing vectors, &,
V,ué'u =+ vu uw = 07 (210)

generating the dS algebra, so(4,1), and five genuine conformal Killing vectors, V#, satisfying

S+ 97— g e )



with V*V, # 0. The 15-dimensional Lie algebra generated by the dS Killing vectors and
the genuine conformal Killing vectors is isomorphic to the conformal algebra so(4,2). The
so(4,2) Lie brackets are given by

[g’gl]u = £E£/u7
[é',v']/‘ = ££VN7
[V, V# = £y V', (2.12)

where £ is the Lie derivative, £&* and £'# are any two Killing vectors, V# and V'# are any
two genuine conformal Killing vectors, £¢V# is a genuine conformal Killing vector, while
£y V'# is a Killing vector. Note that each of the five genuine conformal Killing vectors
of dS4 can be expressed as:

V.= Vuov, (2.13)
where the scalar function ¢y satisfies®

V.V, = vqu¢V = _guV¢V~ (2.14)

There are five such independent functions: ¢y, @y(1),- -, @@ . These functions are related
to the embedding space coordinates for dSy. Specifically, by embedding dSy as a hyperboloid
in 5-dimensional Minkowski space,

—(X°)* + i(XA)2 =1,
A=1

we have ¢y = XY, and ¢y ) = XA (for A =1,...,4).

Notation and conventions. We use the mostly plus metric sign convention for dSy.
Lowercase Greek tensor indices refer to components with respect to the ‘coordinate basis’.
Coordinate basis tensor indices on S? are denoted as fi, 7, . ... Lowercase Latin tensor indices
refer to components with respect to the vielbein basis. Repeated indices are summed over.
Spinor indices are suppressed, except in the case of spinorial supercharges. We denote the
symmetrisation of indices with the use of round brackets, e.g., A,y = (A + Ayy)/2, and the
anti-symmetrisation with the use of square brackets, e.g., A, = (A — Ayy)/2. Complex
conjugation is denoted using the symbol * and hermitian conjugation using t. Totally anti-
bed

symmetrised products of gamma matrices are denoted as: 7P = 4y Abed — ylbycad 4nq

yabed — ~lanbyendl  For g tensor (or tensor-spinor with suppressed spinor indices) By, ,, ... that

is anti-symmetric under the exchange of the tensor indices y; <+ 11, the duality operation
1 1D

= §€H1V1aﬁBaﬁm7 with By, = —=Buu,..-

For quantities that depend on two spacetime points, x and 2/, primed tensor indices are

is denoted using the ‘wide tilde’ symbol: Eulyl...

associated with point #’ and unprimed indices with point z. The real graviton gauge potential
is denoted as hy,. The symbol h does not stand for the trace of h,, — see, e.g., eq. (4.2).
The complex graviton gauge potential is denoted with the symbol b, as b,,,. The symbol b

8See, e.g., ref. [80].



in this paper does not stand for the trace of h,, — see, e.g., eq. (4.36). The superscript
‘(TT)’ will be used to indicate that the graviton or gravitino gauge potential is in the
transverse-traceless gauge — ‘T'T gauge’ for short [see, e.g., eqs. (3.13) and (4.39)]. TT
graviton mode solutions are denoted as ¢, where labels indicating particular solutions
will be also introduced — see, e.g., eq. (4.10).

3 Free gravitino gauge potential on dS4, UIRs of so(4,1) and so(4, 2),
quantisation and (anti-)self-duality

Background material for the gravitino on dS4. Let us start with some useful observa-
tions, some familiar and others less commonly recognised, concerning the massless Rarita-
Schwinger (RS) field (gauge potential), also known as gravitino, on a fixed dS spacetime.

The free gravitino field on dSy is described by a vector-spinor gauge potential satisfying
the Rarita-Schwinger (RS) equation with an imaginary mass parameter? [43]

7

oiand (vp + 2’7/)) v, =0, (31)

where [79]

,YHPU — /y[“rypryo} = ’y'u")/p’yg - g#p’yo - ng’Y'u + gua’}/p, (32)

and hence,
VY — i) yP U5 — AV — VAP W 1 (Y +0) UF = 0.

Let U, = i\IIL'yO be the Dirac conjugate of ¥,,. The field equation for ¥, can be found by
taking the hermitian conjugate of eq. (3.1) as

(vp% + ;\Imp> AP =0, (3.3)

where we have used (7#)T = 70y#~9. The ‘strict masslessness’ of the gravitino manifests itself
by the fact that the field equation (3.1) is invariant under infinitesimal gauge transformations
of the form

SEEC(N) T, = (V“ + ;’m) A, (3.4)

where ) are spinor gauge functions. Similarly, the equation for ¥,, (3.3) is invariant under
the gauge transformations

6gauge()\) ‘IJM = (5gauge()\) \I’N)T 7;’)/0 — V#X + %X’yu, (35)

where X = iAT7%. For later convenience let us define
i

RI(T) = 4177 (vp n 2%) w,, (3.6)

which will be understood to be non-zero off-shell and zero on-shell. This is gauge invariant
off-shell: RH(48218¢(A\) ¥) = 0.

9A massive RS field satisfies eq. (3.1) with i replaced by a real mass parameter M: 77 (Vp + %’y» v, =0.
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Problems of the conventional RS action functional and an alternative. The con-
ventional RS action [79]

Srs = —/d4x vV —g@u RH = — /d4$ \/:QEM'YM)G (vp + ;'7,0) Vs (3.7)

is not hermitian in de Sitter spacetime because of the imaginary mass term. This non-
hermiticity leads to some problematic consequences: although the Euler-Lagrange equation
for W, derived from the action (3.7) is the desired RS equation (3.1), the Euler-Lagrange
equation for @u is

(VP\IIU - ;\IJU'Vp) Y7 =0,

which does not correspond to the hermitian conjugate of (3.1) as it has the wrong sign for
the mass term [compare with eq. (3.3)]. However, the alternative action [78]

S3 = —/d‘*a:\/fgﬁﬂf’nﬂ(\p) (3.8)

Njw

is hermitian and its Euler-Lagrange equations for ¥, and V¥, are egs. (3.1) and (3.3),
respectively, as consistency requires. Moreover, interestingly, the conventional RS action (3.7)
is not invariant under the gauge transformation of ¥, (3.5), but the alternative action (3.8) is.

Incompatibility with the Majorana condition. It is known that the gravitino equa-
tion (3.1) is not consistent with the Majorana condition because of the imaginary mass
parameter (however, a symplectic Majorana condition is possible — see e.g., ref. [61]). This
can be easily verified by recalling the definition of the charge conjugate of ¥, that preserves
the RS equation (3.1):

¢ = B2, (3.9)
where the matrix B_ satisfies
—(y")" =B A*BZ', (3.10)

and, in our conventions B_ = 4%y2¢3 = i®y! (defined up to a phase) — see also appendix B.
Although \Ifl(f satisfies the same equation as V¥, i.e.

b0 (Vp + ;fyp) v =0, (3.11)

it is easy to check that one cannot use the matrix B_ to define a consistent reality condition.
In particular, by applying charge conjugation twice we find

(qffj)c = -0, (3.12)

Because of this, ¥, cannot be Majorana. In this paper, we are considering only Dirac

vector-spinors. 'Y

0n the other hand, one can define charge conjugation using the matrix By = v°B_, where (v*)* =
C+
B_py“B;l. In this case, charge conjugation is defined as: \Ilf+ = B;l\I!;. Although the property (WS*) =

¥, holds and a Majorana condition can be introduced, the charge conjugate, WS*, does not preserve the field
equation. To be precise, \Iff+ satisfies eq. (3.11) with the opposite sign for the mass parameter.

— 11 -



3.1 Discrete series UIRs of so(4,1) in the space of gravitino modes

Let us review how the gravitino positive frequency mode functions on global dSy form a
direct sum of discrete series UIRs of the dS algebra, so(4,1) [33, 34, 76]. As is well known, if
the space of (physical) positive frequency mode solutions forms a UIR, it can be identified
with the single-particle Hilbert space of the corresponding free quantum field theory. Thus,
this subsection sets the stage for the quantisation of the gravitino field, which is carried
out in subsection 3.4.

The gravitino mode solutions that form the so(4,1) UIRs are solutions of the RS
equation (3.1) in the transverse-traceless (TT) gauge (VQ\I/((XTT) = ﬁya\I/&TT) =0). The field
equations and the TT gauge conditions read [33, 43, 81]

(V +4) v =0,

vewIm — o, AT — 0, (3.13)

[0}

Only a subset of the initial gauge transformations (3.4) preserve egs. (3.13). These are the
restricted gauge transformations:

gganse( X) \I/;(LTT) = (Vﬂ + ;’Y#> X, (3.14)
where the spinor gauge functions satisfy
VX =-2i X. (3.15)

The generators of so(4,1) (i.e. the Killing vectors of dS4) act on vector-spinors ¥, via the
Lie-Lorentz derivative [82]

1
LeW, = €'V, 0, + (V) T, + Z(V@)W\Pu, (3.16)

where ¢ is any Killing vector of dSs. If ¥, is a solution of eq. (3.13), then so is L¢W,.
Moreover, the Lie-Lorentz derivative preserves the Lie bracket between any two Killing
vectors &* and €' [82)]

[Le, Le/ ], = Lig en Wy (3.17)

This means that the space of gravitino mode solutions of eq. (3.13) is a representation space
for the dS algebra so(4,1).

Equations (3.13) admit physical and TT pure-gauge mode solutions. The pure-gauge
modes can be identified with zero in the solution space, while the physical modes are the ones
forming the direct sum of discrete series UIRs of so(4, 1) [33, 34]. Some details are in order.

TT pure-gauge gravitino modes. The TT pure-gauge modes are expressed in the form!!

PP = VX + 27X, (3.18)

'We have omitted the quantum number labels from the pure-gauge modes for convenience. Details about
these labels can be found in refs. [33, 34, 76].

— 12 —



where
(V +2i) X =0, (3.19)

in agreement with egs. (3.14) and (3.15). Explicit expressions for the spinors X can be
found in ref. [34].

Physical gravitino modes. The physical modes come in two helicities: negative (—3/2)
and positive (4+3/2) helicity modes [33, 34, 76]. In global coordinates (2.1), the physical
modes with negative and positive helicity are given by [33, 34, 76]2

.t . 9 \1/2 HEmk) g
wgphy , —¥; 7k)(t,03) — 0, d}l(lphy , —¥; ,k)(t’og) _ (2€€+ : ) Oée( )wi&mk() 3) ’
(€+1) —ife(t) 5" (83)

(3.20)
and

(phys, +£; m;k) . (phys, +; m;k) B {42 1/2 ZB()wfmk)< )
tp Y (t,03) —O, wﬂp Y (t;03) - (2(64.1)) —0%( )w—fmk( ) s

(3.21)
respectively, where fi is a vector index on S3, while £, m and k are angular momentum quantum
numbers corresponding to the chain of subalgebras so(4) D so(3) D so(2) with ¢ € {1,2,...},
m € {1,2,...,0} and k € {—m —1,—m,...,0,...,m}. The functions describing the time
dependence are conveniently expressed in terms of the variable

x(t) = g it (3.22)
as
241 —0—2 2 z(t)
ay(t) = (sin x(2t)> <cos x(2t)> (1 - 8121_1_22 > , (3.23)
0+2 —(—1
Be(t) = —i1-2 (sin x(;)) (cos x(;)) , (3.24)
where
cos w(;) = (Sin x(;)>* = \f (cosh; + isinh ;) , (3.25)
sin? x(;) 1= i;inht. (3.26)
We note that
0 0 1
5 00(t) = i Bu(t) = Sau(t). (3.27)

12Tn ref. [76], the functlons ay(t) and SBe(t) are denoted as aé (t) and B<1)( t), respectively, while in ref. [33]
they are denoted as &\, e ( ) and !I/ML,I)( t) (with M = 7), respectively. In [33, 76], these functions are expressed
in terms of the Gauss hypergeometric functions. However, in the present paper, as the hypergeometric series
terminates, we have chosen to express the functions in a simpler form in our egs. (3.23) and (3.24).

,13,



It is also useful to note that with the conformal time 7 defined by tan 7 = sinht we have

cos 2t ) il (3.28)
2 2cosT '
t 7‘/2
w2 _ T (3.29)
2 vV2cosT
so that
(t) 7e_i(€+%)7 2 cos ¢ (3.30)
a(t) = T — :
¢ V2cosT 0+2)7
o i+ 3T
Be(t) = (3.31)

(€4 2)v2cosT

Transverse-traceless vector-spinor spherical harmonics on S3. The 83-dependence of
the physical modes in egs. (3.20) and (3.21) is given by the transverse-traceless vector-spinor
spherical harmonics on S, wfum k)(03). These satisfy [34, 83, 84]

VO (00) = i (045 ) ST 6. Ce {12
AT (95) = VG (65) = 0, (3.32)

where the tildes have been used to denote quantities on S3. They are normalised with the
standard inner product on S3 [34]:

[, Vados 3 55 0t 3 6s)
= 600’ 5%’ 5mm’5kk’7 (333)

where 0,0’ € {+, —} and d@3 = df3df2db,. For each value of £ € {1,2,...}, the set {d}fum k)Y
forms a so(4) representation with highest weight given by [83]:

Fe32) _ (1 3) 4
FE = (453 (3.34)
The set {1/) (6imsk) } forms a so(4) representation with highest weight given by [83]:
82 _ (gL _3)
fe < t575) (3.35)

Let 554 denote the invariant 3-form on S3 with £0,0,0; = \/g, where ¢ is the determinant
of the S3 metric (2.2). Let us also introduce the duality operator (helicity operator) acting

on the vector-spinor spherical harmonics (3.32) as [77]:
1 b 7(Lmik)a

(5372 ﬂng LT . (3.36)

This is the analogue of the flat-space helicity operator. Using zsa = —i¥z7574) [79], we find
that the duality operator is proportional to the Dirac operator on S3, as

L . eoimka (&msk) (&msk)
EnvaV YL = €_|_3/2 W i@biu - (3.37)
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Thus, the modes &f&m;k) are self-dual, while the modes ﬁ(f;;m%k) are anti-self-dual. This notion
of (anti-)self-duality should not be confused with the notion of (anti-)self-duality defined
using €0 On dS4 — see e.g., eqs. (3.64) and (4.58).

Positive and negative frequency. The mode functions (3.20) and (3.21) are the analogues
of positive frequency modes, as for short wavelengths, ¢ > 1, they satisfy [76]

0 . 0 .l
a7 U EE TR (1, 65) o —i PTG (1 65). (3.38)

Eq. (3.13) also admits physical transverse-traceless solutions that are the analogues of
negative frequency modes given by [76]

o . 12 (i8%(4) HEmk) (g
nghys,ff,m,k)(tje?’) _ 07 v(phys,fﬁ,m,k)u7 93) _ ( {+2 > (lﬁ[( ):;} A ( 3) :

A 2(0+ 1)

and

oSBT (1 gy g, P ) g g (f +9 )1/2 (az (1) 3" (63)
20+ 1)

(3.40)

The negative frequency modes can be obtained by applying charge conjugation (3.9) to
the positive frequency modes. For short wavelengths, £ > 1, they satisfy the generalised

negative frequency condition

d - o/ -
augﬂh%ﬂv mk) (¢, 03) ~ —|—1icoshtvl(}’hy EEMR) (103). (3.41)

Note. The field strength (3.65) calculated for the positive frequency modes of helicity —3/2,

w}f’ hys, =4 m;k), is anti-self-dual, and so is the field strength for the negative frequency modes

of helicity +3/2, v&p hys, +6mik) Similarly, the field strength (3.65) calculated for the positive

frequency modes of helicity +3/2, wﬁp hys, +6 m;k), is self-dual, and so is the field strength for
the negative frequency modes of helicity —3/2, v&p hys, ~6mk) - The mode expansion of the

field strength and (anti)-self-duality are discussed further in subsection 3.4.

Discrete series UIRs of so(4,1). The two sets of (positive frequency) physical modes
{Q,Z)Lp fys, =6 m;k)} and {¢Lp hys, + m;k)} separately form two irreducible representations of so(4, 1)
(and, thus, a different choice for a scalar product is allowed for each set) [33, 34, 76]. This
can be understood as follows. First, it is clear that the modes {%(Lp hys +6; m;k)} do not mix
with the modes {11},(}7 hys, =6 m;k)} under any so(4) transformation as they belong to different
so(4) representations — the former correspond to the so(4) highest weights in (3.34), while
the latter to the ones in (3.35). Moreover, under the infinitesimal isometry generated by

the boost Killing vector

B = B"0,, = cos b3 gt — tanh ¢ sin 03 82’ (3.42)
3
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physical modes of a given helicity transform only among themselves. To be specific, they
transform as [34, 76]:

LBwl(lphys, Tlmik) _% \/(g —m+1)(L+m+3) w}gphys, £(6+1) 5m;k)

- %\/(f —m)(l+m+2) ¢£phys, HE=Dmik) | (pure-gauge),  (3.43)

where the term ‘(pure-gauge)’ is a T'T pure-gauge mode (3.18). As the so(4,1) algebra can be
generated using only the so(4) generators and just one dS boost, we conclude that the modes
{wl(lp hys, =6 m;k)} and {z/;,(}’ hys’M;m;k)} separately form irreducible representations of so(4, 1)
with the equivalence relation: if for any two physical modes, wﬁl) and zpff), the difference
1/4(}) — ¢£L2) is a linear combination of TT pure-gauge modes, then wﬁl) and 1/1&2) belong to the
same equivalence class. This equivalence relation is introduced because the pure-gauge modes
can be identified with zero, as will become clear shortly. Note that eq. (3.43) agrees with the
expression for the infinitesimal boost matrix elements in the discrete series UIRs of so(4,1)
with A =5/2 and s = 3/2 [55, 56] in the ‘modern notation’ for labels — see appendix A and
refs. [33, 85] for the translation between the old and modern notation for the labels of the UIRs.

The unitarity of the afore-mentioned irreducible representations formed by
{wl(lphys’ 6 m;k)} and {wﬁphys,ﬂ; m;k)} can be demonstrated as follows [33, 34, 76]. Let
(1pM @) be the following dS invariant'? and time-independent scalar product [33, 34, 76]:

W), = [ V=gd0a g™ vi(t.02)! 7 VP (1,0s), (3.44)

where w,(}) and w,(,Q) are any two solutions of the field equations in the TT gauge (3.13).
The scalar product (3.44) is the time-independent Noether charge associated with the axial
current!'® [34, 76]

Jh (00, 9@) =i 90 Py @ v, g (p0,p@) =0, (3.45)
specifically,
W), = [ V=g dos Jh (6D 02). (3.46)
The physical modes (3.20), (3.21), (3.39) and (3.40) are normalised as:
(w(?hys,af;m;k)|¢(Phys,g/£/;m/;k/)>aw = (—O‘) X 600’565’6mm’6kk’a (3‘47)
(v(Phys, ot; m;k)‘U(phys7a’€’;m’;k’)>ax = (+0) X Spo' 000 s Oer
<U(Phys,df;m;k)|¢(phys,0/f’;m’;k/)>ax =0, (3.48)
with 0,0’ € {4,—}. Also,
(W) =0, (3.49)

3By ‘dS-invariant scalar product’ we mean that the so(4,1) generators/Lie derivatives are realised as
anti-hermitian operators with respect to the scalar product under consideration [28].

'The axial current (3.45) is covariantly conserved because of the imaginary mass parameter of the
gravitino [34, 76]. It is easy to check that in the case of a real-mass spin-3/2 field the axial current is not
conserved.
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where l/Jl(}) is any physical or TT pure-gauge mode, and thus, the pure-gauge modes can
be identified with zero. It is interesting that, with respect to the scalar product (3.44),
there is indefiniteness of the norm among the positive frequency physical modes, as well
as among the negative frequency physical modes [34, 76]. Moreover, we observe that the
sign of the norm depends on the helicity o € {4+, —} [see egs. (3.47) and (3.48)]. Unitarity
requires a positive-definite inner product that is invariant under dS transformations, i.e. the
dS generators (Lie-Lorentz derivatives) are realised as anti-hermitian operators. Indeed the
scalar product (3.44) is dS invariant as, for any dS Killing vector £#, we have [34, 76]

(LepWp@) 4 (pD|Leyp@) = 0. (3.50)

As we mentioned earlier, according to eq. (3.47) the scalar product (3.44) is positive def-
inite for the physical modes {w,(f hys, =& m;k)} and negative definite for the physical modes
{wl(f hys, +hi m;k)}.l‘r’ As the two sets do not mix with each other under dS transformations,

we conclude:

¢ The positive frequency physical gravitino modes with positive helicity, {wflp hys, H;m;k)},

form the discrete series UIR D1 (A,s) = D1(5/2,3/2) of so(4,1) — see appendix A.
The so(4) content corresponds to the so(4) highest weights (3.34). The so(4, 1)-invariant
inner product that is positive definite is given by the negative of eq. (3.44).

o The positive frequency physical gravitino modes with negative helicity, {w,(f hys, _&m;k)},

form the discrete series UIR D~ (A, s) = D~ (5/2,3/2) of so(4,1) — see appendix A.
The so(4) content corresponds to the so(4) highest weights (3.35). The so(4, 1)-invariant
inner product that is positive definite is given by eq. (3.44).

Thus, the two sets of positive frequency modes, {wflphys’H;m;k)} and {wﬁphys’_&m;k)},

with the afore-mentioned choice of positive-definite scalar products, form the direct sum
D*(5/2,3/2) @ D~(5/2,3/2). The negative frequency modes, {v{""™* ™" [eq. (3.40)]
and {vflphys’fe;m;k)} [eq. (3.39)], form the same direct sum of UIRs. The transformation

h £msk h {+1);m;k . h {+1);m;k
LBU'[(J,p ysz:t 31 ) 111[817 ysz:t( + )7m7 ) Wlth U/(}’ ys,:i:( + )7m7 )’

is found from (3.43) by replacing
while the coefficients in the linear combination on the right-hand side must be replaced by

the complex conjugates of the ones in (3.43).

3.2 Conformal-like symmetry and UIRs of so(4,2)

It was recently found that the two sets of mode functions, {¢,§” hys, +Emik) } and {wflp hys, 7£;m;k)},

form not only a direct sum of so(4, 1) UIRs but also a direct sum of so(4,2) UIRs [76]. Let us
review the basic findings of [76], as these will be useful in our discussions on SUSY later on.

Conformal-like symmetries of the field equations. The so(4, 2) symmetry that preserves
the solution space of eq. (3.13) is generated by the ten familiar infinitesimal dS transfor-
mations (3.16) [generating the dS subalgebra of so(4,2)], as well as by five infinitesimal

5The conventional inner product, fsB V—gd@s g"" ,(ll)f(t, 03) ,(,2>(t7 03), despite its positive definiteness,
is neither dS invariant nor time-independent. Therefore, it is not a ‘good’ choice for a representation-theoretic
analysis [33, 34, 76].

,17,



conformal-like transformations [76]:

. . 3
TyV, = A5 (vap\llu +iVPy, U, —iVPy, ¥, — §¢V \I/”)
2 i\ s
- (T ) 51)
where V# is any genuine conformal Killing vector (2.13). If ¥, is a solution of (3.13), i.e.

v, = \IJLTT), then so is "]I‘V\IILTT).“3

Note. The conformal-like symmetry transformation (3.51) is also a symmetry of the non-
gauge-fixed RS equation (3.1) [76]. In this case, the last term in eq. (3.51) can be omitted as
it corresponds to an off-shell gauge transformation (3.4) that leaves the RS equation (3.1)
invariant. However, this gauge transformation cannot be omitted when working in the TT
gauge, as it ensures that if ¥, is in the TT gauge, then so is Ty ¥, [76].

