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Abstract: It is commonly believed that a unitary supersymmetric quantum field theory

(QFT) involving graviton and gravitino fields on fixed 4-dimensional de Sitter spacetime

(dS4) cannot exist due to known challenges associated with supersymmetry (SUSY) in dS4.

In this paper, we contradict this expectation by presenting a new unitary supersymmetric

QFT on dS4: the free supersymmetric theory of the chiral graviton and chiral gravitino

fields. By chiral we mean that the corresponding field strengths are anti-self-dual, and the

gauge potentials are complex, each carrying a single complex propagating degree of freedom.

The global SUSY transformations are generated by the standard Dirac Killing spinors of

dS4. The theory overcomes the known obstacles to unitary global SUSY on dS4 by closing

the commutator between two SUSY transformations on so(4, 2) ⊕ u(1) rather than the de

Sitter algebra so(4, 1). Crucially, the so(4, 2) symmetry is realised through unconventional

conformal-like transformations. This free theory cannot become interacting while preserving

SUSY in a way that makes the spin-2 sector the true graviton sector of General Relativity,

as the three-graviton coupling cannot be u(1)-invariant.

We establish the unitarity of the free supersymmetric theory in two complementary ways.

First, by studying the action of the superalgebra generators on the space of physical gravitino

and graviton mode solutions. In particular, we introduce positive-definite, invariant inner

products and demonstrate that the SUSY representation is unitary, forming a direct sum of

two unitary irreducible representations — one with negative-helicity modes and the other

with positive-helicity modes. Second, by quantising the fields and explicitly constructing

the complex quantum supercharges QA and QA†, we show that the trace
∑

A QA, Q
A†}

is positive-definite.

Before constructing the supersymmetric theory, we examine the free graviton and gravitino

fields on dS4, where the gravitino is known to have an imaginary mass parameter. We

introduce a Hermitian, gauge-invariant, and local Lagrangian for the free gravitino field

and explain why the requirement of unitarity forces the field to be chiral, removing half

of the propagating helicity states.
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1 Introduction

Apart from its significance in inflationary cosmology [1], de Sitter (dS) spacetime is also

relevant to the physics of our present Universe, as suggested by recent observational data

– 1 –
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supporting an accelerated spatial expansion [2–5]. Both these eras require a quantum under-

standing [6, 7]. It is thus important to develop tools for a deeper theoretical understanding

of quantum de Sitter spacetime.

In recent times, the attempts towards a deeper theoretical understanding of dS spacetime

have manifested themselves in (at least) two main approaches. The first approach concerns

the study of lower-dimensional models in order to develop a more complete quantum un-

derstanding [8–26]. The second approach concerns the study of a large class of quantum

fields in four-dimensional (or higher-dimensional) dS spacetime [27–54]. In this approach, the

Unitary Irreducible Representations of the de Sitter algebra so(D, 1) [55–58] play a central

role because they are identified with elementary particles on D-dimensional dS spacetime, as

a generalisation of Wigner’s classification for Minkowski spacetime. In this paper, we take

the latter approach, and we uncover new features of supersymmetric quantum field theory on

four-dimensional de Sitter spacetime, placing special emphasis on group-theoretic aspects.

Four-dimensional dS spacetime (dS4), is the maximally symmetric solution of the vacuum

Einstein equations with positive cosmological constant [59],

Rµν − 1

2
gµνR+ Λgµν = 0, (1.1)

where Λ = 3R−2
dS is the cosmological constant, RdS is the dS radius, gµν is the metric tensor,

Rµν = 3R−2
dS gµν is the Ricci tensor and R is the Ricci scalar. We will work in units where

RdS = 1. Unlike in anti-de Sitter and Minkowski spacetimes, formulating supersymmetric

theories in de Sitter spacetime presents fundamental challenges. The main obstacles to the

existence of unitary, unbroken de Sitter supersymmetry (SUSY), which differ depending on

whether one considers global or local SUSY, can be summarised as follows (see for instance

the discussion in section 4 of [9]):

• Problems concerning the unitarity of global SUSY on a fixed de Sitter

background. This can be understood already at the level of abstract representation

theory [60, 61]. It is possible to supersymmetrise the dS algebra so(4, 1) by introducing

spinorial supercharges Q
(i)
A , i.e. odd generators, which we take to be Dirac spinors for

the sake of the discussion. The index A is a spinor index referring to the fundamental

spinor representation of so(4, 1), and i is an extended SUSY index keeping track of the

number of supercharges. Alternatively, one can double the number of supercharges and

introduce a symplectic Majorana reality condition, as in [61], but this will lead to the

same representation-theoretic results. As shown in [60, 61], from the structure of the

algebra it follows that
∑

A,i Q
(i)
A , Q(i)A †} = 0, and thus, all non-trivial representations

of the dS superalgebra on a Hilbert space must be non-unitary (i.e. positive-norm and

negative-norm states must exist). On the other hand, requiring that negative-norm

states do not appear implies that all the Q
(i)
A ’s, as well as all the dS generators, must

annihilate all states in the Hilbert space, i.e. only the trivial representation is possible.1

Super-extensions of so(2, 1), so(3, 1) and so(5, 1) also exist but unitary representations

are allowed only in the case of so(2, 1) [60].

1De Sitter supersymmetry has also been studied in the ambient space formalism in ref. [62]. However, since

the anti-commutator between two supercharges closes on so(4, 1), the theory is most likely non-unitary.

– 2 –
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• Problems concerning the unitarity of dS4 Supergravity. The explicit construction

of the N = 2 Supergravity action with a positive cosmological constant was carried

out in [61], involving a real vierbein, a real photon, and two symplectic Majorana

gravitini. The number of gravitini was doubled in order to apply the symplectic

Majorana condition because the conventional Majorana condition for the gravitino on

dS4 cannot be used — see also section 3. This difficulty is related to the fact that

the mass parameter of the gravitino on dS4 is imaginary. Similarly, the conventional

Majorana condition is not consistent with the Killing spinor equation on dS4, but

the sympelctic Majorana condition is. According to ref. [61], although the N = 2 dS

Supergravity action is invariant under local SUSY, the photon kinetic term has the

wrong sign, i.e. it is a ghost.

On the other hand, by relaxing the requirement of unbroken SUSY, certain solutions are

known. For example, an explicit dS4 Supergravity action invariant under spontaneously

broken local N = 1 SUSY was given in [63].2 This model includes a massive gravitino

(this has a real mass parameter), and is also consistent with unitarity. Another

interesting example of stable dS vacuua corresponds to the matter-coupled Supergravity

theories with N = 2 SUSY as described in ref. [66]. The main ingredients of the

construction include non-Abelian non-compact gaugings, de Roo-Wagemans rotation

angles and Fayet-Iliopoulos terms. However, the question of whether these vacuua can

be lifted to string theory remains open.3,4 Interestingly, as anticipated by [60], and

shown in [9], the problems related to unitary dS4 Supergravity with unbroken SUSY

can be bypassed in two dimensions.

A way out for global SUSY in dS4. In the case of global SUSY, it is possible to have

unitary representations by enlarging the even symmetry algebra to the conformal algebra

so(4, 2) ⊃ so(4, 1). Now the anti-commutator of two supercharges closes on so(4, 2) instead

of so(4, 1), and the trace
∑

A,i Q
(i)
A , Q(i)A †} does not have to vanish. Thus, unitary repre-

sentations exist [73]. Such unitary representations are realised in the case of superconformal

field theories on a fixed dS4 background spacetime, like the ones constructed in [74].

1.1 New results

In this paper, we present a new unitary supersymmetric quantum field theory (QFT) on a

fixed dS4 background that includes (a version of) the fields of the supergravity multiplet.

In particular, we present:

The free supersymmetric theory of the chiral graviton and chiral gravitino fields.

2See also [64, 65].
3This is not an easy task, as the no-go theorem of ref. [67] presents serious obstacles for obtaining dS4

vacuua from smooth, classical compactifications of higher-dimensional Supergravity. One possible way to

circumvent the no-go theorem of [67] is to include orientifolds in the construction. De Sitter solutions of

10-dimensional supergravity have been obtained in this way; see e.g., [68] for a review and [69] for a recent

example. Another approach is to consider time-dependent compactifications — see [70] for recent examples.
4Another important question concerns the non-perturbative existence of dS vacua in string theory — see,

e.g., [71, 72].

– 3 –
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By ‘chiral’ we mean that the corresponding field strengths are self-dual or anti-self-dual,

and thus complex. The corresponding chiral graviton and chiral gravitino gauge potentials

are complex and carry one complex propagating degree of freedom each. In this paper, we

choose to work with the anti-self-dual case, without loss of generality. The global SUSY

transformations of the chiral graviton and chiral gravitino are generated by the standard

complex (Dirac) Killing spinors of dS4.5 However, the theory is not associated with a local

action functional as the splitting of helicities needed for the theory to become chiral can

be achieved only on-shell.

We show that the new supersymmetric theory of the chiral graviton and chiral gravitino

avoids the obstacles [60, 61] to unitary global SUSY on dS4 mentioned above because

the commutator between two SUSY variations closes on the even algebra so(4, 2)
⊕
u(1).

Interestingly, unlike in the superconformal theory of ref. [74], the so(4, 2) symmetry in our

theory is realised in an unconventional way that does not correspond to standard infinitesimal

conformal transformations [75, 76].6

Another point worth emphasising is that, although the non-closure of the superalgebra

on so(4, 1) is a necessary condition for unitarity, it is not sufficient. This is demonstrated

with the following example. As we discuss in detail, the theory of a standard (i.e. non-

chiral) complex graviton and a standard Dirac gravitino also carries a representation of

the same superalgebra as in the case of the chiral supermultiplet, but the representation is

non-unitary, despite the closure of the commutator between two SUSY transformations

on so(4, 2)
⊕
u(1). Interestingly, the unitarity of the theory is achieved by imposing the

anti-self-duality constraint on the field strengths which removes all negative-norm states

from the Hilbert space, i.e. it is the supermultiplet of the chiral graviton and chiral gravitino

that carries a unitary representation of SUSY. The appearance of negative-norm states for

helicity degrees of freedom that one would expect to be physical according to Minkowskian

intuition [33, 34, 76], and the necessity for the anti-self-duality (or self-duality) constraint

on the field strength to remove the negative-norm states, appears already in the quantum

theory of the free Dirac gravitino field on dS4, and we will discuss it in detail.

The unitarity of the chiral graviton-chiral gravitino supermultiplet is demonstrated in

detail in two different ways:

• Unitary SUSY on the space of mode solutions. We study the action of our

superalgebra on the space of standard gravitino [33, 34, 76] and graviton [77] physical

mode solutions on global dS4, which furnish discrete series UIRs of the dS algebra

so(4, 1). The Minkowskian short-distance behaviour of the modes allows us to distinguish

between generalised positive-frequency and negative-frequency solutions, as is customary

for field theories on global dS4 [33, 34, 76, 77]. We also recall that the discrete series

5The idea of dropping the reality conditions as an attempt to construct supersymmetric theories on dS4

was first mentioned as a speculation by Deser and Waldron in ref. [43].
6Such conformal-like symmetries were first known to exist in the case of strictly massless gauge potentials

of any spin on AdS4 [75]. Recently, conformal-like symmetries — the ones used in the present paper — were

found for strictly massless fermionic gauge potentials on dS4 [76]. Moreover, it was shown that the strictly

massless tensor-spinor mode solutions that form the fermionic discrete series UIRs of so(4, 1), also form UIRs

of so(4, 2). This result is generalised to the case of graviton modes on dS4 in the present paper, and plays a

central role in the final unitary supersymmetric theory of the chiral graviton and chiral gravitino.

– 4 –
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UIRs of so(4, 1) formed by gravitino modes extend to UIRs of so(4, 2) [76] with the

help of the conformal-like transformations [75, 76]. In addition, we show, for the first

time, that the same happens for the graviton modes, i.e. the graviton modes furnishing

discrete series UIRs of so(4, 1) also furnish so(4, 2) UIRs. Once we clarify how the

spaces of fixed-helicity graviton and gravitino modes furnish UIRs of so(4, 2)(
⊕
u(1)),

we show that SUSY is represented irreducibly on these spaces. That is, there is a direct

sum of two irreducible SUSY representations: a negative-helicity representation with

helicities (−2,−3/2), and a positive-helicity representation with helicities (+2,+3/2).

We show that each of these irreducible SUSY representations is a UIR according to the

group-theoretic definition of unitarity: we introduce positive-definite scalar products

that are invariant under even generators ∈ so(4, 2)
⊕
u(1), as well as under SUSY

transformations.

Each of the two afore-mentioned SUSY UIRs can be formed by either positive-frequency

or negative-frequency modes. However, the unitary supersymmetric QFT of the chiral

graviton and chiral gravitino, discussed in section 6, includes: a positive-frequency

single-particle Hilbert space furnishing only the SUSY UIR with helicities (−2,−3/2),

and a negative-frequency single-particle Hilbert space furnishing only the SUSY UIR

with helicities (+2,+3/2). Although allowed at the abstract representation theory level,

the SUSY UIR with helicities (+2,+3/2) is omitted from the positive-frequency sector,

and the SUSY UIR with helicities (−2,−3/2) is omitted from the negative-frequency

sector. These states, which are removed from the physical state space with the help of

the anti-self-duality constraint, have negative norms because of the curious features

of the quantum gravitino field on dS4. This phenomenon is discussed in detail in

subsection 3.4.

• Unitary SUSY on the QFT Fock space. We quantise the chiral graviton and chiral

gravitino fields by fully fixing the gauge, and then, we construct the quantum operators

corresponding to the four complex SUSY Noether charges Q[ϵ] = ηAQA — one for each

Dirac Killing spinor ϵ (5.21) of dS4. Unitarity is demonstrated by showing that these

quantum charges generate the afore-mentioned SUSY UIRs by acting on single-particle

states: a negative-helicity UIR in the positive-frequency sector, and a positive-helicity

UIR in the negative-frequency sector. We also demonstrate the desired positivity of the

anti-commutator of spinorial supercharges
∑4

A=1 QA, Q
A †}.

1.2 Key ingredients, new results as by-products, and outline

Before presenting the new unitary supersymmetric theory, we will discuss its key ingredients

in detail: the free graviton and gravitino fields on global dS4, their so(4, 1) and so(4, 2)

representation-theoretic properties, their quantisation, and the properties of the (Dirac)

Killing spinors on dS4. In the process of discussing these ingredients, we will present various

new results as by-products which will play a significant role in our unitary supersymmetric

theory. Let us give the outline of the paper with emphasis on the new results that appear

as by-products:

– 5 –



J
H
E
P
1
2
(
2
0
2
5
)
1
0
4

• In section 2, we review the basics about the geometry of global dS4, and we give our

notation and conventions.

• In section 3, we study the gravitino field on dS4. We introduce an alternative local

action functional (3.8) for the Dirac gravitino that is hermitian, unlike the naive

conventional Rarita-Schwinger action which is non-hermitian because of the imaginary

mass parameter. In subsection 3.1, we review how the gravitino modes with helicities

−3/2 and +3/2 on global dS4 form a direct sum of two discrete series UIRs of so(4, 1) [33,

34]. Then, in subsection 3.2, we review how the gravitino modes with helicities −3/2

and +3/2 on global dS4 form a direct sum of two UIRs of the conformal-like algebra

so(4, 2) [76]. In subsection 3.3, we show, for the first time, that the hermitian action (3.8)

is not only dS-invariant but also invariant under conformal-like transformations. In

subsection 3.4, we study the quantisation of the Dirac gravitino on global dS4, for the

first time — a preliminary study of this question was initiated in [78]. We explain why

unitarity requires the quantum gravitino field to be chiral. In particular, we show that

the gravitino QFT associated with the hermitian local action functional (3.8) has a

curious feature: half of the propagating helicities have negative norm and the other half

have positive norm, as was already suggested by the mode analysis in refs. [34, 76]. We

thus introduce the anti-self-duality constraint on the gravitino field strength, rendering

the gravitino chiral, and this restricts the theory to its positive-norm sector.7

• In section 4, we study the graviton field on dS4, with special emphasis on the chiral

graviton, as this is the superpartner of the chiral gravitino needed for our unitary

supersymmetric theory. In subsection 4.1, we review how the standard graviton modes

with helicities −2 and +2 on global dS4 form a direct sum of two discrete series UIRs of

so(4, 1) [77]. In subsection 4.2, we discuss the conformal-like symmetry of the graviton

on dS4. In particular, in subsection 4.2.1, we present the expressions for the conformal-

like transformations of the real graviton field on dS4 generated by the five non-Killing

conformal Killing vectors. We show that these are symmetries of the field equations.

We also show that the symmetry algebra closes on so(5, 1) up to gauge transformations.

Interestingly, the conformal-like transformations preserve neither the linearised Einstein-

Hilbert action nor the Klein-Gordon inner product. In subsection 4.2.2, we discuss

the conformal-like symmetry of the complex graviton (complex strictly massless spin-2

field). Redefining the conformal-like transformations of the real graviton by introducing

a factor of i =
√
−1, we show that the symmetry algebra for the complex graviton

closes on so(4, 2) up to gauge transformations. The complex graviton field equations are

shown to be invariant under the conformal-like symmetries. We also show, for the first

time, that the hermitian action functional for the complex graviton (4.49) is invariant

under the conformal-like symmetries, and so is the Klein-Gordon inner product. In

subsection 4.2.3, we show, for the first time, that the graviton modes of helicity −2

and +2 on global dS4 furnish a direct sum of two so(4, 2) UIRs. In subsection 4.3, we

quantise the chiral graviton field.

7This comes in contrast with the gravitino in Minkowski and AdS spacetimes, where choosing a chiral

gravitino field is optional rather than necessary.
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• In section 5, we review the basics about Dirac Killing spinors, and their bilinears, on

dS4. We explain how explicit expressions for Killing spinors on dS4 can be obtained by

analytically continuing Killing spinors on S4. We also explain, for the first time, how

the conformal-like so(4, 2) symmetry acts on dS Killing spinors.

• Section 6 focuses on our main result: the supersymmetric QFT of the chiral graviton and

chiral gravitino on dS4 is unitary. This is discussed in subsection 6.2. However, before

presenting the unitary theory, in subsection 6.1 we begin by discussing the non-chiral

supersymmetric theory of a complex graviton and a complex gravitino on dS4, each

with two complex propagating degrees of freedom. Although we show that this theory

is non-unitary, many of its features will be inherited by its unitary chiral counterpart.

Therefore, in subsection 6.1, we begin by presenting the global SUSY transformations

for the non-chiral theory. We show that the field equations are SUSY-invariant, and so

is the hermitian action functional of the theory. Then, we find the Noether charges and

currents associated with SUSY invariance. We also calculate the commutator of two

SUSY transformations, and we show that the SUSY algebra closes on so(4, 2)
⊕
u(1).

We also find the SUSY transformations of the gauge-invariant field strengths. We

show that duality transformations commute with SUSY transformations. Then, the

non-unitarity of the non-chiral theory is discussed. Finally, in subsection 6.2, we present

our unitary supersymmetric theory of the chiral graviton and chiral gravitino, and we

clarify which features are inherited from the non-chiral theory of subsection 6.1. The

unitarity of our chiral supersymmetric theory is demonstrated explicitly at the level of

mode solutions in subsection 6.2.1. The unitarity of the theory in the supersymmetric

QFT Fock space is demonstrated in subsection 6.2.2.

• In section 7, we discuss possible future directions.

There are five appendices. In appendix A, we review the classification of the so(4, 1) UIRs. The

rest of the appendices focus on technical details that have been omitted from the main text.

2 Background material on global dS geometry, notation, and conventions

The solutions of the field equations used in this paper will be expressed in the global slicing

of dS4. In these coordinates, the line element of dS4 is expressed as [7]

ds2 = −dt2 + cosh2 t dΩ2. (2.1)

We have denoted the line element of S3 as dΩ2, which can be parameterised as

dΩ2 = dθ2
3 + sin2 θ3

(
dθ2

2 + sin2 θ2 dθ
2
1

)
, (2.2)

where 0 ≤ θj ≤ π (for j = 2, 3) and 0 ≤ θ1 < 2π. We will also use the following notation

for a point on S3: θ3 ≡ (θ3, θ2, θ1). The conformal time τ is defined by tan τ = sinh t

(−π/2 < τ < π/2), and the metric (2.1) can also be given as

ds2 = sec2 τ (−dτ2 + dΩ2). (2.3)

– 7 –
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The ‘curved space gamma matrices’, γµ(x), are defined with the use of the vierbein fields

as γµ(x) = eµ
b(x)γb, where γb (b = 0, 1, 2, 3) are the flat-space gamma matrices. The gamma

matrices γµ(x) satisfy the anti-commutation relations

γµγν + γνγµ = 2gµν 1, (2.4)

where 1 is the 4-dimensional spinorial identity matrix. The vierbein and co-vierbein fields

satisfy

eµ
a eν

bηab = gµν , eµ
a eµ

b = δb
a, (2.5)

where ηab = diag(−1, 1, 1, 1). The fifth gamma matrix γ5 is determined as [79]

γ[aγbγcγd] = −iεabcdγ5, (2.6)

where εµνρσ are the components of the dS4 volume element. In the vierbein basis, we

have ε0123 = −1, while in the coordinate basis we have εtθ1θ2θ3 = − 1√−g
, where g is the

determinant of the dS metric. Equivalently

γ5 = −iγ0γ1γ2γ3. (2.7)

The matrix γ5 anti-commutes with the other four gamma matrices, and, hence, with the

Dirac operator on dS4.

Our sign convention for the ‘vierbein postulate’ is:

∂µe
ρ

b + Γρ
µσe

σ
b − ωµ

c
b e

ρ
c = 0. (2.8)

The covariant derivative acts on vector-spinors as

∇νΨµ =

(
∂ν +

1

4
ωνbcγ

bc
)

Ψµ − Γλ
νµΨλ, (2.9)

where ωνbc = ων[bc] = eν
aωabc are the components of the spin connection. The gamma

matrices are covariantly constant, ∇νγµ = 0. This can be easily checked by computing

their covariant derivative as

∇νγµ = ∂νγµ +
1

4
ωνbc[γ

bc, γµ] − Γλ
νµγλ.

Details on the Christoffel symbols, spin connection, and vierbein on global de Sitter, as well

as our representation of gamma matrices, can be found in appendix B.

De Sitter spacetime has ten Killing vectors, ξµ,

∇µξν + ∇νξµ = 0, (2.10)

generating the dS algebra, so(4, 1), and five genuine conformal Killing vectors, V µ, satisfying

∇µVν + ∇νVµ = gµν
∇αVα

2
(2.11)
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with ∇αVα ̸= 0. The 15-dimensional Lie algebra generated by the dS Killing vectors and

the genuine conformal Killing vectors is isomorphic to the conformal algebra so(4, 2). The

so(4, 2) Lie brackets are given by

[ξ, ξ′]µ = £ξξ
′µ,

[ξ, V ]µ = £ξV
µ,

[V, V ′]µ = £V V
′µ, (2.12)

where £ is the Lie derivative, ξµ and ξ
′µ are any two Killing vectors, V µ and V

′µ are any

two genuine conformal Killing vectors, £ξV
µ is a genuine conformal Killing vector, while

£V V
′µ is a Killing vector. Note that each of the five genuine conformal Killing vectors

of dS4 can be expressed as:

Vµ = ∇µϕV , (2.13)

where the scalar function ϕV satisfies8

∇µVν = ∇µ∇νϕV = −gµνϕV . (2.14)

There are five such independent functions: ϕV (0) , ϕV (1) , . . . , ϕV (4) . These functions are related

to the embedding space coordinates for dS4. Specifically, by embedding dS4 as a hyperboloid

in 5-dimensional Minkowski space,

−(X0)2 +
4∑

A=1

(XA)2 = 1,

we have ϕV (0) = X0, and ϕV (A) = XA (for A = 1, . . . , 4).

Notation and conventions. We use the mostly plus metric sign convention for dS4.

Lowercase Greek tensor indices refer to components with respect to the ‘coordinate basis’.

Coordinate basis tensor indices on S3 are denoted as µ̃, ν̃, . . .. Lowercase Latin tensor indices

refer to components with respect to the vielbein basis. Repeated indices are summed over.

Spinor indices are suppressed, except in the case of spinorial supercharges. We denote the

symmetrisation of indices with the use of round brackets, e.g., A(µν) = (Aµν +Aνµ)/2, and the

anti-symmetrisation with the use of square brackets, e.g., A[µν] = (Aµν −Aνµ)/2. Complex

conjugation is denoted using the symbol ∗ and hermitian conjugation using †. Totally anti-

symmetrised products of gamma matrices are denoted as: γbc = γ[bγc], γbcd = γ[bγcγd] and

γabcd = γ[aγbγcγd]. For a tensor (or tensor-spinor with suppressed spinor indices) Bµ1ν1... that

is anti-symmetric under the exchange of the tensor indices µ1 ↔ ν1, the duality operation

is denoted using the ‘wide tilde’ symbol: B̃µ1ν1··· = 1
2ε

αβ
µ1ν1

Bαβ..., with
˜̃
Bµ1ν1... = −Bµ1ν1....

For quantities that depend on two spacetime points, x and x′, primed tensor indices are

associated with point x′ and unprimed indices with point x. The real graviton gauge potential

is denoted as hµν . The symbol h does not stand for the trace of hµν — see, e.g., eq. (4.2).

The complex graviton gauge potential is denoted with the symbol h, as hµν . The symbol h

8See, e.g., ref. [80].
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in this paper does not stand for the trace of hµν — see, e.g., eq. (4.36). The superscript

‘(TT)’ will be used to indicate that the graviton or gravitino gauge potential is in the

transverse-traceless gauge — ‘TT gauge’ for short [see, e.g., eqs. (3.13) and (4.39)]. TT

graviton mode solutions are denoted as φµν , where labels indicating particular solutions

will be also introduced — see, e.g., eq. (4.10).

3 Free gravitino gauge potential on dS4, UIRs of so(4, 1) and so(4, 2),

quantisation and (anti-)self-duality

Background material for the gravitino on dS4. Let us start with some useful observa-

tions, some familiar and others less commonly recognised, concerning the massless Rarita-

Schwinger (RS) field (gauge potential), also known as gravitino, on a fixed dS spacetime.

The free gravitino field on dS4 is described by a vector-spinor gauge potential satisfying

the Rarita-Schwinger (RS) equation with an imaginary mass parameter9 [43]

γµρσ
(
∇ρ +

i

2
γρ

)
Ψσ = 0, (3.1)

where [79]

γµρσ = γ[µγργσ] = γµγργσ − gµργσ − gρσγµ + gµσγρ, (3.2)

and hence,

γµ ( /∇− i
)
γβΨβ − γµ∇βΨβ −∇µγβΨβ +

(
/∇ + i

)
Ψµ = 0.

Let Ψµ = iΨ†
µγ

0 be the Dirac conjugate of Ψµ. The field equation for Ψµ can be found by

taking the hermitian conjugate of eq. (3.1) as
(
∇ρΨσ +

i

2
Ψσγρ

)
γµρσ = 0, (3.3)

where we have used (γµ)† = γ0γµγ0. The ‘strict masslessness’ of the gravitino manifests itself

by the fact that the field equation (3.1) is invariant under infinitesimal gauge transformations

of the form

δgauge(λ) Ψµ =

(
∇µ +

i

2
γµ

)
λ, (3.4)

where λ are spinor gauge functions. Similarly, the equation for Ψµ (3.3) is invariant under

the gauge transformations

δgauge(λ) Ψµ ≡ (δgauge(λ) Ψµ)† iγ0 = ∇µλ+
i

2
λγµ, (3.5)

where λ = iλ†γ0. For later convenience let us define

Rµ(Ψ) ≡ γµρσ
(
∇ρ +

i

2
γρ

)
Ψσ, (3.6)

which will be understood to be non-zero off-shell and zero on-shell. This is gauge invariant

off-shell: Rµ(δgauge(λ) Ψ) = 0.

9A massive RS field satisfies eq. (3.1) with i replaced by a real mass parameter M: γµρσ
(
∇ρ + M

2
γρ

)
Ψσ = 0.
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Problems of the conventional RS action functional and an alternative. The con-

ventional RS action [79]

SRS = −
∫
d4x

√−gΨµ Rµ = −
∫
d4x

√
−gΨµγ

µρσ
(
∇ρ +

i

2
γρ

)
Ψσ (3.7)

is not hermitian in de Sitter spacetime because of the imaginary mass term. This non-

hermiticity leads to some problematic consequences: although the Euler-Lagrange equation

for Ψµ derived from the action (3.7) is the desired RS equation (3.1), the Euler-Lagrange

equation for Ψµ is
(
∇ρΨσ −

i

2
Ψσγρ

)
γµρσ = 0,

which does not correspond to the hermitian conjugate of (3.1) as it has the wrong sign for

the mass term [compare with eq. (3.3)]. However, the alternative action [78]

S 3
2

= −
∫
d4x

√−gΨµ γ
5 Rµ(Ψ) (3.8)

is hermitian and its Euler-Lagrange equations for Ψµ and Ψµ are eqs. (3.1) and (3.3),

respectively, as consistency requires. Moreover, interestingly, the conventional RS action (3.7)

is not invariant under the gauge transformation of Ψµ (3.5), but the alternative action (3.8) is.

Incompatibility with the Majorana condition. It is known that the gravitino equa-

tion (3.1) is not consistent with the Majorana condition because of the imaginary mass

parameter (however, a symplectic Majorana condition is possible — see e.g., ref. [61]). This

can be easily verified by recalling the definition of the charge conjugate of Ψµ that preserves

the RS equation (3.1):

ΨC
µ ≡ B−1

− Ψ∗
µ, (3.9)

where the matrix B− satisfies

− (γµ)∗ = B−γ
µB−1

− , (3.10)

and, in our conventions B− = γ0γ2γ3 = iγ5γ1 (defined up to a phase) — see also appendix B.

Although ΨC
µ satisfies the same equation as Ψµ, i.e.

γµρσ
(
∇ρ +

i

2
γρ

)
ΨC

σ = 0, (3.11)

it is easy to check that one cannot use the matrix B− to define a consistent reality condition.

In particular, by applying charge conjugation twice we find
(
ΨC

µ

)C
= −Ψµ. (3.12)

Because of this, Ψµ cannot be Majorana. In this paper, we are considering only Dirac

vector-spinors.10

10On the other hand, one can define charge conjugation using the matrix B+ = γ5B−, where (γµ)∗ =

B+γ
µB−1

+ . In this case, charge conjugation is defined as: Ψ
C+
µ ≡ B−1

+ Ψ∗
µ. Although the property

(
Ψ

C+
µ

)C+

=

Ψµ holds and a Majorana condition can be introduced, the charge conjugate, Ψ
C+
µ , does not preserve the field

equation. To be precise, Ψ
C+
µ satisfies eq. (3.11) with the opposite sign for the mass parameter.
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3.1 Discrete series UIRs of so(4, 1) in the space of gravitino modes

Let us review how the gravitino positive frequency mode functions on global dS4 form a

direct sum of discrete series UIRs of the dS algebra, so(4, 1) [33, 34, 76]. As is well known, if

the space of (physical) positive frequency mode solutions forms a UIR, it can be identified

with the single-particle Hilbert space of the corresponding free quantum field theory. Thus,

this subsection sets the stage for the quantisation of the gravitino field, which is carried

out in subsection 3.4.

The gravitino mode solutions that form the so(4, 1) UIRs are solutions of the RS

equation (3.1) in the transverse-traceless (TT) gauge (∇αΨ
(TT)
α = γαΨ

(TT)
α = 0). The field

equations and the TT gauge conditions read [33, 43, 81]

(
/∇ + i

)
Ψ(TT)

µ = 0,

∇αΨ(TT)
α = 0, γαΨ(TT)

α = 0. (3.13)

Only a subset of the initial gauge transformations (3.4) preserve eqs. (3.13). These are the

restricted gauge transformations:

δgauge
res (X) Ψ(TT)

µ =

(
∇µ +

i

2
γµ

)
X, (3.14)

where the spinor gauge functions satisfy

/∇X = −2iX. (3.15)

The generators of so(4, 1) (i.e. the Killing vectors of dS4) act on vector-spinors Ψµ via the

Lie-Lorentz derivative [82]

LξΨµ = ξν∇νΨµ + (∇µξ
ν) Ψν +

1

4
(∇κξλ)γκλΨµ, (3.16)

where ξµ is any Killing vector of dS4. If Ψµ is a solution of eq. (3.13), then so is LξΨµ.

Moreover, the Lie-Lorentz derivative preserves the Lie bracket between any two Killing

vectors ξµ and ξ
′µ [82]

[Lξ,Lξ′ ]Ψµ = L[ξ,ξ′]Ψµ. (3.17)

This means that the space of gravitino mode solutions of eq. (3.13) is a representation space

for the dS algebra so(4, 1).

Equations (3.13) admit physical and TT pure-gauge mode solutions. The pure-gauge

modes can be identified with zero in the solution space, while the physical modes are the ones

forming the direct sum of discrete series UIRs of so(4, 1) [33, 34]. Some details are in order.

