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Abstract: High speed video analysis of near-field explosive detonations displays
distinct stages of emergent hydrodynamic instabilities in the fireball/shock-air
interface. Typically, beyond 10 charge radii, the instabilities experienced large
growths giving rise to more chaotic behaviour of the interface and thus an increasing
uncertainty in surface velocity. These surface instabilities are suggested as the
primary cause of blast parameter variability in the near-field. However, as a
deterministic tool, numerical simulation of the detonation process and subsequent
blast wave propagation is not able to replicate the stochastic nature of fireball surface
instabilities and hence near-field blast parameter variability. Therefore, it is necessary
to develop new methods to simulate and characterise the stochastic features of the
fireball/shock-air interface. This paper proposes an algorithm to generate an explosive
charge element with random shape in finite element model in order to simulate
irregularities in the fireball/shock-air interface, and therefore produce variabilities
comparable to those from direct observation. The effect of chaotic fireball/shock-air
interface on near-field loading is explored through a large number of numerical
simulations in order to investigate the statistical distribution of parameters including
peak overpressure and impulse. Subsequently, the effect of stochastic detonator
location is explored in a similar manner. A computational procedure based on the
Monte Carlo Method is proposed to establish a probabilistic model of near-field blast

loads, termed PSL-Blast. The reliability of design blast loads calculated using the
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UFC 3-340-02 design manual is then estimated using PSL-Blast, which suggests that
reliability decreases with decreasing scaled distance. Finally, reliability-based safety

factors of blast loads are calculated based on different blast settings.

Keyword: Near-field Blast loads; Probabilistic model; Fireball Surface Instability;

Safety factor.
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1 Introduction
As a critical design step, the determination of blast loads is of paramount importance
for the design of building structures for resilience and robustness. Prediction of blast
loading is typically evaluated using the empirical formulas proposed by Kingery and
Bulmash [1], hereafter shortened to KB, themselves derived from a large database of
existing experimental trials. The KB method assumes the condition of either spherical
centrally-initiated charges for free air bursts or hemispherical centrally-initiated
charges for surface bursts. As a result, the KB method is widely recognised as an
effective fast-running predictive tool for positive phase blast load parameters, and has
been implemented into the UFC 3-340-02 design manual [2], the predictive computer
code ConWep [3], and commercial finite element code LS-DYNA [4], among others.
Meanwhile, considerable research effort [5-8] has been dedicated to the comparison
of experimental results to KB predictions. Such previous studies have demonstrated
varying levels of agreement with KB predictions, which is mainly attributed to large
test-to-test variations in experimental measurements of blast load parameters and
difficulties in establishing a reliable experimental benchmark. It is also observed that
blast load variability reduces in well-controlled experimental trials but is not
eliminated [9], emphasizing the requirement of variability quantification and its
inclusion into predictive methods for more accurate prescribed loading conditions.
Research [10-14] into blast parameter variability, particularly with respect to
scaled distance (given as the distance from the explosive divided by the cube-root of
charge mass), has become an increasingly active area of research. Three distinct
ranges of scaled distances are defined by Tyas [15] to estimate the variability degree
of blast parameter, which concludes that the recorded blast parameter is highly
repeatable and consistent at the extreme near-field (<0.5 m/kg!?) and far-field scaled
distances (>2 m/kg!?), but higher variability of blast parameter is observed in the
intermediate distances (0.5-2 m/kg!?). Meanwhile, Rae et al. [16] experimentally
tested ground-detonated large hemispheres of C-4 to measure blast load parameters at
scaled distances between 0.5 and 1.8 m/kg"? and noted the presence of three similar