The full symmetry algebra (10 dS isometries plus 5 conformal-like symmetries) closes on
so(4,2) up to field-dependent gauge transformations. In particular, we have [76],:

[Le, Le WG = Ly o@D, (3.52a)
[Le, Ty W™ = Ty WD, (3.52b)
Ty, Tv]\I,LTT) _ L[V/,V]\I’LTT) + (VM + ;W) Ky v (3.52¢)
where
Ky = % ((vA — ;fﬁ) vMe v V], — 20TDe [y V]p> : (3.53)

Here, [L¢, Ty] = LeTy — TyLe, [Ty, Ty] = Ty Ty — Ty Ty, and so forth. It is clear that
the algebra (3.52a)—(3.52c) has the structure of the conformal algebra so(4,2) [eq. (2.12)]
up to the gauge transformation in (3.52¢). This so(4,2) symmetry is the dS analogue of
the so(4,2) symmetry found for strictly massless gauge potentials on AdSy in the unfolded
formalism by Vasiliev [75].

UIRs of so(4,2) formed by gravitino modes. Each of the two positive frequency single-

helicity sets of modes, {wl(tphysﬁé;m;k)} and

{z,z)ff e, 7Z;m;k)}, forms a UIR of so(4, 2) [76]. This fact is readily demonstrated by specialising
to the following genuine conformal Killing vector

V{® =V, sinht, (3.54)

ie. (Vt(o), V9(30)7 VO(QO), Ve(lo)) = (cosht,0,0,0). The conformal-like transformations (3.51) gen-
erated by V(© act on the physical modes as:

. 3 .
Ty o P 6mh) = 4 (e + 2) iphys, —fimik) (3.55)

Note that the field-dependent gauge transformation on the second line of (3.51) is not a restricted gauge
transformation (3.14), but it still is an off-shell gauge transformation (3.4). It is needed to preserve the TT
gauge conditions [76].
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and

. 3 .
Ty s HEmk) = —j (e + 2) o PRy HEmik), (3.56)

Thus, from egs. (2.12) and (3.52a)—(3.52¢) it follows that {w,(lphys’ M;m;k)} and {w,(lphys’ _&m;k)}
separately form irreducible representations of so(4,2). These representations are unitary
because the conformal-like generators (3.51) are anti-hermitian with respect to the scalar
product (3.44) [76]:

(TypW)p@) 4 (W |Typ@) =0, (3.57)

for any two solutions 11),(}), ¢£2) of (3.13). However, as in the so(4,1) case, a different choice
of a positive-definite norm is needed for each so(4,2) UIR of single helicity — see the
discussion below (3.50).

As in the so(4,1) case, the negative frequency modes (3.39) and (3.40) form the same
so(4,2) UIRs as the positive frequency ones; their conformal-like transformations under
VOr (3.54) are

. 3 N
va)v&physﬁﬁ,m,k) — — <g + 2) vﬁphys,f& me)’ (3.58)
and
_— 3 N
Ty of™> 60 = i (E + 2) oyt Thm), (3.59)

3.3 Conformal-like symmetry of the hermitian action (3.8)

Interestingly, as we will present here for the first time, the conformal-like symmetry trans-
formation (3.51) is also an off-shell symmetry of the hermitian action (3.8). To prove this,
let us consider the variation of the action (3.8),

555 = - / d'z /=g (00, 7" RA () + T, 7° SR (1)), (3.60)

under 0¥, = Ty ¥, where now ¥, is an off-shell field configuration with no gauge conditions
imposed. After a straightforward off-shell calculation, we find the following useful quantities:

50, = (Ty ) in® (3.61)
==\ VIV U + i VAW, — i VI, — §¢V‘I’u v+ g‘l’pv Y7 Vit k)
and
SRA(W) = yHPo (Vp + ;%) oV,
)
— 75¢V§R“(\If) +9° (=VPV, +iVPy,) RH(T) — iy VH R, (D), (3.62)

where R*(W¥) is defined in (3.6).!" Then, we easily find
553 = — / d'e =gV, (~VPTRAW)), (3.63)

and thus, the conformal-like transformation (3.51) is an off-shell symmetry of the hermitian
action (3.8).

"For off-shell fields we have 77 R, (¥) = 2 (W'y"\llo — %i’y"\lla — VC’\IJJ).
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3.4 Quantisation of the gravitino field, the necessity for the anti-self-duality
constraint, and UIRs in the fermionic Fock space

Why does the (anti-)self-duality constraint have to be imposed? So far, we have
explained how the gravitino positive frequency modes furnish a direct sum of discrete series
UIRs of so(4,1) and a direct sum of UIRs of so(4,2). Our next task is to realise these
UIRs in the single-particle Hilbert space associated with the QFT of the (free) quantum
gravitino field on global dSy. In this task we encounter a problem related to the discussions
in subsections 3.1 and 3.2. On the one hand, the single-particle Hilbert space of the QFT
must be equipped with a positive-definite and dS-invariant scalar product. On the other
hand, this space is identified with the space of physical positive frequency solutions, and,
in our case, there is no dS-invariant inner product that remains positive-definite for
mode functions of both helicities. One could argue that since positive-helicity and
negative-helicity modes separately form UIRs, two different positive-definite inner products
can be used for each fixed-helicity subspace for the quantisation of the theory, as discussed
in the passage below eq. (3.50). However, although this approach works at the level of the
classical mode solutions, it does not seem to work in a quantum field-theoretic setting if
one insists on the locality of the action functional of the theory. In particular, one can
see that locality requires the indefiniteness of the norm, in the sense that the negative- or
positive-definiteness of the norm depends on the helicity of each state, as follows. If one
decides to include both helicities in the positive frequency, as well as in the negative frequency,
sectors of the quantum gravitino field (as one usually does in Minkowski spacetime, for
example), then they can follow the canonical quantisation procedure using the hermitian and
local Lagrangian density in (3.8) to define the conjugate momentum, and impose equal-time
anti-commutation relations. Then, by expanding the field in modes, one finds that the
equal-time anti-commutator (3.74) between the field and its conjugate momentum requires
the anti-commutators between creation and annihilation operators to have helicity-dependent
signs [eq. (3.77)], leading to the indefiniteness of the norm in the Fock space of the local
QFT. This is explained in more detail in the passages below eq. (3.71). Moreover, note
that insisting on keeping all propagating helicity degrees of freedom while simultaneously
enforcing the positivity of the norm, by using a different positive-definite scalar product
for each fixed-helicity subspace, leads to a non-local theory. This becomes evident upon
observing that the two distinct scalar products — namely, the axial scalar product (3.44)
and its negative — can essentially be re-expressed in terms of a single scalar product. This
modified scalar product arises from the initial axial scalar product (3.44) with the insertion
of the ‘helicity’ operator (3.36), which is non-local.

To avoid the appearance of negative norms, and achieve positive definiteness in the QFT
Fock space, we will quantise the ‘chiral’ gravitino field. The positive frequency sector of this
field will furnish a UIR with helicity —3/2 (or +3/2), corresponding to the so(4, 1) discrete
series D (5/2,3/2) (or D" (5/2,3/2)), while the negative frequency sector will furnish a
UIR with helicity +3/2 (or —3/2), corresponding to D*(5/2,3/2) (or D~ (5/2,3/2)) — see
appendix A for details on UIRs of so(4,1). Note that, for the chiral field under consideration,
the helicity of the positive frequency sector is opposite from the helicity of the negative
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frequency sector.'® In order to restrict to a theory with particles of a single helicity —3/2 (or
+3/2), we will impose a chirality constraint, i.e. anti-self-duality (or self-duality) constraint,
on the gravitino field strength. Without loss of generality, we will work with a quantum field
whose positive and negative frequency sectors contain states with helicities —3/2 and +3/2,
respectively, corresponding to an anti-self-dual field strength. The anti-self-duality constraint
ensures the positivity of the norm without violating the dS invariance of the theory.

Takahashi’s quantisation method. The conventional way to quantise the gravitino field
is the canonical quantisation procedure, in which one makes use of a local hermitian action
functional, such as (3.8), in order to define the conjugate momentum, and then imposes equal-
time anti-commutation relations. Here, we will follow a different method discussed in detail
by Takahashi [88],'Y which aligns well with the emphasis we have put on the group-theoretic
properties of the mode solutions, as well as with the fact that we are considering a theory with
an on-shell chirality constraint — the two helicities of the gravitino cannot be split locally at
the level of the action, but such a split is possible on-shell by imposing the (anti-)self-duality
condition. The starting point in Takahashi’s method is the field equation. In our case, the
field equation is (3.13) accompanied by the anti-self-duality constraint on the field strength?’

F,uy = _iFuua (364)

where ﬁw/ = 2ewapF P 21 The field strength is defined as [76]

)
Fu = (V[u + 2’Y[u> ). (3.65)

It is divergence-free, gamma-traceless, and satisfies [76]

F/Ll/ = _'L"YSF;W, (366)

by virtue of egs. (2.6), (3.13) and (E.10), i.e. the duality operation on F),, is equivalent to
an infinitesimal chiral rotation — see also appendix E.?? Later we will use the superscript
‘=’ to denote the field strength that satisfies the anti-self-duality constraint (3.64), as F},,,
in eq. (3.78). The field strength (3.65) is gauge invariant, and thus, the field ¥, in (3.65)
can be replaced by the gravitino gauge potential in any gauge without affecting the form
of F},,. Here we will impose the TT gauge condition.?® Then, the quantum gravitino field
operator \P,(LTT) (t,03) that is required to satisfy eqgs. (3.13) and (3.64) is expressed as a mode
sum in terms of our previously obtained mode functions, where the expansion coefficients
are promoted to creation and annihilation operators. The main objective of Takahashi’s

8See refs. [86, 87] for further discussions on self-dual and anti-self-dual field strengths of massless fields and
their quantum theory.

9 Takahashi’s method refers to free quantum fields in Minkowski spacetime, but the generalisation to dS
spacetime is straightforward.

20For the reader who is interested in the quantisation of chiral theories using Takahashi’s method, the
treatment of the chiral (massless) Majorana spin-1/2 field can be found in Takahashi’s book [88].

2!The need to impose a (anti-)self-duality constraint was explained at the beginning of this subsection.

22Using (3.66), it follows that the anti-self-duality constraint (3.64) is equivalent to v*Fy, = +F..

2Imposing the TT gauge condition allows residual gauge symmetry. To quantise the gravitino field we will
fix the gauge completely — see eq. (3.68).
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method for the theory at hand is to determine the operators \I/,(LTT) and Q%°[¢] such that
2

the Heisenberg equations of motion are satisfied:2*
—i LU (t,03) = |2, 03), st[g] (3.67)

where £ is any Killing vector of dS spacetime, and Q%S [€] is the hermitian quantum operator
2

(dS charge) that generates the infinitesimal dS transformation on the QFT Fock space.
The subscript ‘%’ in Q%°[¢] has been used to distinguish between the quantum generators
2

of the chiral gravitino and of the chiral graviton — see eq. (4.61). In addition, quantum
operators representing physical quantities must (anti-)commute with one another for spacelike
separations (microcausality).

Mode expansion. Let us now quantise the chiral gravitino field following the steps outlined
in the previous paragraph. From our discussions in subsection 3.1 it follows that the t-
component of the gravitino field in the TT gauge is pure-gauge, i.e. it can be gauged away.
Thus, to isolate the propagating degrees of freedom, we consider the completely gauge-fixed
field, \IJ,gTT) = g’wfyﬁlll(ﬂTT) = 0,25 and we expand it in modes as follows

l m
\I/;(l t 93 Z Z Z (agm;# phys, —¢ mk)(t 0 )+b§+)T (phys +¢; mk)(t 0 ))

f=1m=1k=—m-—1
(3.68)

where i is a vector index on S3. The superscript ‘—’ in \I/,(LTT)_ refers to the fact that the
corresponding field strength is anti-self-dual (this will be verified below). The non-zero
anti-commutators between creation and annihilation operators are

(@b Al } = S0t Sty ABfs ity b = Getr O O (3.69)

The vacuum is defined as the state, |0)s, in the Fock space that satisfies:
2

gy, 1003 = b 10)3 =0, (3.70)
for all ¢, m, k. Using the dS-invariant inner product (3.44) [see egs. (3.47) and (3.48)], we find

(=) <¢(phys —0;m;k) ’\I/ (TT)— >

Uk = BT — (Phys, +Cmik) g (TT)—y

ik (3.71)

ax’? ax *

The dS invariance of the vacuum follows from the dS invariance of the positive frequency
solution space, and it will be further verified below by showing that the quantum dS
generators annihilate the vacuum.

What goes wrong if we include both helicities? To demonstrate the appearance of
negative norms in the Fock space for a non-chiral gravitino, let us consider a completely
gauge-fixed quantum gravitino field ¥,, as in (3.68), which now includes all helicities in
the mode sum as follows:

TT o (phys, ol ;m;k o hys, ol ;m;k
w0 = S0 D (afm™ T 8) 6L (1.6y)) L (3.72)
oce{+,-}{,m,k

24The equality here is modulo pure-gauge TT solutions.
25This gauge is the analogue of the Coulomb gauge for the Maxwell gauge potential.
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where from eqgs. (3.47) and (3.48) we have

(F) _ 4 (4 (Phys, FEimik) | (TT))y

Qo = b(i) =+ <U(phys7:t£ ;m;k)’q/(TT)>

ax mk

- (3.73)
Let us also denote the vacuum annihilated by all annihilation operators as |€2). In this case
we can proceed with the canonical quantisation procedure using the hermitian Lagrangian
n (3.8). The standard equal-time anti-commutation relations (expressed in the form of a
4 x 4 spinorial matrix) are

{\PE_LTT)(t 03), ( )(t 01y 5}

B eﬁme;} V3 AT (65,0%) 0
V=Y 0 VG AL/ (05, 603)
1 ATT (03,04 0
~ cosht " (0005 TT | (3.74)

where

ATT(03,05) = cosh 2t e;"e; ALT, (65, 0%)

is the transverse and F-traceless delta function for vector-spinors on S° defined by

ATT(05,05) = 3 ZZW*‘ )@ 3L g5)1. (3.75)

ce{+,—}{=1m,k

In particular, if "LE[L(93) is a vector-spinor on 52, and 1[1:1(03) is its divergence-free and
A-traceless part, then

U5(0s) = [ d03/5 AT(63.65) 0 (6)). (3.76)

Using the expressions (3.73), as well as the anticommutation relations (3.74), we find

{agmk, aéfnzjk, = (—U) 500’628’5mm’5kk’7 {bémkﬁ bé )’k’} = 0500’6£€’5mm’5kk’7 (3.77)

o a 6 {+, -}, While the rest of the anti-commutators are zero. It is clear that the states
agmk |2) and b§ |2) have negative norm, i.e. the theory is non-unitary. As a verification
of this fact, we can expand in modes the fields on the left-hand side of the equal-time
anti-commutator (3.74). After some algebra, one can arrive at the expression in terms
of the transverse-traceless delta function on the right-hand side of (3.74) only if the anti-
commutators (3.77) are used. In other words, the equal-time anti-commutation relations
for a gravitino field that contains both helicities require the appearance of negative-norm
states in the QFT Fock space. This justifies our choice to exclude half of the helicities, i.e.
quantise the chiral gravitino field (3.68), to achieve unitarity in the QFT Fock space. We
will now continue the quantisation of the chiral gravitino field.
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Anti-self-duality constraint. Let us demonstrate that our choice for the mode expansion
for the chiral gravitino (3.68) is consistent with the anti-self-duality constraint (3.64). To
be specific, we will show that the following field strength:

- i (TT)—
Fo = (v[u + 27@ (I (3.78)

is anti-self-dual. Substituting the mode expansion (3.68) into (3.78), we find the mode
expansion for the field strength

(t,03) = ZZ(aemkfu/m’“(t 03) + by [5HIC (1, 03)), (3.79)
=1 m,k

where
Lm0 05) = (Vi+ o) 0 1, 65),

3 3 1 S sm;
FigtmRIC (¢ 05) = (vm + 2m) s Hbmib) 4 g,y

V]

For convenience, let us start by showing that the ¢t7-component, F,;, satisfies the anti-self-
duality constraint. Substituting the expressions of the mode functions (3.20) and (3.40)
into (3.79), we find after a straightforward calculation

1 & P+92 \NV2[ 3tat_15t¢£ )9
o(t;63) = ng( £++ )) [“Em)k (< LORSLI0) <3))

ey ((ata;f(t)+ 38 ()) R >>] (3.80)

mk
0

where we have also used (3.27). It is clear that F}; is an eigenfunction of 7% [eq. (B.5)],
Y5 F,, = +F,;. Using (3.66), it follows that, for all the components of the field strength, we
have 79 F, w = +F v This means that the anti-self-duality constraint (3.64) is satisfied.

Quantum symmetry generators. The hermitian dS generators can be constructed in
the standard way [85, 88], using the dS-invariant inner product (3.44):

QElEl = —i : (PO Lew D7) (3.81)

ax "’

where the symbols : ... : denote normal ordering. Here we will give the explicit expression
only for the generator corresponding to the dS boost {# = B* [eq. (3.42)]; the other dS
generators can be constructed similarly. Expanding the field in modes (3.68), and using
egs. (3.43), (3.47) and (3.48), we find:

:—ZZ( ﬁ m+1)(l+m+3) Egii)mkaém)k—‘r (Z—m)(ﬂ—&-m—i—?)age)i)mkagm)k>

£=1 m,k
)t + )t +
—ZZ< Ve=m+ D @+m+3)p b /- m)(@+m+2)bgz>l)mkb§m)k> (3.82)
£=1 m,k
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This can be clearly expressed as a sum of two independent hermitian generators,
Q¥[B] = Q5™ [B] + Q5" [B],

where Q%°~[B] is given by the expression in the first line of (3.82), while Q4 [B] is given
2 2

by the expression in the second line. The two generators Q%°~[B] and Q%°T[B] act on
2 2

the negative- and positive-helicity sectors, respectively (i.e. positive-frequency and negative-
frequency sectors, respectively). In particular, the two charges generate the two discrete
series UIRs of so(4,1), D™ (A =5/2,s = 3/2) and D*(A =5/2,s = 3/2), respectively. The
corresponding infinitesimal dS transformations of the creation operators are

_ _ 1
Snalyt = ol Q1B = [l @1 1B1] = 3= mr D+ m )0l

1 _
+ W (C—m)(t+m+2)al)} . (3.83)

and

1
0B bg:m)ljz bé:;deSJr[ B 25\/(€—m+1)(€+m+3)bgeﬁ> k

ol Q1)) =

1
+ 5\/(e —m)(C+m+2)00% L (3.80)

Using these expressions, it is clear that single-particle states ae k |O>§ transform as the
corresponding positive frequency modes (3.43), i.e. they furnlsh the so(4,1) discrete series
UIR D~ (A =5/2,s = 3/2). Similarly, single-particle states mek |O> furnish the so(4,1)
discrete series UIR DT (A =5/2,s = 3/2) — see appendix A. Flnally, it is straightforward
to find that the quantum field operator transforms as

w(rm- st[ J| = —iLpw{™-, (3.85)

modulo pure-gauge TT solutions, where L is the Lie-Lorentz derivative (3.16) with respect
to the dS boost Killing vector B [eq. (3.42)], in agreement with the Heisenberg equations
of motion (3.67).

It is also interesting to note that we can construct the five hermitian generators of the
conformal-like symmetry (3.51) in the same way,

Qc%onf[v] - - <\IJ(TT)7’TV\I’(TT)7>G$ : (3.86)
such that the Heisenberg equations of motion are again satisfied
—i Ty (t,05) = [ V(T (¢, 65), Q5™ [V] ], (3.87)

modulo pure-gauge TT solutions, where Ty is the conformal-like transformation (3.51). This
can be easily checked for the conformal-like symmetry generated by the genuine conformal
Killing vector V(O# [eq. (3.54)], for which the quantum generator is found to be

QO = o5 (04 D) (af ol — o500 (389

{=1m,k
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This conformal-like quantum charge is expressed as a sum of two independent conformal-
like charges,

QP VO] = Q- (VO + @ VO,
2

QCOHf ZZ<€+ > ka gm)k’

{=1m,k
Q‘mf+ V() ZZ <£+ > (HIpCH | (3.89)
{=1m,k

The charges Q™ [V(0] and Q™ [V (0] generate so(4,2) UIRs on the spaces of negative-
2 2
helicity and positive-helicity states, respectively. Note that the vacuum of the chiral gravitino,
|0) 3, is invariant under the whole conformal-like symmetry, so(4,2).
2

Microcausality. Finally, we will demonstrate the microcausality of the theory by computing
the anti-commutator between two gauge invariant quantities, the anti-self-dual field strength
and its hermitian conjugate, at two spacelike separated points:

{Fra(t,03), Fp (¢, 65)T}

For convenience, let us start by choosing two equal-time points (¢, 03) and (¢, 8%), and compute
the equal-time anti-commutator for the following components of the field strengths:

{Fin(t,05), iy (1,05)' (3.90)

Expanding the field strengths in modes [as in (3.79)], we find?¢

~ 2
4 (v +;)A§§<93,eg> 0

4 cosh”t 0 0

{Fia(t.03), iy (1,05)1} = —

where A~ (03, 03) is the transverse and -traceless delta function in the space of vector-spinors
on S3 deﬁned by eq. (3.75). In appendix C we show that, while A~~,(03, 0%) is non-local, the

~2
quantity <Y7 + i) i 103, 0%) in (3.91) is local, i.e. it vanishes for 83 # 0% [see eq. (C.21)].

This means that the anti-commutator (3.91) is also local. Then, taking the dual of (3.91)
and using (3.66), it is easy to conclude that all equal-time anti-commutators of the form

{Eu(t.605). F ) (1.6y)T} (3.92)

are also local, for any value of the tensor indices u,v, o, 8’. Finally, the locality of the anti-
commutator for any two causally disconnected (not necessarily equal-time) points can be easily
demonstrated by exploiting the following observation: any two points (¢,03) and (t', 05) that

26The anti-commutator (3.91) is a 4-dimensional bi-spinorial matrix and each of its components are bi-vectors
on S. The vector index i refers to the tangent space at the point (¢,63), while & to the tangent space at

(t,03).
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are causally disconnected can be moved to the same equal-time Cauchy surface by a suitable
dS transformation. Thus, the locality of (3.92) implies that all anti-commutators of the form

{Fu_,j(t, 93)7 Fo;,B/ (t,a gé)T}

vanish for any two points (t,03) and (t/,0%) that are spacelike separated. Then, it follows
that Grassmann-even observables, such as the currents J?(t,03) = F,, (t, 03)7"F " (t, 03),
commute for spacelike separations. This shows the microcausality of the theory. This
concludes the discussion of the quantisation of the chiral gravitino field.

4 Free graviton gauge potential on dS,, UIRs of so(4,1) and so(4, 2),
quantisation and (anti-)self-duality

The graviton and its unitarity in de Sitter spacetime have been studied more extensively than
the gravitino [27, 29, 77, 85]. The linearised Einstein-Hilbert action around a dSy background
describes a real massless spin-2 field, hy, = h(,,), propagating on a fixed dS spacetime. The
linearised Einstein-Hilbert action (after some integrations by parts) can be expressed as [27]

1
Spy = _Z/d‘lx\ﬁ—g W H(h), (4.1)
with

— 9w VOV hos + 2 hy + guh®, (4.2)

where [0 = gV, V, is the Laplace-Beltrami operator on dS;. The symbol h in H*”(h) does
not stand for the trace of h,g. The equations of motion for linearised gravity on dSy are

H,,(h)=0. (4.3)
The action (4.1) is invariant under gauge transformations of the form
O8N Z) hyw = V (W2, (4.4)
where Z, is an arbitrary real vector gauge function. Note that, for any Z,, we have
HH (68%"¢(Z)h) = 0,

corresponding to the well-known gauge invariance of the linearised Einstein equations. As is
well known (see, e.g., [77]), one can impose the transverse-traceless (TT) gauge condition,
in which the field equations are

TT) __ TT
thw ) — 2h§w ),

TT TT
VERED =0, A(EDe =0, (4.5)
These equations still enjoy invariance under restricted gauge transformations

6gauge(A) h(TT) -V

res uv (;LAV)y (46)
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with

OA4, = —34,,
VYA, = 0. (4.7)

The dS Killing vectors £# act on tensors h,, via the Lie derivative
Lehpw =V phpuw + (V&) hpy + (VuEP) hyp. (4.8)

If h,, is a solution of eq. (4.5) (or (4.3)), then so is £¢hy,. Since Lie derivatives preserve
the Lie brackets between Killing vectors, [£¢, £¢/]hu = £¢ ¢hyw, the space of solutions of
eq. (4.5) is a representation space for the dS algebra so(4,1). As in the case of the gravitino
discussed earlier, a key aspect of our analysis will be how the mode solutions of (4.5) on global
dSy form discrete series UIRs of so(4,1). This has been discussed in detail in refs. [77, 85].
In the following subsection, we briefly review the main results from these references.