TT pure-gauge gravitino modes. The TT pure-gauge modes are expressed in the form11

ψ(pg)
µ = ∇µX +

i

2
γµX, (3.18)

11We have omitted the quantum number labels from the pure-gauge modes for convenience. Details about

these labels can be found in refs. [33, 34, 76].
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where

(
/∇ + 2i

)
X = 0, (3.19)

in agreement with eqs. (3.14) and (3.15). Explicit expressions for the spinors X can be

found in ref. [34].

Physical gravitino modes. The physical modes come in two helicities: negative (−3/2)

and positive (+3/2) helicity modes [33, 34, 76]. In global coordinates (2.1), the physical

modes with negative and positive helicity are given by [33, 34, 76]12

ψ
(phys,−ℓ; m;k)
t (t,θ3) = 0, ψ

(phys,−ℓ; m;k)
µ̃ (t,θ3) =

(
ℓ+ 2

2(ℓ+ 1)

)1/2

 αℓ(t) ψ̃

(ℓ;m;k)
−µ̃ (θ3)

−iβℓ(t) ψ̃
(ℓ;m;k)
−µ̃ (θ3)


 ,

(3.20)

and

ψ
(phys, +ℓ; m;k)
t (t,θ3) = 0, ψ

(phys, +ℓ; m;k)
µ̃ (t,θ3) =

(
ℓ+ 2

2(ℓ+ 1)

)1/2

 iβℓ(t) ψ̃

(ℓ;m;k)
+µ̃ (θ3)

−αℓ(t) ψ̃
(ℓ;m;k)
+µ̃ (θ3)


 ,

(3.21)

respectively, where µ̃ is a vector index on S3, while ℓ,m and k are angular momentum quantum

numbers corresponding to the chain of subalgebras so(4) ⊃ so(3) ⊃ so(2) with ℓ ∈  1, 2, . . .},

m ∈  1, 2, . . . , ℓ} and k ∈  −m − 1,−m, . . . , 0, . . . ,m}. The functions describing the time

dependence are conveniently expressed in terms of the variable

x(t) =
π

2
− it (3.22)

as

αℓ(t) =

(
sin

x(t)

2

)ℓ+1 (
cos

x(t)

2

)−ℓ−2
(

1 − sin2 x(t)
2

ℓ+ 2

)
, (3.23)

βℓ(t) =
1

ℓ+ 2

(
sin

x(t)

2

)ℓ+2 (
cos

x(t)

2

)−ℓ−1

, (3.24)

where

cos
x(t)

2
=

(
sin

x(t)

2

)∗
=

√
2

2

(
cosh

t

2
+ i sinh

t

2

)
, (3.25)

sin2 x(t)

2
=

1 − i sinh t

2
. (3.26)

We note that

∂

∂x
βℓ(t) = i

∂

∂t
βℓ(t) =

1

2
αℓ(t). (3.27)

12In ref. [76], the functions αℓ(t) and βℓ(t) are denoted as α
(1)
ℓ (t) and β

(1)
ℓ (t), respectively, while in ref. [33]

they are denoted as Φ
(−1)
Mℓ (t) and Ψ

(−1)
Mℓ (t) (with M = i), respectively. In [33, 76], these functions are expressed

in terms of the Gauss hypergeometric functions. However, in the present paper, as the hypergeometric series

terminates, we have chosen to express the functions in a simpler form in our eqs. (3.23) and (3.24).
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It is also useful to note that with the conformal time τ defined by tan τ = sinh t we have

cos
x(t)

2
=

eiτ/2

√
2 cos τ

, (3.28)

sin
x(t)

2
=

e−iτ/2

√
2 cos τ

, (3.29)

so that

αℓ(t) =
e−i(ℓ+ 3

2
)τ

√
2 cos τ

(
2 cos τ − e−iτ

ℓ+ 2

)
, (3.30)

βℓ(t) =
e−i(ℓ+ 3

2
)τ

(ℓ+ 2)
√

2 cos τ
. (3.31)

Transverse-traceless vector-spinor spherical harmonics on S3. The θ3-dependence of

the physical modes in eqs. (3.20) and (3.21) is given by the transverse-traceless vector-spinor

spherical harmonics on S3, ψ̃
(ℓ;m;k)
±µ̃ (θ3). These satisfy [34, 83, 84]

/̃∇ψ̃(ℓ;m;k)
±µ̃ (θ3) = ±i

(
ℓ+

3

2

)
ψ̃

(ℓ;m;k)
±µ̃ (θ3), ℓ ∈  1, 2, . . .}

γ̃µ̃ψ̃
(ℓ;m;k)
±µ̃ (θ3) = ∇̃µ̃ψ̃

(ℓ;m;k)
±µ̃ (θ3) = 0, (3.32)

where the tildes have been used to denote quantities on S3. They are normalised with the

standard inner product on S3 [34]:
∫

S3

√
g̃ dθ3 g̃

µ̃ν̃ ψ̃
(ℓ′;m′;k′)
σ′ µ̃ (θ3)† ψ̃(ℓ;m;k)

σ ν̃ (θ3)

= δσσ′ δℓℓ′ δm m′δkk′ , (3.33)

where σ, σ′ ∈  +,−} and dθ3 ≡ dθ3dθ2dθ1. For each value of ℓ ∈  1, 2, . . .}, the set  ψ̃(ℓ;m;k)
+µ̃ }

forms a so(4) representation with highest weight given by [83]:

f⃗
(+3/2)

ℓ =

(
ℓ+

1

2
,
3

2

)
. (3.34)

The set  ψ̃(ℓ;m;k)
−µ̃ } forms a so(4) representation with highest weight given by [83]:

f⃗
(−3/2)

ℓ =

(
ℓ+

1

2
,−3

2

)
. (3.35)

Let ε̃µ̃ν̃α̃ denote the invariant 3-form on S3 with ε̃θ1θ2θ3 =
√
g̃, where g̃ is the determinant

of the S3 metric (2.2). Let us also introduce the duality operator (helicity operator) acting

on the vector-spinor spherical harmonics (3.32) as [77]:

1

ℓ+ 3/2
ε̃µ̃ν̃α̃∇̃ν̃ψ̃

(ℓ;m;k)α̃
± . (3.36)

This is the analogue of the flat-space helicity operator. Using ε̃µ̃ν̃α̃ = −iγ̃[µ̃γ̃ν̃ γ̃α̃] [79], we find

that the duality operator is proportional to the Dirac operator on S3, as:

1

ℓ+ 3/2
ε̃µ̃ν̃α̃∇̃ν̃ψ̃

(ℓ;m;k)α̃
± = − i

ℓ+ 3/2
/̃∇ψ̃(ℓ;m;k)

±µ̃ = ±ψ̃(ℓ;m;k)
±µ̃ . (3.37)
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Thus, the modes ψ̃
(ℓ;m;k)
+µ̃ are self-dual, while the modes ψ̃

(ℓ;m;k)
−µ̃ are anti-self-dual. This notion

of (anti-)self-duality should not be confused with the notion of (anti-)self-duality defined

using εµνρσ on dS4 — see e.g., eqs. (3.64) and (4.58).

Positive and negative frequency. The mode functions (3.20) and (3.21) are the analogues

of positive frequency modes, as for short wavelengths, ℓ ≫ 1, they satisfy [76]

∂

∂t
ψ(phys,±ℓ; m;k)

µ (t,θ3) ∼ −i ℓ

cosh t
ψ(phys,±ℓ; m;k)

µ (t,θ3). (3.38)

Eq. (3.13) also admits physical transverse-traceless solutions that are the analogues of

negative frequency modes given by [76]

v
(phys,−ℓ; m;k)
t (t,θ3) = 0, v

(phys,−ℓ; m;k)
µ̃ (t,θ3) =

(
ℓ+ 2

2(ℓ+ 1)

)1/2

iβ

∗
ℓ (t) ψ̃

(ℓ;m;k)
−µ̃ (θ3)

α∗ℓ (t) ψ̃
(ℓ;m;k)
−µ̃ (θ3)


 ,

(3.39)

and

v
(phys, +ℓ; m;k)
t (t,θ3) = 0, v

(phys, +ℓ; m;k)
µ̃ (t,θ3) =

(
ℓ+ 2

2(ℓ+ 1)

)1/2

α

∗
ℓ (t) ψ̃

(ℓ;m;k)
+µ̃ (θ3)

iβ∗ℓ (t) ψ̃
(ℓ;m;k)
+µ̃ (θ3)


 .

(3.40)

The negative frequency modes can be obtained by applying charge conjugation (3.9) to

the positive frequency modes. For short wavelengths, ℓ ≫ 1, they satisfy the generalised

negative frequency condition

∂

∂t
v(phys,±ℓ; m;k)

µ (t,θ3) ∼ +i
ℓ

cosh t
v(phys,±ℓ; m;k)

µ (t,θ3). (3.41)

Note. The field strength (3.65) calculated for the positive frequency modes of helicity −3/2,

ψ
(phys,−ℓ; m;k)
µ , is anti-self-dual, and so is the field strength for the negative frequency modes

of helicity +3/2, v
(phys, +ℓ; m;k)
µ . Similarly, the field strength (3.65) calculated for the positive

frequency modes of helicity +3/2, ψ
(phys, +ℓ; m;k)
µ , is self-dual, and so is the field strength for

the negative frequency modes of helicity −3/2, v
(phys,−ℓ; m;k)
µ . The mode expansion of the

field strength and (anti)-self-duality are discussed further in subsection 3.4.

Discrete series UIRs of so(4, 1). The two sets of (positive frequency) physical modes

 ψ(phys,−ℓ; m;k)
µ } and  ψ(phys, +ℓ; m;k)

µ } separately form two irreducible representations of so(4, 1)

(and, thus, a different choice for a scalar product is allowed for each set) [33, 34, 76]. This

can be understood as follows. First, it is clear that the modes  ψ(phys, +ℓ; m;k)
µ } do not mix

with the modes  ψ(phys,−ℓ; m;k)
µ } under any so(4) transformation as they belong to different

so(4) representations — the former correspond to the so(4) highest weights in (3.34), while

the latter to the ones in (3.35). Moreover, under the infinitesimal isometry generated by

the boost Killing vector

B = Bµ∂µ = cos θ3
∂

∂t
− tanh t sin θ3

∂

∂θ3
, (3.42)
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physical modes of a given helicity transform only among themselves. To be specific, they

transform as [34, 76]:

LBψ
(phys,±ℓ;m;k)
µ = − i

2

√
(ℓ−m+ 1)(ℓ+m+ 3)ψ(phys,±(ℓ+1) ;m;k)

µ

− i

2

√
(ℓ−m)(ℓ+m+ 2)ψ(phys,±(ℓ−1) ;m;k)

µ + (pure-gauge), (3.43)

where the term ‘(pure-gauge)’ is a TT pure-gauge mode (3.18). As the so(4, 1) algebra can be

generated using only the so(4) generators and just one dS boost, we conclude that the modes

 ψ(phys,−ℓ; m;k)
µ } and  ψ(phys, +ℓ; m;k)

µ } separately form irreducible representations of so(4, 1)

with the equivalence relation: if for any two physical modes, ψ
(1)
µ and ψ

(2)
µ , the difference

ψ
(1)
µ −ψ

(2)
µ is a linear combination of TT pure-gauge modes, then ψ

(1)
µ and ψ

(2)
µ belong to the

same equivalence class. This equivalence relation is introduced because the pure-gauge modes

can be identified with zero, as will become clear shortly. Note that eq. (3.43) agrees with the

expression for the infinitesimal boost matrix elements in the discrete series UIRs of so(4, 1)

with ∆ = 5/2 and s = 3/2 [55, 56] in the ‘modern notation’ for labels — see appendix A and

refs. [33, 85] for the translation between the old and modern notation for the labels of the UIRs.

The unitarity of the afore-mentioned irreducible representations formed by

 ψ(phys,−ℓ; m;k)
µ } and  ψ(phys, +ℓ; m;k)

µ } can be demonstrated as follows [33, 34, 76]. Let

⟨ψ(1)|ψ(2)⟩ax be the following dS invariant13 and time-independent scalar product [33, 34, 76]:

⟨ψ(1)|ψ(2)⟩ax =

∫

S3

√−g dθ3 g
µν ψ(1)

µ (t,θ3)† γ5 ψ(2)
ν (t,θ3), (3.44)

where ψ
(1)
µ and ψ

(2)
ν are any two solutions of the field equations in the TT gauge (3.13).

The scalar product (3.44) is the time-independent Noether charge associated with the axial

current14 [34, 76]

Jµ
ax

(
ψ(1), ψ(2)

)
= i ψ(1)

νγ
µγ5ψ(2)ν , ∇µJ

µ
ax

(
ψ(1), ψ(2)

)
= 0, (3.45)

specifically,

⟨ψ(1)|ψ(2)⟩ax =

∫

S3

√−g dθ3 J
t
ax

(
ψ(1), ψ(2)

)
. (3.46)

The physical modes (3.20), (3.21), (3.39) and (3.40) are normalised as:

⟨ψ(phys, σℓ; m;k)|ψ(phys, σ′ℓ′; m′;k′)⟩ax = (−σ) × δσσ′δℓℓ′δmm′δkk′ , (3.47)

⟨v(phys, σℓ; m;k)|v(phys, σ′ℓ′; m′;k′)⟩ax = (+σ) × δσσ′δℓℓ′δmm′δkk′

⟨v(phys, σℓ; m;k)|ψ(phys, σ′ℓ′; m′;k′)⟩ax = 0, (3.48)

with σ, σ′ ∈  +,−}. Also,

⟨ψ(1)|ψ(pg)⟩ax = 0, (3.49)

13By ‘dS-invariant scalar product’ we mean that the so(4, 1) generators/Lie derivatives are realised as

anti-hermitian operators with respect to the scalar product under consideration [28].
14The axial current (3.45) is covariantly conserved because of the imaginary mass parameter of the

gravitino [34, 76]. It is easy to check that in the case of a real-mass spin-3/2 field the axial current is not

conserved.
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where ψ
(1)
µ is any physical or TT pure-gauge mode, and thus, the pure-gauge modes can

be identified with zero. It is interesting that, with respect to the scalar product (3.44),

there is indefiniteness of the norm among the positive frequency physical modes, as well

as among the negative frequency physical modes [34, 76]. Moreover, we observe that the

sign of the norm depends on the helicity σ ∈  +,−} [see eqs. (3.47) and (3.48)]. Unitarity

requires a positive-definite inner product that is invariant under dS transformations, i.e. the

dS generators (Lie-Lorentz derivatives) are realised as anti-hermitian operators. Indeed the

scalar product (3.44) is dS invariant as, for any dS Killing vector ξµ, we have [34, 76]

⟨Lξψ
(1)|ψ(2)⟩ax + ⟨ψ(1)|Lξψ

(2)⟩ax = 0. (3.50)

As we mentioned earlier, according to eq. (3.47) the scalar product (3.44) is positive def-

inite for the physical modes  ψ(phys,−ℓ; m;k)
µ } and negative definite for the physical modes

 ψ(phys, +ℓ; m;k)
µ }.15 As the two sets do not mix with each other under dS transformations,

we conclude:

• The positive frequency physical gravitino modes with positive helicity,  ψ(phys, +ℓ;m;k)
µ },

form the discrete series UIR D+(∆, s) = D+(5/2, 3/2) of so(4, 1) — see appendix A.

The so(4) content corresponds to the so(4) highest weights (3.34). The so(4, 1)-invariant

inner product that is positive definite is given by the negative of eq. (3.44).

• The positive frequency physical gravitino modes with negative helicity,  ψ(phys,−ℓ;m;k)
µ },

form the discrete series UIR D−(∆, s) = D−(5/2, 3/2) of so(4, 1) — see appendix A.

The so(4) content corresponds to the so(4) highest weights (3.35). The so(4, 1)-invariant

inner product that is positive definite is given by eq. (3.44).

Thus, the two sets of positive frequency modes,  ψ(phys, +ℓ;m;k)
µ } and  ψ(phys,−ℓ;m;k)

µ },

with the afore-mentioned choice of positive-definite scalar products, form the direct sum

D+(5/2, 3/2)
⊕
D−(5/2, 3/2). The negative frequency modes,  v(phys, +ℓ;m;k)

µ } [eq. (3.40)]

and  v(phys,−ℓ;m;k)
µ } [eq. (3.39)], form the same direct sum of UIRs. The transformation

LBv
(phys,±ℓ;m;k)
µ is found from (3.43) by replacing ψ

(phys,±(ℓ±1);m;k)
µ with v

(phys,±(ℓ±1);m;k)
µ ,

while the coefficients in the linear combination on the right-hand side must be replaced by

the complex conjugates of the ones in (3.43).

3.2 Conformal-like symmetry and UIRs of so(4, 2)

It was recently found that the two sets of mode functions,  ψ(phys, +ℓ;m;k)
µ } and  ψ(phys,−ℓ;m;k)

µ },

form not only a direct sum of so(4, 1) UIRs but also a direct sum of so(4, 2) UIRs [76]. Let us

review the basic findings of [76], as these will be useful in our discussions on SUSY later on.

Conformal-like symmetries of the field equations. The so(4, 2) symmetry that preserves

the solution space of eq. (3.13) is generated by the ten familiar infinitesimal dS transfor-

mations (3.16) [generating the dS subalgebra of so(4, 2)], as well as by five infinitesimal

15The conventional inner product,
∫

S3

√−g dθ3 g
µν ψ

(1)†
µ (t, θ3)ψ

(2)
ν (t, θ3), despite its positive definiteness,

is neither dS invariant nor time-independent. Therefore, it is not a ‘good’ choice for a representation-theoretic

analysis [33, 34, 76].
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conformal-like transformations [76]:

TV Ψµ ≡ γ5
(
V ρ∇ρΨµ + i V ργρΨµ − i V ργµΨρ −

3

2
ϕV Ψµ

)

− 2

3

(
∇µ +

i

2
γµ

)
γ5ΨρV

ρ, (3.51)

where V µ is any genuine conformal Killing vector (2.13). If Ψµ is a solution of (3.13), i.e.

Ψµ = Ψ
(TT)
µ , then so is TV Ψ

(TT)
µ .16

Note. The conformal-like symmetry transformation (3.51) is also a symmetry of the non-

gauge-fixed RS equation (3.1) [76]. In this case, the last term in eq. (3.51) can be omitted as

it corresponds to an off-shell gauge transformation (3.4) that leaves the RS equation (3.1)

invariant. However, this gauge transformation cannot be omitted when working in the TT

gauge, as it ensures that if Ψµ is in the TT gauge, then so is TV Ψµ [76].

The full symmetry algebra (10 dS isometries plus 5 conformal-like symmetries) closes on

so(4, 2) up to field-dependent gauge transformations. In particular, we have [76],:

[Lξ,Lξ′ ]Ψ(TT)
µ = L[ξ,ξ′]Ψ

(TT)
µ , (3.52a)

[Lξ,TV ]Ψ(TT)
µ = T[ξ,V ]Ψ

(TT)
µ , (3.52b)

[TV ′ ,TV ]Ψ(TT)
µ = L[V ′,V ]Ψ

(TT)
µ +

(
∇µ +

i

2
γµ

)
K[V ′,V ], (3.52c)

where

K[V ′,V ] =
4

9

((
∇λ − i

2
γλ
)

Ψ(TT)ρ ∇λ[V ′, V ]ρ − 2 Ψ(TT)ρ [V ′, V ]ρ

)
. (3.53)

Here, [Lξ,TV ] ≡ LξTV − TV Lξ, [TV ′ ,TV ] ≡ TV ′TV − TV TV ′ , and so forth. It is clear that

the algebra (3.52a)–(3.52c) has the structure of the conformal algebra so(4, 2) [eq. (2.12)]

up to the gauge transformation in (3.52c). This so(4, 2) symmetry is the dS analogue of

the so(4, 2) symmetry found for strictly massless gauge potentials on AdS4 in the unfolded

formalism by Vasiliev [75].

UIRs of so(4, 2) formed by gravitino modes. Each of the two positive frequency single-

helicity sets of modes,  ψ(phys, +ℓ;m;k)
µ } and

 ψ(phys,−ℓ;m;k)
µ }, forms a UIR of so(4, 2) [76]. This fact is readily demonstrated by specialising

to the following genuine conformal Killing vector

V (0)
µ = ∇µ sinh t, (3.54)

i.e. (V
(0)

t , V
(0)

θ3
, V

(0)
θ2
, V

(0)
θ1

) = (cosh t, 0, 0, 0). The conformal-like transformations (3.51) gen-

erated by V (0) act on the physical modes as:

TV (0)ψ(phys,−ℓ; m;k)
µ = +i

(
ℓ+

3

2

)
ψ(phys,−ℓ; m;k)

µ (3.55)

16Note that the field-dependent gauge transformation on the second line of (3.51) is not a restricted gauge

transformation (3.14), but it still is an off-shell gauge transformation (3.4). It is needed to preserve the TT

gauge conditions [76].
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and

TV (0)ψ(phys, +ℓ; m;k)
µ = −i

(
ℓ+

3

2

)
ψ(phys, +ℓ; m;k)

µ . (3.56)

Thus, from eqs. (2.12) and (3.52a)–(3.52c) it follows that  ψ(phys, +ℓ;m;k)
µ } and  ψ(phys,−ℓ;m;k)

µ }
separately form irreducible representations of so(4, 2). These representations are unitary

because the conformal-like generators (3.51) are anti-hermitian with respect to the scalar

product (3.44) [76]:

⟨TV ψ
(1)|ψ(2)⟩ax + ⟨ψ(1)|TV ψ

(2)⟩ax = 0, (3.57)

for any two solutions ψ
(1)
µ , ψ

(2)
ν of (3.13). However, as in the so(4, 1) case, a different choice

of a positive-definite norm is needed for each so(4, 2) UIR of single helicity — see the

discussion below (3.50).

As in the so(4, 1) case, the negative frequency modes (3.39) and (3.40) form the same

so(4, 2) UIRs as the positive frequency ones; their conformal-like transformations under

V (0)µ (3.54) are

TV (0)v(phys,−ℓ; m;k)
µ = −i

(
ℓ+

3

2

)
v(phys,−ℓ; m;k)

µ , (3.58)

and

TV (0)v(phys, +ℓ; m;k)
µ = +i

(
ℓ+

3

2

)
v(phys, +ℓ; m;k)

µ . (3.59)

3.3 Conformal-like symmetry of the hermitian action (3.8)

Interestingly, as we will present here for the first time, the conformal-like symmetry trans-

formation (3.51) is also an off-shell symmetry of the hermitian action (3.8). To prove this,

let us consider the variation of the action (3.8),

δS 3
2

= −
∫
d4x

√−g
(
δΨµ γ

5 Rµ(Ψ) + Ψµ γ
5 δRµ(Ψ)

)
, (3.60)

under δΨµ = TV Ψµ, where now Ψµ is an off-shell field configuration with no gauge conditions

imposed. After a straightforward off-shell calculation, we find the following useful quantities:

δΨµ = (TV Ψµ)† iγ0 (3.61)

= −
(
V ρ∇ρΨµ + i V ρΨµγρ − i V ρΨρ γµ − 3

2
ϕV Ψµ

)
γ5 +

2

3
ΨρV

ργ5
(←
∇µ +

i

2
γµ

)
,

and

δRµ(Ψ) = γµρσ
(
∇ρ +

i

2
γρ

)
δΨσ

= γ5ϕV
5

2
Rµ(Ψ) + γ5 (−V ρ∇ρ + iV ργρ)Rµ(Ψ) − iγ5V µγσRσ(Ψ), (3.62)

where Rµ(Ψ) is defined in (3.6).17 Then, we easily find

δS 3
2

= −
∫
d4x

√−g∇ρ

(
−V ρΨµRµ(Ψ)

)
, (3.63)

and thus, the conformal-like transformation (3.51) is an off-shell symmetry of the hermitian

action (3.8).

17For off-shell fields we have γσRσ(Ψ) = 2
(
/∇γσΨσ − 3

2
i γσΨσ − ∇σΨσ

)
.
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3.4 Quantisation of the gravitino field, the necessity for the anti-self-duality

constraint, and UIRs in the fermionic Fock space

Why does the (anti-)self-duality constraint have to be imposed? So far, we have

explained how the gravitino positive frequency modes furnish a direct sum of discrete series

UIRs of so(4, 1) and a direct sum of UIRs of so(4, 2). Our next task is to realise these

UIRs in the single-particle Hilbert space associated with the QFT of the (free) quantum

gravitino field on global dS4. In this task we encounter a problem related to the discussions

in subsections 3.1 and 3.2. On the one hand, the single-particle Hilbert space of the QFT

must be equipped with a positive-definite and dS-invariant scalar product. On the other

hand, this space is identified with the space of physical positive frequency solutions, and,

in our case, there is no dS-invariant inner product that remains positive-definite for

mode functions of both helicities. One could argue that since positive-helicity and

negative-helicity modes separately form UIRs, two different positive-definite inner products

can be used for each fixed-helicity subspace for the quantisation of the theory, as discussed

in the passage below eq. (3.50). However, although this approach works at the level of the

classical mode solutions, it does not seem to work in a quantum field-theoretic setting if

one insists on the locality of the action functional of the theory. In particular, one can

see that locality requires the indefiniteness of the norm, in the sense that the negative- or

positive-definiteness of the norm depends on the helicity of each state, as follows. If one

decides to include both helicities in the positive frequency, as well as in the negative frequency,

sectors of the quantum gravitino field (as one usually does in Minkowski spacetime, for

example), then they can follow the canonical quantisation procedure using the hermitian and

local Lagrangian density in (3.8) to define the conjugate momentum, and impose equal-time

anti-commutation relations. Then, by expanding the field in modes, one finds that the

equal-time anti-commutator (3.74) between the field and its conjugate momentum requires

the anti-commutators between creation and annihilation operators to have helicity-dependent

signs [eq. (3.77)], leading to the indefiniteness of the norm in the Fock space of the local

QFT. This is explained in more detail in the passages below eq. (3.71). Moreover, note

that insisting on keeping all propagating helicity degrees of freedom while simultaneously

enforcing the positivity of the norm, by using a different positive-definite scalar product

for each fixed-helicity subspace, leads to a non-local theory. This becomes evident upon

observing that the two distinct scalar products — namely, the axial scalar product (3.44)

and its negative — can essentially be re-expressed in terms of a single scalar product. This

modified scalar product arises from the initial axial scalar product (3.44) with the insertion

of the ‘helicity’ operator (3.36), which is non-local.

To avoid the appearance of negative norms, and achieve positive definiteness in the QFT

Fock space, we will quantise the ‘chiral’ gravitino field. The positive frequency sector of this

field will furnish a UIR with helicity −3/2 (or +3/2), corresponding to the so(4, 1) discrete

series D−(5/2, 3/2) (or D+(5/2, 3/2)), while the negative frequency sector will furnish a

UIR with helicity +3/2 (or −3/2), corresponding to D+(5/2, 3/2) (or D−(5/2, 3/2)) — see

appendix A for details on UIRs of so(4, 1). Note that, for the chiral field under consideration,

the helicity of the positive frequency sector is opposite from the helicity of the negative
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frequency sector.18 In order to restrict to a theory with particles of a single helicity −3/2 (or

+3/2), we will impose a chirality constraint, i.e. anti-self-duality (or self-duality) constraint,

on the gravitino field strength. Without loss of generality, we will work with a quantum field

whose positive and negative frequency sectors contain states with helicities −3/2 and +3/2,

respectively, corresponding to an anti-self-dual field strength. The anti-self-duality constraint

ensures the positivity of the norm without violating the dS invariance of the theory.

Takahashi’s quantisation method. The conventional way to quantise the gravitino field

is the canonical quantisation procedure, in which one makes use of a local hermitian action

functional, such as (3.8), in order to define the conjugate momentum, and then imposes equal-

time anti-commutation relations. Here, we will follow a different method discussed in detail

by Takahashi [88],19 which aligns well with the emphasis we have put on the group-theoretic

properties of the mode solutions, as well as with the fact that we are considering a theory with

an on-shell chirality constraint — the two helicities of the gravitino cannot be split locally at

the level of the action, but such a split is possible on-shell by imposing the (anti-)self-duality

condition. The starting point in Takahashi’s method is the field equation. In our case, the

field equation is (3.13) accompanied by the anti-self-duality constraint on the field strength20

F̃µν = −iFµν , (3.64)

where F̃µν = 1
2εµναβF

αβ.21 The field strength is defined as [76]

Fµν =

(
∇[µ +

i

2
γ[µ

)
Ψν]. (3.65)

It is divergence-free, gamma-traceless, and satisfies [76]

F̃µν = −iγ5Fµν , (3.66)

by virtue of eqs. (2.6), (3.13) and (E.10), i.e. the duality operation on Fµν is equivalent to

an infinitesimal chiral rotation — see also appendix E.22 Later we will use the superscript

‘−’ to denote the field strength that satisfies the anti-self-duality constraint (3.64), as F−
µν

in eq. (3.78). The field strength (3.65) is gauge invariant, and thus, the field Ψν in (3.65)

can be replaced by the gravitino gauge potential in any gauge without affecting the form

of Fµν . Here we will impose the TT gauge condition.23 Then, the quantum gravitino field

operator Ψ
(TT)
µ (t,θ3) that is required to satisfy eqs. (3.13) and (3.64) is expressed as a mode

sum in terms of our previously obtained mode functions, where the expansion coefficients

are promoted to creation and annihilation operators. The main objective of Takahashi’s

18See refs. [86, 87] for further discussions on self-dual and anti-self-dual field strengths of massless fields and

their quantum theory.
19Takahashi’s method refers to free quantum fields in Minkowski spacetime, but the generalisation to dS

spacetime is straightforward.
20For the reader who is interested in the quantisation of chiral theories using Takahashi’s method, the

treatment of the chiral (massless) Majorana spin-1/2 field can be found in Takahashi’s book [88].
21The need to impose a (anti-)self-duality constraint was explained at the beginning of this subsection.
22Using (3.66), it follows that the anti-self-duality constraint (3.64) is equivalent to γ5Fµν = +Fµν .
23Imposing the TT gauge condition allows residual gauge symmetry. To quantise the gravitino field we will

fix the gauge completely — see eq. (3.68).
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method for the theory at hand is to determine the operators Ψ
(TT)
µ and QdS

3
2

[ξ] such that

the Heisenberg equations of motion are satisfied:24

−iLξΨ(TT)
µ (t,θ3) =

[
Ψ(TT)

µ (t,θ3), QdS
3
2

[ξ]

]
, (3.67)

where ξµ is any Killing vector of dS spacetime, and QdS
3
2

[ξ] is the hermitian quantum operator

(dS charge) that generates the infinitesimal dS transformation on the QFT Fock space.

The subscript ‘3
2 ’ in QdS

3
2

[ξ] has been used to distinguish between the quantum generators

of the chiral gravitino and of the chiral graviton — see eq. (4.61). In addition, quantum

operators representing physical quantities must (anti-)commute with one another for spacelike

separations (microcausality).

Mode expansion. Let us now quantise the chiral gravitino field following the steps outlined

in the previous paragraph. From our discussions in subsection 3.1 it follows that the t-

component of the gravitino field in the TT gauge is pure-gauge, i.e. it can be gauged away.

Thus, to isolate the propagating degrees of freedom, we consider the completely gauge-fixed

field, Ψ
(TT)
t = gµ̃ν̃γµ̃Ψ

(TT)
ν̃ = 0,25 and we expand it in modes as follows

Ψ
(TT)−
µ̃ (t,θ3) =

∞∑

ℓ=1

ℓ∑

m=1

m∑

k=−m−1

(
a

(−)
ℓmkψ

(phys,−ℓ ;m;k)
µ̃ (t,θ3) + b

(+)†
ℓmk v

(phys, +ℓ ;m;k)
µ̃ (t,θ3)

)
,

(3.68)

where µ̃ is a vector index on S3. The superscript ‘−’ in Ψ
(TT)−
µ refers to the fact that the

corresponding field strength is anti-self-dual (this will be verified below). The non-zero

anti-commutators between creation and annihilation operators are

 a(−)
ℓmk, a

(−)†
ℓ′m′k′} = δℓℓ′δmm′δkk′ ,  b(+)

ℓmk, b
(+)†
ℓ′m′k′} = δℓℓ′δmm′δkk′ . (3.69)

The vacuum is defined as the state, |0⟩ 3
2
, in the Fock space that satisfies:

a
(−)
ℓmk |0⟩ 3

2
= b

(+)
ℓmk |0⟩ 3

2
= 0, (3.70)

for all ℓ,m, k. Using the dS-invariant inner product (3.44) [see eqs. (3.47) and (3.48)], we find

a
(−)
ℓmk = ⟨ψ(phys,−ℓ ;m;k)|Ψ(TT)−⟩ax , b

(+)†
ℓmk = ⟨v(phys, +ℓ ;m;k)|Ψ(TT)−⟩ax . (3.71)

The dS invariance of the vacuum follows from the dS invariance of the positive frequency

solution space, and it will be further verified below by showing that the quantum dS

generators annihilate the vacuum.