regions. Results from the statistical analysis of 325 Mark-83 general purpose



91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

conventional bombs conducted by Twisdale et al. [17] shows that the coefficient of
variation (COV) of peak overpressure and impulse is 0.30 and 0.25, respectively. Low
et al. [18] found a COV of 0.32 for peak reflected overpressure under various scaled
distances based on the existing available data. The statistic result from 190 blast tests
involving TNT, C-4 and ANFO explosives [19] shows a COV of 0.23 for peak
reflected pressure within the scaled distances of 1.2 to 15.9 m/kg!”. Netherton et al.
[20] developed a probabilistic model of blast parameter variability considering the
combination of uncertain factors and the calculation result of exceeding probability
for the design values of blast load generally reveals an over-estimation in the
prediction of actual blast loads on a structure. Rigby et al. [21] compared the results
from explosive trials with numerical analyses and concluded that PE4 has a consistent
TNT equivalence value of 1.20 in the range of scaled distance 6.0-14.9 m/kg'”, and
that blast parameter variability decreased as the situation approached the far-field.
Meanwhile, Rigby et al. [22] quantified the variability associated with each blast
parameter from highly controlled experimental recordings when compared to KB
predictions, and grouped results from nominally identical tests. The presented results
and the KB predictions held high levels of agreement, exhibiting variability of
between £6—8% for pressure and specific impulse parameters, £2.5% for shock front
arrival time and around +9% for positive phase duration.

Furthermore, as observed in the detonation product cloud from the 1985 Minor
Scale detonation [23], a stochastic distribution of detonation products results in, or at
least amplifies, emergent instabilities in the fireball/shock-air interface. This
performance is widely accepted to be the main reason for the blast parameter
variability. Bogosian et al. [24] carried out blast tests of 11 cylindrical charges, and
pressure-time histories were recorded and compared with that reported by Ohrt et al.
[25] in the range of scaled distance 0.6 and 3.4 m/kg'3. The propensity for an
expanding fireball to form instabilities was studied in the experimental work of Rigby
et al. [26] using high speed video. The measured velocity behaviour showed two
distinct stages of emergent instabilities in the fireball/shock-air interface. In the early

stage after detonation, prior to or shortly after the emergence of small
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turbulence-based instabilities, the fireball/air interface was observed to expand with
effectively deterministic velocity. Beyond 10 charge radii, the instabilities
experienced large growths giving rise to more chaotic behaviour of the interface and
thus an increasing uncertainty in surface velocity. Tyas et al. [23] and Schoutens [27]
both observed significant localised changes in blast parameter quantification on
reflected surfaces as a direct result of instability formation.

Previous work has suggested that blast parameter variability is associated with
Rayleigh-Taylor (RT) [28, 29] and Richtmyer-Meshkov (RM) [30, 31] instabilities.
RT instabilities occur when pressure and density gradients are in opposite directions,
and RM instabilities occur when a shock wave propagates through inhomogeneous
media. In general, numerical simulation of blast shock wave is not able to reflect the
surface instability performance of fireball/shock front and the induced blast parameter
variability as a deterministic research method. The question of how to characterise the
instability features of fireball/shock-air interface in a numerical model is challenging
and is likely to be a highly meaningful contribution to stochastic studies of near-field
blast loads.

This paper is organised in the following manner. First, an algorithm is developed
in order to generate charge elements with random shape in a finite element.
Subsequently, the effect of a statistically-varying fireball/shock-air interface on
near-field explosion is investigated through a large number of numerical simulations.
Additionally, the effect of random detonator location on the near-field explosion is
also investigated. A computational procedure based on the Monte Carlo Method is
proposed to establish a probabilistic model of near-field blast loads, termed PSL-Blast.
This is then used to assess the reliability of design blast loads determined by UFC
3-340-02. Finally, a number of reliability-based safety factors of blast loads are for
different blast settings.

2 Numerical simulation of near-field explosion
2.1 Model development
There are numerous techniques for modelling blast response of structures currently

available in FE software. In particular, LS-DYNA includes four main methods:
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ConWep LBE (*LOAD BLAST ENHANCED) [32]; MM-ALE (Multi Material
Arbitrary Lagrange Euler) [33]; SPH (Smooth Particle Hydrodynamics) [34] and;
CPM (Corpuscular Particle Method) [35]. The MM-ALE method draws on the
respective advantages of Lagrangian and Eulerian methods. Namely, the ALE method
first solves the problem in a pure Lagrangian framework by the processing of
structural boundary motion, so it can effectively track movement of a material
structural boundary. Following this, the mesh is transported back to its pre-deformed
position in an Eulerian framework, such that large mesh deformations are avoided.
This method is very advantageous in the analysis of large deformation problems, and
an ALE mesh can define air and explosives with arbitrary charge shapes. Therefore,
the MM-ALE method has clear advantages in the computation of numerical
simulation of blast loads [36], particularly when considering surface imperfections
and detonator location.