4.1 Discrete series UIRs of so(4,1) in the space of graviton modes

A general classical TT solution h,(;,T) of (4.5) can be expressed as a linear combination
of physical modes, go,(fyhys’ iL;M;K), and pure-gauge modes, go,(fyg) [77]. Let us present the

form of these modes.

TT pure-gauge graviton modes. The pure-gauge solutions of (4.5) are expressed in
the form

sO(pg) -V

Hv (,uAu)v (49)

where A, satisfies (4.7).

Physical graviton modes. In global coordinates (2.1), the physical modes of eq. (4.5),
with negative (—2) and positive (42) helicity, are given by [77]

o M (1 g5y =0, e {t,0s,00,01)

gpl(lpﬁhys,—L;M;K)(t’ag) _ (m)lm en(t) ~[E;;LM;K)(03)7 (4.10)
and

pis T (1 9.y — o, p € {t, 05,060,601}

@g)ﬁhys,JrL;M;K)(t’GS) _ (I%)lm en(t) T}g;;LM;K)(%), (4.11)

respectively,?” where i, 7 are tensor indices on S3. The labels L, M and K are angular
momentum quantum numbers corresponding to the chain of subalgebras so(4) D so(3) D

Z"There is an extra factor of 2!/2 in the normalisation factor of the mode functions (4.10) and (4.11) relative
to the mode functions in [77] because of our different convention for the Klein-Gordon scalar product (4.23).
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so(2) with L € {2,3,...}, M € {2,3,...,L} and K € {—M,...,0,...,M}. The function
kr(t) is given by

Kr(t) = 2 (Sin x(;)>L+2 (cos a;(;)) N (1 + cos(a:(t)))

L+1

isinht\ (1 — isinh¢)EFD/2
= cosht {1 4.12
o t( +L+1><1+isinht) ) (4.12)
where the variable x(t) is defined in (3.22). With the conformal time 7 this can be given as

1 itanT ,

t) = 1 AT, 413
HL() COST(+L+1)6 ( )

Symmetric rank-2 tensor spherical harmonics on S3. The 63-dependence of the
physical modes in egs. (4.10) and (4.11) is given by the rank-2 tensor spherical harmonics

on S3, T[Sj;L;M;K)(O ) = ((i)LMK)(Og). These satisfy
DT(:I:LMK) (—L(L+2) +2) T(:I:LMK),
V“Tﬁ? BMER) — o, g R = o, (4.14)

where 00 = gdﬁﬁgﬁ g is the Laplace-Beltrami operator on S3. The spherical harmonics
T[S;”L;M;K) and T, é;;L;M;K) are self-dual and anti-self-dual,?®

they are eigenfunctions of the duality operator (helicity operator), as [77]

respectively, in the sense that

1 -
i BV@ é:tLMK) iT(j:LMK) (4.15)
(The anti-symmetric part of the left-hand side vanishes because Tﬁ_L LMK) arve transverse
and traceless.) We note that
&5V (£ VTG MI) = (—0aV 4+ )T = (4.16)

Thus, the duality operator is a square-root of the operator —V4V® + 3 on the TT spin-2
tensors on S3. The TT spin-2 tensor spherical harmonics are normalised with respect to
the standard inner product on S [28]:

= ~ i ~aB (oL M;K)x* o MK/
[, Vados 377507 TEH0" 0g) 115 (0g)

=000/ 0L OM M/ OK K5 (4.17)

where o,0” € {+,—}. For each value of L € {2,3,...}, the set {TfLMK } forms a so(4)

representation with highest weight given by [83, 85]:
Y =(L,+2), (4.18)
. =(—;L; M;K) . . . . . .
while the set {17 } forms a so(4) representation with highest weight given by [83, 85]:

i = (1,-2). (4.19)

28This notion of (anti-)self-duality should not be confused with the notion of (anti-)self-duality defined using
Euvpo ON dSy — see e.g., egs. (3.64) and (4.58).

— 29 —



Positive and negative frequency. The physical graviton mode functions (4.10) and (4.11)
are the analogues of positive frequency modes, as for short wavelengths, L > 1, they satisfy [77]

9 s, L s,
6t§0£5/hy +L; M;K) (t 03) N _Zcosht@l(tpvhy +L; M;K) (t, 03) (420)

Egs. (4.5) also admits physical TT solutions that are the analogues of negative frequency

(phys,£L; M;K)x

modes. The negative frequency graviton modes ¢, are obtained from the positive

(phys, £L; M;K)

frequency graviton modes ¢ given by egs. (4.10) and (4.11) by replacing r(t)

with its complex conjugate. That is,

1/2

(phys, £L; M;K)x _(2(L+1) % 1\ P(ELM;K)
Priv (t,03) = (L(LJFQ) K1) Ty (03). (4.21)
Note. The field strength (4.59) calculated for the positive frequency modes of helicity —2,
@prhys’ ~Li M) , is anti-self-dual, and so is the field strength for the negative frequency modes
of helicity +2, cp,(ff,hys +Li MK . Similarly, the field strength (4.59) calculated for the positive

(phys, +L; MiK) , is self-dual, and so is the field strength for

(phys —L; M;K)*

frequency modes of helicity +2, ¢
the negative frequency modes of helicity —2, ¢, . See subsection 4.3 for more

details on the mode expansion of the field strength and (anti-)self-duality.

Graviton discrete series UIRs of so(4,1). The two sets of (positive frequency) physical
modes {cp(p hys, =L MiK) } and {gou (Phys, L3 M; K)} separately form two discrete series UIRs of
so(4,1) [77, 85]. In particular, they form the direct sum: D% (3,2) @ D~ (3,2) — see
appendix A for details on our notation of the UIRs. It can be seen that each of these two
(phys, —L; M;K) (phys, +L; M;K)
sets of modes forms an UIR as follows. The two sets {p,w } and {¢uw }
do not mix with each other under any so(4) transformation as they belong to different so(4)
representations [egs. (4.18) and (4.19), respectively]|. Also, they do not mix with each other

under any dS boost, as under (3.42) they transform as [77]:

£BSD(phyS +L; M;K) M \/ L—M+ 1)(L—|— M + 2) (phys +(L+1); M;K)

- 5\/(L —M)(L+M+1) gogf,’,hys’i(Lfl);M;K) + (pure-gauge), (4.22)

where the term ‘(pure-gauge)’ is a TT pure-gauge mode (4.9). One can thus conclude that

(phys, —L; M;K) (phys, +L; M;K)
P }and {@w

} separately form irreducible representations. As the
pure-gauge modes are orthogonal to themselves and to all physical modes with respect to the
Klein-Gordon inner product (this inner product will be introduced shortly) [77], the physical
modes form representations with the following equivalence relation: if for any two physical

modes, @Ll,,) and go,(?,,), the difference go,(},,) — Ew) is a linear combination of pure-gauge modes,

then go&l,,) and gof?,,) belong to the same equivalence class.?? These irreducible representations

are unitary because the Klein-Gordon inner product:

Uk 0 0 Uk
(oD@ 4/ d03/— ( n mcpff) o2 aso(”” ) (4.23)

29Fq. (4.22) agrees with the expression for the infinitesimal boost matrix elements in the discrete series
UIRs of so(4,1) with A =3 and s = 2 [55, 56]. See appendix A and refs. [33, 85] for the translation between
the old and modern notation for the labels of the so(4, 1) UIRs.
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is both positive definite (for physical positive frequency modes) and dS invariant, where
o) and ¢® are any two classical solutions of eqs. (4.5). The Klein-Gordon inner product
is related to the Klein-Gordon current,
T (0, 0) = —i (o V28 o) — o) Vi) | VTt (90, 0P) =0,
(4.24)
as

<¢(1),¢(2)>KG — /53 dfs\/—g J;(G (90(1): ¢(2)) ) (4.25)

The positive definiteness of the Klein-Gordon inner product in the positive frequency sector
— and negative definiteness in the negative frequency sector — has been explicitly verified
in refs. [28, 77], as:

<¢(phys, oL; M;K) ‘¢(Phys,a L'y MK ))KG = 0o 0L L/ OM M OK K s (4.26)
<90(phys,aL; M§K)*|S0(phy570' L's MK )*>KG = _60'0'/6LL’5MM’5KKH

(w(phys,aL;M;K)*‘so(phys, U’L’;M’;K’))KG =0 (427)
with 0,0’ € {+,—}. Also,

<<p(1)|¢(pg)>KG =0, (4.28)
where go&ll,) is any physical or pure-gauge mode, and thus, the pure-gauge modes can be
identified with zero as they are orthogonal to all modes, including themselves. Moreover, the
anti-hermiticity of the generators (Lie derivatives) is known [28, 77], as:

(£eeWNe@) 1 + (W L@ oy = 0, (4.29)

for any two solutions ¢, 0@ of eqs. (4.5) and any Killing vector &#. To conclude:

o The positive frequency physical graviton modes with positive helicity, {w&’i,hys’ +1L; M;K)},

form the discrete series UIR D1 (A,s) = D (3,2) of so(4,1) — see appendix A. The
so(4) content corresponds to the so(4) highest weights (4.18). The so(4, 1)-invariant
inner product that is positive definite is given by (4.23).

¢ The positive frequency physical graviton modes with negative helicity, {gofﬁ,hys’ -1 M;K)},

form the discrete series UIR D™ (A, s) = D7(3,2) of so(4,1) — see appendix A. The
so(4) content corresponds to the so(4) highest weights (4.19). The so(4, 1)-invariant
inner product that is positive definite is again given by eq. (4.23).

The negative frequency modes, {gp,(f)yhys’ L M;K)*} and {gp,(f)yhys’ +Ls M;K)*}, also form the direct

sum DT (3,2) @ D~ (3,2) of discrete series UIRs of so(4, 1), where the positive-definite inner
product is given by the negative of the Klein-Gordon inner product. The transformation of
the negative frequency modes under the dS boost (3.42) is found by replacing the coefficients
on the right-hand side of (4.22) with their complex conjugates.
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4.2 Conformal-like symmetry for the (real and complex) graviton and UIRs of
so(4,2)

In this subsection, we discuss a conformal-like symmetry of the graviton gauge potential
generated by the genuine conformal Killing vectors (2.13) of dSy, akin to the conformal-like
symmetry of the gravitino discussed in subsections 3.2 and 3.3. This symmetry is the dS
analogue of the symmetry found for strictly massless gauge potentials on AdSy in the unfolded
formalism by Vasiliev [75]. We will present new details on how the conformal-like symmetry
acts on graviton mode functions on dSs and how these form UIRs of so(4,2). We will also
investigate the invariance of the action functional (4.49) under conformal-like transformations.
Before proceeding to the technical details and mathematical expressions, let us give some
details on the outline of this subsection since there are certain subtleties concerning the
reality properties of the graviton — see also [75].

Outline and subtleties concerning the conformal-like symmetries of mode solutions,
and of graviton field theory. We will start by discussing the conformal-like transformation
for the graviton, Ty hy, [eq. (4.31)], which is a symmetry (a map from solutions to other
solutions) for both the full linearised Einstein equations (4.3) and the graviton equations in
the TT gauge (4.5). We will show that the conformal-like transformations 7Ty enlarge the
symmetry of the field equations from so(4,1) to so(5,1), but the so(5, 1) algebra closes up to
gauge transformations of the graviton. However, when the transformation Ty acts on T'T mode
solutions it fails to preserve the Klein-Gordon inner product (4.23), and thus, the graviton
mode solutions cannot form UIRs of the enlarged algebra so(5,1). Moreover, the conformal-
like transformation fails to be a symmetry of the linearised Einstein-Hilbert action (4.1).
Interestingly, introducing a modified version of the conformal-like transformation by inserting
a factor of i = /=1 as Ty =Ty [eq. (4.35)], we will show the modified transformation is a
symmetry of not only the field equations (4.3) and (4.5) but also of the Klein-Gordon inner
product. The Lie brackets will also be modified so that the full algebra closes on so(4,2) (up
to gauge transformations), instead of so(5,1). Once this modification of the conformal-like
transformation has been made, we will show that the positive frequency mode functions,

(pl(fyhys’ —Ls M;K)} and {go,(fl,hys’JrL; M;K)}, separately form UIRs of the conformal-like algebra
s0(4,2), as in the case of the gravitino modes discussed in subsection 3.2. We will also show
that there is a hermitian action (4.49) functional for the complex graviton b, which enjoys
invariance under the conformal-like transformations 7y b, .

Subtleties concerning the conformal-like symmetries and the reality of the gravi-
ton. At this point, certain subtleties need to be discussed concerning the reality properties of
the graviton related to the afore-mentioned introduction of a factor of 7. The transformation
Ty cannot act on the real field h,, because of the factor of 7. Thus, the field h,, needs to be
replaced by a complex field, which we denote by b,,. The negative frequency part of b,
describes the ‘anti-particle’ whereas the positive frequency part describes the ‘particle’. Both
parts acquire the same phase factor under the transformation 7y. This means that the phase
factor for the positive frequency modes for the ‘anti-particle’ is the complex conjugate of
the phase factor of the positive frequency modes for the ‘particle’. Some basic properties of
the transformations Ty and 7y are summarised in tables 1 and 2.
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Conformal-like transformation on modes Is (v')/ Is not (x) a symmetry of Algebra
Tvgoif’uhys’iL;M;K) (4.31) Field equation (4.5) v'. Inner product (4.23) x | so(5,1)
Tvtpg;,hys’iL;M;m (4.35) Field equation (4.5) v'. Inner product (4.23) v'| so(4,2)

Table 1. Conformal-like symmetry and graviton mode solutions.

Conformal-like transformation of the: Is (v')/ Is not (x) a symmetry of
Real graviton, Ty hy,, (4.31) Field equations (4.3), (4.5) v'. Action (4.1) x
Complex graviton, Ty b, (4.35) Field equations (4.36), (4.39) v'. Action (4.49) v/

Table 2. Conformal-like symmetry: real vs. complex graviton field theory.

Note. The complex graviton will be relevant in our discussion on SUSY in section 6. In
particular, in our unitary supersymmetric model in subsection 6.2, the super-partner of a
chiral gravitino is a chiral graviton. Both of these fields have anti-self-dual field strengths,
and thus, must be complex [87].

4.2.1 Real graviton field theory, conformal-like transformation and so(5,1)

The differential operator underlying the conformal-like symmetry transformation is
D, = Ly N VA L e Vi 4.30
Vv v - 5 Epa)\(u ( V) g + ]/) g ) ) ( . )

where V? is any genuine conformal Killing vector (2.13). The conformal-like transformation

acts on generic symmetric spin-2 fields, B,,, ag3Y

TyBuw = vD,,* Bag = sz—:po.)\(MVUB’\V). (4.31)

Conformal-like invariance of real graviton field equations. We will first show that
the conformal-like transformation 7y h,, for the real graviton is a symmetry of the standard
linearised Einstein equations H,,(h) = 0 [see eq. (4.3)]. For the sake of generality, let us
work with a symmetric spin-2 field B,,, which may not obey the linearised Einstein equations.
Using the expressions (D.2), it is easy to show that H,, (Ty B) can be expressed as

H,, (TvB) = Vpapo/\(MV”HAV)(B) =TvH, (B), (4.32)

for any symmetric spin-2 field B,,. This means that if B,,, = h,, satisfies the linearised
Einstein equations, H,,, (h) =0 [eq. (4.3)], then Ty h,, also satisfies the same equations, i.e.
H,,(Tvh) = 0. In other words, the conformal-like transformation (4.31) of the real graviton
is a symmetry of the linearised Einstein equations (4.3). Furthermore, as eqs. (D.2) hold
for any symmetric spin-2 field, we can also apply them to the case of the real graviton in

the TT gauge B,, = hflTyT). We thus find that if h,(gT) satisfies eqgs. (4.5), then so does

th,(tTyT), i.e. thLTVT) is a TT solution to the linearised Einstein equations. Thus, the
conformal-like transformation (4.31) is a symmetry of the field equations of the real graviton
in the TT gauge [eqgs. (4.5)] — this is also true, of course, for the case of the TT graviton

mode solutions which are complex.

30Note the similarity of the expression (4.31) with the hidden symmetry transformation of the Maxwell
gauge potential in Minkowski spacetime, given by equation (41) in [89].
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so(5,1) symmetry for real graviton. Consider a TT solution of (4.5), hl(uT,T). The
structure of the full symmetry algebra, generated by the ten dS isometries (4.8) and the five
conformal-like symmetries (4.31), is described by the following commutation relations:

[.,65, £§/]hLTyT) = £[£’5/}hg£T), (433&)
[£¢, TyIRGLY = Tie v h (0D, (4.33b)

[TV/,Tv]hLTP=—£[w,v]hLTyT>+Vw[ (VR )) ViV, V17 + [V, VIR (4.33¢)

1
_5 v)o v)o
where &7, " are any two dS Killing vectors, while V#, V'# are any two genuine conformal
Killing vectors (2.13). The commutators (4.33a)—(4.33¢) coincide with the commutation
relations of so(5,1) up the field-dependent gauge transformation in (4.33c). If the minus sign
in front of £y v in (4.33c) gets flipped, then the commutation relations will be the ones of
s0(4,2). This will be the case when we consider the modified conformal-like transformation

acting on complex gravitons later.

Non-invariance of Klein-Gordon inner product. Let cpf},,) and cp;(f,,) be any two TT

graviton mode solutions of (4.5). A straightforward calculation shows that the infinitesimal
change of the Klein-Gordon inner product under 7y [(4.31)] is not zero

Ty W@ o + (W @) o # 0.

In other words, the conformal-like transformations T3, are not anti-hermitian, and thus,
the corresponding so(5,1) representation cannot be unitary. In fact, the conformal-like
transformations Ty h,, are hermitian.

Non-invariance of the linearised Einstein-Hilbert action (4.1). Using (4.32), it is
easy to show that the variation of the action (4.1) under éhy, = Ty hy, does not vanish,

1
5Smn = — / e /=g (Tyh" H,(h) + W™ Ho(Tyh)) # 0. (4.34)

Also, 0Sgpy is not equal to the integral of a total divergence. We conclude that Ty h,,, is
not a symmetry of the Einstein-Hilbert action.

4.2.2 Complex graviton field theory, conformal-like transformation and so(4, 2)

Consider a modified version of the conformal-like transformation of the real graviton by
introducing a factor of i, as Ty = ¢Ty. We will also refer to Ty as a conformal-like
transformation. As we explained earlier, although Ty [eq. (4.31)] can act on both real and
complex graviton fields, which we denote as h,, and b, respectively, the transformation
Ty acts only on the complex graviton field, as

TVh,uu = Z'TVh,LLV = Z.Vpgpak(uvab)\u)v (435)

where V# is any genuine conformal Killing vector (2.13). Let us first give some details for
the complex graviton theory.
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The complex graviton field. The on-shell complex graviton field satisfies the linearised
Einstein equations (4.3) — with hy, replaced by b, — as

H,,(h) =0, (4.36)
where
H,w(b) = VuVaby + VYVaby — O + g4 0%, — Vi Vb,
— 9 VOVhag + 20, + guh%,. (4.37)
Eq. (4.36) is invariant under complex gauge transformations of the form
08ME(Z) b = V2 (4.38)

where Z, is an arbitrary complex vector gauge function. In fact the gauge invariance of the
field equation follows from the off-shell property: H,, (65*"¢°(Z)h) = 0. In the TT gauge,
the field equations for the complex graviton are

Db(T —9 h(TT ,

vepPD =0, §(EMe =y, (4.39)
and they enjoy invariance under restricted gauge transformations
55 (@) BED = V2. (4.40)
where the complex gauge function satisfies
OA, = -3,
v, = 0. (4.41)

Conformal-like invariance of complex graviton field equations. As eq. (4.32) holds
for any (complex or real) symmetric spin-2 field, it follows that if b, is a solution of the
field equation (4.36), then so is Tyh = iTvbhu,. In the TT gauge it is easy to show by
using (D.2) that if f)gT) is a solution of eq. (4.39), then so is TVE)EL?,T). Thus, Ty is a
symmetry of the complex graviton field equations both in their non-gauge-fixed form (4.36)
and in the TT gauge (4.39).

(T The

commutators for the full symmetry algebra, generated by the ten dS isometries (4.8) and

so(4,2) symmetry for complex graviton. Consider a TT solution of (4.39),

the five conformal-like symmetries (4.35), can be found by multiplying V' and V'’ by i and
replacing hy, by b, in egs. (4.33a)-(4.33c). We find in this manner,

[£e, £elbfu " = Ligebin ), (4.42a)
["557 Tv]bul/ T = T{ V]h(TT ) (442b)

o TED a7~ 94 [ (99052 2 v 37 ch
where &4, &'# are any two dS Killing vectors, and V#, V'# are any two genuine conformal
Killing vectors (2.13). The commutators (4.42a)—(4.42¢) coincide with the commutation
relations of so(4,2) up the field-dependent gauge transformation in (4.42c), as in the gravitino
case in (3.52a)—(3.52c). The sign difference between eqs. (4.33¢) and (4.42c), corresponds
to the difference between so(5,1) and so(4,2).
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Conformal-like invariance of Klein-Gordon inner product. Let cp,(},,) and go,(g,) be any

two TT graviton mode solutions — these are solutions of both (4.5) and (4.39). We will show
that the Klein-Gordon inner product (4.23) is invariant under the (complex) conformal-like
transformations [eq. (4.35)]

. o (1,2)A
Tvgolglf) = i VPepor(uV <p(y)) .

Let us start by considering the Klein-Gordon current Jj (cp(l), cp(Z)) [eq. (4.24)]. After a

straightforward calculation, the infinitesimal change oy Ji (Lp(l), (p(z)) under Ty is found to
be equal to the divergence of an rank-2 antisymmetric tensor as follows:

Sy Jh (90(1)7 90(2)) =Jha (va(l)’ 90(2)> +Jk, ((p(l)’ va(z)) (4.43)
1 1)Ax o o 2)A g afB*
=5V, (V” @(ﬁ) 5p)\a[ vH @B e ¢(ﬁ) 5[»\&[ vH p(Das ) '
It immediately follows that the Klein-Gordon inner product (4.23) remains invariant under
infinitesimal conformal-like transformations, as

oy <90(1)’90(2)>KG = /53 dOsv/—g dvJfc (<P(1)790(2)) =0, (4.44)

for any genuine conformal Killing vector V# (2.13). This implies the anti-hermiticity of
all five conformal-like generators

(TveD o) g + (e Tve?) kg = 0. (4.45)

Since the requirements of positive-definiteness of the Klein-Gordon inner product and anti-
hermiticity of all 15 so(4,2) generators (10 isometries+5 conformal-like symmetries) are
satisfied, the physical graviton modes must form UIRs of not only so(4,1) but also so(4, 2),
as in the case of gravitino modes discussed in subsection 3.2. Let us elaborate on this further.