What goes wrong if we include both helicities? To demonstrate the appearance of

negative norms in the Fock space for a non-chiral gravitino, let us consider a completely

gauge-fixed quantum gravitino field Ψµ, as in (3.68), which now includes all helicities in

the mode sum as follows:

Ψ
(TT)
µ̃ (t,θ3) =

∑

σ∈ +,−}

∑

ℓ,m,k

(
a

(σ)
ℓmkψ

(phys, σℓ ;m;k)
µ̃ (t,θ3) + b

(σ)†
ℓmk v

(phys, σℓ ;m;k)
µ̃ (t,θ3)

)
, (3.72)

24The equality here is modulo pure-gauge TT solutions.
25This gauge is the analogue of the Coulomb gauge for the Maxwell gauge potential.
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where from eqs. (3.47) and (3.48) we have

a
(∓)
ℓmk = ±⟨ψ(phys,∓ℓ ;m;k)|Ψ(TT)⟩ax , b

(±)†
ℓmk = ±⟨v(phys,±ℓ ;m;k)|Ψ(TT)⟩ax . (3.73)

Let us also denote the vacuum annihilated by all annihilation operators as |Ω⟩. In this case

we can proceed with the canonical quantisation procedure using the hermitian Lagrangian

in (3.8). The standard equal-time anti-commutation relations (expressed in the form of a

4 × 4 spinorial matrix) are

{
Ψ

(TT)
µ̃ (t,θ3),Ψ

(TT)
ν̃′ (t,θ′

3
)†γ5

}

=
e m

µ̃ e n′

ν̃′√−g



√
g̃ ∆T T

mn′(θ3,θ
′
3
) 0

0
√
g̃ ∆T T

mn′(θ3,θ
′
3
)




=
1

cosh t


∆T T

µ̃ν̃′(θ3,θ
′
3
) 0

0 ∆T T
µ̃ν̃′(θ3,θ

′
3
)


 , (3.74)

where

∆T T
µ̃ν̃′(θ3,θ

′
3
) = cosh−2 t e m

µ̃ e n′

ν̃′ ∆T T
mn′(θ3,θ

′
3
)

is the transverse and γ̃-traceless delta function for vector-spinors on S3 defined by

∆T T
µ̃ν̃′(θ3,θ

′
3
) =

∑

σ∈ +,−}

∞∑

ℓ=1

∑

m,k

ψ̃
(ℓ;m;k)
σµ̃ (θ3) ⊗ ψ̃

(ℓ;m;k)
σν̃′ (θ′

3
)†. (3.75)

In particular, if ψ̃µ̃(θ3) is a vector-spinor on S3, and ψ̃′
µ̃(θ3) is its divergence-free and

γ̃-traceless part, then

ψ̃′
µ̃(θ3) =

∫

S3
dθ3

√
g̃∆T T

µ̃ν̃′(θ3,θ
′
3
) ψ̃ν̃′

(θ′
3
). (3.76)

Using the expressions (3.73), as well as the anticommutation relations (3.74), we find

 a(σ)
ℓmk, a

(σ′)†
ℓ′m′k′} = (−σ) δσσ′δℓℓ′δmm′δkk′ ,  b(σ)

ℓmk, b
(σ′)†
ℓ′m′k′} = σ δσσ′δℓℓ′δmm′δkk′ , (3.77)

σ, σ′ ∈  +,−}, while the rest of the anti-commutators are zero. It is clear that the states

a
(+)†
ℓmk |Ω⟩ and b

(−)†
ℓmk |Ω⟩ have negative norm, i.e. the theory is non-unitary. As a verification

of this fact, we can expand in modes the fields on the left-hand side of the equal-time

anti-commutator (3.74). After some algebra, one can arrive at the expression in terms

of the transverse-traceless delta function on the right-hand side of (3.74) only if the anti-

commutators (3.77) are used. In other words, the equal-time anti-commutation relations

for a gravitino field that contains both helicities require the appearance of negative-norm

states in the QFT Fock space. This justifies our choice to exclude half of the helicities, i.e.

quantise the chiral gravitino field (3.68), to achieve unitarity in the QFT Fock space. We

will now continue the quantisation of the chiral gravitino field.
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Anti-self-duality constraint. Let us demonstrate that our choice for the mode expansion

for the chiral gravitino (3.68) is consistent with the anti-self-duality constraint (3.64). To

be specific, we will show that the following field strength:

F−
µν =

(
∇[µ +

i

2
γ[µ

)
Ψ

(TT)−
ν] , (3.78)

is anti-self-dual. Substituting the mode expansion (3.68) into (3.78), we find the mode

expansion for the field strength

F−
µν(t,θ3) =

∞∑

ℓ=1

∑

m,k

(
a

(−)
ℓmk f

(−ℓ;m;k)
µν (t,θ3) + b

(+)†
ℓmk f

(+ℓ;m;k)C
µν (t,θ3)

)
, (3.79)

where

f (−ℓ;m;k)
µν (t,θ3) ≡

(
∇[µ +

i

2
γ[µ

)
ψ

(phys,−ℓ ;m;k)
ν] (t,θ3),

f (+ℓ;m;k)C
µν (t,θ3) ≡

(
∇[µ +

i

2
γ[µ

)
v

(phys,+ℓ ;m;k)
ν] (t,θ3).

For convenience, let us start by showing that the tν̃-component, F−
tν̃ , satisfies the anti-self-

duality constraint. Substituting the expressions of the mode functions (3.20) and (3.40)

into (3.79), we find after a straightforward calculation

F−
tν̃ (t,θ3) =

1

2

∞∑

ℓ=1

∑

m,k

(
ℓ+ 2

2(ℓ+ 1)

)1/2
[
a

(−)
ℓmk



(
∂tαℓ(t) − i

2βℓ(t)
)
ψ̃

(ℓ;m;k)
−ν̃ (θ3)

0




+ b
(+)†
ℓmk



(
∂tα

∗
ℓ (t) + i

2β
∗
ℓ (t)

)
ψ̃

(ℓ;m;k)
+ν̃ (θ3)

0



]
, (3.80)

where we have also used (3.27). It is clear that F−
tν̃ is an eigenfunction of γ5 [eq. (B.5)],

γ5F−
tν̃ = +F−

tν̃ . Using (3.66), it follows that, for all the components of the field strength, we

have γ5F−
µν = +F−

µν . This means that the anti-self-duality constraint (3.64) is satisfied.

Quantum symmetry generators. The hermitian dS generators can be constructed in

the standard way [85, 88], using the dS-invariant inner product (3.44):

QdS
3
2

[ξ] = −i : ⟨Ψ(TT)−|LξΨ(TT)−⟩ax : , (3.81)

where the symbols : . . . : denote normal ordering. Here we will give the explicit expression

only for the generator corresponding to the dS boost ξµ = Bµ [eq. (3.42)]; the other dS

generators can be constructed similarly. Expanding the field in modes (3.68), and using

eqs. (3.43), (3.47) and (3.48), we find:

QdS
3
2

[B] = −1

2

∞∑

ℓ=1

∑

m,k

(√
(ℓ−m+1)(ℓ+m+3)a

(−)†

(ℓ+1)mk
a

(−)
ℓmk

+
√

(ℓ−m)(ℓ+m+2)a
(−)†

(ℓ−1)mk
a

(−)
ℓmk

)

− 1

2

∞∑

ℓ=1

∑

m,k

(√
(ℓ−m+1)(ℓ+m+3) b

(+)†

(ℓ+1)mk
b

(+)
ℓmk

+
√

(ℓ−m)(ℓ+m+2) b
(+)†

(ℓ−1)mk
b

(+)
ℓmk

)
. (3.82)
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This can be clearly expressed as a sum of two independent hermitian generators,

QdS
3
2

[B] = QdS−
3
2

[B] +QdS+
3
2

[B],

where QdS−
3
2

[B] is given by the expression in the first line of (3.82), while QdS+
3
2

[B] is given

by the expression in the second line. The two generators QdS−
3
2

[B] and QdS+
3
2

[B] act on

the negative- and positive-helicity sectors, respectively (i.e. positive-frequency and negative-

frequency sectors, respectively). In particular, the two charges generate the two discrete

series UIRs of so(4, 1), D−(∆ = 5/2, s = 3/2) and D+(∆ = 5/2, s = 3/2), respectively. The

corresponding infinitesimal dS transformations of the creation operators are

δBa
(−)†
ℓmk ≡

[
a

(−)†
ℓmk , Q

dS
3
2

[B]

]
=

[
a

(−)†
ℓmk , Q

dS−
3
2

[B]

]
=

1

2

√
(ℓ−m+ 1)(ℓ+m+ 3) a

(−)†
(ℓ+1)mk

+
1

2

√
(ℓ−m)(ℓ+m+ 2) a

(−)†
(ℓ−1)mk (3.83)

and

δBb
(+)†
ℓmk ≡

[
b

(+)†
ℓmk , Q

dS
3
2

[B]

]
=

[
b

(+)†
ℓmk , Q

dS+
3
2

[B]

]
=

1

2

√
(ℓ−m+ 1)(ℓ+m+ 3) b

(+)†
(ℓ+1)mk

+
1

2

√
(ℓ−m)(ℓ+m+ 2) b

(+)†
(ℓ−1)mk. (3.84)

Using these expressions, it is clear that single-particle states a
(−)†
ℓmk |0⟩ 3

2
transform as the

corresponding positive frequency modes (3.43), i.e. they furnish the so(4, 1) discrete series

UIR D−(∆ = 5/2, s = 3/2). Similarly, single-particle states b
(+)†
ℓmk |0⟩ 3

2
furnish the so(4, 1)

discrete series UIR D+(∆ = 5/2, s = 3/2) — see appendix A. Finally, it is straightforward

to find that the quantum field operator transforms as
[
Ψ(TT)−

µ , QdS
3
2

[B]

]
= −iLBΨ(TT)−

µ , (3.85)

modulo pure-gauge TT solutions, where LB is the Lie-Lorentz derivative (3.16) with respect

to the dS boost Killing vector B [eq. (3.42)], in agreement with the Heisenberg equations

of motion (3.67).

It is also interesting to note that we can construct the five hermitian generators of the

conformal-like symmetry (3.51) in the same way,

Qconf
3
2

[V ] = −i : ⟨Ψ(TT)−|TV Ψ(TT)−⟩ax : , (3.86)

such that the Heisenberg equations of motion are again satisfied

−iTV Ψ(TT)−
µ (t,θ3) = [ Ψ(TT)−

µ (t,θ3), Qconf
3
2

[V ] ], (3.87)

modulo pure-gauge TT solutions, where TV is the conformal-like transformation (3.51). This

can be easily checked for the conformal-like symmetry generated by the genuine conformal

Killing vector V (0)µ [eq. (3.54)], for which the quantum generator is found to be

Qconf
3
2

[V (0)] =
∞∑

ℓ=1

∑

m,k

(
ℓ+

3

2

)(
a

(−)†
ℓmk a

(−)
ℓmk − b

(+)†
ℓmk b

(+)
ℓmk

)
. (3.88)
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This conformal-like quantum charge is expressed as a sum of two independent conformal-

like charges,

Qconf
3
2

[V (0)] = Qconf−
3
2

[V (0)] +Qconf+
3
2

[V (0)],

Qconf−
3
2

[V (0)] =
∞∑

ℓ=1

∑

m,k

(
ℓ+

3

2

)
a

(−)†
ℓmk a

(−)
ℓmk,

Qconf+
3
2

[V (0)] = −
∞∑

ℓ=1

∑

m,k

(
ℓ+

3

2

)
b

(+)†
ℓmk b

(+)
ℓmk. (3.89)

The charges Qconf−
3
2

[V (0)] and Qconf+
3
2

[V (0)] generate so(4, 2) UIRs on the spaces of negative-

helicity and positive-helicity states, respectively. Note that the vacuum of the chiral gravitino,

|0⟩ 3
2
, is invariant under the whole conformal-like symmetry, so(4, 2).

Microcausality. Finally, we will demonstrate the microcausality of the theory by computing

the anti-commutator between two gauge invariant quantities, the anti-self-dual field strength

and its hermitian conjugate, at two spacelike separated points:

{
F−

µν(t,θ3), F−
α′β′(t

′,θ′
3
)†
}
.

For convenience, let us start by choosing two equal-time points (t,θ3) and (t,θ′
3
), and compute

the equal-time anti-commutator for the following components of the field strengths:

{
F−

tµ̃(t,θ3), F−
tν̃′(t,θ

′
3
)†
}
. (3.90)

Expanding the field strengths in modes [as in (3.79)], we find26

{
F−

tµ̃(t,θ3), F−
tν̃′(t,θ

′
3
)†
}

= − 1

4 cosh3 t




(
/̃∇

2
+ 1

4

)
∆T T

µ̃ν̃′(θ3,θ
′
3
) 0

0 0


 , (3.91)

where ∆T T
µ̃ν̃′(θ3,θ

′
3
) is the transverse and γ̃-traceless delta function in the space of vector-spinors

on S3 defined by eq. (3.75). In appendix C we show that, while ∆T T
µ̃ν̃′(θ3,θ

′
3
) is non-local, the

quantity

(
/̃∇

2
+ 1

4

)
∆T T

µ̃ν̃′(θ3,θ
′
3
) in (3.91) is local, i.e. it vanishes for θ3 ̸= θ′

3
[see eq. (C.21)].

This means that the anti-commutator (3.91) is also local. Then, taking the dual of (3.91)

and using (3.66), it is easy to conclude that all equal-time anti-commutators of the form

{
F−

µν(t,θ3), F−
α′β′(t,θ

′
3
)†
}

(3.92)

are also local, for any value of the tensor indices µ, ν, α′, β′. Finally, the locality of the anti-

commutator for any two causally disconnected (not necessarily equal-time) points can be easily

demonstrated by exploiting the following observation: any two points (t,θ3) and (t′,θ′
3
) that

26The anti-commutator (3.91) is a 4-dimensional bi-spinorial matrix and each of its components are bi-vectors

on S3. The vector index µ̃ refers to the tangent space at the point (t, θ3), while ν̃′ to the tangent space at

(t, θ′
3).
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are causally disconnected can be moved to the same equal-time Cauchy surface by a suitable

dS transformation. Thus, the locality of (3.92) implies that all anti-commutators of the form
{
F−

µν(t,θ3), F−
α′β′(t

′,θ′
3
)†
}

vanish for any two points (t,θ3) and (t′,θ′
3
) that are spacelike separated. Then, it follows

that Grassmann-even observables, such as the currents Jρ(t,θ3) = F
−
µν(t,θ3)γρF−µν(t,θ3),

commute for spacelike separations. This shows the microcausality of the theory. This

concludes the discussion of the quantisation of the chiral gravitino field.

4 Free graviton gauge potential on dS4, UIRs of so(4, 1) and so(4, 2),

quantisation and (anti-)self-duality

The graviton and its unitarity in de Sitter spacetime have been studied more extensively than

the gravitino [27, 29, 77, 85]. The linearised Einstein-Hilbert action around a dS4 background

describes a real massless spin-2 field, hµν = h(µν), propagating on a fixed dS spacetime. The

linearised Einstein-Hilbert action (after some integrations by parts) can be expressed as [27]

SEH = −1

4

∫
d4x

√−g hµν Hµν(h), (4.1)

with

Hµν(h) ≡ ∇µ∇αh
α
ν + ∇ν∇αh

α
µ −□hµν + gµν □h

α
α −∇µ∇νh

α
α

− gµν ∇α∇βhαβ + 2hµν + gµνh
α
α, (4.2)

where □ = gµν∇µ∇ν is the Laplace-Beltrami operator on dS4. The symbol h in Hµν(h) does

not stand for the trace of hαβ. The equations of motion for linearised gravity on dS4 are

Hµν(h) = 0. (4.3)

The action (4.1) is invariant under gauge transformations of the form

δgauge(Z)hµν = ∇(µZν), (4.4)

where Zν is an arbitrary real vector gauge function. Note that, for any Zν , we have

Hµν(δgauge(Z)h) = 0,

corresponding to the well-known gauge invariance of the linearised Einstein equations. As is

well known (see, e.g., [77]), one can impose the transverse-traceless (TT) gauge condition,

in which the field equations are

□h(TT)
µν = 2h(TT)

µν ,

∇µh(TT)
µν = 0, h(TT)α

α = 0. (4.5)

These equations still enjoy invariance under restricted gauge transformations

δgauge
res (A)h(TT)

µν = ∇(µAν), (4.6)
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with

□Aν = −3Aν ,

∇νAν = 0. (4.7)

The dS Killing vectors ξµ act on tensors hµν via the Lie derivative

£ξhµν = ξρ∇ρhµν + (∇µξ
ρ)hρν + (∇νξ

ρ)hµρ. (4.8)

If hµν is a solution of eq. (4.5) (or (4.3)), then so is £ξhµν . Since Lie derivatives preserve

the Lie brackets between Killing vectors, [£ξ,£ξ′ ]hµν = £[ξ,ξ′]hµν , the space of solutions of

eq. (4.5) is a representation space for the dS algebra so(4, 1). As in the case of the gravitino

discussed earlier, a key aspect of our analysis will be how the mode solutions of (4.5) on global

dS4 form discrete series UIRs of so(4, 1). This has been discussed in detail in refs. [77, 85].

In the following subsection, we briefly review the main results from these references.

4.1 Discrete series UIRs of so(4, 1) in the space of graviton modes

A general classical TT solution h
(TT)
µν of (4.5) can be expressed as a linear combination

of physical modes, φ
(phys,±L; M ;K)
µν , and pure-gauge modes, φ

(pg)
µν [77]. Let us present the

form of these modes.

TT pure-gauge graviton modes. The pure-gauge solutions of (4.5) are expressed in

the form

φ(pg)
µν = ∇(µAν), (4.9)

where Aν satisfies (4.7).

Physical graviton modes. In global coordinates (2.1), the physical modes of eq. (4.5),

with negative (−2) and positive (+2) helicity, are given by [77]

φ
(phys,−L; M ;K)
tµ (t,θ3) = 0, µ ∈  t, θ3, θ2, θ1}

φ
(phys,−L; M ;K)
µ̃ν̃ (t,θ3) =

(
2(L+ 1)

L(L+ 2)

)1/2

κL(t) T̃
(−;LM ;K)
µ̃ν̃ (θ3), (4.10)

and

φ
(phys, +L; M ;K)
tµ (t,θ3) = 0, µ ∈  t, θ3, θ2, θ1}

φ
(phys, +L; M ;K)
µ̃ν̃ (t,θ3) =

(
2(L+ 1)

L(L+ 2)

)1/2

κL(t) T̃
(+;LM ;K)
µ̃ν̃ (θ3), (4.11)

respectively,27 where µ̃, ν̃ are tensor indices on S3. The labels L,M and K are angular

momentum quantum numbers corresponding to the chain of subalgebras so(4) ⊃ so(3) ⊃
27There is an extra factor of 21/2 in the normalisation factor of the mode functions (4.10) and (4.11) relative

to the mode functions in [77] because of our different convention for the Klein-Gordon scalar product (4.23).
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so(2) with L ∈  2, 3, . . .}, M ∈  2, 3, . . . , L} and K ∈  −M, . . . , 0, . . . ,M}. The function

κL(t) is given by

κL(t) = 2

(
sin

x(t)

2

)L+2 (
cos

x(t)

2

)−L (
1 +

cos (x(t))

L+ 1

)

= cosh t

(
1 +

i sinh t

L+ 1

)(
1 − i sinh t

1 + i sinh t

)(L+1)/2

, (4.12)

where the variable x(t) is defined in (3.22). With the conformal time τ this can be given as

κL(t) =
1

cos τ

(
1 +

i tan τ

L+ 1

)
e−i(L+1)τ . (4.13)

Symmetric rank-2 tensor spherical harmonics on S3. The θ3-dependence of the

physical modes in eqs. (4.10) and (4.11) is given by the rank-2 tensor spherical harmonics

on S3, T̃
(±;L;M ;K)
µ̃ν̃ (θ3) = T̃

(±;L;M ;K)
(µ̃ν̃) (θ3). These satisfy

□̃T̃
(±;L;M ;K)
µ̃ν̃ = (−L(L+ 2) + 2) T̃

(±;L;M ;K)
µ̃ν̃ ,

∇̃µ̃T̃
(±;L;M ;K)
µ̃ν̃ = 0, g̃µ̃ν̃ T̃

(±;L;M ;K)
µ̃ν̃ = 0, (4.14)

where □̃ = g̃α̃β̃∇̃α̃∇̃β̃ is the Laplace-Beltrami operator on S3. The spherical harmonics

T̃
(+;L;M ;K)
µ̃ν̃ and T̃

(−;L;M ;K)
µ̃ν̃ are self-dual and anti-self-dual,28 respectively, in the sense that

they are eigenfunctions of the duality operator (helicity operator), as [77]

1

L+ 1
ε̃ α̃β̃

µ̃ ∇̃α̃T̃
(±;L;M ;K)

β̃ν̃
= ±T̃ (±;L;M ;K)

µ̃ν̃ . (4.15)

(The anti-symmetric part of the left-hand side vanishes because T̃
(±;L;M ;K)
µ̃ν̃ are transverse

and traceless.) We note that

ε̃ α̃β̃
µ̃ ∇̃α̃

(
ε̃ λ̃κ̃

β̃
∇̃λ̃T̃

(σ;L;M ;K)
κ̃ν̃

)
= (−∇̃α̃∇̃α̃ + 3)T

(σ;L;M ;K)
µ̃ν̃ , σ = ±. (4.16)

Thus, the duality operator is a square-root of the operator −∇̃α̃∇̃α̃ + 3 on the TT spin-2

tensors on S3. The TT spin-2 tensor spherical harmonics are normalised with respect to

the standard inner product on S3 [28]:
∫

S3

√
g̃ dθ3 g̃

µ̃ν̃ g̃α̃β̃ T̃
(σ;L;M ;K)∗
µ̃α̃ (θ3) T̃

(σ′;L′;M ′;K′)

ν̃β̃
(θ3)

= δσσ′ δLL′ δM M ′δKK′ , (4.17)

where σ, σ′ ∈  +,−}. For each value of L ∈  2, 3, . . .}, the set  T̃ (+;L;M ;K)
µ̃ν̃ } forms a so(4)

representation with highest weight given by [83, 85]:

f⃗
(+2)

L = (L,+2) , (4.18)

while the set  T̃ (−;L;M ;K)
µ̃ν̃ } forms a so(4) representation with highest weight given by [83, 85]:

f⃗
(−2)

L = (L,−2) . (4.19)
28This notion of (anti-)self-duality should not be confused with the notion of (anti-)self-duality defined using

εµνρσ on dS4 — see e.g., eqs. (3.64) and (4.58).
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Positive and negative frequency. The physical graviton mode functions (4.10) and (4.11)

are the analogues of positive frequency modes, as for short wavelengths, L≫ 1, they satisfy [77]

∂

∂t
φ(phys,±L; M ;K)

µν (t,θ3) ∼ −i L

cosh t
φ(phys,±L; M ;K)

µν (t,θ3). (4.20)

Eqs. (4.5) also admits physical TT solutions that are the analogues of negative frequency

modes. The negative frequency graviton modes φ
(phys,±L; M ;K)⋆
µν are obtained from the positive

frequency graviton modes φ
(phys,±L; M ;K)
µν given by eqs. (4.10) and (4.11) by replacing κL(t)

with its complex conjugate. That is,

φ
(phys,±L; M ;K)⋆
µ̃ν̃ (t,θ3) =

(
2(L+ 1)

L(L+ 2)

)1/2

κ∗L(t) T̃
(±;LM ;K)
µ̃ν̃ (θ3). (4.21)

Note. The field strength (4.59) calculated for the positive frequency modes of helicity −2,

φ
(phys,−L; M ;K)
µν , is anti-self-dual, and so is the field strength for the negative frequency modes

of helicity +2, φ
(phys, +L; M ;K)⋆
µν . Similarly, the field strength (4.59) calculated for the positive

frequency modes of helicity +2, φ
(phys, +L; M ;K)
µν , is self-dual, and so is the field strength for

the negative frequency modes of helicity −2, φ
(phys,−L; M ;K)⋆
µν . See subsection 4.3 for more

details on the mode expansion of the field strength and (anti-)self-duality.

Graviton discrete series UIRs of so(4, 1). The two sets of (positive frequency) physical

modes  φ(phys,−L; M ;K)
µν } and  φ(phys, +L; M ;K)

µν } separately form two discrete series UIRs of

so(4, 1) [77, 85]. In particular, they form the direct sum: D+(3, 2)
⊕
D−(3, 2) — see

appendix A for details on our notation of the UIRs. It can be seen that each of these two

sets of modes forms an UIR as follows. The two sets  φ(phys,−L; M ;K)
µν } and  φ(phys, +L; M ;K)

µν }
do not mix with each other under any so(4) transformation as they belong to different so(4)

representations [eqs. (4.18) and (4.19), respectively]. Also, they do not mix with each other

under any dS boost, as under (3.42) they transform as [77]:

£Bφ
(phys,±L; M ;K)
µν = − i

2

√
(L−M + 1)(L+M + 2)φ(phys,±(L+1); M ;K)

µν

− i

2

√
(L−M)(L+M + 1)φ(phys,±(L−1); M ;K)

µν + (pure-gauge), (4.22)

where the term ‘(pure-gauge)’ is a TT pure-gauge mode (4.9). One can thus conclude that

 φ(phys,−L; M ;K)
µν } and  φ(phys, +L; M ;K)

µν } separately form irreducible representations. As the

pure-gauge modes are orthogonal to themselves and to all physical modes with respect to the

Klein-Gordon inner product (this inner product will be introduced shortly) [77], the physical

modes form representations with the following equivalence relation: if for any two physical

modes, φ
(1)
µν and φ

(2)
µν , the difference φ

(1)
µν − φ

(2)
µν is a linear combination of pure-gauge modes,

then φ
(1)
µν and φ

(2)
µν belong to the same equivalence class.29 These irreducible representations

are unitary because the Klein-Gordon inner product:

⟨φ(1)|φ(2)⟩KG =
i

4

∫

S3
dθ3

√−g
(
φ(1)µν∗ ∂

∂t
φ(2)

µν − φ(2)
µν

∂

∂t
φ(1)µν∗

)
, (4.23)

29Eq. (4.22) agrees with the expression for the infinitesimal boost matrix elements in the discrete series

UIRs of so(4, 1) with ∆ = 3 and s = 2 [55, 56]. See appendix A and refs. [33, 85] for the translation between

the old and modern notation for the labels of the so(4, 1) UIRs.
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is both positive definite (for physical positive frequency modes) and dS invariant, where

φ(1) and φ(2) are any two classical solutions of eqs. (4.5). The Klein-Gordon inner product

is related to the Klein-Gordon current,

Jµ
KG

(
φ(1), φ(2)

)
= − i

4

(
φ(1)αβ∗ ∇µφ

(2)
αβ − φ

(2)
αβ ∇µφ(1)αβ∗

)
, ∇µJ

µ
KG

(
φ(1), φ(2)

)
= 0,

(4.24)

as

⟨φ(1)|φ(2)⟩KG =

∫

S3
dθ3

√−g J t
KG

(
φ(1), φ(2)

)
. (4.25)

The positive definiteness of the Klein-Gordon inner product in the positive frequency sector

— and negative definiteness in the negative frequency sector — has been explicitly verified

in refs. [28, 77], as:

⟨φ(phys, σL; M ;K)|φ(phys, σ′L′; M ′;K′)⟩KG = δσσ′δLL′δMM ′δKK′ , (4.26)

⟨φ(phys, σL; M ;K)⋆|φ(phys, σ′L′; M ′;K′)⋆⟩KG = −δσσ′δLL′δMM ′δKK′ ,

⟨φ(phys, σL; M ;K)⋆|φ(phys, σ′L′; M ′;K′)⟩KG = 0 (4.27)

with σ, σ′ ∈  +,−}. Also,

⟨φ(1)|φ(pg)⟩KG = 0, (4.28)

where φ
(1)
µν is any physical or pure-gauge mode, and thus, the pure-gauge modes can be

identified with zero as they are orthogonal to all modes, including themselves. Moreover, the

anti-hermiticity of the generators (Lie derivatives) is known [28, 77], as:

⟨£ξφ
(1)|φ(2)⟩KG + ⟨φ(1)|£ξφ

(2)⟩KG = 0, (4.29)

for any two solutions φ(1), φ(2) of eqs. (4.5) and any Killing vector ξµ. To conclude:

• The positive frequency physical graviton modes with positive helicity,  φ(phys, +L; M ;K)
µν },

form the discrete series UIR D+(∆, s) = D+(3, 2) of so(4, 1) — see appendix A. The

so(4) content corresponds to the so(4) highest weights (4.18). The so(4, 1)-invariant

inner product that is positive definite is given by (4.23).

• The positive frequency physical graviton modes with negative helicity,  φ(phys,−L; M ;K)
µν },

form the discrete series UIR D−(∆, s) = D−(3, 2) of so(4, 1) — see appendix A. The

so(4) content corresponds to the so(4) highest weights (4.19). The so(4, 1)-invariant

inner product that is positive definite is again given by eq. (4.23).

The negative frequency modes,  φ(phys,−L; M ;K)⋆
µν } and  φ(phys, +L; M ;K)⋆

µν }, also form the direct

sum D+(3, 2)
⊕
D−(3, 2) of discrete series UIRs of so(4, 1), where the positive-definite inner

product is given by the negative of the Klein-Gordon inner product. The transformation of

the negative frequency modes under the dS boost (3.42) is found by replacing the coefficients

on the right-hand side of (4.22) with their complex conjugates.
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4.2 Conformal-like symmetry for the (real and complex) graviton and UIRs of

so(4, 2)

In this subsection, we discuss a conformal-like symmetry of the graviton gauge potential

generated by the genuine conformal Killing vectors (2.13) of dS4, akin to the conformal-like

symmetry of the gravitino discussed in subsections 3.2 and 3.3. This symmetry is the dS

analogue of the symmetry found for strictly massless gauge potentials on AdS4 in the unfolded

formalism by Vasiliev [75]. We will present new details on how the conformal-like symmetry

acts on graviton mode functions on dS4 and how these form UIRs of so(4, 2). We will also

investigate the invariance of the action functional (4.49) under conformal-like transformations.

Before proceeding to the technical details and mathematical expressions, let us give some

details on the outline of this subsection since there are certain subtleties concerning the

reality properties of the graviton — see also [75].

Outline and subtleties concerning the conformal-like symmetries of mode solutions,

and of graviton field theory. We will start by discussing the conformal-like transformation

for the graviton, TV hµν [eq. (4.31)], which is a symmetry (a map from solutions to other

solutions) for both the full linearised Einstein equations (4.3) and the graviton equations in

the TT gauge (4.5). We will show that the conformal-like transformations TV enlarge the

symmetry of the field equations from so(4, 1) to so(5, 1), but the so(5, 1) algebra closes up to

gauge transformations of the graviton. However, when the transformation TV acts on TT mode

solutions it fails to preserve the Klein-Gordon inner product (4.23), and thus, the graviton

mode solutions cannot form UIRs of the enlarged algebra so(5, 1). Moreover, the conformal-

like transformation fails to be a symmetry of the linearised Einstein-Hilbert action (4.1).

Interestingly, introducing a modified version of the conformal-like transformation by inserting

a factor of i =
√
−1 as TV ≡ iTV [eq. (4.35)], we will show the modified transformation is a

symmetry of not only the field equations (4.3) and (4.5) but also of the Klein-Gordon inner

product. The Lie brackets will also be modified so that the full algebra closes on so(4, 2) (up

to gauge transformations), instead of so(5, 1). Once this modification of the conformal-like

transformation has been made, we will show that the positive frequency mode functions,

 φ(phys,−L; M ;K)
µν } and  φ(phys, +L; M ;K)

µν }, separately form UIRs of the conformal-like algebra

so(4, 2), as in the case of the gravitino modes discussed in subsection 3.2. We will also show

that there is a hermitian action (4.49) functional for the complex graviton hµν which enjoys

invariance under the conformal-like transformations TV hµν .

Subtleties concerning the conformal-like symmetries and the reality of the gravi-

ton. At this point, certain subtleties need to be discussed concerning the reality properties of

the graviton related to the afore-mentioned introduction of a factor of i. The transformation

TV cannot act on the real field hµν because of the factor of i. Thus, the field hµν needs to be

replaced by a complex field, which we denote by hµν . The negative frequency part of hµν

describes the ‘anti-particle’ whereas the positive frequency part describes the ‘particle’. Both

parts acquire the same phase factor under the transformation TV . This means that the phase

factor for the positive frequency modes for the ‘anti-particle’ is the complex conjugate of

the phase factor of the positive frequency modes for the ‘particle’. Some basic properties of

the transformations TV and TV are summarised in tables 1 and 2.
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Conformal-like transformation on modes Is (✓)/ Is not (×) a symmetry of Algebra

TV φ
(phys, ±L; M ;K)
µν (4.31) Field equation (4.5) ✓. Inner product (4.23) × so(5, 1)

TV φ
(phys, ±L; M ;K)
µν (4.35) Field equation (4.5) ✓. Inner product (4.23) ✓ so(4, 2)

Table 1. Conformal-like symmetry and graviton mode solutions.