In this study, the MM-ALE method [33] was employed to model the blast wave
formation and its interaction with a reflected surface. Furthermore, in order to
decrease the required computation time, LS-DYNA’s mapping capability is utilised

[37-39], with an example shown in Fig. 1.

3D air domain and blast wave

$ain and mapping blast wave

Fig. 1 3dto2d mapping program

The established FE model consists of two parts, including 3D FE model and
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mapping 2D FE model. The existing study [37] shows the mesh variation ratio (mesh
variation ratio = mesh length before mapping model under mesh length after mapping
model) has an influence on the blast wave. It is known that for an acceptable peak
overpressure during mapping to be obtained, the mesh variation ratio should be kept
smaller than 10 [37]. Meanwhile, previous studies [39] showed that a numerical
simulation with mesh size of 5 mm in the 2D FE model achieves sufficient accuracy
and efficiency. Based on the reason above, a mesh size of 5 mm is chosen as mesh
size in both the 3D FE model and 2D FE model. As shown in Fig. 2 (a), air and TNT
explosive are directly modelled by solid elements for 3D analyses. The keyword
*INITIAL DETONATION defines the exact location of the explosive detonation. The
boundary condition of the Eulerian mesh is set as an outflow boundary. Furthermore,
2D square shell elements (4-noded fully integrated quadrilateral shell elements) at the
mapping step is shown in Fig. 2 (b). The rigid boundary is set to record reflected blast
pressure histories, from which peak reflected overpressure and peak reflected impulse

can be determined. The other two boundaries are set as outflow boundaries.

Outflow boundary

Explosive element

(a) 3D FE model (b) Mapping 2D FE model
Fig. 2 FE model of explosive and air

2.2 Material model
The constitutive model *MAT HIGH EXPLSOIVE BURN is utilized to model the
mechanical properties of TNT. The equation of state *EOS_JWL defines the pressure

as a function of the relative volume and initial energy per initial volume, such that

= (1-—) o (1-—) C2)em (1)

1 2

where 4, B, 1, 5,and are constants; is pressure; is the relative volume;
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o is the initial internal energy; and is the detonation velocity. The material

parameter of TNT is listed in Table 1 [40].

Table 1 TNT material parameter [40]

C-J
Density Detonation 0
. pressure APa) B(Pa) R, R
(kg/m®)  velocity (m/s) (J/m?)
(Pa)
1630 6930 2.1el0 3.74e11  3.74e9 4.15 09 035 6e9

The constitutive model *MAT NULL is used to model the mechanical properties
of air. The polynomial EOS is linear in internal energy £ per unit initial volume. The

pressure used is given by:
— 2 3 2
= o+t 1 * 2t 3 +( 4+ sut ) 2)
where o, 1, 2, 3, 4, 5 and ¢ are constants and = ——1 with — the ratio
0 0

of current density to initial density. For gases which the gamma law equation of state

applies, such as air, the above equation reduces to = (y— 1)—  with y the ratio
0
of specific heats. The parameter of air is listed in Table 2, after Ref. [40].
Table 2 Air material parameter [40]

Density (kg/m?) Initial energy (J/m®) Co—Cs Cs Cs Cs
1.225 2.5e5 0 0.4 0.4 0

2.3 Verification of numerical simulation

Wau et al. [41] conducted the blast tests on a 2000x2000%100 mm reinforced concrete
slab to study the spatial and temporal distributions of reflected overpressure and
impulse as a function of charge shape and orientation. The charges were suspended
from a braced pipe frame as shown in Fig. 3 (a). Among those blast tests, three were
performed using spherical charges, as listed in Table.3. Typical spherical charges are
shown in Fig. 3 (b). The explosive was Composition B (a 60/40 RDX/TNT mixture
with 1% added paraffin wax, detonation velocity of approximately 8,050 m/sec) that

required a booster charge for detonation. The booster was located at the centre of the
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charge. The UFC-3-340-02 design manual [2] computations assume a spherical charge
and an equivalent mass of TNT equivalent (1.09 kg TNT per 1 kg of Composition B)

to calculate scaled distance.