4.2.3 UIRs of so(4,2) formed by graviton modes

In the previous subsections we showed that the space of graviton mode solutions is a

representation space for so(4,2) — see the commutation relations (4.42a)—(4.42c). Here we

will show, for the first time, that each of the two positive frequency single-helicity sets of
: ; (phys, —L; M;K) (phys, +L; M;K)

physical graviton modes, {¢;w } and {pw }, forms a UIR of so(4,2).
As in the gravitino case discussed in subsection 3.2, it is sufficient to study the conformal-

like transformation generated by one (out of five) genuine conformal Killing vectors, specifically

the genuine conformal Killing vector V(O# (3.54). From eq. (4.35), we have:
Ty @E;puhys’iL;M;K) = —¢ cosht gm(uv%(ﬁ’)‘ys’ﬂ; MEOA, (4.46)

Using the explicit expressions of the physical modes (4.10) and (4.11), as well as 1657 =
cosh3¢ €35 and (4.15), we find

Toro e~ M) — (L + 1) p{fhve Ei 80 (1.47
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and
Tvo @ Phys +L; MGK) _ i(L+ 1) (Phys +L; MGK) (4.48)

Thus, from eqgs. (4.47) and (4.48), as well as (4.42a)—-(4.42c), it follows that {y;w (phys, +L; M; K)}

(phys,

and {¢w —L M;K)} separately form irreducible representations of so(4,2). These represen-

tations are unitary because the Klein-Gordon inner product (4.23) is positive definite and
all so(4,2) generators are anti-hermitian (4.45). Similarly, one can show that the negative
frequency modes {(p(phys L MK } and {go(phys L;M;K)*} separately form UIRs of so(4, 2)
with positive-definite inner product given by the negative of the Klein-Gordon inner product.

4.2.4 A hermitian action for the complex graviton and its conformal-like

invariance

A hermitian action for the complex graviton, which gives rise to the desired Euler-Lagrange
equations (4.36), is

= —7/d4x\/ gbl, H™(b). (4.49)

This action is invariant under the gauge transformations in (4.38) and their complex conjugates
— T

5 (Z) bl = V(2] (4.50)

For later convenience, let us introduce the conserved symplectic current [90, 91] of the theory
as follows. The covariant conjugate momentum current density for h;u is defined as

1 059
V=958V,h,
1 1
_ _Zvuhu)\ + 1(2gu(uvab)\)oc - gu)\va[]ozu)

HUA

1 1
= 19"VING + g VG (4.51)

Thus, the conserved symplectic current between two complex classical solutions f)f,l)\) and
6(2) of eq. (4 i
VA q. (4.36) is
o (6D ) = i (bl(,lx)* p@mA _ (s b(VQA))

_ _i (b,(,l)\)*vuf)@)w‘ o 2{)(1)u*)\vah(2)a)\ + hg)ﬁ*vah@)a”

+ b(l)p,*)\v)\b((f)a o b(ﬂl)ﬁ*vuhgf)a

_ bl(,Q)\)vMb(l)y)\* + 2h(2)p,)\vab(1)a>\* _ bg)ﬁvah(l)ap,*

— pDm wApDes  pDPgrpD) ) (4.52)
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see, e.g., refs. [92, 93]. The time-independent (pre-)symplectic scalar product between h(Vl)\)
and f),(,2>\) is

OO0y = [ 0375 Ty (67,52) (4.53)

Importantly, the scalar product (4.53) is gauge-independent [92-95], and thus invariant under
gauge transformations (4.38), as

(e (2P, = /S 037/~ Sy (555 (2)5D 5P ) = 0

(o= (2)p ), = /S d037/=g Sy (00, 55 (2)0P) = 0. (454)
Indeed it is straightforward to show that

VL. (15(1)7 5gauge<z)h(2)) =V, AP, (4.55)
where AP* = APl is an anti-symmetric rank-2 tensor depending on the gauge parame-
ter Z and on b,(},,)* (and their derivatives) — clearly, a similar statement also holds for
JEmp (5gauge(2)h(1), h(Q)). Thus, pure-gauge solutions, i.e. complex solutions of the form
b = V2, for any Z,, are orthogonal to themselves and to all other solutions, with
respect to the (pre-)symplectic scalar product (4.53). Note that, if one imposes the TT
gauge condition (4.39) for both arguments of the symplectic current (4.52), then the sym-
plectic current coincides with the Klein-Gordon current (4.24). Thus, the (pre-)symplectic
scalar product (4.53) coincides with the Klein-Gordon inner product (4.25) on the space
of TT solutions.

Conformal-like invariance of the action (4.49). The hermitian action in (4.49) is not
only invariant under dS transformations but also under conformal-like transformations (4.35),
unlike the linearised Einstein-Hilbert action (4.1) for the real graviton which is not invariant
under the corresponding conformal-like transformations (4.34). The conformal-like invariance
of the action (4.49) can be readily checked as follows. Computing the variation

Sy = =5 [ e V=g (5vbly I (5) + L, H (Gvh)) (1.56)

under dyvbh,, = Tvbu = iTvhu and 5VhLu = (Tvbw,)T, and using (4.32) with B, =
b, we find

Sy Sy = /d4z«/—g \VAd <fl VP2 ory W1 H7”(b)) , (4.57)

which demonstrates the conformal-like invariance of the action So. Notice that (7yh W)T has
an extra minus sign relative to Tyh,, (see (4.35)), which plays a crucial role in the calculation.
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4.3 Quantisation of the chiral graviton field, anti-self-duality constraint, and
UIRs in the bosonic Fock space

Here we will discuss a particular case of a chiral graviton field, the graviton with anti-self-dual
field strength as this will be the superpartner of the chiral gravitino, as discussed in section 6.3!
The chiral graviton is described by a complex symmetric spin-2 field b,,,, as the one discussed
in 4.2.2, but with the extra restriction of anti-self-duality on the field strength. In the present
subsection, we will quantise the chiral graviton following Takahashi’s method, as we also
did for the chiral gravitino in subsection 3.4.

Following Takahashi’s method [88], we take as our starting point the field equation (4.39)

accompanied by the anti-self-duality constraint on the (complex) graviton field strength
Unpur = —i Unpurs (4.58)

where (Nfalgu,, = %eaﬁwsUV‘S o The complex graviton field strength, which we also call
‘complex linearised Weyl tensor’, is defined as in the case of the real graviton [98]:

Uaﬁuu = ( - vuv[abﬁ}u - g,u,[abﬂ]y) - (:u AN V)v (459)

and is invariant under the gauge transformations (4.38). The field strength (4.59) has the
symmetries of the Riemann tensor. The anti-self-dual linearised Weyl tensor, i.e. the linearised
Weyl tensor field that satisfies the anti-self-duality constraint (4.58), will be later denoted

as — see eq. (4.66). The complex graviton field bh,, in (4.59) can, of course, be

afuv
chosen to be in any gauge without affecting U,g,,,. To proceed with the quantisation we
will choose to work in the TT gauge. If b,, satisfies the field equations (4.36) or (4.39),

then it is easy to show that
9" Uy = 9" Unppw = 0, VUopuw = V*Uasu = 0. (4.60)

As we mentioned earlier, the main objective of Takahashi’s method applied here is to determine

)

the Heisenberg equations of motion are satisfied:

the quantum field operator [)ELTZ,T and the hermitian quantum dS generators Q%°[¢] such that

up to pure-gauge TT solutions, for any dS Killing vector &*. The subscript ‘2’ in Q4%[¢]
has been used to distinguish between the quantum dS generators of the chiral graviton and
of the chiral gravitino — see eq. (3.67). As an additional requirement, quantum operators
representing physical quantities must commute with one another for spacelike separations
(microcausality).

Mode expansion. Let us now quantise the chiral graviton field.?? From subsection 4.1, it

)

follows that the components F)ST are nonzero only for pure-gauge modes (see also ref. [77]).

31 Chiral gravitational tensor perturbations around de Sitter spacetime in terms of Ashtekar variables have
been discussed in refs. [96, 97].
32The real graviton field on global dSs has been quantised in, e.g., [29].
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To isolate the physical degrees of freedom, we fix the gauge completely by imposing the
h(TT = 0, and ¢%V4 h(TT)
gauge potential in modes as

gauge conditions: = (0. We then expand the chiral graviton

0" (+,05)=0 (4.62)

TT)— (phys,—L; M; KK hys, +L; MK )%
h( (t,03)= Z Z Z (CLMK (s )(t,05 )+d531\211< /(fuy a > (75»93)),
[—2M=2K=—M

where 4 is a tensor index on dSy, while fi and 7 are tensor indices on S3. The superscript
‘—7in []LTVT)_ refers to the fact that the field strength is anti-self-dual (anti-self-duality is
demonstrated below). The non-zero commutators are

[Cg,_J\glch(Lj])\}’K’] = 5LL’5MM’5KK’7 [dgj_\;[K,dg_])\}/K,] = 5LL’5MM’5KK’- (4.63)

The dS-invariant vacuum is the state |0), in the Fock space that satisfies:

i 1002 = dipic [0), = 0, (4.64)
for all L, M, K. Using the Klein-Gordon scalar product (4.23), we find
i = (@ TEMIR D) e = = (e TR - (4.65)

[see egs. (4.26) and (4.27)].

Anti-self-duality constraint. Let us verify that the mode expansion for the chiral gravi-
ton (4.62) is consistent with the anti-self-duality constraint (4.58). In other words, we will
show that the following field strength

- (TT)—
Usior = (= ViV iably,

gu[ahfg]TyT)_) —(new), (4.66)

is anti-self-dual. For convenience, let us demonstrate this for the component UZ.,., where

Pt
0,7 and U are spatial indices — the calculation for the rest of the components is similar.
In the global coordinates (2.1), we have
_ 0 = (TT)—
Up’ytu = (— a —|— 2tanh t)V[ﬁbﬂﬂ 5 (467)
where @5 is the covariant derivative on S3. On the other hand, for the pyti-component
of the dual field strength, we have

1

. (4.68)

~€5ap U = = €515 U_t5 —cosht &5.5 g Ut;ty

02 2\ Em8 G (1)~
= —cosht ( 22 + 2tanht + - ) 5 I Phu '
We want to show that eq. (4.68) is equal to —i x (4.67). Indeed, substituting the mode
expansion (4.62) into egs. (4.67) and (4.68), and making use of (4.15), one finds that the
anti-self-duality constraint (4.58) is satisfied, as
1

_ ﬁ . _
5657065 U = =1 Up’ytu

This can be similarly verified for the rest of the components of the field strength (4.66).

(4.69)
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Quantum symmetry generators. The hermitian dS generators for the chiral graviton
can be constructed in the standard way [85, 88]:

451 = =i (0T LT e, (4.70)

where &* is any dS Killing vector. Here we will give the explicit expression only for the dS
boost £ = B* [eq. (3.42)]. Expanding the field in modes (4.62), and using eqs. (4.22), (4.26)
and (4.27), we find:

5°[B] = Q5°~[B] + Q3°7[B], (4.71)
where
1 & — _
-3 3 <\/ (L — M +1)(L+ M +2) e )8y rccin
L=2M.K
+1/(L—M)(L+M+1) cggﬁl)Mch@[K> (4.72)
and
1 & +)t +
B = 0y <\/(L — M A1) (L+M+2)d ) edTh
L=2 M,K
+ /(L= ML+ M +2)d ) edh) K) . (4.73)
As in the gravitino case, the dS charge has two independent parts: Q4°[B] = Q4°~[B] +
Q457B], where Q3°~[B] and Q4*[B] act on the negative- and positive-helicity sectors,

respectively. In other words, they generate the two discrete series UIRs of so(4,1), D™ (A =
3,5 = 2) and DT(A = 3,5 = 2), respectively. The charge Q3°[B] generates the following
dS transformations of creation operators:

1 _
) C(LJ\)U{ [C%]\}I-I(a dS[B]} {C(LMKa “[B ]}25\/(L_M+1)(L+M+2)CEL)+T1)MK

1 .
+§\/(L—M)(L+M+1)CEL)_T1)MK (4.74)

and

1
Spdihs = A5 Q3 1B]] = [dfi. Q4% [B]] = 5/ (L—M+ 1)L+ M+2)d ) ¢

|
+5\/(L—M)(L+M+1)d§z) e (4.75)

Using these expressions, it is clear that negative-helicity single-particle states C(L_A)jK 10),
transform as the corresponding positive frequency modes (4.22), thus furnishing the so(4,1)
discrete series UIR D™ (A = 3,s = 2). Similarly, positive-helicity single-particle states
d(LJ;\)jK |0), furnish the so(4,1) discrete series UIR D (A = 3,s = 2) — see appendix A. It is
now straightforward to show that the Heisenberg equation of motion (4.61) is satisfied

(i Q81B]| = —i L0, (4.76)
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module a pure-gauge TT solution, where £p is the Lie derivative with respect to the dS
boost Killing vector B* (3.42).

As in the gravitino case, apart from the ten dS charges we can also construct the five
hermitian charges corresponding to the conformal-like symmetry (4.35),

QY] = =i+ (T[T T (.77
such that the Heisenberg equations of motion are again satisfied
i Ty (t.63) = [ 071 (1, 63), Q5™ V] ] (4.78)

module a pure-gauge TT solution, where 7y is the conformal-like transformation (4.35)
with respect to any genuine conformal Killing vector V# (2.13). An easy way to verify the
Heisenberg equations of motion is to focus on the conformal-like symmetry generated by
the genuine conformal Killing vector V(O [eq. (3.54)], for which the quantum generator
is readily found to be

Qs VO] = 2:2:L+1(qué&K—%B&ﬂ&K) (4.79)
=2 MK

This quantum generator consists of two independent conformal-like charges, as
ngnf[v(o)] — gonf—[v(o)] _i_ngnf—i-[V(O)]’

gonf— [V(O)] — Z Z (L + 1) C%;\ZTKC(L_]\}K’

L=2 M,K
Qe[ Z S (L + 1) ded e (4.80)
L=2 M,K

acting on negative-helicity and positive-helicity states, respectively. Using this expression

)~ (4.62), one can readily verify the

for Q5 [V(9)], as well as the mode expansion for b( T
Heisenberg equations of motion. Finally, it is also easy to verify that, as in the gravitino case,

the chiral graviton vacuum |0), is also invariant under the whole so(4,2) symmetry.

Microcausality. We will show the microcausality of the chiral graviton theory by demon-
strating that, for any two spacelike separated points, (¢,03) and (¢, 0%), the commutator

[U;upo (ta 03)7 Uojlﬁ/'y/(sl (t/) aé)q (481)

vanishes. This can be inferred from the standard theory of the real graviton [29, 77], as
follows. Let h(TT) be the real graviton gauge potential that has been completely gauge-fixed
as hg ) = 0, and gdﬂvdhfff) = 0. This field can be expanded in terms of the Bunch-Davies
mode functions of both helicities (4.10) and (4.11) [29, 77]. The real graviton is related

to our chiral graviton potential as

_ _ T
Bt 05) = HED (¢, 05) + (0D (1, 65))
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Let also U, ,ST,;C}_%Z) be the field strength of h,(E,T), i.e. real linearised Weyl tensor, which has the

symmetries of the Riemann tensor and satisfies eq. (4.60). The real linearised Weyl tensor
can be expressed in terms of the field strength of our chiral graviton as

U;(Lgiﬁrl) (ta 03) = Uu_l/po(t’ 03) + U,u_upcr(tv 03)Ta (482)
where the anti-self-dual part of U;(Lﬁff,l) is
— 1 rea -r7(rea
Uppo (t,05) = 5 (UlLi (t,03) + U550 (1, 83)) (4.83)
while its self-dual part is
— 1 rea -r7(rea _
Upnpo (1,0)' = 3 (Ufi5s) (1. 05) — iU (1,03)) = Upl (1, 03). (4.84)

Because of the microcausality of the real graviton field on dS4, the Weyl-Weyl commutator
between any two causally disconnected points vanishes:33

[U,S’;ep‘g“(t, 03),Ug;(,zf/),5,(t',0§)} = 0, for spacelike separated points (t,803), (t',60%). (4.85)

It is now easy to explain how this implies the locality of the commutator (4.81) that is
relevant to the chiral graviton theory. By taking the dual of the Weyl tensor on the left
slot of the commutator in (4.85), we have

[ﬁg‘jﬁp(t, 93),U$27£/),5, (t’,Og)} = 0, for spacelike separated points (t,803), (t',0%). (4.86)

Then, by adding (4.85) +ix(4.86), and with the use of eq. (4.83), we find

[U/;,pg(tﬁg),Ug;’fi),(;,(t’,eg)} = 0, for spacelike separated points (¢,603), (¢',05). (4.87)

Then, by taking the dual of the Weyl tensor on the right slot of the commutator in (4.87),
and working similarly, we find

[U;Vpa(t,é’g),Uoj,ﬁw,(;,(t',%)q =0, for spacelike separated points (t,803), (t',0%). (4.88)

This demonstrates the microcausality of the chiral graviton theory.

In the quantisation presented above, we started from a complex graviton field and
restricted it to its chiral (anti-self-dual) part, which might seem puzzling at first. However,
we could have started from the linearised Einstein-Hilbert action with a real graviton field
and defined its anti-self-dual part, which is a complex field, to construct the chiral graviton
field. Then, the completely gauge-fixed real field and the corresponding linearised Weyl tensor
would be identical to, respectively, hEE,T) (t,03) and U,Sff}ff;l) (t,03) discussed above. That is,
there would be no need to start from a complex graviton field if our only purpose was to
define the chiral graviton field. However, as we shall see, the SUSY transformation on the
real graviton field would be highly non-local: it is a complex (i.e., non-real) transformation
and the anti-self-dual part and its complex conjugate, the self-dual part, transform differently.
In particular, the U(1) transformation, which is part of the superalgebra, assigns the opposite
charges to the self-dual and anti-self-dual gravitons. In contrast, as we shall see, it is possible
to define a simple SUSY transformation on a non-chiral complex graviton field, which can
be restricted to a chiral graviton field. For this reason we started from a complex graviton
field to construct the chiral graviton field.

33See refs. [92, 98] for related discussions.
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5 Complex Killing spinors on dS; and their conformal-like symmetry

Let us review the basics about Killing spinors on dS; — see also, e.g., ref. [74]. Killing
spinors, €, and e_, on dSy satisfy

?
Vet = :I:ifyuei. (5.1)

The Killing spinors with the two different signs in eq. (5.1) are related to each other as
e = %¢,.3* There are no Majorana Killing spinors®® satisfying eq. (5.1) — the explanation
is similar to the one for the absence of a Majorana condition in the case of the gravitino, see
the passage below eq. (3.9). There are four independent complex (Dirac) Killing spinors €,
and four independent e_. The Killing spinors €4 and e_ form equivalent finite-dimensional
(non-unitary) representations of the dS algebra. In what follows, we will only use the
Killing spinors e¢_, and therefore, we will omit the subscript ‘—’, denoting them as e.

The Killing spinors € form a 4-dimensional non-unitary representation of so(4,1). The
dS generators act on Killing spinors in terms of the Lie-Lorentz derivative

Lee = £V + 1 (Veba)r™e (52)

where £ is a dS Killing vector. For later convenience, note that using any two Killing spinors,
€1 and €9, satisfying eq. (5.1) with the ‘—’ sign, one can construct the following bilinears:

¢ the real Killing vectors
L 5 L 5 L 5 L/ 5 t
fé) =197 Yer — 17 YWey = 127 YHer + 1 (62’)/ 7“61> , (5.3)

where vugé) = 0 and V{4, + (1 <> v) = 0. The factors of 1 in (5.3) have been
inserted for later convenience.

e the real genuine conformal Killing vectors [see eq. (2.13)]

1 1 1 1
Vh = 1527“61 - 1517”62 = 1527”61 +1 (€27 er)!
1 . o i _ i
= ZV” (Z €2€1 — 26162) = V“(bv(e), (ﬁwé) = Z €2€1 — 1 €1€2, (5.4)

where V,,Vi¢), = =gy, = igWVO‘V(e)a. The factors of i in (5.4) have been inserted
for later convenience.

The afore-mentioned real Killing spinor bilinears will appear in the commutators of SUSY
transformations [egs. (6.16) and (6.17)] in the following subsections. Complex Killing vectors
and complex genuine conformal Killing vectors are given by

2.1 1 1,2 1_ 2,1)p\*
g = 162757“617 & = Zﬁﬂ%u@ - ( ¢ )M) (5:5)
and
1 1 :
V(c(2’1)“ = —E'er = VP 0y, Véw)u = a1 =Vid,an = - (V‘C(Q’l)u) - (5:6)
4 VC 4 VC

respectively. However, as we will show below, only their real parts will appear in the
commutators (6.16) and (6.17) of two SUSY transformations.

34The Dirac adjoint €4 of a Killing spinor e+ satisfies V €+ :F% €+ v =0.
35However, eq. (5.1) admits symplectic Majorana Killing spinor solutions.
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Killing spinors and their conformal-like symmetry. Something that is not widely
known, and to the best of our knowledge will be presented here for the first time, is that dS
Killing spinors enjoy a conformal-like so(4,2) symmetry akin to the conformal-like symmetry
for the graviton and gravitino discussed earlier. In particular, the Killing spinor equation (5.1)
is invariant under the following conformal-like transformations:

1
Tye=~ <V”Vpe + 2¢V6> , (5.7)

where V,, = V,¢y is any genuine conformal Killing vector (2.13). It can be readily verified
that if € satisfies the Killing spinor equation (5.1), then Ty e satisfies the same equation.
The so(4,2) commutation relations are given by

[Lg, L£1]6 = L[&g/]e, (58&)
[]Lg, TV]E = T[{,V]Gv (58b)
[Ty+, Tvle = Ly vje, (5.8¢)

where £# and 5/“ are any two dS Killing vectors, while V* and V' are any two genuine
conformal Killing vectors (2.13). Note that the Dirac adjoint of Tye (5.7) is

Tye—— (vpv,,e + ;qﬁve) . (5.9)

Explicit expressions for Killing spinors on dS4. Explicit expressions for the Killing
spinors €(t, 03) on global dSy can be found by analytically continuing the Killing spinors on
S4 — see ref. [32] for details on the analytic continuation of spinor eigenfunctions of the
Dirac operator from S* to dS;. The line element on the unit S* is

Q) = df} + sin® 04 d?, (5.10)

where m > 6, > 0, and dQ? is the line element (2.2) of S3. It is well-known that one can
analytically continue the line element of S* to obtain the line element of global dS; (2.1)
by making the replacement [28§]

01— g —it. (5.11)

It is also known that Killing spinors on S* are eigenfunctions of the Dirac operator with
the lowest allowed eigenvalue?®

Y ¢(04,03) = — 2i9(64,03). (5.12)

There are four such independent spinor eigenfunctions [99, 100] forming a 4-dimensional

representation of so(5) with highest weight given by 7 = (%, %) [99]. It can be easily verified

36The spinor eigenfunctions of the Dirac operator on S* have two different signs for their eigenvalues:
Yo, = —i(n + 2)1, and Vi), = +i(n + 2)),, where n = 0,1,2,... [99]. The two families of eigenfunctions,
¥, and v, form equivalent representations of so(5) for each fixed n. The two families are related to each
other as v, = y°1,,. For n = 0, the spinors 1o = ¢ are Killing spinors on S* satisfying V¢ = —%Ww, as we
show in the main text. The spinors 1 = 1o are also Killing spinors that satisfy V6 = +2v,90.
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that the spinor eigenfunctions v of the Dirac operator satisfy the Killing spinor equation
on S4, as follows. Define the following vector-spinors on S*:

i

Cu = (VM + 2%) Y. (5.13)

It can be shown that these vector-spinors are identically zero by computing their norm using
the standard inner product on S* [34]

/4sin3 94 \/_5 d¢94 d93 Cu(‘94703)T CM(94,03), (5.14)
S

where sin® 64 /7 is the square root of the determinant of the S* metric, § is the determinant
of the S2 metric (2.2), and df3 = dfs dfs df,. The computation of the norm is straightforward
and it involves some integration by parts, and one also has to use [99]

O = (WQ + f) b, (5.15)

where R = 12 is the scalar curvature of the unit S*. As the inner product on S* is positive
definite, the vanishing of the norm implies ¢, = 0, and thus

Vi = —%*w, (5.16)

which is the Killing spinor equation on S*. In other words, the eigenfunctions 1 of the Dirac
operator with the lowest eigenvalue on S* are Killing spinors — their explicit expressions
can be found in [99, 100].

Now, one can use the replacement (5.11) to analytically continue the Killing spinor

4

equation (5.16) on S* to the Killing spinor equation (5.1) (with the ‘—’ sign) on dSy. In
particular, making the replacement (5.11), the S* Killing spinors (6, 83) are analytically
continued to dS4 Killing spinors €(t, 03). In this manner, we find that there are four Killing
spinors on dSy4. Two of them have ‘positive helicity’ and the other two have ‘negative helicity’.