Conformal-like transformation of the: Is (✓)/ Is not (×) a symmetry of

Real graviton, TV hµν (4.31) Field equations (4.3), (4.5) ✓. Action (4.1) ×
Complex graviton, TV hµν (4.35) Field equations (4.36), (4.39) ✓. Action (4.49) ✓

Table 2. Conformal-like symmetry: real vs. complex graviton field theory.

Note. The complex graviton will be relevant in our discussion on SUSY in section 6. In

particular, in our unitary supersymmetric model in subsection 6.2, the super-partner of a

chiral gravitino is a chiral graviton. Both of these fields have anti-self-dual field strengths,

and thus, must be complex [87].

4.2.1 Real graviton field theory, conformal-like transformation and so(5, 1)

The differential operator underlying the conformal-like symmetry transformation is

V D
αβ

µν =
1

2
V ρερσλ(µ

(
δβ

ν) g
λα ∇σ + δα

ν) g
λβ ∇σ

)
, (4.30)

where V ρ is any genuine conformal Killing vector (2.13). The conformal-like transformation

acts on generic symmetric spin-2 fields, Bµν , as30

TV Bµν ≡ V D
αβ

µν Bαβ = V ρερσλ(µ∇σBλ
ν). (4.31)

Conformal-like invariance of real graviton field equations. We will first show that

the conformal-like transformation TV hµν for the real graviton is a symmetry of the standard

linearised Einstein equations Hµν(h) = 0 [see eq. (4.3)]. For the sake of generality, let us

work with a symmetric spin-2 field Bµν which may not obey the linearised Einstein equations.

Using the expressions (D.2), it is easy to show that Hµν(TV B) can be expressed as

Hµν(TV B) = V ρερσλ(µ∇σHλ
ν)(B) = TV Hµν(B), (4.32)

for any symmetric spin-2 field Bµν . This means that if Bµν = hµν satisfies the linearised

Einstein equations, Hµν(h) = 0 [eq. (4.3)], then TV hµν also satisfies the same equations, i.e.

Hµν(TV h) = 0. In other words, the conformal-like transformation (4.31) of the real graviton

is a symmetry of the linearised Einstein equations (4.3). Furthermore, as eqs. (D.2) hold

for any symmetric spin-2 field, we can also apply them to the case of the real graviton in

the TT gauge Bµν = h
(TT)
µν . We thus find that if h

(TT)
µν satisfies eqs. (4.5), then so does

TV h
(TT)
µν , i.e. TV h

(TT)
µν is a TT solution to the linearised Einstein equations. Thus, the

conformal-like transformation (4.31) is a symmetry of the field equations of the real graviton

in the TT gauge [eqs. (4.5)] — this is also true, of course, for the case of the TT graviton

mode solutions which are complex.

30Note the similarity of the expression (4.31) with the hidden symmetry transformation of the Maxwell

gauge potential in Minkowski spacetime, given by equation (41) in [89].
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so(5, 1) symmetry for real graviton. Consider a TT solution of (4.5), h
(TT)
µν . The

structure of the full symmetry algebra, generated by the ten dS isometries (4.8) and the five

conformal-like symmetries (4.31), is described by the following commutation relations:

[£ξ,£ξ′ ]h(TT)
µν = £[ξ,ξ′]h

(TT)
µν , (4.33a)

[£ξ, TV ]h(TT)
µν = T[ξ,V ]h

(TT)
µν , (4.33b)

[TV ′ , TV ]h(TT)
µν = −£[V ′,V ]h

(TT)
µν + ∇(µ

[
−1

2

(
∇κh

(TT)
ν)σ

)
∇κ[V ′, V ]σ + [V ′, V ]σh

(TT)
ν)σ

]
, (4.33c)

where ξµ, ξ
′µ are any two dS Killing vectors, while V µ, V

′µ are any two genuine conformal

Killing vectors (2.13). The commutators (4.33a)–(4.33c) coincide with the commutation

relations of so(5, 1) up the field-dependent gauge transformation in (4.33c). If the minus sign

in front of £[V ′,V ] in (4.33c) gets flipped, then the commutation relations will be the ones of

so(4, 2). This will be the case when we consider the modified conformal-like transformation

acting on complex gravitons later.

Non-invariance of Klein-Gordon inner product. Let φ
(1)
µν and φ

(2)
µν be any two TT

graviton mode solutions of (4.5). A straightforward calculation shows that the infinitesimal

change of the Klein-Gordon inner product under TV [(4.31)] is not zero

⟨TV φ
(1)|φ(2)⟩KG + ⟨φ(1)|TV φ

(2)⟩KG ̸= 0.

In other words, the conformal-like transformations TV are not anti-hermitian, and thus,

the corresponding so(5, 1) representation cannot be unitary. In fact, the conformal-like

transformations TV hµν are hermitian.

Non-invariance of the linearised Einstein-Hilbert action (4.1). Using (4.32), it is

easy to show that the variation of the action (4.1) under δhµν = TV hµν , does not vanish,

δSEH = −1

4

∫
d4x

√−g (TV h
µν Hµν(h) + hµν Hµν(TV h)) ̸= 0. (4.34)

Also, δSEH is not equal to the integral of a total divergence. We conclude that TV hµν is

not a symmetry of the Einstein-Hilbert action.

4.2.2 Complex graviton field theory, conformal-like transformation and so(4, 2)

Consider a modified version of the conformal-like transformation of the real graviton by

introducing a factor of i, as TV ≡ iTV . We will also refer to TV as a conformal-like

transformation. As we explained earlier, although TV [eq. (4.31)] can act on both real and

complex graviton fields, which we denote as hµν and hµν , respectively, the transformation

TV acts only on the complex graviton field, as

TV hµν ≡ iTV hµν = iV ρερσλ(µ∇σhλ
ν), (4.35)

where V µ is any genuine conformal Killing vector (2.13). Let us first give some details for

the complex graviton theory.
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The complex graviton field. The on-shell complex graviton field satisfies the linearised

Einstein equations (4.3) — with hµν replaced by hµν — as

Hµν(h) = 0, (4.36)

where

Hµν(h) ≡ ∇µ∇αh
α
ν + ∇ν∇αh

α
µ −□hµν + gµν □hα

α −∇µ∇νh
α
α

− gµν ∇α∇βhαβ + 2 hµν + gµνh
α
α. (4.37)

Eq. (4.36) is invariant under complex gauge transformations of the form

δgauge(Z) hµν = ∇(µZν), (4.38)

where Zν is an arbitrary complex vector gauge function. In fact the gauge invariance of the

field equation follows from the off-shell property: Hµν(δgauge(Z)h) = 0. In the TT gauge,

the field equations for the complex graviton are

□h(TT)
µν = 2 h(TT)

µν ,

∇µh(TT)
µν = 0, h(TT)α

α = 0, (4.39)

and they enjoy invariance under restricted gauge transformations

δgauge
res (A) h(TT)

µν = ∇(µAν), (4.40)

where the complex gauge function satisfies

□Aν = −3 Aν ,

∇νAν = 0. (4.41)

Conformal-like invariance of complex graviton field equations. As eq. (4.32) holds

for any (complex or real) symmetric spin-2 field, it follows that if hµν is a solution of the

field equation (4.36), then so is TV hµν = i TV hµν . In the TT gauge it is easy to show by

using (D.2) that if h
(TT)
µν is a solution of eq. (4.39), then so is TV h

(TT)
µν . Thus, TV is a

symmetry of the complex graviton field equations both in their non-gauge-fixed form (4.36)

and in the TT gauge (4.39).

so(4, 2) symmetry for complex graviton. Consider a TT solution of (4.39), h
(TT)
µν . The

commutators for the full symmetry algebra, generated by the ten dS isometries (4.8) and

the five conformal-like symmetries (4.35), can be found by multiplying V and V ′ by i and

replacing hµν by hµν in eqs. (4.33a)–(4.33c). We find in this manner,

[£ξ,£ξ′ ]h(TT)
µν = £[ξ,ξ′]h

(TT)
µν , (4.42a)

[£ξ, TV ]h(TT)
µν = T[ξ,V ]h

(TT)
µν , (4.42b)

[TV ′ , TV ]h(TT)
µν = +£[V ′,V ]h

(TT)
µν −∇(µ

[
−1

2

(
∇κh

(TT)
ν)σ

)
∇κ[V ′, V ]σ + [V ′, V ]σh

(TT)
ν)σ

]
, (4.42c)

where ξµ, ξ
′µ are any two dS Killing vectors, and V µ, V

′µ are any two genuine conformal

Killing vectors (2.13). The commutators (4.42a)–(4.42c) coincide with the commutation

relations of so(4, 2) up the field-dependent gauge transformation in (4.42c), as in the gravitino

case in (3.52a)–(3.52c). The sign difference between eqs. (4.33c) and (4.42c), corresponds

to the difference between so(5, 1) and so(4, 2).
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Conformal-like invariance of Klein-Gordon inner product. Let φ
(1)
µν and φ

(2)
µν be any

two TT graviton mode solutions — these are solutions of both (4.5) and (4.39). We will show

that the Klein-Gordon inner product (4.23) is invariant under the (complex) conformal-like

transformations [eq. (4.35)]

TV φ
(1,2)
µν = i V ρερσλ(µ∇σφ

(1,2)λ
ν) .

Let us start by considering the Klein-Gordon current Jµ
KG

(
φ(1), φ(2)

)
[eq. (4.24)]. After a

straightforward calculation, the infinitesimal change δV J
µ
KG

(
φ(1), φ(2)

)
under TV is found to

be equal to the divergence of an rank-2 antisymmetric tensor as follows:

δV J
µ
KG

(
φ(1), φ(2)

)
= Jµ

KG

(
TV φ

(1), φ(2)
)

+ Jµ
KG

(
φ(1), TV φ

(2)
)

(4.43)

= −1

2
∇σ

(
V ρ φ

(1)λ∗
β ε

[σ
ρλα ∇µ]φ(2)αβ + V ρ φ

(2)λ
β ε

[σ
ρλα ∇µ]φ(1)αβ∗

)
.

It immediately follows that the Klein-Gordon inner product (4.23) remains invariant under

infinitesimal conformal-like transformations, as

δV ⟨φ(1)|φ(2)⟩KG =

∫

S3
dθ3

√−g δV J
t
KG

(
φ(1), φ(2)

)
= 0, (4.44)

for any genuine conformal Killing vector V µ (2.13). This implies the anti-hermiticity of

all five conformal-like generators

⟨TV φ
(1)|φ(2)⟩KG + ⟨φ(1)|TV φ

(2)⟩KG = 0. (4.45)

Since the requirements of positive-definiteness of the Klein-Gordon inner product and anti-

hermiticity of all 15 so(4, 2) generators (10 isometries+5 conformal-like symmetries) are

satisfied, the physical graviton modes must form UIRs of not only so(4, 1) but also so(4, 2),

as in the case of gravitino modes discussed in subsection 3.2. Let us elaborate on this further.

4.2.3 UIRs of so(4, 2) formed by graviton modes

In the previous subsections we showed that the space of graviton mode solutions is a

representation space for so(4, 2) — see the commutation relations (4.42a)–(4.42c). Here we

will show, for the first time, that each of the two positive frequency single-helicity sets of

physical graviton modes,  φ(phys,−L; M ;K)
µν } and  φ(phys, +L; M ;K)

µν }, forms a UIR of so(4, 2).

As in the gravitino case discussed in subsection 3.2, it is sufficient to study the conformal-

like transformation generated by one (out of five) genuine conformal Killing vectors, specifically

the genuine conformal Killing vector V (0)µ (3.54). From eq. (4.35), we have:

TV (0)φ(phys,±L; M ;K)
µν = −i cosh t εtσλ(µ∇σφ

(phys,±L; M ;K)λ
ν) . (4.46)

Using the explicit expressions of the physical modes (4.10) and (4.11), as well as εtα̃β̃γ̃ =

cosh3 t ε̃α̃β̃γ̃ and (4.15), we find

TV (0)φ(phys,−L; M ;K)
µν = +i(L+ 1)φ(phys,−L; M ;K)

µν (4.47)
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and

TV (0)φ(phys, +L; M ;K)
µν = −i(L+ 1)φ(phys,+L; M ;K)

µν . (4.48)

Thus, from eqs. (4.47) and (4.48), as well as (4.42a)–(4.42c), it follows that  φ(phys, +L; M ;K)
µν }

and  φ(phys,−L; M ;K)
µν } separately form irreducible representations of so(4, 2). These represen-

tations are unitary because the Klein-Gordon inner product (4.23) is positive definite and

all so(4, 2) generators are anti-hermitian (4.45). Similarly, one can show that the negative

frequency modes  φ(phys, +L; M ;K)⋆
µν } and  φ(phys,−L; M ;K)⋆

µν } separately form UIRs of so(4, 2)

with positive-definite inner product given by the negative of the Klein-Gordon inner product.

4.2.4 A hermitian action for the complex graviton and its conformal-like

invariance

A hermitian action for the complex graviton, which gives rise to the desired Euler-Lagrange

equations (4.36), is

S2 = −1

4

∫
d4x

√−g h†µν H
µν(h). (4.49)

This action is invariant under the gauge transformations in (4.38) and their complex conjugates

δgauge(Z) h†µν = ∇(µZ†
ν). (4.50)

For later convenience, let us introduce the conserved symplectic current [90, 91] of the theory

as follows. The covariant conjugate momentum current density for h
†
λν is defined as

pµνλ =
1√−g

δS2

δ∇µh
†
νλ

= −1

4
∇µhνλ +

1

4
(2gµ(ν∇αh

λ)α − gνλ∇αh
αµ)

− 1

4
gµ(ν∇λ)hα

α +
1

4
gνλ∇µhα

α . (4.51)

Thus, the conserved symplectic current between two complex classical solutions h
(1)
νλ and

h
(2)
νλ of eq. (4.36) is

Jµ
symp(h(1), h(2)) = i

(
h

(1)∗
νλ p(2)µνλ − p(1)µνλ∗ h

(2)
νλ

)

= − i

4

(
h

(1)∗
νλ ∇µh(2)νλ − 2h(1)µ∗

λ∇αh
(2)αλ + h

(1)β∗
β ∇αh

(2)αµ

+ h(1)µ∗
λ∇λh(2)α

α − h
(1)β∗
β ∇µh(2)α

α

− h
(2)
νλ∇µh(1)νλ∗ + 2h(2)µ

λ∇αh
(1)αλ∗ − h

(2)β
β ∇αh

(1)αµ∗

− h(2)µ
λ∇λh(1)α∗

α + h
(2)β
β ∇µh(1)α∗

α

)
, (4.52)
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see, e.g., refs. [92, 93]. The time-independent (pre-)symplectic scalar product between h
(1)
νλ

and h
(2)
νλ is

⟨h(1)|h(2)⟩symp =

∫

S3
dθ3

√−g J t
symp

(
h(1), h(2)

)
. (4.53)

Importantly, the scalar product (4.53) is gauge-independent [92–95], and thus invariant under

gauge transformations (4.38), as

⟨δgauge(Z)h(1)|h(2)⟩symp =

∫

S3
dθ3

√−g J t
symp

(
δgauge(Z)h(1), h(2)

)
= 0

⟨h(1)|δgauge(Z)h(2)⟩symp =

∫

S3
dθ3

√−g J t
symp

(
h(1), δgauge(Z)h(2)

)
= 0. (4.54)

Indeed it is straightforward to show that

Jµ
symp

(
h(1), δgauge(Z)h(2)

)
= ∇ρA

ρµ, (4.55)

where Aρµ = A[ρµ] is an anti-symmetric rank-2 tensor depending on the gauge parame-

ter Z and on h
(1)∗
µν (and their derivatives) — clearly, a similar statement also holds for

Jµ
symp

(
δgauge(Z)h(1), h(2)

)
. Thus, pure-gauge solutions, i.e. complex solutions of the form

hµν = ∇(µZν) for any Zν , are orthogonal to themselves and to all other solutions, with

respect to the (pre-)symplectic scalar product (4.53). Note that, if one imposes the TT

gauge condition (4.39) for both arguments of the symplectic current (4.52), then the sym-

plectic current coincides with the Klein-Gordon current (4.24). Thus, the (pre-)symplectic

scalar product (4.53) coincides with the Klein-Gordon inner product (4.25) on the space

of TT solutions.

Conformal-like invariance of the action (4.49). The hermitian action in (4.49) is not

only invariant under dS transformations but also under conformal-like transformations (4.35),

unlike the linearised Einstein-Hilbert action (4.1) for the real graviton which is not invariant

under the corresponding conformal-like transformations (4.34). The conformal-like invariance

of the action (4.49) can be readily checked as follows. Computing the variation

δV S2 = −1

4

∫
d4x

√−g
(
δV h

†
µν H

µν(h) + h†µν H
µν(δV h)

)
, (4.56)

under δV hµν = TV hµν = iTV hµν and δV h
†
µν = (TV hµν)†, and using (4.32) with Bµν =

hµν , we find

δV S2 =

∫
d4x

√−g ∇σ
(
i

4
V ρερσλγ h

†λ
ν Hγν(h)

)
, (4.57)

which demonstrates the conformal-like invariance of the action S2. Notice that (TV hµν)† has

an extra minus sign relative to TV hµν (see (4.35)), which plays a crucial role in the calculation.
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4.3 Quantisation of the chiral graviton field, anti-self-duality constraint, and

UIRs in the bosonic Fock space

Here we will discuss a particular case of a chiral graviton field, the graviton with anti-self-dual

field strength as this will be the superpartner of the chiral gravitino, as discussed in section 6.31

The chiral graviton is described by a complex symmetric spin-2 field hµν , as the one discussed

in 4.2.2, but with the extra restriction of anti-self-duality on the field strength. In the present

subsection, we will quantise the chiral graviton following Takahashi’s method, as we also

did for the chiral gravitino in subsection 3.4.

Following Takahashi’s method [88], we take as our starting point the field equation (4.39)

accompanied by the anti-self-duality constraint on the (complex) graviton field strength

Ũαβµν = −i Uαβµν , (4.58)

where Ũαβµν = 1
2εαβγδU

γδ
µν . The complex graviton field strength, which we also call

‘complex linearised Weyl tensor’, is defined as in the case of the real graviton [98]:

Uαβµν =
(
−∇µ∇[αhβ]ν − gµ[αhβ]ν

)
− (µ↔ ν), (4.59)

and is invariant under the gauge transformations (4.38). The field strength (4.59) has the

symmetries of the Riemann tensor. The anti-self-dual linearised Weyl tensor, i.e. the linearised

Weyl tensor field that satisfies the anti-self-duality constraint (4.58), will be later denoted

as U−
αβµν — see eq. (4.66). The complex graviton field hµν in (4.59) can, of course, be

chosen to be in any gauge without affecting Uαβµν . To proceed with the quantisation we

will choose to work in the TT gauge. If hµν satisfies the field equations (4.36) or (4.39),

then it is easy to show that

gαµUαβµν = gβνUαβµν = 0, ∇αUαβµν = ∇µUαβµν = 0. (4.60)

As we mentioned earlier, the main objective of Takahashi’s method applied here is to determine

the quantum field operator h
(TT)
µν and the hermitian quantum dS generators QdS

2 [ξ] such that

the Heisenberg equations of motion are satisfied:

−i£ξh
(TT)
µν (t,θ3) =

[
h(TT)

µν (t,θ3), QdS
2 [ξ]

]
, (4.61)

up to pure-gauge TT solutions, for any dS Killing vector ξµ. The subscript ‘2’ in QdS
2 [ξ]

has been used to distinguish between the quantum dS generators of the chiral graviton and

of the chiral gravitino — see eq. (3.67). As an additional requirement, quantum operators

representing physical quantities must commute with one another for spacelike separations

(microcausality).

Mode expansion. Let us now quantise the chiral graviton field.32 From subsection 4.1, it

follows that the components h
(TT)
tν are nonzero only for pure-gauge modes (see also ref. [77]).

31Chiral gravitational tensor perturbations around de Sitter spacetime in terms of Ashtekar variables have

been discussed in refs. [96, 97].
32The real graviton field on global dS4 has been quantised in, e.g., [29].
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To isolate the physical degrees of freedom, we fix the gauge completely by imposing the

gauge conditions: h
(TT)
tµ = 0, and gα̃µ̃∇α̃h

(TT)
µ̃ν̃ = 0. We then expand the chiral graviton

gauge potential in modes as

h
(TT)−
tµ (t,θ3)=0, (4.62)

h
(TT)−
µ̃ν̃ (t,θ3)=

∞∑

L=2

L∑

M=2

M∑

K=−M

(
c

(−)
LMKφ

(phys,−L;M ;K)
µ̃ν̃ (t,θ3)+d

(+)†
LMKφ

(phys,+L;M ;K)⋆
µ̃ν̃ (t,θ3)

)
,

where µ is a tensor index on dS4, while µ̃ and ν̃ are tensor indices on S3. The superscript

‘−’ in h
(TT)−
µν refers to the fact that the field strength is anti-self-dual (anti-self-duality is

demonstrated below). The non-zero commutators are

[c
(−)
LMK , c

(−)†
L′M ′K′ ] = δLL′δMM ′δKK′ , [d

(+)
LMK , d

(+)†
L′M ′K′ ] = δLL′δMM ′δKK′ . (4.63)

The dS-invariant vacuum is the state |0⟩2 in the Fock space that satisfies:

c
(−)
LMK |0⟩2 = d

(+)
LMK |0⟩2 = 0, (4.64)

for all L,M,K. Using the Klein-Gordon scalar product (4.23), we find

c
(−)
LMK = ⟨φ(phys,−L; M ;K)|h(TT)−⟩KG , d

(+)†
LMK = −⟨φ(phys, +L; M ;K)⋆|h(TT)−⟩KG (4.65)

[see eqs. (4.26) and (4.27)].

Anti-self-duality constraint. Let us verify that the mode expansion for the chiral gravi-

ton (4.62) is consistent with the anti-self-duality constraint (4.58). In other words, we will

show that the following field strength

U−
αβµν =

(
−∇µ∇[αh

(TT)−
β]ν − gµ[αh

(TT)−
β]ν

)
− (µ↔ ν), (4.66)

is anti-self-dual. For convenience, let us demonstrate this for the component U−
ρ̃γ̃tν̃ , where

ρ̃, γ̃ and ν̃ are spatial indices — the calculation for the rest of the components is similar.

In the global coordinates (2.1), we have

U−
ρ̃γ̃tν̃ =

(
− ∂

∂t
+ 2 tanh t

)
∇̃[ρ̃h

(TT)−
γ̃]ν̃ , (4.67)

where ∇̃ρ̃ is the covariant derivative on S3. On the other hand, for the ρ̃γ̃tν̃-component

of the dual field strength, we have

1

2
ερ̃γ̃αβ U

−αβ
tν̃ = ερ̃γ̃tδ̃ U

−tδ̃
tν̃ = − cosh t ε̃ρ̃γ̃δ̃ g̃

δ̃µ̃ U−
tµ̃tν̃ (4.68)

= − cosh t

(
− ∂2

∂t2
+ 2 tanh t+

2

cosh2 t

)
ε̃ρ̃γ̃δ̃

2
g̃δ̃µ̃ h

(TT)−
µ̃ν̃ .

We want to show that eq. (4.68) is equal to −i× (4.67). Indeed, substituting the mode

expansion (4.62) into eqs. (4.67) and (4.68), and making use of (4.15), one finds that the

anti-self-duality constraint (4.58) is satisfied, as

1

2
ερ̃γ̃αβ U

−αβ
tν̃ = −i U−

ρ̃γ̃tν̃ . (4.69)

This can be similarly verified for the rest of the components of the field strength (4.66).
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Quantum symmetry generators. The hermitian dS generators for the chiral graviton

can be constructed in the standard way [85, 88]:

QdS
2 [ξ] = −i : ⟨h(TT)−|£ξh

(TT)−⟩KG : , (4.70)

where ξµ is any dS Killing vector. Here we will give the explicit expression only for the dS

boost ξµ = Bµ [eq. (3.42)]. Expanding the field in modes (4.62), and using eqs. (4.22), (4.26)

and (4.27), we find:

QdS
2 [B] = QdS−

2 [B] +QdS+
2 [B], (4.71)

where

QdS−
2 [B] = −1

2

∞∑

L=2

∑

M.K

(√
(L−M + 1)(L+M + 2) c

(−)†
(L+1)MKc

(−)
LMK

+
√

(L−M)(L+M + 1) c
(−)†
(L−1)MKc

(−)
LMK

)
(4.72)

and

QdS+
2 [B] = −1

2

∞∑

L=2

∑

M,K

(√
(L−M + 1)(L+M + 2) d

(+)†
(L+1)MKd

(+)
LMK

+
√

(L−M)(L+M + 2) d
(+)†
(L−1)MKd

(+)
LMK

)
. (4.73)

As in the gravitino case, the dS charge has two independent parts: QdS
2 [B] = QdS−

2 [B] +

QdS+
2 [B], where QdS−

2 [B] and QdS+
2 [B] act on the negative- and positive-helicity sectors,

respectively. In other words, they generate the two discrete series UIRs of so(4, 1), D−(∆ =

3, s = 2) and D+(∆ = 3, s = 2), respectively. The charge QdS
2 [B] generates the following

dS transformations of creation operators:

δBc
(−)†
LMK ≡

[
c

(−)†
LMK ,Q

dS
2 [B]

]
=
[
c

(−)†
LMK ,Q

dS−
2 [B]

]
=

1

2

√
(L−M+1)(L+M+2)c

(−)†
(L+1)MK

+
1

2

√
(L−M)(L+M+1)c

(−)†
(L−1)MK (4.74)

and

δBd
(+)†
LMK ≡

[
d

(+)†
LMK ,Q

dS
2 [B]

]
=
[
d

(+)†
LMK ,Q

dS+
2 [B]

]
=

1

2

√
(L−M+1)(L+M+2)d

(+)†
(L+1)MK

+
1

2

√
(L−M)(L+M+1)d

(+)†
(L−1)MK . (4.75)

Using these expressions, it is clear that negative-helicity single-particle states c
(−)†
LMK |0⟩2

transform as the corresponding positive frequency modes (4.22), thus furnishing the so(4, 1)

discrete series UIR D−(∆ = 3, s = 2). Similarly, positive-helicity single-particle states

d
(+)†
LMK |0⟩2 furnish the so(4, 1) discrete series UIR D+(∆ = 3, s = 2) — see appendix A. It is

now straightforward to show that the Heisenberg equation of motion (4.61) is satisfied
[
h(TT)−

µν , QdS
2 [B]

]
= −i£Bh

(TT)−
µν , (4.76)
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module a pure-gauge TT solution, where £B is the Lie derivative with respect to the dS

boost Killing vector Bµ (3.42).

As in the gravitino case, apart from the ten dS charges we can also construct the five

hermitian charges corresponding to the conformal-like symmetry (4.35),

Qconf
2 [V ] = −i : ⟨h(TT)−|TV h

(TT)−⟩KG : , (4.77)

such that the Heisenberg equations of motion are again satisfied

−i TV h
(TT)−
µν (t,θ3) = [ h(TT)−

µν (t,θ3), Qconf
2 [V ] ], (4.78)

module a pure-gauge TT solution, where TV is the conformal-like transformation (4.35)

with respect to any genuine conformal Killing vector V µ (2.13). An easy way to verify the

Heisenberg equations of motion is to focus on the conformal-like symmetry generated by

the genuine conformal Killing vector V (0)µ [eq. (3.54)], for which the quantum generator

is readily found to be

Qconf
2 [V (0)] =

∞∑

L=2

∑

M,K

(L+ 1)
(
c

(−)†
LMKc

(−)
LMK − d

(+)†
LMKd

(+)
LMK

)
. (4.79)

This quantum generator consists of two independent conformal-like charges, as

Qconf
2 [V (0)] = Qconf−

2 [V (0)] +Qconf+
2 [V (0)],

Qconf−
2 [V (0)] =

∞∑

L=2

∑

M,K

(L+ 1) c
(−)†
LMKc

(−)
LMK ,

Qconf+
2 [V (0)] = −

∞∑

L=2

∑

M,K

(L+ 1) d
(+)†
LMKd

(+)
LMK , (4.80)

acting on negative-helicity and positive-helicity states, respectively. Using this expression

for Qconf
2 [V (0)], as well as the mode expansion for h

(TT)−
µν (4.62), one can readily verify the

Heisenberg equations of motion. Finally, it is also easy to verify that, as in the gravitino case,

the chiral graviton vacuum |0⟩2 is also invariant under the whole so(4, 2) symmetry.

Microcausality. We will show the microcausality of the chiral graviton theory by demon-

strating that, for any two spacelike separated points, (t,θ3) and (t′,θ′
3
), the commutator

[
U−

µνρσ(t,θ3), U−
α′β′γ′δ′(t

′,θ′
3
)†
]

(4.81)

vanishes. This can be inferred from the standard theory of the real graviton [29, 77], as

follows. Let h
(TT)
µν be the real graviton gauge potential that has been completely gauge-fixed

as h
(TT)
tµ = 0, and gα̃µ̃∇α̃h

(TT)
µ̃ν̃ = 0. This field can be expanded in terms of the Bunch-Davies

mode functions of both helicities (4.10) and (4.11) [29, 77]. The real graviton is related

to our chiral graviton potential as

h(TT)
µν (t,θ3) = h(TT)−

µν (t,θ3) +
(
h(TT)−

µν (t,θ3)
)†
.
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Let also U
(real)
µνρσ be the field strength of h

(TT)
µν , i.e. real linearised Weyl tensor, which has the

symmetries of the Riemann tensor and satisfies eq. (4.60). The real linearised Weyl tensor

can be expressed in terms of the field strength of our chiral graviton as

U (real)
µνρσ (t,θ3) = U−

µνρσ(t,θ3) + U−
µνρσ(t,θ3)†, (4.82)

where the anti-self-dual part of U
(real)
µνρσ is

U−
µνρσ(t,θ3) =

1

2

(
U (real)

µνρσ (t,θ3) + iŨ (real)
µνρσ (t,θ3)

)
, (4.83)

while its self-dual part is

U−
µνρσ(t,θ3)† =

1

2

(
U (real)

µνρσ (t,θ3) − iŨ (real)
µνρσ (t,θ3)

)
≡ U+

µνρσ(t,θ3). (4.84)

Because of the microcausality of the real graviton field on dS4, the Weyl-Weyl commutator

between any two causally disconnected points vanishes:33

[
U (real)

µνρσ (t,θ3), U
(real)
α′β′γ′δ′(t

′,θ′
3
)
]

= 0, for spacelike separated points (t,θ3), (t′,θ′
3
). (4.85)

It is now easy to explain how this implies the locality of the commutator (4.81) that is

relevant to the chiral graviton theory. By taking the dual of the Weyl tensor on the left

slot of the commutator in (4.85), we have
[
Ũ (real)

µνρσ (t,θ3), U
(real)
α′β′γ′δ′(t

′,θ′
3
)
]

= 0, for spacelike separated points (t,θ3), (t′,θ′
3
). (4.86)

Then, by adding (4.85) +i×(4.86), and with the use of eq. (4.83), we find
[
U−

µνρσ(t,θ3), U
(real)
α′β′γ′δ′(t

′,θ′
3
)
]

= 0, for spacelike separated points (t,θ3), (t′,θ′
3
). (4.87)

Then, by taking the dual of the Weyl tensor on the right slot of the commutator in (4.87),

and working similarly, we find
[
U−

µνρσ(t,θ3), U−
α′β′γ′δ′(t

′,θ′
3
)†
]

= 0, for spacelike separated points (t,θ3), (t′,θ′
3
). (4.88)

This demonstrates the microcausality of the chiral graviton theory.

In the quantisation presented above, we started from a complex graviton field and

restricted it to its chiral (anti-self-dual) part, which might seem puzzling at first. However,

we could have started from the linearised Einstein-Hilbert action with a real graviton field

and defined its anti-self-dual part, which is a complex field, to construct the chiral graviton

field. Then, the completely gauge-fixed real field and the corresponding linearised Weyl tensor

would be identical to, respectively, h
(TT)
µν (t,θ3) and U

(real)
µνρσ (t,θ3) discussed above. That is,

there would be no need to start from a complex graviton field if our only purpose was to

define the chiral graviton field. However, as we shall see, the SUSY transformation on the

real graviton field would be highly non-local: it is a complex (i.e., non-real) transformation

and the anti-self-dual part and its complex conjugate, the self-dual part, transform differently.

In particular, the U(1) transformation, which is part of the superalgebra, assigns the opposite

charges to the self-dual and anti-self-dual gravitons. In contrast, as we shall see, it is possible

to define a simple SUSY transformation on a non-chiral complex graviton field, which can

be restricted to a chiral graviton field. For this reason we started from a complex graviton

field to construct the chiral graviton field.