The four Killing spinors on global dSy are given by

w/2—it ~ . L (w/2—it) -
E(—;q)(t793) — COS( 2 ) € q(0s) ’ e(+?q)(t,03) _ [ sm( 2 ) €1,q(03) ’
—isin (#5) &g(6a) —cos (TE1) &1,4(69)
(5.17)

where € 4(03) are Killing spinors on the unit S? satisfying

Vi ,q(03) = £595 €x4(63), (5.18)

and the meaning of the label ¢ will be explained shortly. The Killing spinors €% (¢, 63)
and €,,4(03) (0 = %) will be treated as commuting; Grassmann-odd Killing spinors will
be discussed below. The two ‘helicity’ labels £ in the dS Killing spinors (5.17) stem from
the Killing spinors on S% and their behaviour under so(4) rotations. In particular, on S3,
there are two independent ‘positive-helicity’ Killing spinors €; 4(63) and two independent

— 46 —



‘negative-helicity’ Killing spinors é_ ,(63). The Killing spinors on S3 coincide with the spinor
eigenfunctions of the Dirac operator on S with the lowest eigenvalue

=~ 3.
Vérq(0s) ==+ 3t €1.4(03),

and their explicit expressions can be found from [99]. The label ¢ = 0,—1 is a S angular
momentum quantum number, related to so(2) rotations generated by 0y, in the coordi-
nates (2.2) — see also eq. (C.6). Specifically, 0p,€é+ 4 = i(q + 1/2)é4 4 since, according to
the construction of [99], the label ¢ € {0, —1} determines the #;-dependence for the Killing
spinors in the coordinates (2.2), as €+ 4(03) = éx 4(03, 02, 01) x @+1/2% The two Killing
spinors {€; 4}q—0,—1 on S® form the 2-dimensional representation of so(4) with highest weight
= (4,1) [99]. Similarly, the two Killing spinors {é_ 4}4—0,—1 on S form the 2-dimensional
representation of so(4) with highest weight 7~ = (3,
the scalar quantities €l,q(03)€i7q/ (03) are constant on S3 for any ¢,¢' € {0, —1} — this is

—1). For later convenience, note that

easy to check. Here, we normalise the Killing spinors on S® such that

. - 1
":J:rt,q(03)€i,q/(03) = 5qq’ﬁa (5.19)

and thus,
= _ 1 —
/53 V303 El,q(93)€i,q/(93) = 5qq’27r2 X </53 \/§d93) = Ogq'- (5.20)

To sum up, in total, there are four independent Killing spinors (5.17) on dSy: e(H—1) (t,03).
€0 (t,03), ==V (t,03) and €= (¢,03). Each of these Killing spinors can be re-expressed
in the form of a spacetime-dependent spinorial matrix acting on a constant spinor 77(“;‘1),
as in ref. [100]. To be specific,

7D (t,63) = S(t,03)n'"?, (5.21)

where the spinorial matrix S(¢,63) is given by

S(t, 03) _ 6777/2272'1&70 efig3 ~03 e%,ysz e%ﬁ{m7 (5‘22)
and the constant spinors are:
1 0
. 1440 . —1+4+4|1
(=71 = (=0 = 5.23
K 2t o’ U o ol ( )
0 0
0 0
. —1—41]0 ) 1—410
n(-h—l) — ¢ , 77(+70) _ v (5.24)
2 |1 2 |0
0 1
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As we mentioned earlier, the Killing spinors denoted as (%9 will be treated as commuting,
and thus, the constant spinors 1(%% in eq. (5.21) are also commuting. Grassmann-odd
Killing spinors are also expressed as

E(t,gg) = S(t,03) n, (525)

but now 7 is a Grassmann-odd constant spinor parameter.

6 Unitary rigid SUSY for the supermultiplet of the chiral graviton and
chiral gravitino

6.1 Non-unitary SUSY representation for complex (non-chiral) graviton and
gravitino

In this subsection, we will start by demonstrating that the multiplet consisting of the complex
graviton and the complex gravitino on dS4, each with 2 complex propagating degrees of
freedom, carries a non-unitary representation of global SUSY. Then, in subsection 6.2, we
will specialise to the case where both the graviton and the gravitino are chiral — i.e. their
corresponding field strengths are anti-self-dual — and we will show that the supermultiplet
consisting of these two fields carries a representation of global SUSY which is unitary.

As we show below, the SUSY transformations for the supermultiplet of the complex
graviton b, and the Dirac gravitino ¥, on dSs are:

1/,
5suSy(6)\IjM — Z (7/ huo_,ya + v)\hMU,yUA) 6, (6_1)
€
&Y (€)= 575 (Yo + 7Y, (6.2)
where € is an anti-commuting complex Killing spinor satisfying eq. (5.1) with the ‘-’ sign.

SUSY transformations with commuting Killing spinors will be also used when we consider
their action on mode solutions in subsections 6.2.1 and 6.2.2. These transformations are
gauge invariant. That is, if we consider pure-gauge solutions,

w(p) = (v# + ;fyﬂ> X, (6.3)
hP9 =V, 2,, (6.4)

then
(559 (€)W, (P9) = é (vu + ;w) {[2i257° + (V22577 e}, (6.5)
(5susy(6)hw)(pg) — V(“@f)%)x), (6.6)

It is easy to find the Dirac conjugate of ¢*"%(e)¥, and the hermitian conjugate of
%Y ()b, as:

JE— € . o g
5susy(6>\I/‘u =7 (—z h;fw’y + VAULU’Y A) )

1
= ) = 5

Let us emphasise that the SUSY transformations (6.1) and (6.2) are relevant to two different

(qu + %%) 7’e.

supersymmetric theories:
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e The first corresponds to the theory of a complex graviton and a complex gravitino, each
with two complex propagating helicity degrees of freedom. This theory is non-unitary
as it involves a gravitino field containing all of its propagating helicity degrees of freedom
which leads to the appearance of negative-norm states, as explained in subsection 3.4.

e The second theory is obtained from the first by a simple projection, and is our theory
of interest. It consists of a chiral graviton and a chiral gravitino, each with one complex
propagating helicity degree of freedom (the field strength of each gauge potential is
anti-self-dual). For the unitarity of this theory it is crucial to demonstrate that the
SUSY transformations are consistent with the anti-self-duality constraint [egs. (3.64)
and (4.58)]. In other words, we have to show that the anti-self-dual gravitino field
strength (3.79) transforms only into the anti-self-dual linearised Weyl tensor (4.66) and
vice versa — see subsection 6.1.4. This means that gravitons with helicity —2 (+2)
transform into gravitini with helicity —% (—1—%) and vice versa. Once the compatibility
of the SUSY transformations with the anti-self-duality constraint has been verified (this
can be done only on-shell), one can rewrite the SUSY transformations (6.1) and (6.2)
in a form that refers explicitly to the supermultiplet of a chiral graviton and a chiral
gravitino, as

— 1 s L— A0 — A0

(T, = 1 (77 + Vab ™) e (6.7)
€

w9

()b, = 577 (W% + 90y (6.8)

where b, and ¥, are the chiral graviton and gravitino gauge potentials.?” The main
result of this paper is that the supermultiplet consisting of the chiral graviton and the

chiral gravitino (b ), with their corresponding field strengths satisfying the anti-

I
self-duality constraints (4.58) and (3.64), respectively, forms a unitary representation of

global SUSY that is also unitarily realised on the QFT Fock space.

},LV?
ing field strengths being self-dual instead of anti-self-dual. This theory also realises

Note. One can instead consider the chiral supermutliplet (h W:), with correspond-

a unitary representation of global SUSY where the SUSY transformations are given
by (6.7) and (6.8) with b, and ¥, replaced by b, and ¥, respectively. The two

supermutliplets (hW, _> and (f)W,

global SUSY in dSy4. Although in this paper we show the unitarity of the supermultiplet

) separately form unitary representations of

([];W, \I/;), the unitarity of the supermultiplet (h;[m \I/+) can be shown in the same
way. However, if the two theories are combined together to form the supermultiplet
(b, V) with b, = b+ b+ and ¥, = ¥ + \I/:[, then the resulting theory would be
non-unitary because, in this case, the gravitino field contains all of its helicities, giving

rise to negative norms in the QFT Fock space — see subsection 4.3.

The ‘chiral’ SUSY transformations (6.7) and (6.8), which are the transformations relevant to
our theory of interest, are a special case of the initial non-chiral SUSY transformations (6.1)

37See eqs. (4.62) and (3.68), respectively, for the mode expansion of the completely gauge-fixed version of
the chiral gauge potentials.
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and (6.2). We will show that the latter non-chiral transformations are symmetries at the
level of both the hermitian action (6.11) of the theory and the field equations. On the other
hand, the theory that contains only a chiral graviton and a chiral gravitino has no local
action principle, as it is not possible to split the helicities in a local way at the level of the
action. However, the ‘chiral’ SUSY transformations (6.7) and (6.8) are symmetries at the
level of the equations of motion — we will show that this follows from the invariance of
the equations of motion under the (non-chiral) SUSY transformations (6.1) and (6.2). In
other words, we will show that the ‘chiral graviton-chiral gravitino’ supermultiplet (b, ¥ )
carries a representation of SUSY. The unitarity of this representation will be demonstrated
in the next subsection.

Let us start discussing the general theory of a complex graviton and gravitino, each with
two complex propagating helicity degrees of freedom, and specialise to our chiral theory later.

6.1.1 SUSY invariance of non-gauge-fixed field equations

Let b, and ¥, be complex off-shell field configurations, and let us consider the differential
operators appearing in the field equations, H,,(h) [eq. (4.37)] and R(¥) [eq. (3.6)], respectively,
acting on the off-shell fields. After a straightforward, but lengthy, off-shell calculation, one can
show that H,,(h) and R(¥) transform into each other under the SUSY transformations (6.1)
and (6.2), as

B (H (0) = H(54 () = &0 (5i7# + V0 =109 )RV (1)

=&’ (;i’y(*‘ + 7““%) RY(W), (6.9)
and
FUY (Y RI(T) = RE(6™ () T) = %'yaeH”o‘(h). (6.10)

(These equations hold for both commuting and anti-commuting Killing spinors.) This shows
that the solution spaces of equations R*(¥) = 0 [eq. (3.1)] and H*”(h) = 0 [eq. (4.36)]
transform into each other under the SUSY transformations (6.1) and (6.2). Thus, the
supermultiplet of the complex graviton and the complex gravitino carries a representation
of global SUSY. As we mentioned earlier, this SUSY representation is bound to be non-
unitary, but unitarity will be achieved by restricting to the ‘chiral graviton-chiral gravitino’
supermultiplet in subsection 6.2.

6.1.2 SUSY invariance of the hermitian action and supercurrents

The hermitian action for the theory consisting of the complex graviton and Dirac gravitino
is given by the sum of the free actions (3.8) and (4.49):

S= S3+8; = /d‘*:c\/fg (—ih[w H"™ (b) —\I/u”yE)R‘u(\I’)). (6.11)

It is useful to show that the action (6.11) is SUSY-invariant, as this will allow us to find
the conserved Noether currents associated with SUSY. Varying the action (6.11) under
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55 (€)W, and (8 (¢)h,,)T, we find
_ 4 1 sus T v T .5 Sus, _
55 = [t v=g (=5 (@) B () - 0 RAE (D) =0, (612

where R¥(6°"%(e) W) is given by eq. (6.10). Also, varying the action under §*¥(e)¥,, and
55" (€)h,, we find that 0.5 is equal to the integral of a total divergence, as

55 = [t V=g (~ bl H G () - BT, A RAY)
= /d4:v —g Va (2757“7%”(‘1’) hig) 7 (6.13)

where HH (55" (e)h) is given by eq. (6.9).
The covariantly conserved Noether vector currents arising from the SUSY invariance
of the action are easily found as

f AL 4 . v v . T KO
(78)(6,9))" = 2T (i007" + 7"V baw) € = i W™ 5 (€) T,

PN

€ (ihil/y” - vahgy) FIHRASW, =i 55U (€)W 4 M, (6.14)

RS

The Grassmann-odd fermionic supercurrents 3% and J" A are related to the SUSY Noether
currents as
_A ~ ~unA
\7(/:) = fA Jffp ‘.7(;:; = Jlu €A,

where A = 1,...,4 is a spinor index. The time-independent (complex) Noether charges
associated to the vector currents (6.14) are defined as [79]

@ = [ doav=g Ty, (@) = [ doav=g (T0.1)". (©.15)

We refer to j(’: ) and j{é ;L as SUSY Noether currents, and to Qs*V[¢], Q**[(]" as SUSY
Noether charges. Since the Killing spinors € are Grassmann-odd, then j(’: ) and Q%"Y[e] are

Grassmann-even. If we use commuting Killing spinors €% [eq. (5.21)], then j(‘é (e:0)) and

Q™Y [e(‘”q)] are also conserved, and they are Grassmann-odd. In subsection 6.2.2, it will be
convenient to work with these Grassmann-odd SUSY Noether currents and charges.
6.1.3 SUSY algebra with complex Killing spinors

After a straightforward calculation, the commutator of two SUSY transformations [egs. (6.1)
and (6.2)] on the complex graviton is found to be

e 1_
[ €2), 8 (0] b = = L By T By = (27700 = J07%2) B

+ Vi [0 €0 (6.16)

where no use of the equations of motion was made. The first term, —.£ €., Duv, on the right-
hand side of eq. (6.16) is an infinitesimal dS transformation (Lie derivative) generated by

,51,



the Killing vector §é ) defined in eq. (5.3). The second term, TV buvs is a conformal-like
transformation (4.35) generated by the genuine conformal Killing vector V(’: ) defined in eq. (5.4).
The third term is an infinitesimal u(1) transformation [the phase factor %€2’7561 — i€1’75€2
is real as —€;7%€z = (€27%¢1)T, and constant, as V. (€27°€1) =V, (€17°€2) = 0, as expected
for u(1) transformations|. The last term is a field-dependent gauge transformation akin to
the gauge transformation appearing in linearised Supergravity in Minkowski spacetime —
see e.g., ref. [101]. We conclude that the even subalgebra of the SUSY algebra closes on
50(4,2) @u(1) up to gauge transformations.®®

Calculating the commutator of two SUSY transformations on the Dirac gravitino ¥, is
much more tedious than the complex graviton case above. Moreover, one has to make use of
the equations of motion, as well as of the Fierz rearrangement identities [79]. The result is>

o1 (1 1
[6susy(€2)’ 6susy(61)] \Ifu = —]Ls(e)\lju + T/V(5> \IJM — 5 (462’}/561 — 4617562) \I’,u

i A

where A, is a field-dependent spinor gauge function given by

3 [1_ 1_ o o 1 i N
Ao =17 (4627561 - 461’7562> Y VWa + £y Pa + (4556)% - SVAff)e)%\p> Y Wq

1 3%
— Ve = 17V Ve — TV 7 Ve (6.18)

The terms that appear on the right-hand side of eq. (6.17) are similar to the terms appearing
in the complex graviton case (6.16). In particular, the first term, —L§(€> VU, is an infinitesimal
dS transformation (3.16) generated by the Killing vector fé‘e ) defined in eq. (5.3). The
second term, TQ/—(G)\I/H, is given by a conformal-like transformation Ty, Yu (3.51) plus a
gauge transformation that cancels the last term of the conformal-like transformation (3.51),
where V(’: ) is the genuine conformal Killing vector defined in eq. (5.4). To be specific,
Ty W =Ty, W+ 2 (Vs + $9) 7%, V). The third term on the right-hand side of (6.17)
is a u(1) transformation, while the last term is a field-dependent gauge transformation. It
is thus clear that the even subalgebra of the SUSY algebra closes on so(4,2) @ u(1) up
to gauge transformations.

6.1.4 SUSY transformations of the field strengths and of their duals

Let us give here again the expressions of the field strengths for the complex graviton
leq. (4.59)] and complex gravitino [eq. (3.65)]:

i
Uapun = ( = ViuViahg — gu[ahmu) —(pev),  Fu= (V[u + 2’Y[u> Wy

Their properties are summarised in appendix E.

38The so(4,2) algebra generated by infinitesimal dS transformations and conformal-like transformations was
studied in subsections 3.2 and 4.2.2, for the gravitino and the graviton, respectively.

39We made use of the Mathematica tensor computer algebra package FieldsX [102] to simplify certain parts
of the calculation that involved products of (generalised) gamma matrices.
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SUSY transformations of field strengths. The SUSY transformations of the field
strengths can be obtained by direct calculation using the SUSY transformations of the gauge
potentials [egs. (6.1) and (6.2)], as

)
¥ (€)Fyp = (V[M + 27[M> 55“53’(6)\1'1,],
and

6susy(e)Ua6;w = ( - V;Lv[aésusy(ﬁ)bﬁ]u - g,u[oz(ssusy(e)h/o’]u) - (:u A V)'
The result is

1
6susy(€)Fm/ = g,)/n)\e Un)\,uw (619)
u o = e’ i o i e
0° sy(E)U /7;1, = 6’)/5< ('7[ Vﬁ] - 5'}’ 5) F,ut/ + ('Y[Mvu] - 2'7;w> FoP

+ 2iy, FP. ) (6.20)

V]
where no use of the equations of motion was made.

Duality commutes with SUSY transformations. It is convenient to re-write the SUSY
transformation (6.20) as

5 () Uapr = & (1aVe) — 1as) B + (V) = 1%) Fag ) - (6.21)

To derive eq. (6.21) from eq. (6.20), we have used

1 1
7'70[/6Fuu - *’YMVFaﬁ, (622)

o Bl _
27[u F 5

v] T _2
which can be proved by using the on-shell properties of the spin-3/2 field strength, as well
as properties of products of (generalised) gamma matrices — see appendix E. Given the
SUSY transformations (6.19) and (6.21), a straightforward calculation using some formulae
in appendix E shows that the duality operation commutes with them, as

6susy(6)ﬁw“” = é’Yﬁ)‘G [7/{)\#1/7 (623)
5susy(6)[7agw, = 575<(’y[av/3} — i’yag)ﬁ,w + (’y[uvy} — ivuy)ﬁaﬁ). (6.24)

SUSY algebra for the field strengths. The commutator of two SUSY transformations
acting on Uygpy 18

[6%% (€2), 6" (e1) ] Unppw = — "E&(e) Uappv + TV<5) Uappv — i (ieﬂ%l - 1617562) Uapuv
(6.25)
where the Killing vector §éi , and the genuine conformal Killing vector V(’EL ) are defined in
egs. (5.3) and (5.4), respectively. The interpretation of the terms on the right-hand side
of eq. (6.25) is the same as in the case of the complex graviton gauge potential (6.16),
except, of course, for the gauge transformation term in (6.16), which drops out. The
conformal-like transformation 7y Uag.., generated by genuine conformal Killing vectors,
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is given by the product of a conventional infinitesimal conformal transformation times a
duality transformation (times i), as

1
TvUaguw =1 (fv — 4Vp‘/;,) Uappw =1 (VPV, = 30v) Unguw- (6.26)

For the sake of completeness, let us also compute the commutator of a SUSY variation and
a conformal-like variation: [0°"%¥(e), dy]Unguy, where dyUngu = TvUapu and V¥ is any
genuine conformal Killing vector (2.13). We find

[6% (€), dv] Uapw = m 75 ((V[Ozvﬁ} - irYaﬂ)F,uV + (’Y[MVV} - Z-'Y;W)Fa )7

= 6" (Tye) Upyu (6.27)

which is a SUSY variation of U,gp, (6.21), but with the Killing spinor € replaced by its
conformal-like-transformed version, Tye [eq. (5.7)]. One similarly finds the commutator
between a SUSY variation and a dS variation,

(05" (€), 0¢] Unppr = 6°"¥ (Le€)Unppn (6.28)

where 0¢Uqnpgu = £eUapu and §# is any Killing vector.
The commutator of two SUSY transformations for F,, is

5 (1 1
[ (e2), ()] F =~ Ly Fu + Ty B — 5 (0% = j@n’e) o (629)

where the interpretation of the terms on the right-hand side is as in the case of the complex
gravitino gauge potential (6.17). The conformal-like transformation of the gravitino field
strength, generated by any genuine conformal Killing vector V# (2.13), is given by [76]

1 ~ 5
Ty F, =i <LV + 8vpVP> Fu =+ (Vﬂvp - 2¢>V) Fo. (6.30)

The commutator between a SUSY variation and a conformal-like variation, as well as the
commutator between a SUSY variation and a dS variation, are given by expressions similar
to (6.27) and (6.28), respectively.

6.1.5 SUSY representation on the TT solution spaces and non-unitarity of the
non-chiral theory

The TT gauge is a particularly convenient gauge as the field equations have a simple form.
In addition, the TT mode solutions and their representation-theoretic properties are known —
see subsections 3.1 and 4.1. For convenience, let us write here again the field equations for
the complex graviton and the Dirac gravitino in the TT gauge [egs. (4.39) and (3.13)]

Ope) = 2§01,

Vi =0, hia =0,
(Y +i) v =0,
vaqngT) =0, ,ya‘I,EXTT) = 0.
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To achieve the compatibility of the SUSY transformations (6.1) and (6.2) with the TT
conditions — V“b,(;,T) = aﬁh(TT =0 and V“\I/(TT) “\I/(TT) = 0 — we have to modify
the SUSY transformation of the graviton (6.2) by introducing a gauge transformation. To be
specific, we modify the SUSY transformation 6% ()b, given by eq. (6.2) by adding a gauge
transformation term with the field-dependent gauge parameter —%?}/5\11” to ensure that if
the fields b, and ¥, are in the TT gauge, then the SUSY-transformed graviton remains
in the TT gauge (no such gauge correction is required for the gravitino). Thus, the SUSY
transformations that preserve the solution space of the TT field equations (4.39) and (3.13) are:

5susy(6)\III(LTT ( h ,7 +V b(TT ) €, (631)
u TT) __ ssu TT u ' 5q,(TT TT
O (€)' i) = 6 ()T + gEee (—367 v >) i (6:32)
_E5 (TT) (TT) i 5g(TD)
= 27 (7#\11 —|—’)/V\I/M ) + V(IJ« < 36’}/ \Iju)
[ (TT) _ b (TT)
= 66’}/5’}/(M\I’V) — 5675V(M\I/V) ,

where € is a Grassmann-odd Killing spinor satisfying eq. (5.1) with the ‘—’ sign. Note that the
complex graviton gauge transformation in (6.32) is not a restricted gauge transformation (4.40)
as it is not divergence-free. In particular,

VIV, (—36 5\1/5) >) = —VHES ()T = —j ey w (T,

leading to VH45"Y (€)’ h,(uj:T) = 0. It follows from the gauge invariance of the SUSY transforma-
tions that the commutators of the SUSY transformations in the TT gauge (6.31) and (6.32)
takes the following form:

(6susy(€2)5susy(61)/ - 5susy(€l)5susy( ) ) h(TT (633)
1 1

= — L b0 + Ty, b - (4627561 - 4617562> b, + (pure-gauge term)

(5susy(€2)/53usy(€1) _ 6susy(€1)/5susy( 2)) \IJ(TT) (6.34)

Y] 1
Lf( )\II( T 4 T\/( \II(TT) -3 (462’)/ €1 — 161’7 62) \I/l(lTT) + (pure-gauge term) .
This is the same algebra structure as in the non-gauged-fixed case [egs. (6.16) and (6.17)],
with the only difference being that each of the field transformations in egs. (6.33) and (6.34)
preserves the TT gauge conditions.

Note. The TT SUSY transformations (6.31) and (6.32) also describe symmetries of the TT
field equations if one uses commuting Killing spinors €@ [eq. (5.21)] instead of Grassmann-
odd Killing spinors. Moreover, if one uses commuting Killing spinors, the commutator of
two SUSY transformations on the TT graviton is the same as in (6.33). However, the
commutator of two SUSY transformations on the TT gravitino will be given by eq. (6.34)
with opposite signs on the right-hand side. These comments also apply to the case of the
SUSY transformations of the non-gauge-fixed fields [egs. (6.1) and (6.2)].
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The question of unitarity of SUSY and its failure in the QFT Fock space of the
non-chiral theory. Until now, we have demonstrated the existence of a representation
of our SUSY algebra on the solution space of the classical field equations of the complex
graviton and Dirac gravitino, for both their non-gauge-fixed version and in the TT gauge.
However, we have not addressed the question of unitarity. Let us specialise to the TT gauge.
Our representation space is the direct sum of a bosonic and a fermionic solution space, i.e.
the direct sum of the Hilbert spaces of the graviton and gravitino mode solutions Ho P Hs.
The solution spaces of positive frequency mode solutions are: ’

HQ @H2 _ {‘P (phys, +L; M;K) }@{‘P (phys, L;M;K)}7
’H =P = (w0} Pyt ),

where the TT pure-gauge modes are identified with zero, as discussed in sections 4 and 3,
respectively. As an equivalent representation space one can choose the space of negative
frequency mode solutions, denoted as H3 and H%. The bosonic and fermionic solution
spaces, Ho and H s, are equipped with so(4, 2)—inva2riant scalar products, (-|-) e (4.23) and
(*]) e (3.44), respzectively, and we have already explained how the mode solutions form
UIRs of so(4,2) in subsections 3.2 and 4.2. A interesting feature, discussed in section 3, is
that the positive-definite scalar product in Hj is the axial scalar product (3.44), while the

2
positive-definite scalar product in ”Hg is the negative of the axial scalar product. One has
2

the freedom to choose a different positive-definite scalar product for each solution space, H3
2

and 7-[3“, as each of these two spaces separately forms a UIR. However, when we quantised
the graQVitino theory in subsection 3.4, it became clear that the requirement of the positivity
of the norm in the QFT Fock space forces the gravitino to be chiral, and thus, not both
H; and 7—[; can be part of the positive frequency sector of the QFT — one has to use
on2ly one of? them. Thus, as the notion of unitarity is tied to the positivity of the norm,
it is clear that the SUSY representation realised on the QFT Fock space of the complex
non-chiral graviton and gravitino is non-unitary because the positive frequency sector of
the gravitino contains both H; and HJ.

2 2

Note. One can construct two different SUSY UIRs at the level of classical mode solutions:
one UIR formed by H; @ H; and another one formed by Hy @ H3. However, for the same

2 2
reasons as in the gravitino case in subsection 3.4, the unitary supersymmetric QFT of a
chiral graviton and a chiral gravitino in subsection 6.2 will have a positive frequency sector
consisting only of H, 7—[3 The space Hy @ H3 will be excluded from the Hilbert space

with the help of the antl—self duality constramts
6.2 Unitary SUSY for the chiral graviton and chiral gravitino
6.2.1 Unitarity of SUSY in the space of chiral mode solutions

In this subsection, we demonstrate how the mode solutions that are relevant to the supersym-
metric theory of the chiral graviton and chiral gravitino form UIRs of SUSY. In particular, we
work in the TT gauge and show that the SUSY transformations (6.31) and (6.32) generate a
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UIR of SUSY that is realised on the space of classical T'T mode solutions of positive frequency
with helicities —2 and —3/2, H, @ H5. We also show that another UIR of SUSY is formed
2

in the space of negative frequency modes Hs™ @ H5". We focus on these representation

spaces, i.e. spaces on which the field strengths are a?nti—self—duaul7 because the axial scalar
product (3.44) is positive definite in both of them [see eqs. (3.47) and (3.48)].%° To proceed
with the representation-theoretic discussion, we recall that the bosonic and fermionic solution
spaces that form the SUSY representation are equipped with the Klein-Gordon, (:|-) k¢ (4.23),
and axial, (-|-),, (3.44), scalar products, respectively.

Let us give the definition of unitarity for representations of our superalgebra — the
structure of the superalgebra is determined by eqgs. (6.33) and (6.34). A unitary representation
of SUSY must satisfy the following three conditions simultaneously [103]:

1. Positivity of the norm in both the bosonic and fermionic solution spaces.

2. Invariance of the inner products under the generators of the even subalgebra [so(4,2)
@ u(1) in our case], i.e. anti-hermiticity of even generators.

3. SUSY-invariance of the inner products, in the sense that, for any TT solution ,, of
eq. (3.13), and any TT solution ¢,, of eq. (4.39), the following equation holds:

(07 [) g0 = (P10 () P o - (6.35)
According to egs. (6.31) and (6.32), the SUSY transformations of the TT solutions are

1

()Y = (l Ouay’ + V/\SOW’YU)\) €, (6.36)
5susy(6)/¢lw — 5susy(€)90;w + 5gauge <_;675w) SO;W
— € 5 1_ 5
=37 (it + ) + Vi | =387 ) (6.37)

Condition 3 can be proved for both commuting and Grassmann-odd Killing spinors.
However, in this subsection, we will focus on the commuting Killing spinors (®% (5.21).

Let us now demonstrate that each of the conditions 1, 2 and 3 is satisfied for the SUSY

representation furnished by the positive frequency solution space Hy; @ H; . The following
2

analysis can be straightforwardly generalised to the case of the SUSY UIR furnished by the

negative frequency solution space Hy™ @ H4', as will be discussed briefly later.
2

1. Positivity of the norm. The positivity of the norm for the physical gravitino modes
of helicity —3/2, H3 = {wﬂphys’_g; m;k)}, has been demonstrated in eq. (3.47). Also, the
2

“°0One can similarly show that two SUSY UIRs are separately formed by the T'T solution spaces Hg ) HY

2

and H3~ € H%~, in which the axial scalar product (3.44) is negative definite, i.e. the negative of the axial
3

scalar product is positive definite. We do not give the corresponding representation-theoretic details because
they are similar to the ones presented in the main text, as well as because the solution spaces Hi P ’Hg and
2

Hy~ @ H5 are omitted in the unitary quantum theory of the chiral graviton and chiral gravitino.
2
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positivity of the norm for the physical graviton modes of helicity —2, Hy = {¢, p (phys, =L M; K)},

has been demonstrated in eq. (4.26). Thus, it is clear that the norm is positive in the
direct sum of spaces Hy @ Hs; .

Let us also verify that the 2SUSY transformations (6.31) and (6.32) preserve the space

Hy @ H ;. This is important because if there are SUSY transformations acting on positive

frequenc;' graviton modes of helicity —2 by transforming them into positive frequency

gravitino modes of helicity +3/2, then negative norms will appear, as the axial scalar product

is negative definite in #3 [eq. (3.47)]. Thus, we want to ensure that graviton modes in H;
2

transform under SUSY only into gravitino modes in Hj;, and vice versa. It can be seen that

SUSY transformations do not mix the spaces H; @7—% and Hy @ HI because the SUSY

transformations of the field strengths commute with d121ality transforanations, as shown in

subsection 6.1.4. To be specific, egs. (6.23) and (6.24) imply that the anti-self-dual spin-3/2

field strength transforms into the anti-self-dual spin-2 field strength and vice versa. However,

this observation does not rule out the possibility that some SUSY transformations mix the

space Hy, @ H5 with the space Hay™ @ H’5T since both spaces consist of anti-self-dual mode
2 2

solutions. We prove that the space Hy @ H; is indeed fixed under the SUSY transformations

2
by investigating how the individual T'T graviton and gravitino modes transform.
First, we determine the gravitino SUSY transformation (6.31) generated by the commuting
Killing spinors €(79) [eq. (5.21)], by working at the level of mode solutions in our representation

space, Hy @ H;. More specifically, we will substitute the modes <p(phys ~L; MiK) (t,03)

[eq. (4.10)] into the right-hand side of the SUSY transformation (6.36), and then we will
re-express the transformed modes in terms of gravitino modes.

As both gravitino and graviton modes are expressed in terms of T'T spherical harmonics
on S? of spin 3/2 (3.32) and spin 2 (4.14), respectively, it is useful first to clarify how
SUSY acts on them. In particular, given a T'T spin-2 spherical harmonic TéZ;L;M;K)(Og)
(0 = 4) and Killing spinors €4 4(03) (5.18) on S, we can construct T'T spin-3/2 spherical
harmonics on S3 as

TR are, o and TZPMM57e_ (6.38)

These can be viewed as SUSY transforms of TT spin-3/2 spherical harmonics on S2. Indeed
it can be readily verified that these are eigenfunctions of the Dirac operator on S as

% (o LMK <~ . 3\ (oL MK) <~
v (Tléﬁ7L,M,K),yu ) — g (L Y S 2) T&,L,M,K)ry e s (6.39)

where 64 4 = d__ =1 and d4 - = 06— = 0. We can thus identify TS(ZLMK)V €4+q

and TS‘ZLMK)’VV é_4 with linear combinations for TT spin-3/2 spherical harmonics on

S3 (3.32). Thus,

TELME) ()76, (03) = 5“”" MM G M) 9g), £ =L—1, K =K+q,

%

ﬁiiﬂél ;m' k'sM) w:(f;i m’;k’)(03)7 E/:L7 k/:K+q, (640)
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where
o (¢ m"k ) T m(oLsM; N2
ot/ kM) / V3 dbs (305 H8y)) TN 057 ,(05).  (6.41)

We find k¥’ = K + ¢ by considering how both sides depend on 6;. The range of m’ is found by
noting that the tensors T~(j~E LiM:K) (63) and each of the sets of Killing spinors, {€; 4}q=—1,0
and {é_ ;}g=—1,0 form 80(3) representations with highest weights M and 1/2, respectively,
and that the vector-spinors &f,ﬁ mik) (03) form a representation with highest weight m’+1/2.
If the vector-spinor with the label (¢/,m’, k') does not exist, then the correspondlng coeflicient
is set to 0. We do not need the explicit form of the nonzero coeflicients B (o, KM

Similarly, we can construct TT spin-2 spherical harmonics from TT spln 3/2 spherical

harmonics and Killing spinors on S3, as

S = & (03 V™ F 2055005 ) + (16 ), (6.42)

These can be viewed as SUSY transforms for TT spin-2 spherical harmonics on S3. They
are eigenfunctions of the duality operator defined by eq. (4.15):

~ afy ol mik) (6; msk)

eﬁa Va P ol + 05+ + 1)S(i7q;0)ﬂﬂ. (6.43)
As a result, we have that S((i ;10—])%17 are eigenfunctions of the Laplace-Beltrami operator
on S3, as

NARVL (6; m;k) 2 o6 msk)

(=VaVe® + 3)5(i GoVin = =+ 05+ +1) S& gy (6.44)
where 64 =d_ _ =1and 64 _ =d_ ; =0 as defined after eq. (6.39). (For ¢ =1 one has
+(¢+ 64+ ++ 1) = £2. There are no TT spin-2 spherical harmonics with these eigenvalues for
the duality operator. This implies that S((i:qu;)y;) = 0.) Hence, one can express S((i ;IUI;;V

as linear combinations of TT spin-2 spherical harmonics, as

St g (s Z BEAIIm) (M (gg), 1 =0, K'=k—q,
=
S((i ;nik ,117 Z 5ij,EqL MK T[EZE;L/;M/;K/)(%% L'=(+1, K'=k—gq, (6.45)
e
where
Fop MR /S VG dos T (6g) 85 10 ) (6.46)

The relation K’ = k — g and the range of M’ have been determined as before. Agaln if there
(o, L/, M’ ,K';m)

is no TT spin-2 spherical harmonic with the label (L', M’ K'), we let ﬁi " = 0.

From eqs. (6.41) and (6.46) we find the following relations:
BjFiqLMKm)_2LBjFiqukM) 7 L=t K—k—q (6.47)
BEEEAES — 9i(L 4 2) g5 M L=(+1, K=Fk—q. (6.48)
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Having sketched how SUSY acts on spherical harmonics on S3, we can readily compute
the SUSY transformation [egs. (6.36) and (6.37)] using the explicit expressions of the physical
spin-3/2 and spin-2 modes, wl(,phys’_&m;k) and @Lﬁhys’_h M;K) [egs. (3.20) and (4.10)] and the
expressions of the Killing spinors (5.17) on dS4. The result is

(5susy(€(_;q))w) —L; M;K) = % (’L (pg;hys —L; M;K) ’7 + v)\@(phys —L; M;K) ~ )\) €(—;q)

M

,.,77[/7 /,k,‘/;M _pl. !

TH7 5 AR e -tim)
=M
K

+4q, (6.49)

and

. . (-LiM;K) 1 M .
(5susy(€(+,q))¢)u = Z (’L @Eﬁ;hys —L; M;K) ,7 + V,\QD(phyS —L; M;K) v )\) €(+’q)

M
1 ~ _’gl’ /,k/;M . IR
— _5 L Z 'Bi,q m ) ¢}(};hy5, om’k )’
m/'=M-1
V=L, K=K+q, (6.50)

where ¢ € {—1,0}. The coefficients Biﬁéﬁl’m/’k,;M), and the angular momentum quantum
numbers m’ and k', have been introduced in eq. (6.40). Equations (6.49) and (6.50) describe
the transformation rules for the gravitino modes under SUSY generated by the four Killing
spinors (5.17) of dSj.

One can similarly obtain the SUSY transformation rules for the graviton modes using
eq. (6.37), as

susy ( ()Y, ) ER)
(s (0ye)
e(—:a) g g ) (phys,—;msk
= S (et o glphun i) 4 g, (_3 s tims ))
m+1 / ! !
_ L/ 2 Z 5 Lk M)+ SOl(f;jhys,—L MK
M/_
+ (TT pure-gauge graviton mode), L' =/¢+1, K =k —gq, (6.51)
and
—bmsk
<6S“SY(6(+;q))/¢)( mik)
1%
e(+9) . . o hys,—l;m;k
= 5 75 (,Yuwl(jphys, £mk) +7ywlgphys, Z,m,k)) +v(u <_3 €(+’q)’>’5¢,(f; ys,—Lm; ))
m+1 e / ! !
\ﬁ Z /3( m,k;M’) (pgi/hysﬁL MK
M/_
+ (TT pure-gauge graviton mode), L' =/¢, K =k—q, (6.52)

with ¢ € {—1,0}, where eqgs. (6.47) and (6.48) have been used. Equations (6.51) and (6.52)
describe the transformation rules for the graviton modes under SUSY generated by the
four Killing spinors (5.17) of dSj.
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The transformation rules (6.49)—(6.52) prove that positive frequency gravitino modes
of helicity —3/2 and positive frequency graviton modes of helicity —2 transform among
themselves. Thus, condition 1 is satisfied for the representation space H, @ H5 .

2

Note on negative frequency modes. Our results concerning the positivity of the norm and

the irreducibility of the SUSY representation formed by the positive frequency solution space

Hy @ H; can be readily adapted to the case of the negative frequency space Hit @ H: =
2

2
{QDLZLhyS’+L;M;K)*} @{U&phys’#;m;k)}. In other words, the SUSY representation formed by

HyT @ H5T satisfies condition 1. Let us also write the SUSY gravitino transformation rules

2
at the level of the corresponding negative frequency mode solutions:

. +L;M;K 1 .
(5suSy(€(+,q))U)L ) _ 0 (2 So(phys L ME)x oy (P(phys +L; MiK)x o ) c(+5a)
1 g m k/ s e k!
5 2 Z ﬁ+ Lphy,—i—f, ,k)’
m/=M—1
'=L—-1, K =K+q (6.53)
+LMK) 1 .
(5susy( (- ,q))v)u = (2 p(phys +LMiK)x 10 4 7 p(phys, +1i MiKOx o ) (=59)
_ (+.0/m" K"\ M)  (phys, +£;m’;k'
- I Z 5 lgp Yy )’
m/=M—1
=L, K =K+yq, (6.54)
(4,¢",m’ ,k'"; M)

where the coefficients 6 have been introduced in (6.40). Similarly, we find the

graviton SUSY transformatlon for the negative frequency modes

. +4mk
(5susy(€(+,q))’(p)iy mik)x
e(+9) P .
= 5 ,}/5 (,7 v(phys +;m;k) + v, v(phys +4;m; k)) + v(,u (_; 6(+;q),)/5vi;l)7hy5,+&m,k)>
_ (+:4,m ;M) hys,+L';M'; K’
= 3 QMZ_: ﬁ LPV ys )*
+ (TT pure-gauge graviton mode), L'=(+1, K'=k—gq (6.55)

and

(+€;m;k)*

<5suSy(6(—;q))Qp)

= € ; 75 (7 v(phys +4;m;k) +, U(Phys +4;m; k)) + V(M (_; 6(_;q),_}/E)U(Vzihys,-i-ﬁ7 ,k))

uv

= _,\F Z BUHLmAMO o (phys LMK )
M/_
+ (TT pure-gauge graviton mode), L'=¢ K =k—q (6.56)

where ¢ € {—1,0}. Here, we have used eqs. (6.47) and (6.48) again.
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2. Anti-hermiticity of even generators. The even generators of our SUSY algebra are
those of so(4,2) @ u(1). In the case of gravitino modes, the anti-hermiticity of all so(4,2)
generators with respect to the axial scalar product has been demonstrated in egs. (3.50)
and (3.57). In the case of graviton modes, the anti-hermiticity of all so(4,2) generators with
respect to the Klein-Gordon scalar product has been demonstrated in egs. (4.29) and (4.45).
In particular, we have already established that each of the solution spaces H; and Hy

2
furnishes a UIR of so(4,2) in subsections 3.2 and 4.2, respectively. In these subsections, it
was also shown that each of the negative frequency spaces H%" and H3" furnishes a UIR of

2
so(4,2). Finally, it is easy to check that both the axial scalar product and the Klein-Gordon
scalar product are u(1)-invariant. Thus, condition 2 is satisfied for the SUSY representation
formed by H; @ Hs, as well as for the SUSY representation formed by Hit @ Hi'.
2 2

3. SUSY-invariance of inner products. Our aim is to show that condition 3 is satisfied,
which means that we have to prove eq. (6.35). Equivalently we can show that the axial (3.45)
and Klein-Gordon (4.24) currents satisfy

T (07 (€)1, 1) = e (0,67 (€)' )
+ (total divergence of rank-2 anti-symmetric tensor), (6.57)

as by integrating the t-component of eq. (6.57) over S* we find the desired eq. (6.35). Here,
wu is any TT graviton solution and v, is any TT gravitino solution, where §*** (€)1,
and 8 (€)' o = 65 (€)pu + 0878°(— L&y 1h)g,, are given by egs. (6.36) and (6.37),
respectively. Let us first observe that, since both 6"V (e)1, and v, are TT gravitino
solutions, the SUSY Noether current (6.14) is directly expressed as

Tt (1) = JE (5 (e ) (6.58)

This expression relates the SUSY Noether current with the axial current. The next step
is to re-write the SUSY Noether current j(‘: )(cp,w) in terms of the Klein-Gordon current.
A straightforward calculation gives

i N T_ ox
T (0, 9) = Ty (0,655 (e)9) = V, <4e’y5v”“pw" Cov+ 5E1°1 Yo o ) , (659

where the second term is the divergence of an anti-symmetric tensor, and Ji,,, is the

symplectic current (4.52) with

Symp (9,87 (€)0)
=~ (in VHE (A — (6" Vgl — 205 Val (6™ . (6:60)
Note that the graviton SUSY transformation 0°"Y(€)p,, appearing in egs. (6.59) and (6.60)
is not a TT graviton solution, but it is related to the TT SUSY transformation 5" (¢)'¢,,
through eq. (6.37). Then, using eq. (6.37) to express 0°"% (¢)¢p,,, in terms of 65" (e) ¢y, and
recalling that the Klein-Gordon current coincides with the symplectic current when both
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arguments are TT solutions,*' we can re-express Jhmp (0, 05 (€)p) as

sus, sus, auge ’L’7
T (0.5 (9) = i (.6 Y<e>’¢>—J;;mp(so, gt (—ey% ) so) (6:61)

Then, comparing eqgs. (6.58) and (6.59), and making use of eq. (6.61), we find
" susy _ H susy [ .\/ i gauge 3’, 5
Jhp (07 ()Y, ¥) = Jiee (10,6 (€) ) = Jhymp (so, 5 (—367 w) w)

-V, ( @ o, + e e o ”*) : (6.62)

Finally, we find that this equation takes the desired form (6.57) by using eq. (4.55). We
have thus shown that condition 3 is satisfied. This condition can also be verified directly
by noting that the coefficients in eqgs. (6.51) and (6.52) are the complex conjugates of those
in egs. (6.49) and (6.50), respectively.

6.2.2 Unitary SUSY in the QFT Fock space of the chiral graviton and chiral
gravitino

In the prev1ous subsection we showed that the space of TT positive frequency modes
Hy @ H; = {oib (phys, ~Li MiK)y oy ) (PPYs =6mRN forms a UIR of SUSY with SUSY transfor-
mations glven by egs. (6.36) and (6.37) — or equivalently by egs. (6.31) and (6.32). The
commutator of two SUSY transformations is given in egs. (6.33) and (6.34) and the even
part of the superalgebra is isomorphic to so(4,2) @ u(1). We also showed that the space
of TT negative frequency modes H5+ @H*+ = go,(fyhys’ +L;M;K>*} @{v,&phgsﬁ& m;k)} forms a
UIR of the same SUSY algebra but with 0pp0$1te helicities relative to the positive frequency
modes. Now we will study the realisation of unitary SUSY in the QFT Fock space of the
chiral graviton and chiral gravitino. Recall that by ‘chiral’ we mean that the corresponding
field strengths are anti-self-dual. Let us start by reviewing the main features of the chiral

graviton and chiral gravitino from the previous sections:

e Chiral gravitino. The completely gauge-fixed chiral gravitino field \I'ELTT)f was quan-

tised in subsection 3.4. For convenience let us give here again the mode expansion (3.68):
"7 (1,05) = 0,

TT hys, —€ ;m;k hys, +£ ;m;k
‘I’El )— (t,03) = ZZ( ka¢(p Yy )(t 0 )+bg+)T (phys, + )(t, 93))’
=1m,k

~

{aé:n)ky aé;)jk/} = 000/ Ornm Ok {bgmka bg/ ’k’} = 00/ O Okeke -

The field strength of the chiral gravitino [eq. (3.78)] satisfies the anti-self-duality con-
straint (3.64). The chiral gravitino vacuum is denoted as |0)3 and satisfies aé;b)k |0)s =
2 2

41See the passage below eq. (4.55).
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bé:rn)k |0)s = 0, for all allowed values of ¢, m, k. The vacuum is invariant under so(4, 1)
and thezsingle—particle Hilbert spaces of the QFT furnish a direct sum of two A =5/2
discrete series UIRs of so(4,1) with opposite helicities. The vacuum is also invariant
under so(4,2) and the single-particle UIRs of so(4, 1) extend to a direct sum of so(4, 2)
UIRs with opposite helicities — see subsection 3.4. It is easy to show that these
statements also extend from so(4,2) to so(4,2) @ u(l).

e Chiral graviton. The completely gauge-fixed chiral graviton field P)E};T)* has been
quantised in subsection 4.3. Let us present here again the mode expansion for the chiral
graviton (4.62):

bit 7 (t,63) =0,

[](TT) ( ): Z Z (Cg&Kgpl(g/hys L;M;K)(t,e )_i_dij‘)leO(phys +L; MK)*(t 0 ))
=2 M.K

with

(=) (=)t

[t o] = OLL Omm Ok K, [d(+) dH

vrcs Qi) = 0L dmm Ok e

The field strength of the chiral graviton [eq. (4.66)] satisfies the anti- self duality con-
straint (4.58). The chiral graviton vacuum |0), satisfies C(M)ﬂ( 10), = dLMK |0), =

for all allowed values of L, M, K. The vacuum is invariant under so(4,1) and the
single-particle Hilbert spaces of the QFT furnish a direct sum of two A = 3 discrete
series UIRs of so(4,1) with opposite helicities. The vacuum is also invariant under
so(4,2) and the single-particle UIRs of so(4,1) extend to a direct sum of so(4,2) UIRs
with opposite helicities — see subsection 4.3. Again, it is easy to show that these
statements also extend from so(4,2) to so(4,2) @ u(l).