33See refs. [92, 98] for related discussions.
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5 Complex Killing spinors on dS4 and their conformal-like symmetry

Let us review the basics about Killing spinors on dS4 — see also, e.g., ref. [74]. Killing

spinors, ϵ+ and ϵ−, on dS4 satisfy

∇µϵ± = ± i

2
γµϵ±. (5.1)

The Killing spinors with the two different signs in eq. (5.1) are related to each other as

ϵ− = γ5ϵ+.34 There are no Majorana Killing spinors35 satisfying eq. (5.1) — the explanation

is similar to the one for the absence of a Majorana condition in the case of the gravitino, see

the passage below eq. (3.9). There are four independent complex (Dirac) Killing spinors ϵ+,

and four independent ϵ−. The Killing spinors ϵ+ and ϵ− form equivalent finite-dimensional

(non-unitary) representations of the dS algebra. In what follows, we will only use the

Killing spinors ϵ−, and therefore, we will omit the subscript ‘−’, denoting them as ϵ.

The Killing spinors ϵ form a 4-dimensional non-unitary representation of so(4, 1). The

dS generators act on Killing spinors in terms of the Lie-Lorentz derivative

Lξϵ = ξν∇νϵ+
1

4
(∇κξλ)γκλϵ, (5.2)

where ξµ is a dS Killing vector. For later convenience, note that using any two Killing spinors,

ϵ1 and ϵ2, satisfying eq. (5.1) with the ‘−’ sign, one can construct the following bilinears:

• the real Killing vectors

ξµ
(ϵ) =

1

4
ϵ2γ

5γµϵ1 −
1

4
ϵ1γ

5γµϵ2 =
1

4
ϵ2γ

5γµϵ1 +
1

4

(
ϵ2γ

5γµϵ1
)†
, (5.3)

where ∇µξ
µ
(ϵ) = 0 and ∇µξ(ϵ)ν + (µ↔ ν) = 0. The factors of 1

4 in (5.3) have been

inserted for later convenience.

• the real genuine conformal Killing vectors [see eq. (2.13)]

V µ
(ϵ) =

1

4
ϵ2γ

µϵ1 −
1

4
ϵ1γ

µϵ2 =
1

4
ϵ2γ

µϵ1 +
1

4
(ϵ2γ

µϵ1)†

=
1

4
∇µ (i ϵ2ϵ1 − i ϵ1ϵ2) = ∇µϕV(ϵ)

, ϕV(ϵ)
≡ i

4
ϵ2ϵ1 −

i

4
ϵ1ϵ2, (5.4)

where ∇µV(ϵ)ν = −gµνϕV(ϵ)
= 1

4gµν∇αV(ϵ)α. The factors of 1
4 in (5.4) have been inserted

for later convenience.

The afore-mentioned real Killing spinor bilinears will appear in the commutators of SUSY

transformations [eqs. (6.16) and (6.17)] in the following subsections. Complex Killing vectors

and complex genuine conformal Killing vectors are given by

ξ
(2,1)µ
C

=
1

4
ϵ2γ

5γµϵ1, ξ
(1,2)µ
C

=
1

4
ϵ1γ

5γµϵ2 = −
(
ξ

(2,1)µ
C

)∗
(5.5)

and

V
(2,1)µ
C

=
1

4
ϵ2γ

µϵ1 ≡ ∇µϕ
V

(2,1)
C

, V
(1,2)µ
C

=
1

4
ϵ1γ

µϵ2 ≡ ∇µϕ
V

(1,2)
C

= −
(
V

(2,1)µ
C

)∗
, (5.6)

respectively. However, as we will show below, only their real parts will appear in the

commutators (6.16) and (6.17) of two SUSY transformations.

34The Dirac adjoint ϵ̄± of a Killing spinor ϵ± satisfies ∇µϵ̄± ∓ i
2
ϵ̄± γµ = 0.

35However, eq. (5.1) admits symplectic Majorana Killing spinor solutions.
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Killing spinors and their conformal-like symmetry. Something that is not widely

known, and to the best of our knowledge will be presented here for the first time, is that dS

Killing spinors enjoy a conformal-like so(4, 2) symmetry akin to the conformal-like symmetry

for the graviton and gravitino discussed earlier. In particular, the Killing spinor equation (5.1)

is invariant under the following conformal-like transformations:

TV ϵ = γ5
(
V ρ∇ρϵ+

1

2
ϕV ϵ

)
, (5.7)

where Vµ = ∇µϕV is any genuine conformal Killing vector (2.13). It can be readily verified

that if ϵ satisfies the Killing spinor equation (5.1), then TV ϵ satisfies the same equation.

The so(4, 2) commutation relations are given by

[Lξ,Lξ′ ]ϵ = L[ξ,ξ′]ϵ, (5.8a)

[Lξ,TV ]ϵ = T[ξ,V ]ϵ, (5.8b)

[TV ′ ,TV ]ϵ = L[V ′,V ]ϵ, (5.8c)

where ξµ and ξ
′µ are any two dS Killing vectors, while V µ and V

′µ are any two genuine

conformal Killing vectors (2.13). Note that the Dirac adjoint of TV ϵ (5.7) is

TV ϵ = −
(
V ρ∇ρϵ+

1

2
ϕV ϵ

)
γ5. (5.9)

Explicit expressions for Killing spinors on dS4. Explicit expressions for the Killing

spinors ϵ(t,θ3) on global dS4 can be found by analytically continuing the Killing spinors on

S4 — see ref. [32] for details on the analytic continuation of spinor eigenfunctions of the

Dirac operator from S4 to dS4. The line element on the unit S4 is

dΩ2
(4) = dθ2

4 + sin2 θ4 dΩ2, (5.10)

where π ≥ θ4 ≥ 0, and dΩ2 is the line element (2.2) of S3. It is well-known that one can

analytically continue the line element of S4 to obtain the line element of global dS4 (2.1)

by making the replacement [28]

θ4 → π

2
− it. (5.11)

It is also known that Killing spinors on S4 are eigenfunctions of the Dirac operator with

the lowest allowed eigenvalue36

/∇ψ(θ4,θ3) = − 2i ψ(θ4,θ3). (5.12)

There are four such independent spinor eigenfunctions [99, 100] forming a 4-dimensional

representation of so(5) with highest weight given by τ = (1
2 ,

1
2) [99]. It can be easily verified

36The spinor eigenfunctions of the Dirac operator on S4 have two different signs for their eigenvalues:

/∇ψn = −i(n+ 2)ψn and /∇ψ′
n = +i(n+ 2)ψ′

n, where n = 0, 1, 2, . . . [99]. The two families of eigenfunctions,

ψn and ψ′
n, form equivalent representations of so(5) for each fixed n. The two families are related to each

other as ψ′
n = γ5ψn. For n = 0, the spinors ψ0 ≡ ψ are Killing spinors on S4 satisfying ∇µψ = − i

2
γµψ, as we

show in the main text. The spinors ψ′
0 = γ5ψ0 are also Killing spinors that satisfy ∇µψ

′
0 = + i

2
γµψ

′
0.
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that the spinor eigenfunctions ψ of the Dirac operator satisfy the Killing spinor equation

on S4, as follows. Define the following vector-spinors on S4:

ζµ ≡
(
∇µ +

i

2
γµ

)
ψ. (5.13)

It can be shown that these vector-spinors are identically zero by computing their norm using

the standard inner product on S4 [34]

∫

S4
sin3 θ4

√
g̃ dθ4 dθ3 ζµ(θ4,θ3)† ζµ(θ4,θ3), (5.14)

where sin3 θ4
√
g̃ is the square root of the determinant of the S4 metric, g̃ is the determinant

of the S3 metric (2.2), and dθ3 ≡ dθ3 dθ2 dθ1. The computation of the norm is straightforward

and it involves some integration by parts, and one also has to use [99]

□ψ =

(
/∇2

+
R

4

)
ψ, (5.15)

where R = 12 is the scalar curvature of the unit S4. As the inner product on S4 is positive

definite, the vanishing of the norm implies ζµ = 0, and thus

∇µψ = − i

2
γµψ, (5.16)

which is the Killing spinor equation on S4. In other words, the eigenfunctions ψ of the Dirac

operator with the lowest eigenvalue on S4 are Killing spinors — their explicit expressions

can be found in [99, 100].

Now, one can use the replacement (5.11) to analytically continue the Killing spinor

equation (5.16) on S4 to the Killing spinor equation (5.1) (with the ‘−’ sign) on dS4. In

particular, making the replacement (5.11), the S4 Killing spinors ψ(θ4,θ3) are analytically

continued to dS4 Killing spinors ϵ(t,θ3). In this manner, we find that there are four Killing

spinors on dS4. Two of them have ‘positive helicity’ and the other two have ‘negative helicity’.

The four Killing spinors on global dS4 are given by

ϵ(−;q)(t,θ3) =


 cos

(
π/2−it

2

)
ϵ̃−,q(θ3)

−i sin
(

π/2−it
2

)
ϵ̃−,q(θ3)


 , ϵ(+;q)(t,θ3) =


 i sin

(
π/2−it

2

)
ϵ̃+,q(θ3)

− cos
(

π/2−it
2

)
ϵ̃+,q(θ3)


 ,

(5.17)

where ϵ̃±,q(θ3) are Killing spinors on the unit S3 satisfying

∇̃µ̃ϵ̃±,q(θ3) = ± i

2
γ̃µ̃ ϵ̃±,q(θ3), (5.18)

and the meaning of the label q will be explained shortly. The Killing spinors ϵ(σ;q)(t,θ3)

and ϵ̃σ,q(θ3) (σ = ±) will be treated as commuting; Grassmann-odd Killing spinors will

be discussed below. The two ‘helicity’ labels ± in the dS Killing spinors (5.17) stem from

the Killing spinors on S3 and their behaviour under so(4) rotations. In particular, on S3,

there are two independent ‘positive-helicity’ Killing spinors ϵ̃+,q(θ3) and two independent
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‘negative-helicity’ Killing spinors ϵ̃−,q(θ3). The Killing spinors on S3 coincide with the spinor

eigenfunctions of the Dirac operator on S3 with the lowest eigenvalue

/̃∇ϵ̃±,q(θ3) = ± 3

2
i ϵ̃±,q(θ3),

and their explicit expressions can be found from [99]. The label q = 0,−1 is a S1 angular

momentum quantum number, related to so(2) rotations generated by ∂θ1 in the coordi-

nates (2.2) — see also eq. (C.6). Specifically, ∂θ1 ϵ̃±,q = i(q + 1/2)ϵ̃±,q since, according to

the construction of [99], the label q ∈  0,−1} determines the θ1-dependence for the Killing

spinors in the coordinates (2.2), as ϵ̃±,q(θ3) ≡ ϵ̃±,q(θ3, θ2, θ1) ∝ ei(q+1/2)θ1 . The two Killing

spinors  ϵ̃+,q}q=0,−1 on S3 form the 2-dimensional representation of so(4) with highest weight

τ̃+ = (1
2 ,

1
2) [99]. Similarly, the two Killing spinors  ϵ̃−,q}q=0,−1 on S3 form the 2-dimensional

representation of so(4) with highest weight τ̃− = (1
2 ,−1

2). For later convenience, note that

the scalar quantities ϵ̃†±,q(θ3)ϵ̃±,q′(θ3) are constant on S3 for any q, q′ ∈  0,−1} — this is

easy to check. Here, we normalise the Killing spinors on S3 such that

ϵ̃†±,q(θ3)ϵ̃±,q′(θ3) = δqq′
1

2π2
, (5.19)

and thus,

∫

S3

√
g̃dθ3 ϵ̃

†
±,q(θ3)ϵ̃±,q′(θ3) = δqq′

1

2π2
×
(∫

S3

√
g̃dθ3

)
= δqq′ . (5.20)

To sum up, in total, there are four independent Killing spinors (5.17) on dS4: ϵ(+;−1)(t,θ3).

ϵ(+;0)(t,θ3), ϵ(−;−1)(t,θ3) and ϵ(−;0)(t,θ3). Each of these Killing spinors can be re-expressed

in the form of a spacetime-dependent spinorial matrix acting on a constant spinor η(σ;q),

as in ref. [100]. To be specific,

ϵ(σ;q)(t,θ3) = S(t,θ3) η(σ;q), (5.21)

where the spinorial matrix S(t,θ3) is given by

S(t,θ3) = e−
π/2−it

2
γ0
e−

i θ3
2

γ03
e

θ2
2

γ32
e

θ1
2

γ21
, (5.22)

and the constant spinors are:

η(−;−1) =
1 + i

2π




1

0

0

0



, η(−;0) =

−1 + i

2π




0

1

0

0



, (5.23)

η(+;−1) =
−1 − i

2π




0

0

1

0



, η(+;0) =

1 − i

2π




0

0

0

1



. (5.24)
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As we mentioned earlier, the Killing spinors denoted as ϵ(σ;q) will be treated as commuting,

and thus, the constant spinors η(σ;q) in eq. (5.21) are also commuting. Grassmann-odd

Killing spinors are also expressed as

ϵ(t,θ3) = S(t,θ3) η, (5.25)

but now η is a Grassmann-odd constant spinor parameter.

6 Unitary rigid SUSY for the supermultiplet of the chiral graviton and

chiral gravitino

6.1 Non-unitary SUSY representation for complex (non-chiral) graviton and

gravitino

In this subsection, we will start by demonstrating that the multiplet consisting of the complex

graviton and the complex gravitino on dS4, each with 2 complex propagating degrees of

freedom, carries a non-unitary representation of global SUSY. Then, in subsection 6.2, we

will specialise to the case where both the graviton and the gravitino are chiral — i.e. their

corresponding field strengths are anti-self-dual — and we will show that the supermultiplet

consisting of these two fields carries a representation of global SUSY which is unitary.

As we show below, the SUSY transformations for the supermultiplet of the complex

graviton hµν and the Dirac gravitino Ψµ on dS4 are:

δsusy(ϵ)Ψµ =
1

4

(
i hµσγ

σ + ∇λhµσγ
σλ
)
ϵ, (6.1)

δsusy(ϵ)hµν =
ϵ

2
γ5 (γµΨν + γνΨµ) , (6.2)

where ϵ is an anti-commuting complex Killing spinor satisfying eq. (5.1) with the ‘−’ sign.

SUSY transformations with commuting Killing spinors will be also used when we consider

their action on mode solutions in subsections 6.2.1 and 6.2.2. These transformations are

gauge invariant. That is, if we consider pure-gauge solutions,

Ψ(pg)
µ =

(
∇µ +

i

2
γµ

)
X, (6.3)

h(pg)
µν = ∇(µZν), (6.4)

then

(δsusy(ϵ)Ψµ)(pg) =
1

8

(
∇µ +

i

2
γµ

)
 [2iZσγ

σ + (∇λZσ)γσλ]ϵ}, (6.5)

(δsusy(ϵ)hµν)(pg) = ∇(µ(ϵγ5γν)X). (6.6)

It is easy to find the Dirac conjugate of δsusy(ϵ)Ψµ and the hermitian conjugate of

δsusy(ϵ)hµν , as:

δsusy(ϵ)Ψµ = − ϵ
4

(
−i h†µσγ

σ + ∇λh
†
µσγ

σλ
)
,

(δsusy(ϵ)hµν)† =
1

2

(
Ψνγµ + Ψµγν

)
γ5ϵ.

Let us emphasise that the SUSY transformations (6.1) and (6.2) are relevant to two different

supersymmetric theories:
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• The first corresponds to the theory of a complex graviton and a complex gravitino, each

with two complex propagating helicity degrees of freedom. This theory is non-unitary

as it involves a gravitino field containing all of its propagating helicity degrees of freedom

which leads to the appearance of negative-norm states, as explained in subsection 3.4.

• The second theory is obtained from the first by a simple projection, and is our theory

of interest. It consists of a chiral graviton and a chiral gravitino, each with one complex

propagating helicity degree of freedom (the field strength of each gauge potential is

anti-self-dual). For the unitarity of this theory it is crucial to demonstrate that the

SUSY transformations are consistent with the anti-self-duality constraint [eqs. (3.64)

and (4.58)]. In other words, we have to show that the anti-self-dual gravitino field

strength (3.79) transforms only into the anti-self-dual linearised Weyl tensor (4.66) and

vice versa — see subsection 6.1.4. This means that gravitons with helicity −2 (+2)

transform into gravitini with helicity −3
2 (+3

2) and vice versa. Once the compatibility

of the SUSY transformations with the anti-self-duality constraint has been verified (this

can be done only on-shell), one can rewrite the SUSY transformations (6.1) and (6.2)

in a form that refers explicitly to the supermultiplet of a chiral graviton and a chiral

gravitino, as

δsusy(ϵ)Ψ−
µ =

1

4

(
i h−µσγ

σ + ∇λh
−
µσγ

σλ
)
ϵ, (6.7)

δsusy(ϵ)h−µν =
ϵ

2
γ5
(
γµΨ−

ν + γνΨ−
µ

)
, (6.8)

where h−µν and Ψ−
µ are the chiral graviton and gravitino gauge potentials.37 The main

result of this paper is that the supermultiplet consisting of the chiral graviton and the

chiral gravitino
(
h−µν ,Ψ

−
µ

)
, with their corresponding field strengths satisfying the anti-

self-duality constraints (4.58) and (3.64), respectively, forms a unitary representation of

global SUSY that is also unitarily realised on the QFT Fock space.

Note. One can instead consider the chiral supermutliplet
(
h+

µν ,Ψ
+
µ

)
, with correspond-

ing field strengths being self-dual instead of anti-self-dual. This theory also realises

a unitary representation of global SUSY where the SUSY transformations are given

by (6.7) and (6.8) with h−µν and Ψ−
µ replaced by h+

µν and Ψ+
µ , respectively. The two

supermutliplets
(
h−µν ,Ψ

−
µ

)
and

(
h+

µν ,Ψ
+
µ

)
separately form unitary representations of

global SUSY in dS4. Although in this paper we show the unitarity of the supermultiplet(
h−µν ,Ψ

−
µ

)
, the unitarity of the supermultiplet

(
h+

µν ,Ψ
+
µ

)
can be shown in the same

way. However, if the two theories are combined together to form the supermultiplet

(hµν ,Ψµ) with hµν = h−µν + h+
µν and Ψµ = Ψ−

µ + Ψ+
µ , then the resulting theory would be

non-unitary because, in this case, the gravitino field contains all of its helicities, giving

rise to negative norms in the QFT Fock space — see subsection 4.3.

The ‘chiral’ SUSY transformations (6.7) and (6.8), which are the transformations relevant to

our theory of interest, are a special case of the initial non-chiral SUSY transformations (6.1)

37See eqs. (4.62) and (3.68), respectively, for the mode expansion of the completely gauge-fixed version of

the chiral gauge potentials.
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and (6.2). We will show that the latter non-chiral transformations are symmetries at the

level of both the hermitian action (6.11) of the theory and the field equations. On the other

hand, the theory that contains only a chiral graviton and a chiral gravitino has no local

action principle, as it is not possible to split the helicities in a local way at the level of the

action. However, the ‘chiral’ SUSY transformations (6.7) and (6.8) are symmetries at the

level of the equations of motion — we will show that this follows from the invariance of

the equations of motion under the (non-chiral) SUSY transformations (6.1) and (6.2). In

other words, we will show that the ‘chiral graviton-chiral gravitino’ supermultiplet (h−µν ,Ψ
−
µ )

carries a representation of SUSY. The unitarity of this representation will be demonstrated

in the next subsection.

Let us start discussing the general theory of a complex graviton and gravitino, each with

two complex propagating helicity degrees of freedom, and specialise to our chiral theory later.

6.1.1 SUSY invariance of non-gauge-fixed field equations

Let hµν and Ψµ be complex off-shell field configurations, and let us consider the differential

operators appearing in the field equations, Hµν(h) [eq. (4.37)] and R(Ψ) [eq. (3.6)], respectively,

acting on the off-shell fields. After a straightforward, but lengthy, off-shell calculation, one can

show that Hµν(h) and R(Ψ) transform into each other under the SUSY transformations (6.1)

and (6.2), as

δsusy(ϵ)Hµν(h) ≡ Hµν(δsusy(ϵ)h) = ϵγ5
(

5

2
i γ(µ + ∇(µ − γ(µ /∇

)
Rν)(Ψ)

= ϵγ5
(

5

2
i γ(µ + γλ(µ∇λ

)
Rν)(Ψ), (6.9)

and

δsusy(ϵ)Rµ(Ψ) ≡ Rµ(δsusy(ϵ)Ψ) =
1

4
γαϵH

µα(h). (6.10)

(These equations hold for both commuting and anti-commuting Killing spinors.) This shows

that the solution spaces of equations Rµ(Ψ) = 0 [eq. (3.1)] and Hµν(h) = 0 [eq. (4.36)]

transform into each other under the SUSY transformations (6.1) and (6.2). Thus, the

supermultiplet of the complex graviton and the complex gravitino carries a representation

of global SUSY. As we mentioned earlier, this SUSY representation is bound to be non-

unitary, but unitarity will be achieved by restricting to the ‘chiral graviton-chiral gravitino’

supermultiplet in subsection 6.2.

6.1.2 SUSY invariance of the hermitian action and supercurrents

The hermitian action for the theory consisting of the complex graviton and Dirac gravitino

is given by the sum of the free actions (3.8) and (4.49):

S = S2 + S 3
2

=

∫
d4x

√−g
(
−1

4
h†µν H

µν(h) − Ψµγ
5Rµ(Ψ)

)
. (6.11)

It is useful to show that the action (6.11) is SUSY-invariant, as this will allow us to find

the conserved Noether currents associated with SUSY. Varying the action (6.11) under
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δsusy(ϵ)Ψµ and (δsusy(ϵ)hµν)†, we find

δS =

∫
d4x

√−g
(
−1

4
(δsusy(ϵ)hµν)† Hµν(h) − Ψµγ

5 Rµ(δsusy(ϵ)Ψ)

)
= 0, (6.12)

where Rµ(δsusy(ϵ)Ψ) is given by eq. (6.10). Also, varying the action under δsusy(ϵ)Ψµ and

δsusy(ϵ)hµν , we find that δS is equal to the integral of a total divergence, as

δS =

∫
d4x

√−g
(
−1

4
h†µν H

µν(δsusy(ϵ)h) − δsusy(ϵ)Ψµ γ
5Rµ(Ψ)

)

=

∫
d4x

√−g ∇λ

(
ϵ

4
γ5γσλRν(Ψ) h†νσ

)
, (6.13)

where Hµν(δsusy(ϵ)h) is given by eq. (6.9).

The covariantly conserved Noether vector currents arising from the SUSY invariance

of the action are easily found as

(
J µ

(ϵ)(h,Ψ)
)†

=
i

4
Ψκγ

κµσγ5 (ihσνγ
ν + γνρ∇ρhσν) ϵ = i Ψκγ

κµσγ5 δsusy(ϵ)Ψσ,

J µ
(ϵ)(h,Ψ) =

i

4
ϵ
(
ih†σνγ

ν − γνρ∇ρh
†
σν

)
γσµκγ5Ψκ = i δsusy(ϵ)Ψσ γ

σµκγ5Ψκ. (6.14)

The Grassmann-odd fermionic supercurrents J
µ
A and J

µ A
are related to the SUSY Noether

currents as

J µ
(ϵ) = ϵA J

µ
A, J µ†

(ϵ) = J
µ A
ϵA,

where A = 1, . . . , 4 is a spinor index. The time-independent (complex) Noether charges

associated to the vector currents (6.14) are defined as [79]

Qsusy[ϵ] =

∫

S3
dθ3

√−g J t
(ϵ)(h,Ψ), (Qsusy[ϵ])† =

∫

S3
dθ3

√−g
(
J t

(ϵ)(h,Ψ)
)†
. (6.15)

We refer to J µ
(ϵ) and J µ†

(ϵ) as SUSY Noether currents, and to Qsusy[ϵ], Qsusy[ϵ]† as SUSY

Noether charges. Since the Killing spinors ϵ are Grassmann-odd, then J µ
(ϵ) and Qsusy[ϵ] are

Grassmann-even. If we use commuting Killing spinors ϵ(σ;q) [eq. (5.21)], then J µ

(ϵ(σ;q))
and

Qsusy[ϵ(σ;q)] are also conserved, and they are Grassmann-odd. In subsection 6.2.2, it will be

convenient to work with these Grassmann-odd SUSY Noether currents and charges.

6.1.3 SUSY algebra with complex Killing spinors

After a straightforward calculation, the commutator of two SUSY transformations [eqs. (6.1)

and (6.2)] on the complex graviton is found to be

[ δsusy(ϵ2), δsusy(ϵ1) ] hµν = −£ξ(ϵ)
hµν + TV(ϵ)

hµν − i

(
1

4
ϵ2γ

5ϵ1 −
1

4
ϵ1γ

5ϵ2

)
hµν

+ ∇(µ

[
hν)σ ξ

σ
(ϵ)

]
, (6.16)

where no use of the equations of motion was made. The first term, −£ξ(ϵ)
hµν , on the right-

hand side of eq. (6.16) is an infinitesimal dS transformation (Lie derivative) generated by
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the Killing vector ξµ
(ϵ) defined in eq. (5.3). The second term, TV(ϵ)

hµν , is a conformal-like

transformation (4.35) generated by the genuine conformal Killing vector V µ
(ϵ) defined in eq. (5.4).

The third term is an infinitesimal u(1) transformation [the phase factor 1
4ϵ2γ

5ϵ1 − 1
4ϵ1γ

5ϵ2
is real as −ϵ1γ5ϵ2 = (ϵ2γ

5ϵ1)†, and constant, as ∇µ
(
ϵ2γ

5ϵ1
)

= ∇µ
(
ϵ1γ

5ϵ2
)

= 0, as expected

for u(1) transformations]. The last term is a field-dependent gauge transformation akin to

the gauge transformation appearing in linearised Supergravity in Minkowski spacetime —

see e.g., ref. [101]. We conclude that the even subalgebra of the SUSY algebra closes on

so(4, 2)
⊕
u(1) up to gauge transformations.38

Calculating the commutator of two SUSY transformations on the Dirac gravitino Ψµ is

much more tedious than the complex graviton case above. Moreover, one has to make use of

the equations of motion, as well as of the Fierz rearrangement identities [79]. The result is39

[ δsusy(ϵ2), δsusy(ϵ1) ] Ψµ = −Lξ(ϵ)
Ψµ + T

′
V(ϵ)

Ψµ − 5i

2

(
1

4
ϵ2γ

5ϵ1 −
1

4
ϵ1γ

5ϵ2

)
Ψµ

+

(
∇µ +

i

2
γµ

)
A(ϵ)

2
, (6.17)

where A(ϵ) is a field-dependent spinor gauge function given by

A(ϵ) =
3

4

(
1

4
ϵ2γ

5ϵ1 −
1

4
ϵ1γ

5ϵ2

)
γαΨα + ξα

(ϵ)Ψα +

(
1

4
ξρ

(ϵ)γρ −
i

8
∇λξρ

(ϵ)γλρ

)
γαΨα

− γ5V α
(ϵ)Ψα − 1

4
γ5V ρ

(ϵ)γργ
αΨα − 3i

4
ϕV(ϵ)

γαΨα. (6.18)

The terms that appear on the right-hand side of eq. (6.17) are similar to the terms appearing

in the complex graviton case (6.16). In particular, the first term, −Lξ(ϵ)
Ψµ, is an infinitesimal

dS transformation (3.16) generated by the Killing vector ξµ
(ϵ) defined in eq. (5.3). The

second term, T
′
V(ϵ)

Ψµ, is given by a conformal-like transformation TV(ϵ)
Ψµ (3.51) plus a

gauge transformation that cancels the last term of the conformal-like transformation (3.51),

where V µ
(ϵ) is the genuine conformal Killing vector defined in eq. (5.4). To be specific,

T
′
V(ϵ)

Ψµ = TV(ϵ)
Ψµ + 2

3

(
∇µ + i

2γµ

)
γ5ΨρV

ρ
(ϵ). The third term on the right-hand side of (6.17)

is a u(1) transformation, while the last term is a field-dependent gauge transformation. It

is thus clear that the even subalgebra of the SUSY algebra closes on so(4, 2)
⊕
u(1) up

to gauge transformations.

6.1.4 SUSY transformations of the field strengths and of their duals

Let us give here again the expressions of the field strengths for the complex graviton

[eq. (4.59)] and complex gravitino [eq. (3.65)]:

Uαβµν =
(
−∇µ∇[αhβ]ν − gµ[αhβ]ν

)
− (µ↔ ν), Fµν =

(
∇[µ +

i

2
γ[µ

)
Ψν].

Their properties are summarised in appendix E.

38The so(4, 2) algebra generated by infinitesimal dS transformations and conformal-like transformations was

studied in subsections 3.2 and 4.2.2, for the gravitino and the graviton, respectively.
39We made use of the Mathematica tensor computer algebra package FieldsX [102] to simplify certain parts

of the calculation that involved products of (generalised) gamma matrices.
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SUSY transformations of field strengths. The SUSY transformations of the field

strengths can be obtained by direct calculation using the SUSY transformations of the gauge

potentials [eqs. (6.1) and (6.2)], as

δsusy(ϵ)Fµν =

(
∇[µ +

i

2
γ[µ

)
δsusy(ϵ)Ψν],

and

δsusy(ϵ)Uαβµν =
(
−∇µ∇[αδ

susy(ϵ)hβ]ν − gµ[αδ
susy(ϵ)hβ]ν

)
− (µ↔ ν).

The result is

δsusy(ϵ)Fµν =
1

8
γκλϵ Uκλµν , (6.19)

δsusy(ϵ)Uαβ
µν = ϵ̄γ5

((
γ[α∇β] − i

2
γαβ

)
Fµν +

(
γ[µ∇ν] −

i

2
γµν

)
Fαβ

+ 2iγ
[α

[µ F
β]
ν]

)
, (6.20)

where no use of the equations of motion was made.

Duality commutes with SUSY transformations. It is convenient to re-write the SUSY

transformation (6.20) as

δsusy(ϵ)Uαβµν = ϵ̄γ5
(
(γ[α∇β] − iγαβ)Fµν + (γ[µ∇ν] − iγµν)Fαβ

)
. (6.21)

To derive eq. (6.21) from eq. (6.20), we have used

2γ
[α

[µ F
β]
ν] = −1

2
γαβFµν − 1

2
γµνF

αβ , (6.22)

which can be proved by using the on-shell properties of the spin-3/2 field strength, as well

as properties of products of (generalised) gamma matrices — see appendix E. Given the

SUSY transformations (6.19) and (6.21), a straightforward calculation using some formulae

in appendix E shows that the duality operation commutes with them, as

δsusy(ϵ)F̃µν =
1

8
γκλϵ Ũκλµν , (6.23)

δsusy(ϵ)Ũαβµν = ϵ̄γ5
(
(γ[α∇β] − iγαβ)F̃µν + (γ[µ∇ν] − iγµν)F̃αβ

)
. (6.24)

SUSY algebra for the field strengths. The commutator of two SUSY transformations

acting on Uαβµν is

[ δsusy(ϵ2), δsusy(ϵ1) ] Uαβµν = −£ξ(ϵ)
Uαβµν + TV(ϵ)

Uαβµν − i

(
1

4
ϵ2γ

5ϵ1 −
1

4
ϵ1γ

5ϵ2

)
Uαβµν ,

(6.25)

where the Killing vector ξµ
(ϵ) and the genuine conformal Killing vector V µ

(ϵ) are defined in

eqs. (5.3) and (5.4), respectively. The interpretation of the terms on the right-hand side

of eq. (6.25) is the same as in the case of the complex graviton gauge potential (6.16),

except, of course, for the gauge transformation term in (6.16), which drops out. The

conformal-like transformation TV Uαβµν , generated by genuine conformal Killing vectors,
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is given by the product of a conventional infinitesimal conformal transformation times a

duality transformation (times i), as

TV Uαβµν = i

(
£V − 1

4
∇ρVρ

)
Ũαβµν = i (V ρ∇ρ − 3ϕV ) Ũαβµν . (6.26)

For the sake of completeness, let us also compute the commutator of a SUSY variation and

a conformal-like variation: [δsusy(ϵ), δV ]Uαβµν , where δV Uαβµν = TV Uαβµν and V µ is any

genuine conformal Killing vector (2.13). We find

[δsusy(ϵ), δV ]Uαβµν = TV ϵ γ
5
(
(γ[α∇β] − iγαβ)Fµν + (γ[µ∇ν] − iγµν)Fαβ

)
,

= δsusy
(
TV ϵ

)
Uαβµν , (6.27)

which is a SUSY variation of Uαβµν (6.21), but with the Killing spinor ϵ replaced by its

conformal-like-transformed version, TV ϵ [eq. (5.7)]. One similarly finds the commutator

between a SUSY variation and a dS variation,

[δsusy(ϵ), δξ]Uαβµν = δsusy(Lξϵ)Uαβµν , (6.28)

where δξUαβµν = £ξUαβµν and ξµ is any Killing vector.