Let us also recall what we know so far about the SUSY representation carried by the
chiral graviton and chiral gravitino. First, as the SUSY transformations of the field strengths
commute with duality transformations (see subsections 6.1.4 and 6.2.1), it is clear that the
chiral graviton and chiral gravitino gauge potentials (b,(;,T)_, ‘IILTT)_) form a supermultiplet.
The SUSY transformations of the chiral gauge potentials are given by egs. (6.31) and (6.32)
with [)EE,T) and \I/LTT) replaced by hgT)_ and \IIELTT)_, respectively. The commutators of
two SUSY variations are given again by egs. (6.33) and (6.34), but with [)(TT and WgTT)
replaced by b (T~ and \Il,(lTT)f, respectively. The TT gauge transformations in egs. (6.33)
and (6.34) are identified with zero (recall that the UIRs formed by mode solutions were
defined in terms of equivalence classes of mode solutions). We are allowed to do this because
the transformations of quantum fields are attributed to transformations of the creation and
annihilation operators and these have gauge-invariant definitions.*> We also know from the

results of subsection 6.2.1 that the space of positive frequency modes H, @ H3; and the
2

space of negative frequency modes H3" @ H%" separately form UIRs of our superalgebra.
2

42In particular, eq. (3.71) implies the gauge independence of the gravitino creation and annihilation operators
as the axial scalar product is invariant under TT gauge transformations (3.14). Similarly, eq. (4.65) implies
the invariance of the graviton creation and annihilation operators under TT gauge transformation (4.40).
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Let us now show that SUSY is realised unitarily in the QFT Fock space of the chiral
graviton and chiral gravitino. In fact, unitarity follows from the analysis we have already
presented, as we have explicitly constructed the QFT Fock space and we have shown that
the norm is positive. In addition, we have shown that the single-particle Hilbert space (=
Hilbert space of TT mode solutions) carries a direct sum of UIRs of our superalgebra — see
subsection 6.2.1. Nevertheless, for the sake of completeness, we will construct the quantum
operators corresponding to the SUSY Noether charges (6.15) and we will show that they
generate unitary representations of our superalgebra in the QFT Fock space.

Quantum SUSY generators. The quantum SUSY Noether charges that are relevant to our
theory, Q%"Y[e], are found by replacing f]Ll, and ¥, in eq. (6.15) with the chiral quantum fields
h,(E,T)_T and \IILTT)_, respectively. The standard approach is to use Grassmann-odd Killing
spinors, rendering the SUSY Noether charges Q5" [e] = 774 Q4 Grassmann-even, where 7 is
the constant Grassmann-odd spinor parameter in eq. (5.25). The anti-commutators of the
spinorial supercharges, {Q A, QBT}, are then encoded in the commutators [qusy[e], Q%" [e ]T} )
Here, we will adopt an alternative approach where we will use the commuting Killing spinors
7D (t,03) = S(t,03)n\ 7 [eq. (5.21)]. We will thus work with the Grassmann-odd SUSY
Noether charges Q%" [e(79] — see the discussion below eq. (6.15). Now, the SUSY algebra
is determined by anti-commutators

{@rrriden), g ']

Let us now re-express the Grassmann-odd SUSY Noether charges Q%" [e(?i9)] in a more
convenient form. Using eqgs. (6.58) and (6.57), we re-express eq. (6.15) as

qusy[e(cr ;q)] — <5susy(€(o;q))\I,(TT)—|\I,(TT)—>ax — <f)(TT)_\ 5susy(€(cr;q))/ h(TT)_>KG' (6.63)

The quantum charge qusy[e("?q)]T is given by the hermitian conjugate of this expression.
There are four independent SUSY Noether charges, one charge for each Killing spinor
71 (t,03), T30 (1, 03), €=V (¢, 03), and =0 (t,03) — see eq. (5.17). Below we express
Q> [e(79)] in terms of creation and annihilation operators.

Let us first recall that the transformations of the field operators are attributed to
transformations of their creation and annihilation operators. By expanding the fields in
modes, eq. (6.63) gives

qusy o'q) Z Z ( 5susy (o; q))/ (]\)4[( d( ) 5susy(€(U§Q))/d(L-iJ-\21TK) (6.64)
L=2 M,K
—Zz(asusy Jafyh @i+ 0 (€T D)) BT (6.65)
{=1m,k

By construction, the quantum SUSY Noether charges generate the desired SUSY transfor-
mations [egs. (6.31) and (6.32)] on our chiral quantum fields, as

[ [](TT qusy[ ] ] — 6SUSY(€(U§(1))’hEL€T)*7 (666)
{\I’(TT qusy[ ,q)} } — 5SUSY(€(U;Q))\IJ£TT)—‘ (6,67)
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Let us now obtain explicit expressions for the SUSY transformations of the creation and
annihilation operators of the chiral graviton.*> From eq. (4.65) we find

5susy(€(o;q))'C(L—A)4K _ <¢(phys,—L;M;K)|5susy(6(0;q))'[](TT)—>KG
_ <(5SUSY(E(U§Q))¢>(_L;M;K) |\I,(TT)—>M 7 (6.68)
and
5susy(6(0;q))/dﬁ)43( = — (pPhys+L; M?K)*|<5S“Sy(e("?q))’b(TT)WKG
_ <(5S“5y(e(”;q))v) (+L; M;K) ‘\I,(TT)—>M : (6.69)

where we have made use of the SUSY-invariance of the axial and Klein-Gordon inner
products [eq. (6.35)]. The SUSY transformation of the positive frequency gravitino mode

—L; M; K
<5S“Sy(e("5q))¢)( ) is given in egs. (6.49) and (6.50). The SUSY transformation of the
i o (L M)
negative frequency gravitino mode ((55“”(6(""1))0) is given in egs. (6.53) and (6.54).
I

We expect to find that 6% (¢(@i9))/ C([;\)J 5 and 5susy(e(‘7?‘I))’d(LJ§\)jK are proportional to a negative-
helicity gravitino annihilation operator and a positive-helicity gravitino creation operator,
respectively.

Indeed, using egs. (6.49), (6.50), (6.53) and (6.54), as well as eq. (3.71), we find the SUSY
transformation formulae for the creation and annihilation operators of the chiral graviton, as

. M
6suSY(€(—;Q))/CE—]\2[K:_%, /L+2 Z B(__,f ;m/ k' M )* aél_n)ﬁk” EIZL—l, k'/:K—I—q,

m/=M-—1
. M
6susy(€(—;Q))/dgij-\3[TK:_% T Z B(_—:{Z m/ k' M )* bé;&—n);k/’ E/ZL, /{:':K—i—q, (6.70)
m/'=M-1

and

A (= 1 M MM (—
5Su5y<€(+x‘J))/c(LZ\)4K — _5 L Z Bi,ée ,m 7k 7M) aélrr)L/k/’ g/:I/7 k/:K—i_q,
m/'=M-—1

. 1 M ~ /m/ /. *
(Y dfhe = —oVIFR Y BT =11, K=EK+q. (671)
m/=M-—1

The coefficients Bgf/’ml’k,;M) (0 = 4) and the angular momentum quantum numbers m’ and
k' have been introduced in eq. (6.40). The label ¢ € {0,—1} is a so(2) quantum number
labelling the Killing spinors of dSs — see eq. (5.17). It is clear that annihilation/creation
operators of the chiral graviton transform into annihilation/creation operators of the chiral
gravitino, demonstrating the SUSY invariance of the vacuum |0), ® |0>% .

)

Now that we have determined the SUSY transformation formulae for §5s¥ (e(+))/ c(L_M K
and 6su5y(e(i;Q))’d(L+]3[TK, let us substitute them into eq. (6.64). The quantum SUSY Noether

43The SUSY transformations of gravitino creation and annihilation operators can be obtained similarly.
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charges are then found to be:

M
_ ()t 3(—=L—=1,m/ ,K+q;M)x ()
qusy - _ - E E ( L+2 CIMK E ,8_7(1 " M) a(L—l,muK-i-q

L 2 M,K m/=M—

JLom/ ,K+q;M)*
~ VL Z GG g (F Zfl,,mq), (6.72)
m/'=M-—1

and

o0

M
sus >(—,Lom' K+q;M)*x (—
Q) = - z( A S Rt DR e
2 MK

1
2 L=2 M, m/'=M—1

A/ (+,L—1,m/ ,K+q;M)*
L+ dLMK Z ﬂ M) b% )Im’,KJrq)’

m/'=M-1

g € {—1,0}, where it is clear that they annihilate the vacuum |0), ® |O>% Note that
the quantum SUSY Noether charges (6.72) and (6.73) can be expressed as a sum of two
independent charges that anti-commute with each other; one charge generates a SUSY UIR
in the positive-frequency sector, and the other generates a SUSY UIR (of opposite helicity)
in the negative-frequency sector.

The unitary realisation of SUSY in our QFT Fock space is now manifest as it is easy to
check that single-particle states furnish the UIRs of our superalgebra presented in subsec-
tion 6.2.1. For example, graviton single-particle states, such as cS-j]\);K |0), ® |0) s, transform
under SUSY as ’

Q[T (e i 00, @10)5 ) = [ @[] el )] (10), @ [0)5)
= 10)y @ & (@Y e ) [0} (6.74)

According to our analysis in the previous paragraphs, this gives

. M
u - ? >(—,L—1,m/ ,K+q;M —
@) (L 0hp 20y ) =S VIFE Y AL, FED 0y @al L keygl0)s
m/'=M-1

(6.75)
and
t 1 M >(—,Lm/ K+q;M) (=)t
Q™Y [e(+3)] (cLMK|0> ®\O>g):—§\/f Z 5 % |0>2®aL7m/7K+q\0>g,
m/'=M-1
(6.76)

q € {—1,0}, in agreement with the transformation rules (6.49) and (6.50), respectively, of the
mode functions forming the SUSY UIRs. One can smrularly find the SUSY transformations
of gravitino single-particle states, such as |0), ® agmk \O> by using the following:

Q™[] (|0}, ® aff [0)3) = {Q [ )], a1} (10), @ [0)3)

= 5°9 ()l T 10), @ |0) (6.77)

3.
2
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Extra check for unitarity. As mentioned in the Introduction, in the cases where the
unitarity of global SUSY on a fixed dS4 background fails [60, 61], the main obstacle is that
the sum of anti-commutators of spinorial supercharges Q 4,

> {Qa, @M}, (6.78)
A

which must be positive-definite, is shown to vanish identically using the de Sitter superalgebra.
If this anti-commutator vanishes in a theory that carries a non-trivial representation of global
SUSY, then negative-norm states must exist, rendering the theory non-unitary. We will show
that, in our supersymmetric theory of the chiral graviton and gravitino, this anti-commutator
is positive, as required by unitarity.

Let us start by introducing the Grassmann-odd spinorial supercharges, ) 4, of our theory.
Using the expression (5.21) for the commuting Killing spinors, and the definition (6.15) of
the Grassmann-odd SUSY Noether charges, we have

. . B
Q) = [ dBay=g & 0B Jy =50t [ agay=g (—'S(t.62)'5"),"
=704 Q. (6.79)

Now, let us show that the operator given in eq. (6.78) is proportional to the following sum
of anti-commutators between SUSY Noether charges:

Z Z {qusy[e(g;q)]7 QSUSY [G(U;Q)Tf} . (6.80)

oe{+,—} qe{0,—1}

We straightforwardly have

Z Z {Qbuav (@), QoY [¢(o3a)]t } Z Z {(Uq)AQA QB (gq)} (6.81)

oe{+,—}q€{0,~1} oce{+,—} qe{0,—1}

S % i @ (o), b

oe{+,—}qe{0,~1}
Using the explicit expressions for the Killing spinors (5.21), we find
1 A
Y {@m ), @) = 3 {Qa @) (682)
oe{+,—}qe{0,-1} A=1

To determine 3, , {Qbusy[ D], QU [el@ ]T}, it is convenient to study the action of two

consecutive SUSY variations on our chiral quantum fields. These are expressed as
Sus o’;q’ )\ ssus o; - sus o; sus o't
(e g ey — (D, @] gty |

_ [ h(”I‘/T)—7 {Cgsusy[e(ﬂ;q)]7 qusy[e(dl;q/)]T} :| , (683)

5susy(€(g’;q’))/6susy(€(a;q))\PLTT)— _ {WLTT)_ qusy[ (o39) ] } qusy[ ’,q’)] }

= [ \IIELTT)_’ {qusy[e(WQ)]T’qusy[e(a';ql)]} } ’ (6.84)
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where we have used {\IIELTT)_,QS“SY[G(C’?‘])]} = L?,T)_,QSUSY[G(U;Q)]T = 0 for any o and gq.
Then, using the explicit expressions for the SUSY transformations in egs. (6.31) and (6.32),
we can also express the consecutive SUSY transformations in the following form:

5susy(6(a’;q’))5susy(6(a;q))/ h;(;ET)_ = "Egé(a;q)v(tf/;q/))h;(LTyT)_ - TVC((G;q)»(U/;q/)) h;(LTVT)_
ele:0) A5 (0'3d")
. € Y€ _
+i fhfﬁ : (6.85)
35 () gy (e(7:0) ) g (T~ = Légof;q'),(a;q))‘I’LTT)_ - Tv(éw;q/),(a;q)) W=
5i €@ )P e(a)
o TR (T )
> 1 L (6.86)
Here, the complex Killing vector &gal;q/)’(a;q))

V@((O’;q’)v(a;q))

and genuine conformal Killing vector

are given by complex Killing spinor bilinears as follows:

)

0:q),(c";q’ 1_ o o' o), (o N
g(é( i9),(0"50"))p — ZE( ’q)’y57”6( qd') — _(gé:( q')( Q))M)

o o./_ / 17 . 1.0 0./. / o:
yeD @ _ f(a,quue(a 1) = (VO Dy (6.87)
Note also
i) Bel0's) = _(glo'id)Selosa)yf (6.88)

§((C(U;q)’(al;q/))“ were first introduced in eq. (5.5), in a slightly

different notation. Similarly, the complex genuine conformal Killing vectors Vé(g;q)’(ol;q/))”

The complex Killing vectors

were first introduced in eq. (5.6). The scalars €(77)~%¢(79) are constant and, in general,
they are complex.

From egs. (6.85), (6.86) and egs. (6.83), (6.84), we see that we can determine the ‘traced’
anti-commutator in eq. (6.82) by summing over all dS Killing spinors (5.21), as

Z Z 5su5y(€(cr;q) )5SHSY(€(0;q))/h£LTVT)— —

oe{+,—} qe{0,—1}

4
Y Oy 5suSY(e<a;q>y5suSY(e<a;q>>q/gT>—:1[WLTT*,Z{QA,QAT }]. (6.90)

2
ot} ae{0 -1} 2m =

4
% [ b7 > {Qa, @M} ] . (6.89)

A=1

Thus, we are interested in the case where the two Killing spinors are equal to each other,
70 = (04) (ie. 0 = ¢/ and ¢ = ¢), in eqs. (6.85) and (6.86). The Killing spinor bilinears

in egs. (6.85) and (6.86) are imaginary for €@ = ¢(®¢) This means that the complex

ST can be expressed as i = y/—1 times a real Killing vector. Similarly,

V(C((U;q)v(a;q))u

Killing vector f((c(
the complex genuine conformal Killing vector can be expressed as ¢ times a
real genuine conformal Killing vector. Explicit expressions for these complex Killing spinor

bilinears can be found by using the explicit expressions for the Killing spinors (5.21):

e For the complex Killing vectors §(§:(0;Q)’(U;Q))“, we find

f((c(a;—lh(ff;—l))t:g((C(U;O),(U;O))t:(), (6.91)
(== g ((0:0),(:0))7 k__i1< o g 0 3)
& Op=—E¢ Oy = 19,2 00502803 cot0381n¢92802 0891 ,
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for 0 = £. We conclude that fga;_l)’(m_l))“ = _é.é:(a;O),(a;O))u is equal to ¢ times a
linear combination of Killing vectors of S3, and we observe that

Z Z g(é(o;q),(ﬂ;q»u 0.

oce{+,—} qe{0,—1}

e For the complex genuine conformal Killing vectors V((U;q)’(agq))“ we find

YD) _ () ei0) _i g P o

.92
49272 4 272 ’ (6.92)

where V(O# is the real genuine conformal Killing vector in eq. (3.54). We observe that

Z Z V(C((U;q):(a;q)) 5 V( s

oe{+,—} ¢€{0,~1}
« For the constant scalars €?9~5¢(79) we have

E(‘”_l)fe(“;_l) = E(U‘O)fe("?o) = O‘%, for o =4, (6.93)

and thus,

Z Z (@30) B (73a) =

oe{+,—} qe{0,—1}

We use these properties of the complex Killing spinor bilinears and eqs. (6.85) and (6.86)
to evaluate the left-hand side of egs. (6.89) and (6.90). Thus, we find

4
[ b > {Qa, @M} ] =~ Tivobw'™, (6.94)
A=1
4
l ‘PLTT)TAZ {QmQAT}] = - Ty T (6.95)
=1

It is straightforward to find explicit expressions for T, o) \IILTT)_ and ﬁv(o)b,(E/T)_ by ex-
panding the field in modes and calculating the action of the transformations on the mode
functions. In practice, the factor of 7 in iV (O results in an imaginary phase rotation of the
mode functions. Working as in subsections 3.2 and 4.2.3, we find

— T, v(o> (T~ (t,03)

= (£+ ) Ay WP =R (1 Gg) — b o Fhus iR (1 ) ) (6.96)
=1m,k
N [\I’ ~(t,03), QYT IVOI - MV |, (6.97)
2 2

and
- TV<O>U(TT)7(t 03)

= Z S (L4 1) (ehpppeplvs B (@, 0g) — dif e v HEME (1, 65))  (6.98)
L=2 MK

= 6Dt 83), QO] - Qs VO | (6.99)
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where Q™ =[V ()] are the quantum conformal-like charges (3.89) of the chiral gravitino acting
2

on states of helicity £3/2, while Q™™ [V ()] are the quantum conformal-like charges (4.80)
of the chiral graviton acting on states of helicity +2. Thus, we identify the trace of the
supercharge anti-commutator as

4
Z {QA;QAT} Qconf [ ] Qconf-‘r[ ] + Qconf [ ] o ngnf—i-[v(o)]’ (6100)
A=1
which is clearly positive, i.e. its expectation values are always greater than or equal to zero

— see eqgs. (3.89) and (4.80).

Note. From egs. (6.72) and (6.73) it follows that the spinorial supercharges consist of two

independent parts, Q4 = Q, + Qj, with {QZ,QJ“B} = {QZ,Q*BT} = {QX,Q*BT} =0,
which separately generate the two SUSY UIRs with helicities (—2,—3/2) and (+2,+3/2),
respectively. We thus have

24: {Qa, @} = 24: {Qa,@~ "} + 24: {Qi,@}, (6.101)
1 A=1 A=1

where each of the two traced anti-commutators on the right-hand side is separately positive.

SUSY algebra in terms of quantum charges. Using the expressions for the consecutive
SUSY transformations (6.85) and (6.86), as well as egs. (6.83) and (6.84), one can re-express
the commutators (6.33) and (6.34) of two SUSY variations in terms of anti-commutators
of quantum SUSY Noether charges (6.72) and (6.73), as

{@=1dm, @1~ ((010) © (0%)
— _22'st [Re(g((a’;q/)’(ff?‘I)))] + 2Z'Qconf [Re(vé(oﬁq/):(o'ﬂl)))}

igua [(a/,qq 5 (o) _ iéo;qwe(“’;q’)}. (6.102)

Here, the even hermitian generators

Q% [R [ (¢ ((0"3d") (o )} Q15— { e(gé(o’;q’),(aq )} +Qist [Re(f((a ') (o ;q)))} :
with QU [Re(et™ ")) = X0 Q% [Retec” 7). (6.103

se{2,3}

are the quantum dS charges, (3.81) and (4.70), associated with the real Killing vector
Re(ﬁ((c(al;q/)’(mq)))“ = [E(U/?q/)’y‘r"y“e(a?q) —E("?q)'y5’y“e("/§q/)]/8 [see eq. (6.87)]. The ‘= dS
charges and the ‘+’ dS charges commute with each other, and they generate discrete series
UIRs of so(4, 1) with negative and positive helicity, respectively. The even hermitian generators

Qconf |: (V(( q) (e )} Qconf— |: (Vé(a’;q’),(o;q)))} + Qconf—l— [Re(vé(0/§q/):(U§Q)))} ,

with Qconf:t [RB(Vé(U; )7(U§(1))):| — Z Q(S:onf:lz {Re(v(é(a a4 )7(U;Q)))} (6104)
56{2,%
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are the quantum conformal-like charges, (3.86) and (4.77), associated with the real genuine con-
formal Killing vector Re(Vé(Jl;q/)’(U;q)))“ = [e(0 ) ypelo0) — e(@:a)yie(0'54)] /8 [see eq. (6.87)].
Again, the ‘=’ conformal-like charges commute with the ‘+’ conformal-like charges. The
charges (Q®F, Q") generate UIRs of so(4,2) with F helicities. As mentioned in the
previous sections, given a real Killing vector &£#, and a real genuine conformal Killing vector
V#, these hermitian charges generate the following transformations:

[ h(TT)_ st[ﬂ ] - 4 f h(TT)_a [ ELTT)— st[f] ] — —iLf\I’/(JTT)_, (6105)
[ TT)— Qconf[ ] ] ,LTVh(TT ’ [ LTT —,Qconf[v] ] _ —iTV\If(TT)_. (6106)

Finally, we have denoted the hermitian u(1) quantum Charges as Q). These also consist
of two independent (1) charges Q1) = Qu(1)—
positive-helicity states respectively. For real constant parameters «, they act on our quantum
fields as

+ Q*MW+ | acting on negative-helicity and

[ b TT)i,Qu [ ] ] - 5ghasehg£T)f? [ \IJELTT)f’ Qu(l)[a] ] — _i(sghase\III(LTT)f, (6107)
where
5phaseh(TT) — i []ELTVT)—’ 5ghase‘1JELTT)— — %Ox \II,ELTT)_' (6,108)

We similarly find the following anti-commutator of quantum SUSY Noether charges:
{quSy [el79], @5y [6(0’;q’)]T}
- Z QdSp[Re<§é:(°' q )7(031)))] 4+ Z Qconfp[Re(VC((a iq )7(0;q)))]
p==+

—ZZQ" [ < ,q>w(oq>p>}

+ Z deSp Im(fé:(a 4, U?‘I)))] _ Z pQconfp[[m(vé(al;q/)v(aé‘ﬁ)]
p=+ p==%

LY pQuvr [ I'm (ié“’;q’)y%(ff%q))
p==+

Note that the even quantum charges that depend on the imaginary parts of the Killing

(6.109)

spinor bilinears are multiplied by factors of p = 4+, as was already evident from the traced
anti-commutator in eq. (6.100). Given a real Killing vector £#, a real genuine conformal Killing
vector V#, and a real constant parameter «, these quantum charges generate transformations

parametrised by the ‘imaginary counterparts’ of &, V# and «, as:

[0 2 (n) QI ] = — £ihiyD
e
(W73 (p) Q] ] = — Ligw™, (6.110)
p==+
[0 2o (=) QPV] ] = = Tavhip™,
p==%
(DY () @RIV ] = T e (6-111)
p==%
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and,

(60D~ (—p) QUVP[a] | = — sPheep (T
p==%

[P~ S (—p) QUVP[a] | = — sPhoseg (T~ (6.112)
p==

where 67 Zase describes infinitesimal scale transformations [compare with the real-parameter
case in eq. (6.108)]. Recalling that the quantum SUSY Noether charges can be expressed as
a sum of two independent charges, Q%Y [¢(7:0)] = Q¥"Y~[¢(7:D)] 4 QsuY* [¢(7:9)], generating
separately SUSY UIRs with negative and positive helicity, respectively, we may re-express
the anti-commutator (6.109) as

{qusy - [E(J;q)]’ qusy — [6(0'§q')]T}
— _; QdS— [Re(&(c(ﬁ’;q’)v(a;q)))] 4 Qconf*[Re(Vé(U/;q,)’(a;q)))]
1 . .
gu- { Re <4€<a a )Wse(a,q))]

_ (st[lm(&ga ;q)y(a;q)))] _ Qconff[Im( V(é(a i9'):(039)) )]

+ QU= [Im GE(U’;Q’H%(W)H ) (6.113)
and
{qusy+[6(0’;q’)]T7 Oy + [G(U;q)]}
— QIS+ [Re(ggo;q),(a/;q/)))] _ Z~Qconf-i—[Re(vé(gﬂ)v(gl§ql)))]
+ iU+ [ Re (iéa;q)y%(”’;q’))]
i st+[lm(&(c(0;q)7(0’;q’)) ) — Qc0nf+[lm(Vé(U;Q),(U/;q/)) )]
Im <ie("?q>y5e<"'%q'))] . (6.114)

+ Qu(1)+

In the second equation, we have used the fact that the real parts of Killing spinor bilinears
change sign under the exchange (o;q) <> (¢';¢'), while their imaginary parts remain the same
— see eq. (6.87). We thus have two independent sets of generators that form superalgebras
separately. However, the superalgebra formed by the generators

qusy—’ qusy— T’ st_, Qconf—, Qu(l)—
is isomorphic to the superalgebra formed by the generators

_qusy+’f7 _qusy—i-’ _QdS—‘,—7 _Qconf—i-’ _Qu(l)—i—.

In particular, the role of Q%Y= is played by —@Q%"Y* . Moreover, the even generators —Q%+
and —Q™* generate the algebra so(2,4) = so(4,2), which is isomorphic to the algebra

g g ) 7 ) p g
generated by Q% and Q<™.
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7 Discussions and open questions

In this paper, we showed that the free supersymmetric theory of the chiral graviton and chiral
gravitino fields on fixed dSy is unitary. This free unitary theory cannot become interacting
while preserving SUSY in a way that makes the spin-2 sector the true graviton sector of
General Relativity, as the three-graviton coupling cannot be u(1)-invariant. Nevertheless, it
remains worthwhile to investigate whether a non-linear version of the theory exists. If such a
supergravity-like theory were to exist, SUSY would have to be locally realised.

As a step toward exploring possible consistent interactions, it would be mathematically
interesting, and perhaps natural, to reformulate the free chiral graviton-chiral gravitino
theory in terms of spin-tensors belonging to “unbalanced” representations of the Lorentz
group, as in ref. [42]. Then, the question of finding possible interactions can be investigated
using, for example, methods based on the presymplectic BV-AKSZ formulation [104—-106].
Interestingly, a framework for the study of consistent interactions of local gauge theories
in this formulation has been recently proposed in [104], and it simplifies significantly the
analysis of consistent interactions.

We note in passing that if an interacting theory involving our supermultiplet of chiral
graviton and gravitino were to exist, it would require the gauging of global symmetries and
might also require the inclusion of additional fields, as suggested by recent work [107], where
consistent interactions were studied for a real (non-unitary) partially massless graviton and
two Majorana gravitini on AdSy. This field content forms the basis of what one would call
‘linearised partially massless supergravity around AdS,’ [107, 108]. The point of resemblance
with our theory lies in the fact that in [107], it was found that the global symmetries of
linearised partially massless supergravity around AdSy include conformal-like symmetries for
the gravitini, similar to those in our equation (3.51). However, it was also shown that there
are obstructions to the Jacobi identity of the gauge algebra, i.e. the global symmetries cannot
be gauged, unless the field content is modified. Interestingly, it was suggested that by adding
extra fields to the theory, so that the field content matches that of N = 1 pure conformal
supergravity around AdSy, the global algebra (including the conformal-like symmetries)
can be gauged, and consistent interactions might be constructed. We also speculate that a
non-linear version of the theory presented in this paper could be related to a complex, chiral
version of conformal supergravity admitting dSy solutions.

Another interesting future direction is to investigate possible relations between our linear
supersymmetric theory and ‘chiral Supergravity’, as discussed in refs. [109-112].

Finally, we note that it is likely that an analogue of our chiral graviton-gravitino
supersymmetric theory exists on dSs. In such a two-dimensional theory the question of
consistent interactions would be easier to tackle. In particular, the A = 2 and A = 3/2
discrete series UIRs of so(2, 1), corresponding to a shift-symmetric ‘tachyonic’ scalar [8] and
a shift-symmetric imaginary-mass spinor [10], respectively, on dSs, can be viewed as the
two-dimensional analogues of the graviton and gravitino, respectively [9, 10]. Each of these
two fields on dSy corresponds to a direct sum of two so(2,1) UIRs with opposite ‘chirality’,
akin to the four-dimensional case. Moreover, the A = 2 discrete series scalar field on dS5
(as well as the ones with A > 2) was recently shown to enjoy a hidden global conformal
symmetry [14] (akin to the conformal-like symmetry for the four-dimensional graviton that

— 74 —



we discussed in this paper). We expect that the fermionic counterparts [10] of the discrete
series scalar fields on dSy will also enjoy such a conformal symmetry. Then, it would be
interesting to investigate whether one can construct a unitary supersymmetric theory on
dSs using a chiral A = 2 scalar field and a chiral A = 3/2 spinor field. If this theory
resembles the four-dimensional theory presented in this paper, then the commutator between
two SUSY transformations will close on the hidden conformal symmetries. We leave the
investigation of this model for future work.
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A Classification of the UIRs of the dS algebra

The dS algebra so(4,1) has 10 generators Jap = —Jpa, with A, B € {0,1,2,3,4}. These
satisfy the commutation relations:

[JaB, Jep) = (MBcJap + napJec) — (A <+ B), (A.1)

where nap = diag(—1,1,1,1,1). In the case of unitary representations, each of the generators
Jap must be realised as an anti-hermitian operator with respect to a positive-definite scalar
product.

Let us review the classification of the so(4,1) UIRs under the decomposition so(4,1) D
so(4) [55, 56]. An irreducible representation of so(4) appears with multiplicity one in a
UIR of so(4, 1) or it does not appear at all [113]. An irreducible representation of so(4) is
specified by the highest weight [83, 114, 115]

—

=12, (A-2)
where
fi = 1fal. (A.3)
The numbers f; and fo are both integers or half-odd-integers, and fo can be negative.

UIRs of so(4,1). A UIR of so(4,1) is specified by two numbers, the scaling dimension A
and the spin s, denoted collectively as F= (A, s). The number s > 0 is an integer or half-odd
integer. For the so(4) representations f = (f1, f2) contained in the UIR F = (A, s) we have:

fi > s> |fa. (A.4)
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The representation-theoretic labels in refs. [33, 85] are related to the labels of the present
paper as: A = Fy + 3 and s = F;. The UIRs of so(4,1) are listed below [55, 56]:

« Principal Series Dpyip ( F ):

3

s is an integer or half-odd integer.

« Complementary Series Dcomp ( F ):
g§A<3—ﬁ, n € {0,1}. (A.6)

If n =0, then s = 0, and for the so(4) content we have fo = 0. If n = 1, then s is a
positive integer.

« Exceptional Series Dex(F ) :
A=2. (A.7)
s is a positive integer and fo = 0.

« Discrete Series D¥(F) : A is real. The representation-theoretic labels A and s are
both integers or half-odd integers. There are two different cases of discrete series UIRs
depending on the so(4) content:

stng—lzé for DT (F), (A.8)
—s§f2§—A+1§—% for D=(F). (A.9)

Form eq. (A.8), it is clear that the so(4) content of DT UIRs corresponds to so(4) irreps
with positive last component, fa, of the highest weight (A.3). Similarly, according to
eq. (A.9), only so(4) irreps with negative fy are contained in D~ UIRs.

The graviton on dS; corresponds to A = 3 and s = 2. In particular, the positive
frequency modes of the graviton on dS; form the direct sum of discrete series UIRs
D=(3,2)@ D*(3,2) [77, 85]. The gravitino (i.e. strictly massless spin-3/2 field) on dS;
corresponds to A = 5/2 and s = 3/2. The positive-frequency modes of the gravitino on
dSy form the direct sum of discrete series UIRs D~ (5/2,3/2) @ D*(5/2,3/2) [33, 34]. In
general, the positive-frequency modes for any strictly massless boson or fermion of any
spin s > 1/2 on dS; correspond to the direct sum D~ (s + 1,5) @ D" (s + 1,s) [33, 76, 85].
For further discussions on representation-theoretic aspects of fields on dS spacetime see
refs. [8, 10, 14, 28, 33, 34, 44, 51, 76, 85, 116-121].

The quadratic Casimir of so(4,1) is defined as

4
1
Co=Y (Joa)” - 5(st(sJLJUJKL (I,J,K,L e {1,2,3,4}). (A.10)
A=1

For a so(4,1) UIR labelled by F = (A, s) the quadratic Casimir has the (real) eigenvalue:

ea(F) = (A =3)A+s(s+1). (A.11)
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B Global dS geometry (Christoffel symbols, spin connection and all that)

In global coordinates (2.1), the non-zero Christoffel symbols are

T
T

5 = coshtsinht gup, I'%, = tanht gf,
e ﬂ,i),/%é {61)92793}7 (B]‘)

Il
=

=F = T
=R

AN

where gz7 and f"fw are the metric tensor and the Christoffel symbols, respectively, on S3.
We work with the following representation of gamma matrices:

01 ) 0 A7
A0 =i , 9= A (B.2)
10 0

(j = 1,2,3) where 1 is the 2-dimensional spinorial identity matrix. The timelike gamma
matrix is anti-hermitian, while the spacelike ones are hermitian. The lower-dimensional
gamma matrices, 77, satisfy the Euclidean Clifford algebra in 3 dimensions:

(.7 =26%1,  jk=1,2,3. (B.3)

As in refs. [33, 34, 99], the representation of the lower-dimensional gamma matrices we use is:

51:<0.¢), §2:(01)7 ,73:<1 o). B4
—i 0 10 0 -1

In our representation for the four-dimensional gamma matrices, the fifth gamma matrix (2.7)

s (10
v’ = (0 _1), (B.5)

and we note that (2.7) can be re-written as €,,p0 = i75'yu,,pa. Also, under hermitian

is given by

conjugation we have: (7)1 = 709140, (47)1 = 4042790 and (y##7)T = —404#770. Note
also the following useful properties [79]:

eaﬁpwz-:o‘ﬁ“" = —45,&“5,’;],
Eanpy€®™ = (—3)olroker],
Eagose™ Y = (—41)8lE5) sk sY). (B.6)

For the vierbein fields on global dSy, we choose the expressions:

eo=1, €= el i=1,2,3, (B.7)

where é%; are the dreibein fields on S3. The non-zero components of the dS spin connection
are given by

Wijk = co;]ht’ wior, = —wiko = —tanht o, 4,4,k € {1,2,3}, (B.8)

where @;j;, is the spin connection on S3.
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C Transverse, 4-traceless delta function (3.75) and locality of the
equal-time anti-commutator (3.91)

In this appendix, we will explicitly demonstrate the locality of the equal-time anti-
commutator (3.91). To achieve this, we will first show that the transverse and gamma-
traceless delta function on S which appears in the anti-commutator (3.91), and is defined
n (3.75), can be re-expressed as

~ ~ 6(05 — 04
U (03, ogm) <3fg3)

w\»a

ATT(65.60)) = <9W,U<e3, o) -

P

3 1 <
+5Vil == 2 Z Sxk) (3) @ X0 (05)1 | VT, (C.1)
W +9/4 oe{+,—}n=1 lq

where U(03, 0%) is the spinor parallel propagator on S* with U(63, 03) = 1, and gz, §, Y are
the bi-vector of parallel transport, determinant of the metric and gamma matrices, respectively,
on S3. The superscript T on the covariant derivatives denotes their gamma-traceless part:

N 1 S 18
Vﬂ Vﬁ gNﬁ:)/avd and V = V[,/ - gvd/:ya ’Ny,/. (02)
The spinors th’ 9 in (C.1) are the spinor spherical harmonics on the unit S3 which are
eigenfunctions of the Dirac operator, Y = 7%Vg, [99]
~ . 3
VA (03) = i <n+ 2) D (05), me{0,1,2,..., (C.3)

where the quantum numbers n, [, ¢ correspond to the chain of subalgebras so(4) D so(3) D
so(2) with n+% > l+% > \q+%| > % The spinor spherical harmonics are normalised on S as

— 7. L1
/S 05/ XD (05) X5 (B5) = G BB B (C.4)
They also satisfy the following completeness relation:

S Y o) @ ey = 0By, 6 (C5)

U€{+7 }n =0 lvq

For later convenience, some comments are in order:

e Although the value n = 0 is allowed in the spectrum of the Dirac operator in (C.3), this
value is omitted from the sum in (C.1) as it renders the denominator ill-defined [this also
becomes clear in our proof of (C.1) below].

e For n = 0, for which the allowed values for the rest of the angular momentum numbers
are [ = 0 and ¢ = —1,0, the spinor spherical harmonics (C.3) coincide with the Killing
spinors on S3, satisfying:

s 0;0; (N 0;0;
Vi x50 = ig'mxi V), (C.6)
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It is clear that this equation is identical with @%:ng;om =0 [see eq. (C.2)]. In the main text,

the Killing spinors X;’ 9 are denoted as €+,q — see eq. (5.17).

e The commutator of covariant derivatives acting on spinors on S? is

[Vuv Vs ] = iR[LﬂRS\:YH:Y)\’ (C.7)
where the Riemann tensor of the unit S° is

Rfumi = Gurdp5 — 9oRYps- (C.8)
Also, when acting on spinors on S3, the squared Dirac operator is related to the Laplace-
Beltrami operator as

GV =Y + (C.9)

4 9y
where the Ricci scalar is R = 6. Let us now start proving eq. (C.1).

Proof of (C.1). To prove (C.1), we need to make use of the completeness of the vector-spinor
eigenfunctions of the Dirac operator, also known as vector-spinor spherical harmonics, on S3.

There are two kinds of vector-spinor spherical harmonics on S2 [84]: the transverse-traceless

P;+n;l;q) (0 )

harmonics (3.32) and the longitudinal ones. We denote the latter as )\( and

S\ELM;in;l;Q)(H:;). To show that A§§(03, 0%) leq. (3.75)] is given by (C.1), we need to exploit

the fact that the T'T and longitudinal vector-spinor spherical harmonics form a complete
set on S3. The corresponding completeness relation is

50 0 on: on;
(3\[3)9#1/’[[}(9& 93) AMV’ 03, 03 + Z Z )\ i l7q ® )\(P Z’Q)(GQ)T
g oe{+,—}nlq
LYY )\ (Miomilig) )\(M onilia) (gLt (C.10)
oe{+,—}nlyq

where A~~,(03, 03) is the sum over the transverse harmonics [see (3.75)], while the rest of
the sums in (C.10) concern the longitudinal harmonics with all the allowed values of the
quantum numbers n, 1, ¢ (these allowed values are discussed below).

To proceed, we need more information concerning the longitudinal harmonics. The
longitudinal vector-spinor harmonics X;P;i"?“q)(eg,), S\;M;iml;q) (63) satisfy [84]

YASHFEED (93) = iy /(n +3/2)2 — 2 ATH59) (gy) (C.11)
and

VAMEED (03) = —iy/(n +3/2)2 — 2 AL (), (C.12)
and they are expressed in terms of the spinor harmonics (C.3) as [84]:

C(P +n)

AP (gg) = ﬁ(v o {¢<n+3/2>+ (n+3/2)°—2 }’y) X (0g),  (C13)

- (Mstn) 7 _
)\(M in,l,q)(03):C = (V,;—F

{:F(n+3/2)— (n+3/2)2—2} ) Y5 (95).  (C.14)

N | .
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The normalisation factors ¢(F#%) and ¢M*) were not introduced in ref. [84]. We introduce

them here such that the longitudinal vector-spinor harmonics satisfy

/53 d037/5 G777 AL (03) NS (03) = G55 0001 0m O dgy,  (C.15)
where S, S’ € {P, M} and o € {+,—}. It is straightforward to find that:
(P;on) 2 3 1 -1
RN R 2_9) _ 42 2 _
vn i (2 ((n+3/2)*2) o5 (n+3/2)/(n+3/2) 2) , (C.16)
where for ¢ = — we have that all the values of n > 0 are allowed, while for 0 = + we
L (Ps+nslsq)

have n > 1 because for n = 0 the harmonic )\ is identically zero (and, thus, its
normalisation factor is not defined) as the spinor harmonic in (C.13) is a Killing spinor (for
n = 0) and the differential operator acting on it takes the form of the operator in the Killing

spinor equation (C.6). Similarly, we find

(Mo 2 (3 ) 1 B
| =13 ((n+3/2)*-2) +oo(n+3/2y/(n+3/22-2) (C.17)
where, now, for 0 = + we have n > 0, while for ¢ = — we have n > 1 for the same reason

P;+n)

as in the case of c! above.

Now that we know the allowed values of the quantum number n, let us re-write (C.10) as

5(03 — 65 n n
ATT(93, 03) (\/’g)gW’IU 03’ 03 Z Z A(P + ,l,q ® A(P +n;l5q) (03)
n=1 l,q
Y SR gy) 0 X gy
n=0 l,q
S ST AR (g i A0 (g )
n=1 lgq
B Z Z AMsHnita) (9. )\(M nilia) gyt (C.18)
n=0 l,q

Substituting (C.13) and (C.14) into (C.18), and after a long but straightforward calculation,
we find that all the n = 0 terms cancel among themselves with the help of (C.6), while the
remaining terms (n = 1,2,...) can be written in the simpler form:

20005 —05) |y (05.8,). (C19)

. 1. -
ATE(03.0%) = (55 U(6s. 85) — 130003, )7 ) 2

where we have used (C.5), and we have also defined

Y~~/(03, 03)

;X > it 3/2 n 9/4{ (@uxff"’l"”w ) - W%xﬁ”’@ws))

o€{+ }’I’L 1 l

® (@D/Xgn;l;q) (0’3)T M n,l,q) (0/ ) /) } (C.20)

3
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Then, using (C.3), it is easy to show that A~~,(93,93) in (C.19) is equal to the desired
expression (C.1). O

Now let us use eq. (C.1) to show that the equal-time anti-commutator (3.91) is local (i.e.
—1

2
vanishes for 03 # 0%) despite that ATZ is non-local due to the appearance of (¥ +9/ 4)

n (C.1). It is clear that the locality of the anti-commutator (3.91) reduces to the locality
of the following quantity:

<§72 + i) Ag§(937 0})
_ (y}? + i) (gga/U(ag,ag) % U(03,00)55 ) 5(03\/—50'3)

1 " 1. 2
+ bt Z Z Z ( > ( ~27X((7n,l,q) (03) ® X(Un,l,q)(gé)T) VT,;/.

J€{+, Yn=1 lgq W —|—9/4

2 -
It is straightforward to commutate the two differential operators ¥ + 1/4 and VE us-
ing (C.7), as

()= (7)o o 505 ().

where we have used that gamma matrices commute with the squared Dirac operator because

~2
of (C.9). It is now clear that there is no non-local term in (W + i) Ag;f,, as:

1 §(6s — 63)

(W + ) ATT (85, 04) = (W + ) (gﬂﬂ/weg,eg) - -
+ - Z Z Z VT ( n,l,q 93) ® x(”’l’q)(e’) ) ng,/.

0€{+, }n=llq

%U(es,eg)%/)

We can now include the value n = 0 in the summation as it gives zero contribution because
of the Killing spinor equation (C.6). Finally, using the completeness of the spinor spherical
harmonics (C.5), we arrive at the local expression

(W + )ATT(03,03) (Y} )(guy/U(03,03) é:y U(03,0%)75 )W
; (W U(93a95)> T (C.21)

This shows that the equal-time anti-commutator (3.91) is local.
D Useful expressions concerning the conformal-like symmetry of the
graviton

Let By, be any (complex or real) symmetric spin-2 tensor field on dS;. Its conformal-like
transformation is defined in (4.31) as

Ty B, = Vﬂam(HV"BAV). (D.1)

,81,



Recall that V* is any genuine conformal Killing vector (2.13). One can straightforwardly
prove the following:

glw TVB,uV =0,

1
V*Ty Bay = §Vpg,)aA,,v0vaBO},
a 1 o anp A
V(#V TvBy)a = §Vp€pa/\(yv VN)V Ba s
VYV*Ty Bya =0,

OTy Buy = VPepor V7 OB, (D.2)
These expressions can be used to prove that T3, is a symmetry of the full linearised Einstein
equations (4.3), as well as of the ones in the TT gauge (4.5). Moreover, one can similarly

show that both Ty and Ty = i1y, are symmetries of the non-gauge-fixed complex linearised
Einstein equations (4.36), as well as of the complex graviton equations in the TT gauge (4.39).

E Some properties of the field strengths

Let us recall some properties of the field strengths for the complex graviton [eq. (4.59)]
and complex gravitino [eq. (3.65)]. Without making use of the equations of motion, it is
easy to show that

v[nUaB];w =0, U[aﬁ,u,]u =0, (El)

and [76]

1
(V[,@ + 27[/@) Foeﬂ] =0. (E2)

If the complex graviton satisfies the field equations, then the complex linearised Weyl
tensor satisfies

gauUaﬁ,uy = O’ gﬁyUaﬁuv =0 (ES)
VU = 0.

The dual, ﬁamw = %saﬁ "AUHAW, can be also expressed (using the equations of motion) as

. 1
Uo‘ﬁlﬂ/ = an/B,{)\ EHAIW. (E5)
Equation (E.5) can be proved as follows. Let us denote the tensor on the right-hand side

of eq. (E.5) as Paguy = %5“V“/\Ua5m\. Contracting Pag,, with e,,%%, and using eq. (B.6)

po
and the equations of motion, one finds

PpO',LLV = _Upcrp,u-
Then, contracting this equation with %saﬁpg, and using (B.6), we have

1

igaﬁpgppolw = _POC/BMV = _Uoc,Buw

thus proving eq. (E.5).
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If the complex gravitino satisfies the equations of motion, then its field strength sat-
isfies [76]:

VOF o, =v%F,, =0, (E.6)
ViFag =0, (E.7)
MeFag =0, (E8)
VF,, =0, (E.9)
YuvapF* = —2F,,, and thus, %swﬁwﬁ = —iy°F,,. (E.10)

E.1 Deriving the SUSY transformation (6.21) of the spin-2 field strength from
the initial SUSY transformation (6.20)

To derive eq. (6.21) from eq. (6.20) we have to make use of eq. (6.22). Let us now prove
eq. (6.22). We start by considering the following quantity:

2 Epoaf V[MQFﬁV} = Z")/Lr)")/pcrozﬁ (’YuaFﬁu - %/OlFﬁu) ) (E'11>

where, on the right-hand side, we have used (2.6) and we have expanded the anti-
symmetrisation of the indices p and v. Using Ypoag 7," = GppYos — GouVps + 98u7Vpo>
as well as the fact that the spin-3/2 field strength is gamma traceless on-shell, and thus
Y3 FP, = —F,, eq. (E.11) gives

2 2poas O = (2gp[u Fliy — 251, Fp + 27PUFW) . (E.12)
Then, the first two terms on the right-hand side of eq. (E.12) can be re-expressed as
2gp[,uFV}a' - 2ga[yF1/]p = "Y,ul/FpU - f)/pO'F/,U/'

This can be straightforwardly proved by using v.x = (Vs7x — YaVx)/2 on the right-hand side,
and then making use of the on-shell property (E.8). Thus, eq. (E.12) gives

2 €poyd V[N’YFéy] = i75 ('Y;U/Fpa + 'YpUF;W) . (El?’)
Contracting both sides of eq. (E.13) with €*#77 and dividing the result by 2, we have
gl _ ios zaB L
-9 ’y[u F ) = 5’)/ (7/“/}7’0‘ + igoéﬂpd,ypaF#V .
Then, using the on-shell property (E.10), as well as saﬂp"'ypg /2 = —iy®y*8, we find

-9 ,y[#[aFB] =

1= 5 (W FP +90F,), (E.14)

N | —

proving eq. (6.22).
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