The commutator of two SUSY transformations for Fµν is

[ δsusy(ϵ2), δsusy(ϵ1) ] Fµν = −Lξ(ϵ)
Fµν + TV(ϵ)

Fµν − 5i

2

(
1

4
ϵ2γ

5ϵ1 −
1

4
ϵ1γ

5ϵ2

)
Fµν , (6.29)

where the interpretation of the terms on the right-hand side is as in the case of the complex

gravitino gauge potential (6.17). The conformal-like transformation of the gravitino field

strength, generated by any genuine conformal Killing vector V µ (2.13), is given by [76]

TV Fµν = i

(
LV +

1

8
∇ρV

ρ
)
F̃µν = γ5

(
V ρ∇ρ −

5

2
ϕV

)
Fµν . (6.30)

The commutator between a SUSY variation and a conformal-like variation, as well as the

commutator between a SUSY variation and a dS variation, are given by expressions similar

to (6.27) and (6.28), respectively.

6.1.5 SUSY representation on the TT solution spaces and non-unitarity of the

non-chiral theory

The TT gauge is a particularly convenient gauge as the field equations have a simple form.

In addition, the TT mode solutions and their representation-theoretic properties are known —

see subsections 3.1 and 4.1. For convenience, let us write here again the field equations for

the complex graviton and the Dirac gravitino in the TT gauge [eqs. (4.39) and (3.13)]

□h(TT)
µν = 2 h(TT)

µν ,

∇µh(TT)
µν = 0, h(TT)α

α = 0,
(
/∇ + i

)
Ψ(TT)

µ = 0,

∇αΨ(TT)
α = 0, γαΨ(TT)

α = 0.
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To achieve the compatibility of the SUSY transformations (6.1) and (6.2) with the TT

conditions — ∇µh
(TT)
µν = gαβh

(TT)
αβ = 0 and ∇µΨ

(TT)
µ = γµΨ

(TT)
µ = 0 — we have to modify

the SUSY transformation of the graviton (6.2) by introducing a gauge transformation. To be

specific, we modify the SUSY transformation δsusy(ϵ)hµν given by eq. (6.2) by adding a gauge

transformation term with the field-dependent gauge parameter − i
3ϵγ

5Ψν to ensure that if

the fields hµν and Ψµ are in the TT gauge, then the SUSY-transformed graviton remains

in the TT gauge (no such gauge correction is required for the gravitino). Thus, the SUSY

transformations that preserve the solution space of the TT field equations (4.39) and (3.13) are:

δsusy(ϵ)Ψ(TT)
µ =

1

4

(
i h(TT)

µσ γσ + ∇λh
(TT)
µσ γσλ

)
ϵ, (6.31)

δsusy(ϵ)′h(TT)
µν = δsusy(ϵ)h(TT)

µν + δgauge
(
− i

3
ϵγ5Ψ(TT)

)
h(TT)

µν (6.32)

=
ϵ

2
γ5
(
γµΨ(TT)

ν + γνΨ(TT)
µ

)
+ ∇(µ

(
− i

3
ϵγ5Ψ

(TT)
ν)

)

=
7

6
ϵγ5γ(µΨ

(TT)
ν) − i

3
ϵγ5∇(µΨ

(TT)
ν) ,

where ϵ is a Grassmann-odd Killing spinor satisfying eq. (5.1) with the ‘−’ sign. Note that the

complex graviton gauge transformation in (6.32) is not a restricted gauge transformation (4.40)

as it is not divergence-free. In particular,

∇µ∇(µ

(
− i

3
ϵγ5Ψ

(TT)
ν)

)
= −∇µδsusy(ϵ)h(TT)

µν = −i ϵγ5Ψ(TT)
ν ,

leading to ∇µδsusy(ϵ)′h(TT)
µν = 0. It follows from the gauge invariance of the SUSY transforma-

tions that the commutators of the SUSY transformations in the TT gauge (6.31) and (6.32)

takes the following form:

(
δsusy(ϵ2)δsusy(ϵ1)′ − δsusy(ϵ1)δsusy(ϵ2)′

)
h(TT)

µν (6.33)

= −£ξ(ϵ)
h(TT)

µν + TV(ϵ)
h(TT)

µν − i

(
1

4
ϵ2γ

5ϵ1 −
1

4
ϵ1γ

5ϵ2

)
h(TT)

µν + (pure-gauge term) ,

(
δsusy(ϵ2)′δsusy(ϵ1) − δsusy(ϵ1)′δsusy(ϵ2)

)
Ψ(TT)

µ (6.34)

= −Lξ(ϵ)
Ψ(TT)

µ + TV(ϵ)
Ψ(TT)

µ − 5i

2

(
1

4
ϵ2γ

5ϵ1 −
1

4
ϵ1γ

5ϵ2

)
Ψ(TT)

µ + (pure-gauge term) .

This is the same algebra structure as in the non-gauged-fixed case [eqs. (6.16) and (6.17)],

with the only difference being that each of the field transformations in eqs. (6.33) and (6.34)

preserves the TT gauge conditions.

Note. The TT SUSY transformations (6.31) and (6.32) also describe symmetries of the TT

field equations if one uses commuting Killing spinors ϵ(σ;q) [eq. (5.21)] instead of Grassmann-

odd Killing spinors. Moreover, if one uses commuting Killing spinors, the commutator of

two SUSY transformations on the TT graviton is the same as in (6.33). However, the

commutator of two SUSY transformations on the TT gravitino will be given by eq. (6.34)

with opposite signs on the right-hand side. These comments also apply to the case of the

SUSY transformations of the non-gauge-fixed fields [eqs. (6.1) and (6.2)].
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The question of unitarity of SUSY and its failure in the QFT Fock space of the

non-chiral theory. Until now, we have demonstrated the existence of a representation

of our SUSY algebra on the solution space of the classical field equations of the complex

graviton and Dirac gravitino, for both their non-gauge-fixed version and in the TT gauge.

However, we have not addressed the question of unitarity. Let us specialise to the TT gauge.

Our representation space is the direct sum of a bosonic and a fermionic solution space, i.e.

the direct sum of the Hilbert spaces of the graviton and gravitino mode solutions H2
⊕H 3

2
.

The solution spaces of positive frequency mode solutions are:

H2 = H+
2

⊕
H−

2 =  φ(phys, +L; M ;K)
µν }

⊕
 φ(phys,−L; M ;K)

µν },
H 3

2
= H+

3
2

⊕
H−

3
2

=  ψ(phys, +ℓ; m;k)
µ }

⊕
 ψ(phys,−ℓ; m;k)

µ },

where the TT pure-gauge modes are identified with zero, as discussed in sections 4 and 3,

respectively. As an equivalent representation space one can choose the space of negative

frequency mode solutions, denoted as H∗
2 and H∗

3
2

. The bosonic and fermionic solution

spaces, H2 and H 3
2
, are equipped with so(4, 2)-invariant scalar products, ⟨·|·⟩KG (4.23) and

⟨·|·⟩ax (3.44), respectively, and we have already explained how the mode solutions form

UIRs of so(4, 2) in subsections 3.2 and 4.2. A interesting feature, discussed in section 3, is

that the positive-definite scalar product in H−
3
2

is the axial scalar product (3.44), while the

positive-definite scalar product in H+
3
2

is the negative of the axial scalar product. One has

the freedom to choose a different positive-definite scalar product for each solution space, H−
3
2

and H+
3
2

, as each of these two spaces separately forms a UIR. However, when we quantised

the gravitino theory in subsection 3.4, it became clear that the requirement of the positivity

of the norm in the QFT Fock space forces the gravitino to be chiral, and thus, not both

H−
3
2

and H+
3
2

can be part of the positive frequency sector of the QFT — one has to use

only one of them. Thus, as the notion of unitarity is tied to the positivity of the norm,

it is clear that the SUSY representation realised on the QFT Fock space of the complex

non-chiral graviton and gravitino is non-unitary because the positive frequency sector of

the gravitino contains both H−
3
2

and H+
3
2

.

Note. One can construct two different SUSY UIRs at the level of classical mode solutions:

one UIR formed by H−
2

⊕H−
3
2

and another one formed by H+
2

⊕H+
3
2

. However, for the same

reasons as in the gravitino case in subsection 3.4, the unitary supersymmetric QFT of a

chiral graviton and a chiral gravitino in subsection 6.2 will have a positive frequency sector

consisting only of H−
2

⊕H−
3
2

. The space H+
2

⊕H+
3
2

will be excluded from the Hilbert space

with the help of the anti-self-duality constraints.

6.2 Unitary SUSY for the chiral graviton and chiral gravitino

6.2.1 Unitarity of SUSY in the space of chiral mode solutions

In this subsection, we demonstrate how the mode solutions that are relevant to the supersym-

metric theory of the chiral graviton and chiral gravitino form UIRs of SUSY. In particular, we

work in the TT gauge and show that the SUSY transformations (6.31) and (6.32) generate a
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UIR of SUSY that is realised on the space of classical TT mode solutions of positive frequency

with helicities −2 and −3/2, H−
2

⊕H−
3
2

. We also show that another UIR of SUSY is formed

in the space of negative frequency modes H∗+
2

⊕H∗+
3
2

. We focus on these representation

spaces, i.e. spaces on which the field strengths are anti-self-dual, because the axial scalar

product (3.44) is positive definite in both of them [see eqs. (3.47) and (3.48)].40 To proceed

with the representation-theoretic discussion, we recall that the bosonic and fermionic solution

spaces that form the SUSY representation are equipped with the Klein-Gordon, ⟨·|·⟩KG (4.23),

and axial, ⟨·|·⟩ax (3.44), scalar products, respectively.

Let us give the definition of unitarity for representations of our superalgebra — the

structure of the superalgebra is determined by eqs. (6.33) and (6.34). A unitary representation

of SUSY must satisfy the following three conditions simultaneously [103]:

1. Positivity of the norm in both the bosonic and fermionic solution spaces.

2. Invariance of the inner products under the generators of the even subalgebra [so(4, 2)
⊕
u(1) in our case], i.e. anti-hermiticity of even generators.

3. SUSY-invariance of the inner products, in the sense that, for any TT solution ψµ of

eq. (3.13), and any TT solution φµν of eq. (4.39), the following equation holds:

⟨δsusy(ϵ)ψ|ψ⟩ax = ⟨φ|δsusy(ϵ)′φ⟩KG . (6.35)

According to eqs. (6.31) and (6.32), the SUSY transformations of the TT solutions are

δsusy(ϵ)ψµ =
1

4

(
i φµσγ

σ + ∇λφµσγ
σλ
)
ϵ, (6.36)

δsusy(ϵ)′φµν = δsusy(ϵ)φµν + δgauge
(
− i

3
ϵγ5ψ

)
φµν

=
ϵ

2
γ5 (γµψν + γνψµ) + ∇(µ

(
− i

3
ϵγ5ψν)

)
. (6.37)

Condition 3 can be proved for both commuting and Grassmann-odd Killing spinors.

However, in this subsection, we will focus on the commuting Killing spinors ϵ(σ,q) (5.21).

Let us now demonstrate that each of the conditions 1, 2 and 3 is satisfied for the SUSY

representation furnished by the positive frequency solution space H−
2

⊕H−
3
2

. The following

analysis can be straightforwardly generalised to the case of the SUSY UIR furnished by the

negative frequency solution space H∗+
2

⊕H∗+
3
2

, as will be discussed briefly later.

1. Positivity of the norm. The positivity of the norm for the physical gravitino modes

of helicity −3/2, H−
3
2

=  ψ(phys,−ℓ; m;k)
µ }, has been demonstrated in eq. (3.47). Also, the

40One can similarly show that two SUSY UIRs are separately formed by the TT solution spaces H+
2

⊕
H+

3
2

and H∗−
2

⊕
H∗−

3
2

, in which the axial scalar product (3.44) is negative definite, i.e. the negative of the axial

scalar product is positive definite. We do not give the corresponding representation-theoretic details because

they are similar to the ones presented in the main text, as well as because the solution spaces H+
2

⊕
H+

3
2

and

H∗−
2

⊕
H∗−

3
2

are omitted in the unitary quantum theory of the chiral graviton and chiral gravitino.
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positivity of the norm for the physical graviton modes of helicity −2, H−
2 =  φ(phys,−L; M ;K)

µν },

has been demonstrated in eq. (4.26). Thus, it is clear that the norm is positive in the

direct sum of spaces H−
2

⊕H−
3
2

.

Let us also verify that the SUSY transformations (6.31) and (6.32) preserve the space

H−
2

⊕H−
3
2

. This is important because if there are SUSY transformations acting on positive

frequency graviton modes of helicity −2 by transforming them into positive frequency

gravitino modes of helicity +3/2, then negative norms will appear, as the axial scalar product

is negative definite in H+
3
2

[eq. (3.47)]. Thus, we want to ensure that graviton modes in H−
2

transform under SUSY only into gravitino modes in H−
3
2

, and vice versa. It can be seen that

SUSY transformations do not mix the spaces H−
2

⊕H−
3
2

and H+
2

⊕H+
3
2

because the SUSY

transformations of the field strengths commute with duality transformations, as shown in

subsection 6.1.4. To be specific, eqs. (6.23) and (6.24) imply that the anti-self-dual spin-3/2

field strength transforms into the anti-self-dual spin-2 field strength and vice versa. However,

this observation does not rule out the possibility that some SUSY transformations mix the

space H−
2

⊕H−
3
2

with the space H∗+
2

⊕H∗+
3
2

since both spaces consist of anti-self-dual mode

solutions. We prove that the space H−
2

⊕H−
3
2

is indeed fixed under the SUSY transformations

by investigating how the individual TT graviton and gravitino modes transform.

First, we determine the gravitino SUSY transformation (6.31) generated by the commuting

Killing spinors ϵ(σ;q) [eq. (5.21)], by working at the level of mode solutions in our representation

space, H−
2

⊕H−
3
2

. More specifically, we will substitute the modes φ
(phys,−L; M ;K)
µν (t,θ3)

[eq. (4.10)] into the right-hand side of the SUSY transformation (6.36), and then we will

re-express the transformed modes in terms of gravitino modes.

As both gravitino and graviton modes are expressed in terms of TT spherical harmonics

on S3 of spin 3/2 (3.32) and spin 2 (4.14), respectively, it is useful first to clarify how

SUSY acts on them. In particular, given a TT spin-2 spherical harmonic T̃
(σ;L;M ;K)
µ̃ν̃ (θ3)

(σ = ±) and Killing spinors ϵ̃±,q(θ3) (5.18) on S3, we can construct TT spin-3/2 spherical

harmonics on S3 as

T̃
(σ;L;M ;K)
µ̃ν̃ γ̃ν̃ ϵ̃+,q, and T̃

(σ;L;M ;K)
µ̃ν̃ γ̃ν̃ ϵ̃−,q. (6.38)

These can be viewed as SUSY transforms of TT spin-3/2 spherical harmonics on S3. Indeed

it can be readily verified that these are eigenfunctions of the Dirac operator on S3 as

/̃∇
(
T̃

(σ;L;M ;K)
µ̃ν̃ γ̃ν̃ ϵ̃∓,q

)
= i σ

(
L− δσ,∓ +

3

2

)
T̃

(σ;L;M ;K)
µ̃ν̃ γ̃ν̃ ϵ̃∓,q, (6.39)

where δ+,+ = δ−,− = 1 and δ+,− = δ−,+ = 0. We can thus identify T̃
(σ;L;M ;K)
µ̃ν̃ γ̃ν̃ ϵ̃+,q

and T̃
(σ;L;M ;K)
µ̃ν̃ γ̃ν̃ ϵ̃−,q with linear combinations for TT spin-3/2 spherical harmonics on

S3 (3.32). Thus,

T̃
(±;L;M ;K)
µ̃ν̃ (θ3)γ̃ν̃ ϵ̃±,q(θ3)=

M∑

m′=M−1

β̃
(±,ℓ′,m′,k′;M)
±,q ψ̃

(ℓ′; m′;k′)
±µ̃ (θ3), ℓ′=L−1, k′=K+q,

T̃
(±;L;M ;K)
µ̃ν̃ (θ3)γ̃ν̃ ϵ̃∓,q(θ3)=

M∑

m′=M−1

β̃
(±,ℓ′,m′,k′;M)
∓,q ψ̃

(ℓ′; m′;k′)
±µ̃ (θ3), ℓ′=L, k′=K+q, (6.40)
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where

β̃
(σ,ℓ′,m′,k′;M)
±,q =

∫

S3

√
g̃ dθ3

(
ψ̃(ℓ′; m′;k′)µ̃

σ (θ3)
)†

T̃
(σ;L;M ;K)
µ̃ν̃ (θ3)γ̃ν̃ ϵ̃±,q(θ3). (6.41)

We find k′ = K+ q by considering how both sides depend on θ1. The range of m′ is found by

noting that the tensors T̃
(±;L;M ;K)
µ̃ν̃ (θ3) and each of the sets of Killing spinors,  ϵ̃+,q}q=−1,0

and  ϵ̃−,q}q=−1,0 form so(3) representations with highest weights M and 1/2, respectively,

and that the vector-spinors ψ̃
(ℓ′; m′;k′)
± µ̃ (θ3) form a representation with highest weight m′ + 1/2.

If the vector-spinor with the label (ℓ′,m′, k′) does not exist, then the corresponding coefficient

is set to 0. We do not need the explicit form of the nonzero coefficients β̃
(σ,ℓ′,m′,k′;M)
±,q .

Similarly, we can construct TT spin-2 spherical harmonics from TT spin-3/2 spherical

harmonics and Killing spinors on S3, as

S(ℓ; m;k)
(±,q;σ)µ̃ν̃ = ϵ̃†±,q

(
σ γ̃µ̃λ̃∇̃λ̃ψ̃

(ℓ; m;k)
σ ν̃ ∓ 2i γ̃µ̃ψ̃

(ℓ; m;k)
σ ν̃

)
+ (µ̃↔ ν̃). (6.42)

These can be viewed as SUSY transforms for TT spin-2 spherical harmonics on S3. They

are eigenfunctions of the duality operator defined by eq. (4.15):

ε̃ α̃β̃
µ̃ ∇̃α̃ S(ℓ; m;k)

(±,q;σ)β̃ν̃
= σ(ℓ+ δσ,± + 1)S(ℓ; m;k)

(±,q;σ)µ̃ν̃ . (6.43)

As a result, we have that S(ℓ; m;k)

(±,q;σ)β̃ν̃
are eigenfunctions of the Laplace-Beltrami operator

on S3, as

(−∇̃α̃∇̃α̃ + 3)S(ℓ; m;k)
(±,q;σ)µ̃ν̃ = (ℓ+ δσ,± + 1)2S(ℓ; m;k)

(±,q;σ)µ̃ν̃ , (6.44)

where δ+,+ = δ−,− = 1 and δ+,− = δ−,+ = 0 as defined after eq. (6.39). (For ℓ = 1 one has

±(ℓ+ δ±,∓ + 1) = ±2. There are no TT spin-2 spherical harmonics with these eigenvalues for

the duality operator. This implies that S(ℓ=1; m;k)
(±,q;∓)µ̃ν̃ = 0.) Hence, one can express S(ℓ; m;k)

(±,q;σ)µ̃ν̃

as linear combinations of TT spin-2 spherical harmonics, as

S(ℓ; m;k)
(±,q;∓)µ̃ν̃(θ3) =

m+1∑

M ′=m

β̌
(∓,L′,M ′,K′;m)
±,q T

(∓;L′;M ′;K′)
µ̃ν̃ (θ3), L′ = ℓ, K ′ = k − q,

S(ℓ; m;k)
(±,q;±)µ̃ν̃(θ3) =

m+1∑

M ′=m

β̌
(±,L′,M ′,K′;m)
±,q T

(±;L′;M ′;K′)
µ̃ν̃ (θ3), L′ = ℓ+ 1, K ′ = k − q, (6.45)

where

β̌
(σ,L′,M ′,K′;m)
±,q =

∫

S3

√
g̃ dθ3 T

(σ;L′;M ′;K′)∗
µ̃ν̃ (θ3) S(ℓ; m;k)µ̃ν̃

(±,q;σ) (θ3) . (6.46)

The relation K ′ = k− q and the range of M ′ have been determined as before. Again, if there

is no TT spin-2 spherical harmonic with the label (L′,M ′,K ′), we let β̌
(σ,L′,M ′,K′;m)
±,q = 0.

From eqs. (6.41) and (6.46) we find the following relations:

β̌
(±,L,M,K;m)
∓,q = 2iLβ̃

(±,ℓ,m,k;M)∗
∓,q , L = ℓ, K = k − q, (6.47)

β̌
(±,L,M,K;m)
±,q = 2i(L+ 2)β̃

(±,ℓ,m,k;M)∗
±,q , L = ℓ+ 1, K = k − q. (6.48)
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Having sketched how SUSY acts on spherical harmonics on S3, we can readily compute

the SUSY transformation [eqs. (6.36) and (6.37)] using the explicit expressions of the physical

spin-3/2 and spin-2 modes, ψ
(phys,−ℓ;m;k)
ν and φ

(phys,−L; M ;K)
µν [eqs. (3.20) and (4.10)] and the

expressions of the Killing spinors (5.17) on dS4. The result is

(
δsusy(ϵ(−;q))ψ

)(−L; M ;K)

µ
≡ 1

4

(
i φ(phys,−L; M ;K)

µσ γσ + ∇λφ
(phys,−L; M ;K)
µσ γσλ

)
ϵ(−;q)

=
i

2

√
L+ 2

M∑

m′=M−1

β̃
(−,ℓ′,m′,k′;M)
−,q ψ(phys,−ℓ′; m′;k′)

µ ,

ℓ′ = L− 1, k′ = K + q, (6.49)

and
(
δsusy(ϵ(+;q))ψ

)(−L; M ;K)

µ
≡ 1

4

(
i φ(phys,−L; M ;K)

µσ γσ + ∇λφ
(phys,−L; M ;K)
µσ γσλ

)
ϵ(+;q)

= −1

2

√
L

M∑

m′=M−1

β̃
(−,ℓ′,m′,k′;M)
+,q ψ(phys,−ℓ′; m′;k′)

µ ,

ℓ′ = L, k′ = K + q, (6.50)

where q ∈  −1, 0}. The coefficients β̃
(−,ℓ′,m′,k′;M)
±,q , and the angular momentum quantum

numbers m′ and k′, have been introduced in eq. (6.40). Equations (6.49) and (6.50) describe

the transformation rules for the gravitino modes under SUSY generated by the four Killing

spinors (5.17) of dS4.

One can similarly obtain the SUSY transformation rules for the graviton modes using

eq. (6.37), as

(
δsusy(ϵ(−;q))′φ

)(−ℓ;m;k)

µν

≡ ϵ(−;q)

2
γ5
(
γµψ

(phys,−ℓ;m;k)
ν + γνψ

(phys,−ℓ;m;k)
µ

)
+ ∇(µ

(
− i

3
ϵ(−;q)γ5ψ

(phys,−ℓ;m;k)
ν)

)

= − i

2

√
L′ + 2

m+1∑

M ′=m

β̃
(−,ℓ,m,k;M ′)∗
−,q φ(phys,−L′;M ′;K′)

µν

+ (TT pure-gauge graviton mode), L′ = ℓ+ 1, K ′ = k − q, (6.51)

and
(
δsusy(ϵ(+;q))′φ

)(−ℓ;m;k)

µν

≡ ϵ(+;q)

2
γ5
(
γµψ

(phys,−ℓ;m;k)
ν + γνψ

(phys,−ℓ;m;k)
µ

)
+ ∇(µ

(
− i

3
ϵ(+;q)γ5ψ

(phys,−ℓ;m;k)
ν)

)

= −1

2

√
L′

m+1∑

M ′=m

β̃
(−,ℓ,m,k;M ′)∗
+,q φ(phys,−L′;M ′;K′)

µν

+ (TT pure-gauge graviton mode), L′ = ℓ, K ′ = k − q, (6.52)

with q ∈  −1, 0}, where eqs. (6.47) and (6.48) have been used. Equations (6.51) and (6.52)

describe the transformation rules for the graviton modes under SUSY generated by the

four Killing spinors (5.17) of dS4.
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The transformation rules (6.49)–(6.52) prove that positive frequency gravitino modes

of helicity −3/2 and positive frequency graviton modes of helicity −2 transform among

themselves. Thus, condition 1 is satisfied for the representation space H−
2

⊕H−
3
2

.

Note on negative frequency modes. Our results concerning the positivity of the norm and

the irreducibility of the SUSY representation formed by the positive frequency solution space

H−
2

⊕H−
3
2

can be readily adapted to the case of the negative frequency space H∗+
2

⊕H∗+
3
2

=

 φ(phys, +L; M ;K)⋆
µν }⊕ v(phys, +ℓ; m;k)

µ }. In other words, the SUSY representation formed by

H∗+
2

⊕H∗+
3
2

satisfies condition 1. Let us also write the SUSY gravitino transformation rules

at the level of the corresponding negative frequency mode solutions:

(
δsusy(ϵ(+;q))v

)(+L;M ;K)

µ
≡ 1

4

(
i φ(phys, +L; M ;K)⋆

µσ γσ + ∇λφ
(phys, +L; M ;K)⋆
µσ γσλ

)
ϵ(+;q)

=
1

2

√
L+ 2

M∑

m′=M−1

β̃
(+,ℓ′,m′,k′;M)
+,q v(phys, +ℓ′; m′;k′)

µ ,

ℓ′ = L− 1, k′ = K + q (6.53)
(
δsusy(ϵ(−;q))v

)(+L;M ;K)

µ
≡ 1

4

(
i φ(phys, +L; M ;K)⋆

µσ γσ + ∇λφ
(phys, +L; M ;K)⋆
µσ γσλ

)
ϵ(−;q)

= − i

2

√
L

M∑

m′=M−1

β̃
(+,ℓ′,m′,k′;M)
−,q v(phys, +ℓ′; m′;k′)

µ ,

ℓ′ = L, k′ = K + q, (6.54)

where the coefficients β̃
(+,ℓ′,m′,k′;M)
±,q have been introduced in (6.40). Similarly, we find the

graviton SUSY transformation for the negative frequency modes

(
δsusy(ϵ(+;q))′φ

)(+ℓ;m;k)⋆

µν

≡ ϵ(+;q)

2
γ5
(
γµv

(phys,+ℓ;m;k)
ν + γνv

(phys,+ℓ;m;k)
µ

)
+ ∇(µ

(
− i

3
ϵ(+;q)γ5v

(phys,+ℓ;m;k)
ν)

)

= −1

2

√
L′ + 2

m+1∑

M ′=m

β̃
(+,ℓ,m,k;M ′)∗
+,q φ(phys,+L′;M ′;K′)⋆

µν

+ (TT pure-gauge graviton mode), L′ = ℓ+ 1, K ′ = k − q (6.55)

and
(
δsusy(ϵ(−;q))′φ

)(+ℓ;m;k)⋆

µν

≡ ϵ(−;q)

2
γ5
(
γµv

(phys,+ℓ;m;k)
ν + γνv

(phys,+ℓ;m;k)
µ

)
+ ∇(µ

(
− i

3
ϵ(−;q)γ5v

(phys,+ℓ;m;k)
ν)

)

= − i

2

√
L′

m+1∑

M ′=m

β̃
(+,ℓ,m,k;M ′)∗
−,q φ(phys,+L′;M ′;K′)⋆

µν

+ (TT pure-gauge graviton mode), L′ = ℓ, K ′ = k − q (6.56)

where q ∈  −1, 0}. Here, we have used eqs. (6.47) and (6.48) again.
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2. Anti-hermiticity of even generators. The even generators of our SUSY algebra are

those of so(4, 2)
⊕
u(1). In the case of gravitino modes, the anti-hermiticity of all so(4, 2)

generators with respect to the axial scalar product has been demonstrated in eqs. (3.50)

and (3.57). In the case of graviton modes, the anti-hermiticity of all so(4, 2) generators with

respect to the Klein-Gordon scalar product has been demonstrated in eqs. (4.29) and (4.45).

In particular, we have already established that each of the solution spaces H−
3
2

and H−
2

furnishes a UIR of so(4, 2) in subsections 3.2 and 4.2, respectively. In these subsections, it

was also shown that each of the negative frequency spaces H∗+
3
2

and H∗+
2 furnishes a UIR of

so(4, 2). Finally, it is easy to check that both the axial scalar product and the Klein-Gordon

scalar product are u(1)-invariant. Thus, condition 2 is satisfied for the SUSY representation

formed by H−
2

⊕H−
3
2

, as well as for the SUSY representation formed by H∗+
2

⊕H∗+
3
2

.

3. SUSY-invariance of inner products. Our aim is to show that condition 3 is satisfied,

which means that we have to prove eq. (6.35). Equivalently we can show that the axial (3.45)

and Klein-Gordon (4.24) currents satisfy

Jµ
ax (δsusy(ϵ)ψ,ψ) = Jµ

KG

(
φ, δsusy(ϵ)′φ

)

+ (total divergence of rank-2 anti-symmetric tensor), (6.57)

as by integrating the t-component of eq. (6.57) over S3 we find the desired eq. (6.35). Here,

φµν is any TT graviton solution and ψµ is any TT gravitino solution, where δsusy(ϵ)ψµ

and δsusy(ϵ)′φµν = δsusy(ϵ)φµν + δgauge(− i
3ϵγ

5ψ)φµν are given by eqs. (6.36) and (6.37),

respectively. Let us first observe that, since both δsusy(ϵ)ψµ and ψµ are TT gravitino

solutions, the SUSY Noether current (6.14) is directly expressed as

J µ
(ϵ)(φ,ψ) = Jµ

ax (δsusy(ϵ)ψ,ψ) . (6.58)

This expression relates the SUSY Noether current with the axial current. The next step

is to re-write the SUSY Noether current J µ
(ϵ)(φ,ψ) in terms of the Klein-Gordon current.

A straightforward calculation gives

J µ
(ϵ)(φ,ψ) = Jµ

symp (φ, δsusy(ϵ)φ) −∇ρ

(
i

4
ϵγ5γνµρψσ φ∗

σν +
i

2
ϵγ5γ[ρψσ φ

µ] σ∗
)
, (6.59)

where the second term is the divergence of an anti-symmetric tensor, and Jµ
symp is the

symplectic current (4.52) with

Jµ
symp (φ, δsusy(ϵ)φ)

= − i

4

(
φ∗

νλ ∇µδsusy(ϵ)φνλ − δsusy(ϵ)φνλ ∇µφ∗
νλ − 2φµ ∗

λ ∇αδ
susy(ϵ)φαλ

)
. (6.60)

Note that the graviton SUSY transformation δsusy(ϵ)φµν appearing in eqs. (6.59) and (6.60)

is not a TT graviton solution, but it is related to the TT SUSY transformation δsusy(ϵ)′φµν

through eq. (6.37). Then, using eq. (6.37) to express δsusy(ϵ)φµν in terms of δsusy(ϵ)′φµν , and

recalling that the Klein-Gordon current coincides with the symplectic current when both
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arguments are TT solutions,41 we can re-express Jµ
symp (φ, δsusy(ϵ)φ) as

Jµ
symp (φ, δsusy(ϵ)φ) = Jµ

KG

(
φ, δsusy(ϵ)′φ

)
− Jµ

symp

(
φ, δgauge

(
− i

3
ϵγ5ψ

)
φ

)
. (6.61)

Then, comparing eqs. (6.58) and (6.59), and making use of eq. (6.61), we find

Jµ
ax (δsusy(ϵ)ψ,ψ) = Jµ

KG

(
φ, δsusy(ϵ)′φ

)
− Jµ

symp

(
φ, δgauge

(
− i

3
ϵγ5ψ

)
φ

)

−∇ρ

(
i

4
ϵγ5γνµρψσ φ∗

σν +
i

2
ϵγ5γ[ρψσ φ

µ] σ∗
)
. (6.62)

Finally, we find that this equation takes the desired form (6.57) by using eq. (4.55). We

have thus shown that condition 3 is satisfied. This condition can also be verified directly

by noting that the coefficients in eqs. (6.51) and (6.52) are the complex conjugates of those

in eqs. (6.49) and (6.50), respectively.

6.2.2 Unitary SUSY in the QFT Fock space of the chiral graviton and chiral

gravitino

In the previous subsection we showed that the space of TT positive frequency modes

H−
2

⊕H−
3
2

=  φ(phys,−L; M ;K)
µν }⊕ ψ(phys,−ℓ; m;k)

µ } forms a UIR of SUSY with SUSY transfor-

mations given by eqs. (6.36) and (6.37) — or equivalently by eqs. (6.31) and (6.32). The

commutator of two SUSY transformations is given in eqs. (6.33) and (6.34) and the even

part of the superalgebra is isomorphic to so(4, 2)
⊕
u(1). We also showed that the space

of TT negative frequency modes H∗+
2

⊕H∗+
3
2

=  φ(phys, +L; M ;K)⋆
µν }⊕ v(phys, +ℓ; m;k)

µ } forms a

UIR of the same SUSY algebra but with opposite helicities relative to the positive frequency

modes. Now we will study the realisation of unitary SUSY in the QFT Fock space of the

chiral graviton and chiral gravitino. Recall that by ‘chiral’ we mean that the corresponding

field strengths are anti-self-dual. Let us start by reviewing the main features of the chiral

graviton and chiral gravitino from the previous sections:

• Chiral gravitino. The completely gauge-fixed chiral gravitino field Ψ
(TT)−
µ was quan-

tised in subsection 3.4. For convenience let us give here again the mode expansion (3.68):

Ψ
(TT)−
t (t,θ3) = 0,

Ψ
(TT)−
µ̃ (t,θ3) =

∞∑

ℓ=1

∑

m,k

(
a

(−)
ℓmkψ

(phys,−ℓ ;m;k)
µ̃ (t,θ3) + b

(+)†
ℓmk v

(phys, +ℓ ;m;k)
µ̃ (t,θ3)

)
,

where

 a(−)
ℓmk, a

(−)†
ℓ′m′k′} = δℓℓ′δmm′δkk′ ,  b(+)

ℓmk, b
(+)†
ℓ′m′k′} = δℓℓ′δmm′δkk′ .

The field strength of the chiral gravitino [eq. (3.78)] satisfies the anti-self-duality con-

straint (3.64). The chiral gravitino vacuum is denoted as |0⟩ 3
2

and satisfies a
(−)
ℓmk |0⟩ 3

2
=

41See the passage below eq. (4.55).
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b
(+)
ℓmk |0⟩ 3

2
= 0, for all allowed values of ℓ,m, k. The vacuum is invariant under so(4, 1)

and the single-particle Hilbert spaces of the QFT furnish a direct sum of two ∆ = 5/2

discrete series UIRs of so(4, 1) with opposite helicities. The vacuum is also invariant

under so(4, 2) and the single-particle UIRs of so(4, 1) extend to a direct sum of so(4, 2)

UIRs with opposite helicities — see subsection 3.4. It is easy to show that these

statements also extend from so(4, 2) to so(4, 2)
⊕
u(1).

• Chiral graviton. The completely gauge-fixed chiral graviton field h
(TT)−
µν has been

quantised in subsection 4.3. Let us present here again the mode expansion for the chiral

graviton (4.62):

h
(TT)−
tµ (t,θ3) = 0,

h
(TT)−
µ̃ν̃ (t,θ3) =

∞∑

L=2

∑

M,K

(
c

(−)
LMKφ

(phys,−L; M ;K)
µ̃ν̃ (t,θ3) + d

(+)†
LMK φ

(phys, +L; M ;K)⋆
µ̃ν̃ (t,θ3)

)
,

with

[c
(−)
LMK , c

(−)†
L′M ′K′ ] = δLL′δMM ′δKK′ , [d

(+)
LMK , d

(+)†
L′M ′K′ ] = δLL′δMM ′δKK′ .

The field strength of the chiral graviton [eq. (4.66)] satisfies the anti-self-duality con-

straint (4.58). The chiral graviton vacuum |0⟩2 satisfies c
(−)
LMK |0⟩2 = d

(+)
LMK |0⟩2 = 0,

for all allowed values of L,M,K. The vacuum is invariant under so(4, 1) and the

single-particle Hilbert spaces of the QFT furnish a direct sum of two ∆ = 3 discrete

series UIRs of so(4, 1) with opposite helicities. The vacuum is also invariant under

so(4, 2) and the single-particle UIRs of so(4, 1) extend to a direct sum of so(4, 2) UIRs

with opposite helicities — see subsection 4.3. Again, it is easy to show that these

statements also extend from so(4, 2) to so(4, 2)
⊕
u(1).

Let us also recall what we know so far about the SUSY representation carried by the

chiral graviton and chiral gravitino. First, as the SUSY transformations of the field strengths

commute with duality transformations (see subsections 6.1.4 and 6.2.1), it is clear that the

chiral graviton and chiral gravitino gauge potentials (h
(TT)−
µν ,Ψ

(TT)−
µ ) form a supermultiplet.

The SUSY transformations of the chiral gauge potentials are given by eqs. (6.31) and (6.32)

with h
(TT)
µν and Ψ

(TT)
µ replaced by h

(TT)−
µν and Ψ

(TT)−
µ , respectively. The commutators of

two SUSY variations are given again by eqs. (6.33) and (6.34), but with h
(TT)
µν and Ψ

(TT)
µ

replaced by h
(TT)−
µν and Ψ

(TT)−
µ , respectively. The TT gauge transformations in eqs. (6.33)

and (6.34) are identified with zero (recall that the UIRs formed by mode solutions were

defined in terms of equivalence classes of mode solutions). We are allowed to do this because

the transformations of quantum fields are attributed to transformations of the creation and

annihilation operators and these have gauge-invariant definitions.42 We also know from the

results of subsection 6.2.1 that the space of positive frequency modes H−
2

⊕H−
3
2

and the

space of negative frequency modes H∗+
2

⊕H∗+
3
2

separately form UIRs of our superalgebra.

42In particular, eq. (3.71) implies the gauge independence of the gravitino creation and annihilation operators

as the axial scalar product is invariant under TT gauge transformations (3.14). Similarly, eq. (4.65) implies

the invariance of the graviton creation and annihilation operators under TT gauge transformation (4.40).
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Let us now show that SUSY is realised unitarily in the QFT Fock space of the chiral

graviton and chiral gravitino. In fact, unitarity follows from the analysis we have already

presented, as we have explicitly constructed the QFT Fock space and we have shown that

the norm is positive. In addition, we have shown that the single-particle Hilbert space (∼=
Hilbert space of TT mode solutions) carries a direct sum of UIRs of our superalgebra — see

subsection 6.2.1. Nevertheless, for the sake of completeness, we will construct the quantum

operators corresponding to the SUSY Noether charges (6.15) and we will show that they

generate unitary representations of our superalgebra in the QFT Fock space.

Quantum SUSY generators. The quantum SUSY Noether charges that are relevant to our

theory, Qsusy[ϵ], are found by replacing h†µν and Ψµ in eq. (6.15) with the chiral quantum fields

h
(TT)−†
µν and Ψ

(TT)−
µ , respectively. The standard approach is to use Grassmann-odd Killing

spinors, rendering the SUSY Noether charges Qsusy[ϵ] = ηAQA Grassmann-even, where η is

the constant Grassmann-odd spinor parameter in eq. (5.25). The anti-commutators of the

spinorial supercharges,
{
QA, Q

B †
}

, are then encoded in the commutators
[
Qsusy[ϵ], Qsusy[ϵ′]†

]
.

Here, we will adopt an alternative approach where we will use the commuting Killing spinors

ϵ(σ;q)(t,θ3) = S(t,θ3)η(σ;q) [eq. (5.21)]. We will thus work with the Grassmann-odd SUSY

Noether charges Qsusy[ϵ(σ;q)] — see the discussion below eq. (6.15). Now, the SUSY algebra

is determined by anti-commutators
{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ

′ ;q′)]
†
}
.

Let us now re-express the Grassmann-odd SUSY Noether charges Qsusy[ϵ(σ ;q)] in a more

convenient form. Using eqs. (6.58) and (6.57), we re-express eq. (6.15) as:

Qsusy[ϵ(σ ;q)] = ⟨δsusy(ϵ(σ ;q))Ψ(TT)−|Ψ(TT)−⟩ax = ⟨h(TT)−| δsusy(ϵ(σ;q))′ h(TT)−⟩KG . (6.63)

The quantum charge Qsusy[ϵ(σ;q)]
†

is given by the hermitian conjugate of this expression.

There are four independent SUSY Noether charges, one charge for each Killing spinor

ϵ(+;−1)(t,θ3), ϵ(+;0)(t,θ3), ϵ(−;−1)(t,θ3), and ϵ(−;0)(t,θ3) — see eq. (5.17). Below we express

Qsusy[ϵ(σ;q)] in terms of creation and annihilation operators.

Let us first recall that the transformations of the field operators are attributed to

transformations of their creation and annihilation operators. By expanding the fields in

modes, eq. (6.63) gives

Qsusy[ϵ(σ;q)] =
∞∑

L=2

∑

M,K

(
c

(−)†
LMK δsusy(ϵ(σ;q))′c(−)

LMK − d
(+)
LMK δsusy(ϵ(σ;q))′d(+)†

LMK

)
(6.64)

=
∞∑

ℓ=1

∑

m,k

(
δsusy(ϵ(σ;q))a

(−)†
ℓmk a

(−)
ℓmk + δsusy(ϵ(σ;q))b

(+)
ℓmk b

(+)†
ℓmk

)
. (6.65)

By construction, the quantum SUSY Noether charges generate the desired SUSY transfor-

mations [eqs. (6.31) and (6.32)] on our chiral quantum fields, as

[ h(TT)−
µν , Qsusy[ϵ(σ;q)] ] = δsusy(ϵ(σ;q))′h(TT)−

µν , (6.66)
{

Ψ(TT)−
µ , Qsusy[ϵ(σ;q)]

†
}

= δsusy(ϵ(σ;q))Ψ(TT)−
µ . (6.67)
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Let us now obtain explicit expressions for the SUSY transformations of the creation and

annihilation operators of the chiral graviton.43 From eq. (4.65) we find

δsusy(ϵ(σ;q))′c(−)
LMK = ⟨φ(phys,−L; M ;K)|δsusy(ϵ(σ;q))′h(TT)−⟩KG

= ⟨
(
δsusy(ϵ(σ;q))ψ

)(−L; M ;K)
|Ψ(TT)−⟩

ax
, (6.68)

and

δsusy(ϵ(σ;q))′d(+)†
LMK = −⟨φ(phys, +L; M ;K)⋆|δsusy(ϵ(σ;q))′h(TT)−⟩KG

= −⟨
(
δsusy(ϵ(σ;q))v

)(+L; M ;K)
|Ψ(TT)−⟩

ax
, (6.69)

where we have made use of the SUSY-invariance of the axial and Klein-Gordon inner

products [eq. (6.35)]. The SUSY transformation of the positive frequency gravitino mode(
δsusy(ϵ(σ;q))ψ

)(−L; M ;K)

µ
is given in eqs. (6.49) and (6.50). The SUSY transformation of the

negative frequency gravitino mode
(
δsusy(ϵ(σ;q))v

)(+L; M ;K)

µ
is given in eqs. (6.53) and (6.54).

We expect to find that δsusy(ϵ(σ;q))′c(−)
LMK and δsusy(ϵ(σ;q))′d(+)†

LMK are proportional to a negative-

helicity gravitino annihilation operator and a positive-helicity gravitino creation operator,

respectively.

Indeed, using eqs. (6.49), (6.50), (6.53) and (6.54), as well as eq. (3.71), we find the SUSY

transformation formulae for the creation and annihilation operators of the chiral graviton, as

δsusy(ϵ(−;q))′c(−)
LMK =− i

2

√
L+2

M∑

m′=M−1

β̃
(−,ℓ′,m′,k′;M)∗
−,q a

(−)
ℓ′m′k′ , ℓ′=L−1, k′=K+q,

δsusy(ϵ(−;q))′d(+)†
LMK =− i

2

√
L

M∑

m′=M−1

β̃
(+,ℓ′,m′,k′;M)∗
−,q b

(+)†
ℓ′m′k′ , ℓ′=L, k′=K+q, (6.70)

and

δsusy(ϵ(+;q))′c(−)
LMK =−1

2

√
L

M∑

m′=M−1

β̃
(−,ℓ′,m′,k′;M)∗
+,q a

(−)
ℓ′m′k′ , ℓ′=L, k′=K+q,

δsusy(ϵ(+;q))′d(+)†
LMK =−1

2

√
L+2

M∑

m′=M−1

β̃
(+,ℓ′,m′,k′;M)∗
+,q b

(+)†
ℓ′m′k′ , ℓ′=L−1, k′=K+q. (6.71)

The coefficients β̃
(σ,ℓ′,m′,k′;M)
±,q (σ = ±) and the angular momentum quantum numbers m′ and

k′ have been introduced in eq. (6.40). The label q ∈  0,−1} is a so(2) quantum number

labelling the Killing spinors of dS4 — see eq. (5.17). It is clear that annihilation/creation

operators of the chiral graviton transform into annihilation/creation operators of the chiral

gravitino, demonstrating the SUSY invariance of the vacuum |0⟩2 ⊗ |0⟩ 3
2
.

Now that we have determined the SUSY transformation formulae for δsusy(ϵ(±;q))′c(−)
LMK

and δsusy(ϵ(±;q))′d(+)†
LMK , let us substitute them into eq. (6.64). The quantum SUSY Noether

43The SUSY transformations of gravitino creation and annihilation operators can be obtained similarly.
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charges are then found to be:

Qsusy[ϵ(−;q)] = − i

2

∞∑

L=2

∑

M,K

(√
L+ 2 c

(−)†
LMK

M∑

m′=M−1

β̃
(−,L−1,m′,K+q;M)∗
−,q a

(−)
L−1, m′, K+q

−
√
L d

(+)
LMK

M∑

m′=M−1

β̃
(+,L,m′,K+q;M)∗
−,q b

(+)†
L, m′, K+q

)
, (6.72)

and

Qsusy[ϵ(+;q)] = −1

2

∞∑

L=2

∑

M,K

(√
L c

(−)†
LMK

M∑

m′=M−1

β̃
(−,L,m′,K+q;M)∗
+,q a

(−)
L, m′, K+q (6.73)

−
√
L+ 2 d

(+)
LMK

M∑

m′=M−1

β̃
(+,L−1,m′,K+q;M)∗
+,q b

(+)†
L−1, m′, K+q

)
,

q ∈  −1, 0}, where it is clear that they annihilate the vacuum |0⟩2 ⊗ |0⟩ 3
2
. Note that

the quantum SUSY Noether charges (6.72) and (6.73) can be expressed as a sum of two

independent charges that anti-commute with each other; one charge generates a SUSY UIR

in the positive-frequency sector, and the other generates a SUSY UIR (of opposite helicity)

in the negative-frequency sector.

The unitary realisation of SUSY in our QFT Fock space is now manifest as it is easy to

check that single-particle states furnish the UIRs of our superalgebra presented in subsec-

tion 6.2.1. For example, graviton single-particle states, such as c
(−)†
LMK |0⟩2 ⊗ |0⟩ 3

2
, transform

under SUSY as

Qsusy[ϵ(σ;q)]†
(
c

(−)†
LMK |0⟩2 ⊗ |0⟩ 3

2

)
=
[
Qsusy[ϵ(σ;q)]† , c(−)†

LMK

] (
|0⟩2 ⊗ |0⟩ 3

2

)

= |0⟩2 ⊗ δsusy(ϵ(σ;q))′c(−)†
LMK |0⟩ 3

2
. (6.74)

According to our analysis in the previous paragraphs, this gives

Qsusy[ϵ(−;q)]
†(
c

(−)†
LMK |0⟩2⊗|0⟩ 3

2

)
=
i

2

√
L+2

M∑

m′=M−1

β̃
(−,L−1,m′,K+q;M)
−,q |0⟩2⊗a

(−)†
L−1,m′,K+q |0⟩ 3

2
,

(6.75)

and

Qsusy[ϵ(+;q)]
† (

c
(−)†
LMK |0⟩2 ⊗ |0⟩ 3

2

)
= −1

2

√
L

M∑

m′=M−1

β̃
(−,L,m′,K+q;M)
+,q |0⟩2 ⊗ a

(−)†
L,m′,K+q |0⟩ 3

2
,

(6.76)

q ∈  −1, 0}, in agreement with the transformation rules (6.49) and (6.50), respectively, of the

mode functions forming the SUSY UIRs. One can similarly find the SUSY transformations

of gravitino single-particle states, such as |0⟩2 ⊗ a
(−)†
ℓmk |0⟩ 3

2
, by using the following:

Qsusy[ϵ(σ;q)]
(
|0⟩2 ⊗ a

(−)†
ℓmk |0⟩ 3

2

)
=  Qsusy[ϵ(σ;q)], a

(−)†
ℓmk }

(
|0⟩2 ⊗ |0⟩ 3

2

)

= δsusy(ϵ(σ;q))a
(−)†
ℓmk |0⟩2 ⊗ |0⟩ 3

2
. (6.77)
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Extra check for unitarity. As mentioned in the Introduction, in the cases where the

unitarity of global SUSY on a fixed dS4 background fails [60, 61], the main obstacle is that

the sum of anti-commutators of spinorial supercharges QA,

∑

A

 QA, Q
A†}, (6.78)

which must be positive-definite, is shown to vanish identically using the de Sitter superalgebra.

If this anti-commutator vanishes in a theory that carries a non-trivial representation of global

SUSY, then negative-norm states must exist, rendering the theory non-unitary. We will show

that, in our supersymmetric theory of the chiral graviton and gravitino, this anti-commutator

is positive, as required by unitarity.

Let us start by introducing the Grassmann-odd spinorial supercharges, QA, of our theory.

Using the expression (5.21) for the commuting Killing spinors, and the definition (6.15) of

the Grassmann-odd SUSY Noether charges, we have

Qsusy[ϵ(σ;q)] =

∫

S3
dθ3

√−g ϵ(σ;q) B Jt
B = η(σ;q) A

∫

S3
dθ3

√−g
(
−γ0S(t,θ3)†γ0

) B

A
Jt

B

≡ η(σ;q) A QA. (6.79)

Now, let us show that the operator given in eq. (6.78) is proportional to the following sum

of anti-commutators between SUSY Noether charges:

∑

σ∈ +,−}

∑

q∈ 0,−1}

{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ;q)]†

}
. (6.80)

We straightforwardly have

∑

σ∈ +,−}

∑

q∈ 0,−1}

{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ;q)]†

}
=

∑

σ∈ +,−}

∑

q∈ 0,−1}

{
η(σ;q)AQA, Q

B
η

(σ;q)
B

}
(6.81)

=
∑

σ∈ +,−}

∑

q∈ 0,−1}

{
η(σ;q)AQA, Q

B†
(
η(σ;q)

)†
B

}
.

Using the explicit expressions for the Killing spinors (5.21), we find

∑

σ∈ +,−}

∑

q∈ 0,−1}

{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ;q)]†

}
=

1

2π2

4∑

A=1

{
QA, Q

A†
}
. (6.82)

To determine
∑

σ,q

{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ;q)]†

}
, it is convenient to study the action of two

consecutive SUSY variations on our chiral quantum fields. These are expressed as

δsusy(ϵ(σ
′;q′))δsusy(ϵ(σ;q))′h(TT)−

µν =

{ [
h(TT)−

µν , Qsusy[ϵ(σ;q)]
]
, Qsusy[ϵ(σ

′;q′)]
†
}

=

[
h(TT)−

µν ,

{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ

′;q′)]
†
} ]

, (6.83)

δsusy(ϵ(σ
′;q′))′ δsusy(ϵ(σ;q))Ψ(TT)−

µ =
[ {

Ψ(TT)−
µ , Qsusy[ϵ(σ;q)]†

}
, Qsusy[ϵ(σ

′;q′)]
]

=

[
Ψ(TT)−

µ ,

{
Qsusy[ϵ(σ;q)]

†
, Qsusy[ϵ(σ

′;q′)]

} ]
, (6.84)
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where we have used
{

Ψ
(TT)−
µ , Qsusy[ϵ(σ;q)]

}
=
[
h

(TT)−
µν , Qsusy[ϵ(σ;q)]†

]
= 0 for any σ and q.

Then, using the explicit expressions for the SUSY transformations in eqs. (6.31) and (6.32),

we can also express the consecutive SUSY transformations in the following form:

δsusy(ϵ(σ
′;q′))δsusy(ϵ(σ;q))′ h(TT)−

µν = £
ξ

((σ;q),(σ′;q′))
C

h(TT)−
µν − T

V
((σ;q),(σ′;q′))
C

h(TT)−
µν

+ i
ϵ(σ;q)γ5ϵ(σ

′;q′)

4
h(TT)−

µν , (6.85)

δsusy(ϵ(σ
′;q′))′δsusy(ϵ(σ;q)) Ψ(TT)−

µ = L
ξ

((σ′;q′),(σ;q))
C

Ψ(TT)−
µ − T

V
((σ′;q′),(σ;q))
C

Ψ(TT)−
µ

+
5i

2

ϵ(σ
′;q′)γ5ϵ(σ;q)

4
Ψ(TT)−

µ . (6.86)

Here, the complex Killing vector ξ
((σ′;q′),(σ;q))
C

and genuine conformal Killing vector

V
((σ′;q′),(σ;q))
C

are given by complex Killing spinor bilinears as follows:

ξ
((σ;q),(σ′;q′))µ
C

=
1

4
ϵ(σ;q)γ5γµϵ(σ

′;q′) = −(ξ
((σ′;q′),(σ;q))µ
C

)∗,

V
((σ;q),(σ′;q′))µ
C

=
1

4
ϵ(σ;q)γµϵ(σ

′;q′) = −(V
((σ′;q′),(σ;q))µ
C

)∗. (6.87)

Note also

ϵ(σ;q)γ5ϵ(σ
′;q′) = −(ϵ(σ

′;q′)γ5ϵ(σ;q))†. (6.88)

The complex Killing vectors ξ
((σ;q),(σ′;q′))µ
C

were first introduced in eq. (5.5), in a slightly

different notation. Similarly, the complex genuine conformal Killing vectors V
((σ;q),(σ′;q′))µ
C

were first introduced in eq. (5.6). The scalars ϵ(σ
′;q′)γ5ϵ(σ;q) are constant and, in general,

they are complex.

From eqs. (6.85), (6.86) and eqs. (6.83), (6.84), we see that we can determine the ‘traced’

anti-commutator in eq. (6.82) by summing over all dS Killing spinors (5.21), as

∑

σ∈ +,−}

∑

q∈ 0,−1}
δsusy(ϵ(σ;q))δsusy(ϵ(σ;q))′h(TT)−

µν =
1

2π2

[
h(TT)−

µν ,
4∑

A=1

{
QA, Q

A†
} ]

, (6.89)

∑

σ∈ +,−}

∑

q∈ 0,−1}
δsusy(ϵ(σ;q))′ δsusy(ϵ(σ;q))Ψ(TT)−

µ =
1

2π2

[
Ψ(TT)−

µ ,
4∑

A=1

{
QA, Q

A†
}]

. (6.90)

Thus, we are interested in the case where the two Killing spinors are equal to each other,

ϵ(σ;q) = ϵ(σ
′;q′) (i.e. σ = σ′ and q = q′), in eqs. (6.85) and (6.86). The Killing spinor bilinears

in eqs. (6.85) and (6.86) are imaginary for ϵ(σ;q) = ϵ(σ
′;q′). This means that the complex

Killing vector ξ
((σ;q),(σ;q))µ
C

can be expressed as i =
√
−1 times a real Killing vector. Similarly,

the complex genuine conformal Killing vector V
((σ;q),(σ;q))µ
C

can be expressed as i times a

real genuine conformal Killing vector. Explicit expressions for these complex Killing spinor

bilinears can be found by using the explicit expressions for the Killing spinors (5.21):

• For the complex Killing vectors ξ
((σ;q),(σ;q))µ
C

, we find

ξ
((σ;−1),(σ;−1))t
C

=ξ
((σ;0),(σ;0))t
C

=0, (6.91)

ξ
((σ;−1),(σ;−1))µ̃
C

∂µ̃ =−ξ((σ;0),(σ;0))µ̃
C

∂µ̃ =− i

4

1

2π2

(
cosθ2

∂

∂θ3
−cotθ3sinθ2

∂

∂θ2
−σ ∂

∂θ1

)
,
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for σ = ±. We conclude that ξ
((σ;−1),(σ;−1)) µ
C

= −ξ((σ;0),(σ;0)) µ
C

is equal to i times a

linear combination of Killing vectors of S3, and we observe that
∑

σ∈ +,−}

∑

q∈ 0,−1}
ξ

((σ;q),(σ;q)) µ
C

= 0.

• For the complex genuine conformal Killing vectors V
((σ;q),(σ;q))µ
C

, we find

V
((σ;−1),(σ;−1)) µ
C

= V
((σ;0),(σ;0)) µ
C

=
i

4

1

2π2
∂µ sinh t =

i

4

1

2π2
V (0)µ, (6.92)

where V (0)µ is the real genuine conformal Killing vector in eq. (3.54). We observe that

∑

σ∈ +,−}

∑

q∈ 0,−1}
V

((σ;q),(σ;q)) µ
C

=
i

2π2
V (0)µ.

• For the constant scalars ϵ(σ;q)γ5ϵ(σ;q) we have

ϵ(σ;−1)γ5ϵ(σ;−1) = ϵ(σ;0)γ5ϵ(σ;0) = σ
i

2π2
, for σ = ±, (6.93)

and thus, ∑

σ∈ +,−}

∑

q∈ 0,−1}
ϵ(σ;q)γ5ϵ(σ;q) = 0.

We use these properties of the complex Killing spinor bilinears and eqs. (6.85) and (6.86)

to evaluate the left-hand side of eqs. (6.89) and (6.90). Thus, we find
[
h(TT)−

µν ,
4∑

A=1

{
QA, Q

A†
} ]

= − Ti V (0)h
(TT)−
µν , (6.94)

[
Ψ(TT)−

µ ,
4∑

A=1

{
QA, Q

A†
}]

= − Ti V (0)Ψ(TT)−
µ . (6.95)

It is straightforward to find explicit expressions for Ti V (0)Ψ
(TT)−
µ and Ti V (0)h

(TT)−
µν by ex-

panding the field in modes and calculating the action of the transformations on the mode

functions. In practice, the factor of i in iV (0)µ results in an imaginary phase rotation of the

mode functions. Working as in subsections 3.2 and 4.2.3, we find

− Ti V (0)Ψ(TT)−
µ (t,θ3)

=
∞∑

ℓ=1

∑

m,k

(
ℓ+

3

2

)(
a

(−)
ℓmkψ

(phys,−ℓ ;m;k)
µ (t,θ3) − b

(+)†
ℓmk v

(phys, +ℓ ;m;k)
µ (t,θ3)

)
(6.96)

=

[
Ψ(TT)−

µ (t,θ3), Qconf−
3
2

[V (0)] −Qconf+
3
2

[V (0)]

]
, (6.97)

and

− Ti V (0)h
(TT)−
µν (t,θ3)

=
∞∑

L=2

∑

M,K

(L+ 1)
(
c

(−)
LMKφ

(phys,−L; M ;K)
µν (t,θ3) − d

(+)†
LMK φ(phys, +L; M ;K)⋆

µν (t,θ3)
)

(6.98)

=
[
h(TT)−

µν (t,θ3), Qconf−
2 [V (0)] −Qconf+

2 [V (0)]
]
, (6.99)
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where Qconf±
3
2

[V (0)] are the quantum conformal-like charges (3.89) of the chiral gravitino acting

on states of helicity ±3/2, while Qconf±
2 [V (0)] are the quantum conformal-like charges (4.80)

of the chiral graviton acting on states of helicity ±2. Thus, we identify the trace of the

supercharge anti-commutator as

4∑

A=1

{
QA, Q

A†
}

= Qconf−
3
2

[V (0)] −Qconf+
3
2

[V (0)] +Qconf−
2 [V (0)] −Qconf+

2 [V (0)], (6.100)

which is clearly positive, i.e. its expectation values are always greater than or equal to zero

— see eqs. (3.89) and (4.80).

Note. From eqs. (6.72) and (6.73) it follows that the spinorial supercharges consist of two

independent parts, QA = Q−
A + Q+

A, with  Q−
A, Q

+B} =  Q−
A, Q

+B†} =  Q+
A, Q

−B†} = 0,

which separately generate the two SUSY UIRs with helicities (−2,−3/2) and (+2,+3/2),

respectively. We thus have

4∑

A=1

{
QA, Q

A†
}

=
4∑

A=1

{
Q−

A, Q
−A†

}
+

4∑

A=1

{
Q+

A, Q
+A†

}
, (6.101)

where each of the two traced anti-commutators on the right-hand side is separately positive.

SUSY algebra in terms of quantum charges. Using the expressions for the consecutive

SUSY transformations (6.85) and (6.86), as well as eqs. (6.83) and (6.84), one can re-express

the commutators (6.33) and (6.34) of two SUSY variations in terms of anti-commutators

of quantum SUSY Noether charges (6.72) and (6.73), as

{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ

′;q′)]
†
}
− ((σ; q) ↔ (σ′; q′))

= −2 iQdS
[
Re(ξ

((σ′;q′),(σ;q))
C

)
]

+ 2 iQconf
[
Re(V

((σ′;q′),(σ;q))
C

)
]

− iQu(1)
[

1

4
ϵ(σ

′;q′)γ5ϵ(σ;q) − 1

4
ϵ(σ;q)γ5ϵ(σ

′;q′)
]
. (6.102)

Here, the even hermitian generators

QdS
[
Re(ξ

((σ′;q′),(σ;q))
C

)
]
≡ QdS−

[
Re(ξ

((σ′;q′),(σ;q))
C

)
]

+QdS+
[
Re(ξ

((σ′;q′),(σ;q))
C

)
]
,

with QdS±
[
Re(ξ

((σ′;q′),(σ;q))
C

)
]
≡

∑

s∈ 2, 3
2
}
QdS±

s

[
Re(ξ

((σ′;q′),(σ;q))
C

)
]
, (6.103)

are the quantum dS charges, (3.81) and (4.70), associated with the real Killing vector

Re(ξ
((σ′;q′),(σ;q))
C

)µ = [ϵ(σ
′;q′)γ5γµϵ(σ;q) − ϵ(σ;q)γ5γµϵ(σ

′;q′)]/8 [see eq. (6.87)]. The ‘−’ dS

charges and the ‘+’ dS charges commute with each other, and they generate discrete series

UIRs of so(4, 1) with negative and positive helicity, respectively. The even hermitian generators

Qconf
[
Re(V

((σ′;q′),(σ;q))
C

)
]
≡ Qconf−

[
Re(V

((σ′;q′),(σ;q))
C

)
]

+Qconf+
[
Re(V

((σ′;q′),(σ;q))
C

)
]
,

with Qconf±
[
Re(V

((σ′;q′),(σ;q))
C

)
]

=
∑

s∈ 2, 3
2
}
Qconf±

s

[
Re(V

((σ′;q′),(σ;q))
C

)
]

(6.104)
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are the quantum conformal-like charges, (3.86) and (4.77), associated with the real genuine con-

formal Killing vector Re(V
((σ′;q′),(σ;q))
C

)µ = [ϵ(σ
′;q′)γµϵ(σ;q) − ϵ(σ;q)γµϵ(σ

′;q′)]/8 [see eq. (6.87)].

Again, the ‘−’ conformal-like charges commute with the ‘+’ conformal-like charges. The

charges (QdS∓, Qconf∓) generate UIRs of so(4, 2) with ∓ helicities. As mentioned in the

previous sections, given a real Killing vector ξµ, and a real genuine conformal Killing vector

V µ, these hermitian charges generate the following transformations:

[ h(TT)−
µν , QdS [ξ] ] = −i£ξh

(TT)−
µν , [ Ψ(TT)−

µ , QdS [ξ] ] = −iLξΨ(TT)−
µ , (6.105)

[ h(TT)−
µν , Qconf [V ] ] = −i TV h

(TT)−
µν , [ Ψ(TT)−

µ , Qconf [V ] ] = −iTV Ψ(TT)−
µ . (6.106)

Finally, we have denoted the hermitian u(1) quantum charges as Qu(1). These also consist

of two independent u(1) charges Qu(1) = Qu(1)− + Qu(1)+, acting on negative-helicity and

positive-helicity states respectively. For real constant parameters α, they act on our quantum

fields as

[ h(TT)−
µν , Qu(1)[α] ] = −i δphase

α h(TT)−
µν , [ Ψ(TT)−

µ , Qu(1)[α] ] = −i δphase
α Ψ(TT)−

µ , (6.107)

where

δphase
α h(TT)−

µν = i α h(TT)−
µν , δphase

α Ψ(TT)−
µ =

5i

2
αΨ(TT)−

µ . (6.108)

We similarly find the following anti-commutator of quantum SUSY Noether charges:
{
Qsusy[ϵ(σ;q)], Qsusy[ϵ(σ

′;q′)]
†
}

= −i
∑

p=±
QdSp[Re(ξ

((σ′;q′),(σ;q))
C

)] + i
∑

p=±
Qconf p[Re(V

((σ′;q′),(σ;q))
C

)]

− i
∑

p=±
Qu(1)p

[
Re

(
1

4
ϵ(σ

′;q′)γ5ϵ(σ;q)
)]

+
∑

p=±
pQdSp[Im(ξ

((σ′;q′),(σ;q))
C

)] −
∑

p=±
pQconf p[Im(V

((σ′;q′),(σ;q))
C

]

+
∑

p=±
pQu(1)p

[
Im

(
1

4
ϵ(σ

′;q′)γ5ϵ(σ;q)
)]

. (6.109)

Note that the even quantum charges that depend on the imaginary parts of the Killing

spinor bilinears are multiplied by factors of p = ±, as was already evident from the traced

anti-commutator in eq. (6.100). Given a real Killing vector ξµ, a real genuine conformal Killing

vector V µ, and a real constant parameter α, these quantum charges generate transformations

parametrised by the ‘imaginary counterparts’ of ξµ, V µ and α, as:

[ h(TT)−
µν ,

∑

p=±
(−p)QdSp[ξ] ] = −£i ξh

(TT)−
µν ,

[ Ψ(TT)−
µ ,

∑

p=±
(−p)QdSp[ξ] ] = −Li ξΨ(TT)−

µ , (6.110)

[ h(TT)−
µν ,

∑

p=±
(−p)Qconf p[V ] ] = −Ti V h

(TT)−
µν ,

[ Ψ(TT)−
µ ,

∑

p=±
(−p)Qconf p[V ] ] = −Ti V Ψ(TT)−

µ , (6.111)
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and,

[ h(TT)−
µν ,

∑

p=±
(−p)Qu(1) p[α] ] = − δphase

i α h(TT)−
µν ,

[ Ψ(TT)−
µ ,

∑

p=±
(−p)Qu(1) p[α] ] = − δphase

i α Ψ(TT)−
µ , (6.112)

where δphase
i α describes infinitesimal scale transformations [compare with the real-parameter

case in eq. (6.108)]. Recalling that the quantum SUSY Noether charges can be expressed as

a sum of two independent charges, Qsusy[ϵ(σ;q)] = Qsusy−[ϵ(σ;q)] + Qsusy+[ϵ(σ;q)], generating

separately SUSY UIRs with negative and positive helicity, respectively, we may re-express

the anti-commutator (6.109) as
{
Qsusy−[ϵ(σ;q)], Qsusy−[ϵ(σ

′;q′)]
†
}

= −iQdS−[Re(ξ
((σ′;q′),(σ;q))
C

)] + iQconf −[Re(V
((σ′;q′),(σ;q))
C

)]

− iQu(1)−
[
Re

(
1

4
ϵ(σ

′;q′)γ5ϵ(σ;q)
)]

−
(
QdS−[Im(ξ

((σ′;q′),(σ;q))
C

)] − Qconf −[Im(V
((σ′;q′),(σ;q))
C

)]

+Qu(1)−
[
Im

(
1

4
ϵ(σ

′;q′)γ5ϵ(σ;q)
)])

, (6.113)

and
{
Qsusy +[ϵ(σ

′;q′)]
†
, Qsusy +[ϵ(σ;q)]

}

= iQdS+[Re(ξ
((σ;q),(σ′;q′))
C

)] − iQconf +[Re(V
((σ;q),(σ′;q′))
C

)]

+ iQu(1)+
[
Re

(
1

4
ϵ(σ;q)γ5ϵ(σ

′;q′)
)]

+ QdS+[Im( ξ
((σ;q),(σ′;q′))
C

)] − Qconf +[Im(V
((σ;q),(σ′;q′))
C

)]

+Qu(1)+
[
Im

(
1

4
ϵ(σ;q)γ5ϵ(σ

′;q′)
)]

. (6.114)

In the second equation, we have used the fact that the real parts of Killing spinor bilinears

change sign under the exchange (σ; q) ↔ (σ′; q′), while their imaginary parts remain the same

— see eq. (6.87). We thus have two independent sets of generators that form superalgebras

separately. However, the superalgebra formed by the generators

Qsusy−, Qsusy−†, QdS−, Qconf−, Qu(1)−

is isomorphic to the superalgebra formed by the generators

−Qsusy+†,−Qsusy+,−QdS+,−Qconf+,−Qu(1)+.

In particular, the role of Qsusy− is played by −Qsusy+ †. Moreover, the even generators −QdS+

and −Qconf+ generate the algebra so(2, 4) ∼= so(4, 2), which is isomorphic to the algebra

generated by QdS− and Qconf−.
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7 Discussions and open questions

In this paper, we showed that the free supersymmetric theory of the chiral graviton and chiral

gravitino fields on fixed dS4 is unitary. This free unitary theory cannot become interacting

while preserving SUSY in a way that makes the spin-2 sector the true graviton sector of

General Relativity, as the three-graviton coupling cannot be u(1)-invariant. Nevertheless, it

remains worthwhile to investigate whether a non-linear version of the theory exists. If such a

supergravity-like theory were to exist, SUSY would have to be locally realised.

As a step toward exploring possible consistent interactions, it would be mathematically

interesting, and perhaps natural, to reformulate the free chiral graviton-chiral gravitino

theory in terms of spin-tensors belonging to “unbalanced” representations of the Lorentz

group, as in ref. [42]. Then, the question of finding possible interactions can be investigated

using, for example, methods based on the presymplectic BV-AKSZ formulation [104–106].

Interestingly, a framework for the study of consistent interactions of local gauge theories

in this formulation has been recently proposed in [104], and it simplifies significantly the

analysis of consistent interactions.

We note in passing that if an interacting theory involving our supermultiplet of chiral

graviton and gravitino were to exist, it would require the gauging of global symmetries and

might also require the inclusion of additional fields, as suggested by recent work [107], where

consistent interactions were studied for a real (non-unitary) partially massless graviton and

two Majorana gravitini on AdS4. This field content forms the basis of what one would call

‘linearised partially massless supergravity around AdS4’ [107, 108]. The point of resemblance

with our theory lies in the fact that in [107], it was found that the global symmetries of

linearised partially massless supergravity around AdS4 include conformal-like symmetries for

the gravitini, similar to those in our equation (3.51). However, it was also shown that there

are obstructions to the Jacobi identity of the gauge algebra, i.e. the global symmetries cannot

be gauged, unless the field content is modified. Interestingly, it was suggested that by adding

extra fields to the theory, so that the field content matches that of N = 1 pure conformal

supergravity around AdS4, the global algebra (including the conformal-like symmetries)

can be gauged, and consistent interactions might be constructed. We also speculate that a

non-linear version of the theory presented in this paper could be related to a complex, chiral

version of conformal supergravity admitting dS4 solutions.

Another interesting future direction is to investigate possible relations between our linear

supersymmetric theory and ‘chiral Supergravity’, as discussed in refs. [109–112].

Finally, we note that it is likely that an analogue of our chiral graviton-gravitino

supersymmetric theory exists on dS2. In such a two-dimensional theory the question of

consistent interactions would be easier to tackle. In particular, the ∆ = 2 and ∆ = 3/2

discrete series UIRs of so(2, 1), corresponding to a shift-symmetric ‘tachyonic’ scalar [8] and

a shift-symmetric imaginary-mass spinor [10], respectively, on dS2, can be viewed as the

two-dimensional analogues of the graviton and gravitino, respectively [9, 10]. Each of these

two fields on dS2 corresponds to a direct sum of two so(2, 1) UIRs with opposite ‘chirality’,

akin to the four-dimensional case. Moreover, the ∆ = 2 discrete series scalar field on dS2

(as well as the ones with ∆ > 2) was recently shown to enjoy a hidden global conformal

symmetry [14] (akin to the conformal-like symmetry for the four-dimensional graviton that
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we discussed in this paper). We expect that the fermionic counterparts [10] of the discrete

series scalar fields on dS2 will also enjoy such a conformal symmetry. Then, it would be

interesting to investigate whether one can construct a unitary supersymmetric theory on

dS2 using a chiral ∆ = 2 scalar field and a chiral ∆ = 3/2 spinor field. If this theory

resembles the four-dimensional theory presented in this paper, then the commutator between

two SUSY transformations will close on the hidden conformal symmetries. We leave the

investigation of this model for future work.
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A Classification of the UIRs of the dS algebra

The dS algebra so(4, 1) has 10 generators JAB = −JBA, with A,B ∈  0, 1, 2, 3, 4}. These

satisfy the commutation relations:

[JAB, JCD] = (ηBCJAD + ηADJBC) − (A↔ B), (A.1)

where ηAB = diag(−1, 1, 1, 1, 1). In the case of unitary representations, each of the generators

JAB must be realised as an anti-hermitian operator with respect to a positive-definite scalar

product.

Let us review the classification of the so(4, 1) UIRs under the decomposition so(4, 1) ⊃
so(4) [55, 56]. An irreducible representation of so(4) appears with multiplicity one in a

UIR of so(4, 1) or it does not appear at all [113]. An irreducible representation of so(4) is

specified by the highest weight [83, 114, 115]

f⃗ = (f1, f2), (A.2)

where

f1 ≥ |f2|. (A.3)

The numbers f1 and f2 are both integers or half-odd-integers, and f2 can be negative.

UIRs of so(4, 1). A UIR of so(4, 1) is specified by two numbers, the scaling dimension ∆

and the spin s, denoted collectively as F⃗ = (∆, s). The number s ≥ 0 is an integer or half-odd

integer. For the so(4) representations f⃗ = (f1, f2) contained in the UIR F⃗ = (∆, s) we have:

f1 ≥ s ≥ |f2|. (A.4)
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The representation-theoretic labels in refs. [33, 85] are related to the labels of the present

paper as: ∆ = F0 + 3 and s = F1. The UIRs of so(4, 1) are listed below [55, 56]:

• Principal Series Dprin( F⃗ ):

∆ =
3

2
+ iy, (y > 0). (A.5)

s is an integer or half-odd integer.

• Complementary Series Dcomp( F⃗ ) :

3

2
≤ ∆ < 3 − ñ, ñ ∈  0, 1}. (A.6)

If ñ = 0, then s = 0, and for the so(4) content we have f2 = 0. If ñ = 1, then s is a

positive integer.

• Exceptional Series Dex( F⃗ ) :

∆ = 2. (A.7)

s is a positive integer and f2 = 0.

• Discrete Series D±( F⃗ ) : ∆ is real. The representation-theoretic labels ∆ and s are

both integers or half-odd integers. There are two different cases of discrete series UIRs

depending on the so(4) content:

s ≥ f2 ≥ ∆ − 1 ≥ 1

2
for D+( F⃗ ), (A.8)

−s ≤ f2 ≤ −∆ + 1 ≤ −1

2
for D−( F⃗ ). (A.9)

Form eq. (A.8), it is clear that the so(4) content of D+ UIRs corresponds to so(4) irreps

with positive last component, f2, of the highest weight (A.3). Similarly, according to

eq. (A.9), only so(4) irreps with negative f2 are contained in D− UIRs.

The graviton on dS4 corresponds to ∆ = 3 and s = 2. In particular, the positive

frequency modes of the graviton on dS4 form the direct sum of discrete series UIRs

D−(3, 2)
⊕
D+(3, 2) [77, 85]. The gravitino (i.e. strictly massless spin-3/2 field) on dS4

corresponds to ∆ = 5/2 and s = 3/2. The positive-frequency modes of the gravitino on

dS4 form the direct sum of discrete series UIRs D−(5/2, 3/2)
⊕
D+(5/2, 3/2) [33, 34]. In

general, the positive-frequency modes for any strictly massless boson or fermion of any

spin s ≥ 1/2 on dS4 correspond to the direct sum D−(s+ 1, s)
⊕
D+(s+ 1, s) [33, 76, 85].

For further discussions on representation-theoretic aspects of fields on dS spacetime see

refs. [8, 10, 14, 28, 33, 34, 44, 51, 76, 85, 116–121].

The quadratic Casimir of so(4, 1) is defined as

C2 ≡
4∑

A=1

(J0A)2 − 1

2
δIKδJLJIJJKL (I, J,K,L ∈  1, 2, 3, 4}). (A.10)

For a so(4, 1) UIR labelled by F⃗ = (∆, s) the quadratic Casimir has the (real) eigenvalue:

c2(F⃗) = (∆ − 3) ∆ + s(s+ 1). (A.11)
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B Global dS geometry (Christoffel symbols, spin connection and all that)

In global coordinates (2.1), the non-zero Christoffel symbols are

Γt
µ̃ν̃ = cosh t sinh t g̃µ̃ν̃ , Γµ̃

ν̃t = tanh t g̃µ̃
ν̃ ,

Γκ̃
µ̃ν̃ = Γ̃κ̃

µ̃ν̃ , µ̃, ν̃, κ̃ ∈  θ1, θ2, θ3}, (B.1)

where g̃µ̃ν̃ and Γ̃κ̃
µ̃ν̃ are the metric tensor and the Christoffel symbols, respectively, on S3.

We work with the following representation of gamma matrices:

γ0 = i


0 1

1 0


 , γj =


 0 iγ̃j

−iγ̃j 0


 , (B.2)

(j = 1, 2, 3) where 1 is the 2-dimensional spinorial identity matrix. The timelike gamma

matrix is anti-hermitian, while the spacelike ones are hermitian. The lower-dimensional

gamma matrices, γ̃j , satisfy the Euclidean Clifford algebra in 3 dimensions:

 γ̃j , γ̃k} = 2δjk1, j, k = 1, 2, 3. (B.3)

As in refs. [33, 34, 99], the representation of the lower-dimensional gamma matrices we use is:

γ̃1 =


 0 i

−i 0


 , γ̃2 =


0 1

1 0


 , γ̃3 =


1 0

0 −1


 . (B.4)

In our representation for the four-dimensional gamma matrices, the fifth gamma matrix (2.7)

is given by

γ5 =


1 0

0 −1


 , (B.5)

and we note that (2.7) can be re-written as εµνρσ = iγ5γµνρσ. Also, under hermitian

conjugation we have: (γµ)† = γ0γµγ0, (γρσ)† = γ0γρσγ0 and (γµρσ)† = −γ0γµρσγ0. Note

also the following useful properties [79]:

εαβργε
αβµν = −4δ[µ

ρ δ
ν]
γ ,

εαηργε
ακµν = (−3!)δ[κ

η δ
µ
ρ δ

ν]
γ ,

εαβσδε
κλµν = (−4!)δ[κ

α δ
λ
βδ

µ
σδ

ν]
δ . (B.6)

For the vierbein fields on global dS4, we choose the expressions:

et
0 = 1, eµ̃

i =
1

cosh t
ẽµ̃

i, i = 1, 2, 3, (B.7)

where ẽµ̃
i are the dreibein fields on S3. The non-zero components of the dS spin connection

are given by

ωijk =
ω̃ijk

cosh t
, ωi0k = −ωik0 = − tanh t δik, i, j, k ∈  1, 2, 3}, (B.8)

where ω̃ijk is the spin connection on S3.
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C Transverse, γ̃-traceless delta function (3.75) and locality of the

equal-time anti-commutator (3.91)

In this appendix, we will explicitly demonstrate the locality of the equal-time anti-

commutator (3.91). To achieve this, we will first show that the transverse and gamma-

traceless delta function on S3 which appears in the anti-commutator (3.91), and is defined

in (3.75), can be re-expressed as

∆T T
µ̃ν̃′(θ3,θ

′
3
) =

(
g̃µ̃ν̃′U(θ3,θ

′
3
) − 1

3
γ̃µ̃U(θ3,θ

′
3
)γ̃ν̃′

)
δ(θ3 − θ′

3
)√

g̃

+
3

2
∇̃T

µ̃


 1

/̃∇
2

+ 9/4

∑

σ∈ +,−}

∞∑

n=1

∑

l,q

χ(n;l;q)
σ (θ3) ⊗ χ(n;l;q)

σ (θ′
3
)†




←
∇̃T

ν̃′ , (C.1)

where U(θ3,θ
′
3
) is the spinor parallel propagator on S3 with U(θ3,θ3) = 1, and g̃µ̃ν̃′ , g̃, γ̃µ̃ are

the bi-vector of parallel transport, determinant of the metric and gamma matrices, respectively,

on S3. The superscript T on the covariant derivatives denotes their gamma-traceless part:

∇̃T
µ̃ = ∇̃µ̃ − 1

3
γ̃µ̃γ̃

α̃∇̃α̃ and
←
∇̃T

ν̃′ =
←
∇̃ν̃′ − 1

3

←
∇̃α̃′ γ̃α̃′

γ̃ν′ . (C.2)

The spinors χ
(n;l;q)
± in (C.1) are the spinor spherical harmonics on the unit S3 which are

eigenfunctions of the Dirac operator, /̃∇ = γ̃α̃∇̃α̃, [99]

/̃∇χ(n;l;q)
± (θ3) = ±i

(
n+

3

2

)
χ

(n;l;q)
± (θ3), n ∈  0, 1, 2, . . .}, (C.3)

where the quantum numbers n, l, q correspond to the chain of subalgebras so(4) ⊃ so(3) ⊃
so(2) with n+ 1

2 ≥ l+ 1
2 ≥ |q+ 1

2 | ≥ 1
2 . The spinor spherical harmonics are normalised on S3 as

∫

S3
dθ3

√
g̃ χ(n;l;q)

σ (θ3)†χ(n′;l′;q′)
σ′ (θ3) = δσσ′δnn′δll′δqq′ . (C.4)

They also satisfy the following completeness relation:

∑

σ∈ +,−}

∞∑

n=0

∑

l,q

χ(n;l;q)
σ (θ3) ⊗ χ(n;l;q)

σ (θ′
3
)† =

δ(θ3 − θ′
3
)√

g̃
U(θ3,θ

′
3
). (C.5)

For later convenience, some comments are in order:

• Although the value n = 0 is allowed in the spectrum of the Dirac operator in (C.3), this

value is omitted from the sum in (C.1) as it renders the denominator ill-defined [this also

becomes clear in our proof of (C.1) below].

• For n = 0, for which the allowed values for the rest of the angular momentum numbers

are l = 0 and q = −1, 0, the spinor spherical harmonics (C.3) coincide with the Killing

spinors on S3, satisfying:

∇̃µ̃ χ
(0;0;q)
± = ± i

2
γ̃µ̃χ

(0;0;q)
± . (C.6)
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It is clear that this equation is identical with ∇̃T
µ̃χ

(0;0;q)
± = 0 [see eq. (C.2)]. In the main text,

the Killing spinors χ
(0;0;q)
± are denoted as ϵ̃±,q — see eq. (5.17).

• The commutator of covariant derivatives acting on spinors on S3 is

[∇̃µ̃, ∇̃ν̃ ] =
1

4
R̃µ̃ν̃κ̃λ̃γ̃

κγ̃λ̃, (C.7)

where the Riemann tensor of the unit S3 is

R̃µ̃ν̃κ̃λ̃ = g̃µ̃κ̃g̃ν̃λ̃ − g̃ν̃κ̃g̃µ̃λ̃. (C.8)

Also, when acting on spinors on S3, the squared Dirac operator is related to the Laplace-

Beltrami operator as

g̃µ̃ν̃∇̃µ̃∇̃ν̃ = /̃∇
2

+
R̃

4
, (C.9)

where the Ricci scalar is R̃ = 6. Let us now start proving eq. (C.1).

Proof of (C.1). To prove (C.1), we need to make use of the completeness of the vector-spinor

eigenfunctions of the Dirac operator, also known as vector-spinor spherical harmonics, on S3.

There are two kinds of vector-spinor spherical harmonics on S3 [84]: the transverse-traceless

harmonics (3.32) and the longitudinal ones. We denote the latter as λ̃
(P;±n;l;q)
µ̃ (θ3) and

λ̃
(M;±n;l;q)
µ̃ (θ3). To show that ∆T T

µ̃ν̃′(θ3,θ
′
3
) [eq. (3.75)] is given by (C.1), we need to exploit

the fact that the TT and longitudinal vector-spinor spherical harmonics form a complete

set on S3. The corresponding completeness relation is

δ(θ3 − θ′
3
)√

g̃
g̃µ̃ν̃′U(θ3,θ

′
3
) = ∆T T

µ̃ν̃′(θ3,θ
′
3
) +

∑

σ∈ +,−}

∑

n,l,q

λ̃
(P;σn;l;q)
µ̃ (θ3) ⊗ λ̃

(P;σn;l;q)
ν̃′ (θ′

3
)†

+
∑

σ∈ +,−}

∑

n,l,q

λ̃
(M;σn;l;q)
µ̃ (θ3) ⊗ λ̃

(M;σn;l;q)
ν̃′ (θ′

3
)†, (C.10)

where ∆T T
µ̃ν̃′(θ3,θ

′
3
) is the sum over the transverse harmonics [see (3.75)], while the rest of

the sums in (C.10) concern the longitudinal harmonics with all the allowed values of the

quantum numbers n, l, q (these allowed values are discussed below).

To proceed, we need more information concerning the longitudinal harmonics. The

longitudinal vector-spinor harmonics λ̃
(P;±n;l;q)
µ̃ (θ3), λ̃

(M;±n;l;q)
µ̃ (θ3) satisfy [84]

/̃∇λ̃(P;±n;l;q)
µ̃ (θ3) = +i

√
(n+ 3/2)2 − 2 λ̃

(P;±n;l;q)
µ̃ (θ3) (C.11)

and

/̃∇λ̃(M;±n;l;q)
µ̃ (θ3) = −i

√
(n+ 3/2)2 − 2 λ̃

(M;±n;l;q)
µ̃ (θ3), (C.12)

and they are expressed in terms of the spinor harmonics (C.3) as [84]:

λ̃
(P;±n;l;q)
µ̃ (θ3)=

c(P;±n)

√
2

(
∇̃µ̃+

i

2

{
∓(n+3/2)+

√
(n+3/2)2−2

}
γ̃µ̃

)
χ

(n;l;q)
± (θ3), (C.13)

λ̃
(M;±n;l;q)
µ̃ (θ3)=

c(M;±n)

√
2

(
∇̃µ̃+

i

2

{
∓(n+3/2)−

√
(n+3/2)2−2

}
γ̃µ̃

)
χ

(n;l;q)
± (θ3). (C.14)
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The normalisation factors c(P;±n) and c(M;±n) were not introduced in ref. [84]. We introduce

them here such that the longitudinal vector-spinor harmonics satisfy
∫

S3
dθ3

√
g̃ g̃µ̃ν̃ λ̃

(S;σn;l;q)
µ̃ (θ3)†λ̃(S’;σ′n′;l′;q′)

ν̃ (θ3) = δSS′δσσ′δnn′δll′δqq′ , (C.15)

where S, S′ ∈  P, M} and σ ∈  +,−}. It is straightforward to find that:

∣∣∣∣∣
c(P;σn)

√
2

∣∣∣∣∣

2

=

(
3

2

(
(n+ 3/2)2 − 2

)
− σ

1

2
(n+ 3/2)

√
(n+ 3/2)2 − 2

)−1

, (C.16)

where for σ = − we have that all the values of n ≥ 0 are allowed, while for σ = + we

have n ≥ 1 because for n = 0 the harmonic λ̃
(P;+n;l;q)
µ̃ is identically zero (and, thus, its

normalisation factor is not defined) as the spinor harmonic in (C.13) is a Killing spinor (for

n = 0) and the differential operator acting on it takes the form of the operator in the Killing

spinor equation (C.6). Similarly, we find

∣∣∣∣∣
c(M;σn)

√
2

∣∣∣∣∣

2

=

(
3

2

(
(n+ 3/2)2 − 2

)
+ σ

1

2
(n+ 3/2)

√
(n+ 3/2)2 − 2

)−1

, (C.17)

where, now, for σ = + we have n ≥ 0, while for σ = − we have n ≥ 1 for the same reason

as in the case of c(P;+n) above.

Now that we know the allowed values of the quantum number n, let us re-write (C.10) as

∆T T
µ̃ν̃′(θ3,θ

′
3
) =

δ(θ3 − θ′
3
)√

g̃
g̃µ̃ν̃′U(θ3,θ

′
3
) −

∞∑

n=1

∑

l,q

λ̃
(P;+n;l;q)
µ̃ (θ3) ⊗ λ̃

(P;+n;l;q)
ν̃′ (θ′

3
)†

−
∞∑

n=0

∑

l,q

λ̃
(P;−n;l;q)
µ̃ (θ3) ⊗ λ̃

(P;−n;l;q)
ν̃′ (θ′

3
)†

−
∞∑

n=1

∑

l,q

λ̃
(M;−n;l;q)
µ̃ (θ3) ⊗ λ̃

(M;−n;l;q)
ν̃′ (θ′

3
)†

−
∞∑

n=0

∑

l,q

λ̃
(M;+n;l;q)
µ̃ (θ3) ⊗ λ̃

(M;+n;l;q)
ν̃′ (θ′

3
)†. (C.18)

Substituting (C.13) and (C.14) into (C.18), and after a long but straightforward calculation,

we find that all the n = 0 terms cancel among themselves with the help of (C.6), while the

remaining terms (n = 1, 2, . . .) can be written in the simpler form:

∆T T
µ̃ν̃′(θ3,θ

′
3
) =

(
g̃µ̃ν̃′U(θ3,θ

′
3
) − 1

3
γ̃µ̃U(θ3,θ

′
3
)γ̃ν̃′

)
δ(θ3 − θ′

3
)√

g̃
+ Yµ̃ν̃′(θ3,θ

′
3
), (C.19)

where we have used (C.5), and we have also defined

Yµ̃ν̃′(θ3,θ
′
3
)

=
3

2

∑

σ∈ +,−}

∞∑

n=1

∑

l,q

1

−(n+ 3/2)2 + 9/4

{(
∇̃µ̃χ

(n;l;q)
σ (θ3) − iσ(n+ 3/2)

3
γ̃µ̃χ

(n;l;q)
σ (θ3)

)

⊗
(
∇̃ν̃′χ(n;l;q)

σ (θ′
3
)† +

iσ(n+ 3/2)

3
χ(n;l;q)

σ (θ′
3
)† γ̃ν̃′

)}
. (C.20)

– 80 –



J
H
E
P
1
2
(
2
0
2
5
)
1
0
4

Then, using (C.3), it is easy to show that ∆T T
µ̃ν̃′(θ3,θ

′
3
) in (C.19) is equal to the desired

expression (C.1). □

Now let us use eq. (C.1) to show that the equal-time anti-commutator (3.91) is local (i.e.

vanishes for θ3 ≠ θ′
3
) despite that ∆T T

µ̃ν̃′ is non-local due to the appearance of

(
/̃∇

2
+ 9/4

)−1

in (C.1). It is clear that the locality of the anti-commutator (3.91) reduces to the locality

of the following quantity:
(
/̃∇

2
+

1

4

)
∆T T

µ̃ν̃′(θ3,θ
′
3
)

=

(
/̃∇

2
+

1

4

)(
g̃µ̃ν̃′U(θ3,θ

′
3
) − 1

3
γ̃µ̃U(θ3,θ

′
3
)γ̃ν̃′

)
δ(θ3 − θ′

3
)√

g̃

+
3

2

∑

σ∈ +,−}

∞∑

n=1

∑

l,q

(
/̃∇

2
+

1

4

)
∇̃T

µ̃


 1

/̃∇
2

+ 9/4
χ(n;l;q)

σ (θ3) ⊗ χ(n;l;q)
σ (θ′

3
)†




←
∇̃T

ν̃′ .

It is straightforward to commutate the two differential operators /̃∇
2

+ 1/4 and ∇̃T
µ̃ us-

ing (C.7), as

(
/̃∇

2
+

1

4

)
∇̃T

µ̃ =

(
/̃∇

2
+

1

4

)
∇̃µ̃ − 1

3
γ̃µ̃ /̃∇

(
/̃∇

2
+

1

4

)
= ∇̃T

µ̃

(
/̃∇

2
+

9

4

)
,

where we have used that gamma matrices commute with the squared Dirac operator because

of (C.9). It is now clear that there is no non-local term in

(
/̃∇

2
+ 1

4

)
∆T T

µ̃ν̃′ , as:

(
/̃∇

2
+

1

4

)
∆T T

µ̃ν̃′(θ3,θ
′
3
) =

(
/̃∇

2
+

1

4

)(
g̃µ̃ν̃′U(θ3,θ

′
3
) − 1

3
γ̃µ̃U(θ3,θ

′
3
)γ̃ν̃′

)
δ(θ3 − θ′

3
)√

g̃

+
3

2

∑

σ∈ +,−}

∞∑

n=1

∑

l,q

∇̃T
µ̃

(
χ(n;l;q)

σ (θ3) ⊗ χ(n;l;q)
σ (θ′

3
)†
) ←
∇̃T

ν̃′ .

We can now include the value n = 0 in the summation as it gives zero contribution because

of the Killing spinor equation (C.6). Finally, using the completeness of the spinor spherical

harmonics (C.5), we arrive at the local expression

(
/̃∇

2
+

1

4

)
∆T T

µ̃ν̃′(θ3,θ
′
3
) =

(
/̃∇

2
+

1

4

)(
g̃µ̃ν̃′U(θ3,θ

′
3
) − 1

3
γ̃µ̃U(θ3,θ

′
3
)γ̃ν̃′

)
δ(θ3 − θ′

3
)√

g̃

+
3

2
∇̃T

µ̃

(
δ(θ3 − θ′

3
)√

g̃
U(θ3,θ

′
3
)

) ←
∇̃T

ν̃′ . (C.21)

This shows that the equal-time anti-commutator (3.91) is local.

D Useful expressions concerning the conformal-like symmetry of the

graviton

Let Bµν be any (complex or real) symmetric spin-2 tensor field on dS4. Its conformal-like

transformation is defined in (4.31) as

TV Bµν = V ρερσλ(µ∇σBλ
ν). (D.1)
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Recall that V µ is any genuine conformal Killing vector (2.13). One can straightforwardly

prove the following:

gµν TV Bµν = 0,

∇α TV Bαν =
1

2
V ρερσλν∇σ∇αB λ

α ,

∇(µ∇α TV Bν)α =
1

2
V ρερσλ(ν∇σ∇µ)∇αB λ

α ,

∇ν∇α TV Bνα = 0,

□TV Bµν = V ρερσλ(µ∇σ
□Bλ

ν). (D.2)

These expressions can be used to prove that TV is a symmetry of the full linearised Einstein

equations (4.3), as well as of the ones in the TT gauge (4.5). Moreover, one can similarly

show that both TV and TV = iTV are symmetries of the non-gauge-fixed complex linearised

Einstein equations (4.36), as well as of the complex graviton equations in the TT gauge (4.39).

E Some properties of the field strengths

Let us recall some properties of the field strengths for the complex graviton [eq. (4.59)]

and complex gravitino [eq. (3.65)]. Without making use of the equations of motion, it is

easy to show that

∇[κUαβ]µν = 0, U[αβµ]ν = 0, (E.1)

and [76]

(
∇[κ +

i

2
γ[κ

)
Fαβ] = 0. (E.2)

If the complex graviton satisfies the field equations, then the complex linearised Weyl

tensor satisfies

gαµUαβµν = 0, gβνUαβµν = 0 (E.3)

∇αUαβµν = 0. (E.4)

The dual, Ũαβµν = 1
2ε

κλ
αβ Uκλµν , can be also expressed (using the equations of motion) as

Ũαβµν =
1

2
Uαβκλ ε

κλ
µν . (E.5)

Equation (E.5) can be proved as follows. Let us denote the tensor on the right-hand side

of eq. (E.5) as Pαβµν = 1
2ε

κλ
µν Uαβκλ. Contracting Pαβµν with 1

2ε
αβ

ρσ , and using eq. (B.6)

and the equations of motion, one finds

P̃ρσµν = −Uρσµν .

Then, contracting this equation with 1
2ε

ρσ
αβ , and using (B.6), we have

1

2
ε ρσ

αβ P̃ρσµν = −Pαβµν = −Ũαβµν ,

thus proving eq. (E.5).
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If the complex gravitino satisfies the equations of motion, then its field strength sat-

isfies [76]:

∇αFαν = γαFαν = 0, (E.6)

∇[κFαβ] = 0, (E.7)

γ[κFαβ] = 0, (E.8)

/∇Fµν = 0, (E.9)

γµναβF
αβ = −2Fµν , and thus,

1

2
εµναβF

αβ = −iγ5Fµν . (E.10)

E.1 Deriving the SUSY transformation (6.21) of the spin-2 field strength from

the initial SUSY transformation (6.20)

To derive eq. (6.21) from eq. (6.20) we have to make use of eq. (6.22). Let us now prove

eq. (6.22). We start by considering the following quantity:

2 ερσαβ γ
α

[µ F β
ν] = iγ5γρσαβ

(
γ α

µ F β
ν − γ α

ν F β
µ

)
, (E.11)

where, on the right-hand side, we have used (2.6) and we have expanded the anti-

symmetrisation of the indices µ and ν. Using γρσαβ γ α
µ = gρµγσβ − gσµγρβ + gβµγρσ,

as well as the fact that the spin-3/2 field strength is gamma traceless on-shell, and thus

γρβF
β

ν = −Fρν , eq. (E.11) gives

2 ερσαβ γ
α

[µ F β
ν] = iγ5

(
2gρ[µFν]σ − 2gσ[µFν]ρ + 2γρσFµν

)
. (E.12)

Then, the first two terms on the right-hand side of eq. (E.12) can be re-expressed as

2gρ[µFν]σ − 2gσ[µFν]ρ = γµνFρσ − γρσFµν .

This can be straightforwardly proved by using γκλ = (γκγλ − γλγκ)/2 on the right-hand side,

and then making use of the on-shell property (E.8). Thus, eq. (E.12) gives

2 ερσγδ γ
γ

[µ F
δ
ν] = iγ5 (γµνFρσ + γρσFµν) . (E.13)

Contracting both sides of eq. (E.13) with εαβρσ and dividing the result by 2, we have

−2 γ
[α

[µ F
β]

ν] =
i

2
γ5
(
γµνF̃

αβ +
1

2
εαβρσγρσFµν

)
.

Then, using the on-shell property (E.10), as well as εαβρσγρσ/2 = −iγ5γαβ, we find

−2 γ
[α

[µ F
β]

ν] =
1

2

(
γµνF

αβ + γαβFµν

)
, (E.14)

proving eq. (6.22).
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