(a) Test instrument (b) 2.5 kg spherical charge
Fig. 3 Blast test program [41]

Table.3 Blast test scheme of spherical charge [41]

Standoff ) Equivalent .
Test i Scaled Explosive Radius of
distance . Charge shape TNT mass
No. distance(m/kg'?)  mass (kg) TNT (mm)
(m) (kg)
14 2 3.12 0.24 Spherical charge 0.261 0.034
17 2 1.98 0.95 Spherical charge 1.036 0.053
19 2 1.43 2.5 Spherical charge 2.725 0.074

In order to verify the accuracy of ALE modelling approach, the numerical
calculation results are validated using data recorded from the testing program above.
Fig. 4 presents the predicted and measured reflected overpressure histories for test
No.14, 17 and 19. It is observed that the magnitude and shape of time histories of the

simulation results are in good agreement with those from the experiments [41].
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Fig. 4 Reflected overpressure time histories

Table 4 lists the comparison of blast parameter in the test and numerical
simulation. In test No.14, the difference of time of positive phase duration, reflected
peak overpressure and reflected impulse are 4.6%, 14.8% and 12.3%, respectively. In
test No.17, the difference of time of positive phase duration, reflected peak
overpressure and reflected impulse are 15.9%, 22.2% and 2.1%, respectively. In test
No.19, the difference of time of positive phase duration, reflected peak overpressure
and reflected impulse are 22.7%, 58.0% and 4.3%, respectively. Peak overpressure
deviation in No.19 is higher compared with other parameter. In fact, the scaled
distance in No.19 is 1.43 kg/m?, peak overpressure in the numerical simulation is 1.44
MPa, meanwhile, it is found from the report of UFC standard that the peak
overpressure of TNT in free air is about 1.6 MPa. Numerical result coincide to UFC

result well which demonstrates the accuracy of FE model parameters more
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advantageously although there is a large difference between numerical result and the
blast experiment of Composition B. Whilst there are minor differences between other
simulation and experimental results, it can be said that the model effectively predicts
measured values of peak reflected overpressure, positive phase duration and reflected

impulse and can be used with confidence to study the effects of uncertainties on blast

load parameters.

Table 4 Comparison of blast load parameters

Blast load parameters Numerical result Experimental result Error
Positive during time in No.14/ms 1.57 1.65 4.6%
Peak overpressure in No.14 /Mpa 0.16 0.19 14.8%

Impulse in No.14/(Mpa-ms) 0.09 0.10 12.3%
Positive during time in No.17/ms 1.79 1.55 15.9%
Peak overpressure in No.17 /Mpa 0.49 0.40 22.2%

Impulse in No.17/(Mpa-ms) 0.25 0.25 2.1%
Positive during time in No.19/ms 1.84 1.50 22.7%
Peak overpressure in No.19 /Mpa 1.44 0.92 58.0%

Impulse in No.19/(Mpa-ms) 0.55 0.52 4.3%

3 PSL-Blast: Probabilistic statistic model of near-field blast loading

In order to consider the influence of scaled distance on the blast wave induced by
fireball surface instabilities and stochastic detonator location, the variable of scaled
distance Z is determined by fixing the TNT weight /" and changing standoff distance
R. Table 5 lists the detailed configuration of numerical simulation in the probabilistic

statistic model of near-field blast loading. The number of 1-kg spherical explosive

elements, of Smm side length, is 4896.
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Table 5 Parameter of spherical TNT

Standoff ) Scaled Radius of )
) TNT weight . . Number of explosive
distance R distance Z spherical TNT
W (kg) elements

(m) (m/kg') (m)

0.4 1.00 0.4 0.053 4896

0.6 1.00 0.6 0.053 4896

0.8 1.00 0.8 0.053 4896

1.0 1.00 1.0 0.053 4896

1.2 1.00 1.2 0.053 4896

2.0 1.00 2.0 0.053 4896

3.0 1.00 3.0 0.053 4896

3.1 Blast load parameters

In order to study the influence of fireball surface instability and detonator location on
blast loads, it is necessary to first define the blast load parameters of interest. Fig. 5
shows a typical reflected overpressure time history at some arbitrary distance from a
chemical explosive. It can be seen that overpressure near-instantaneously rises from
atmospheric pressure, Po, to the overpressure, Pr, and subsequently decreasing
exponentially to atmospheric pressure Po, over an interval known as the positive
duration time #. This period is considered to be critical for quantification of structural
response and damage from an explosion, particularly in the extreme near-field.
Afterwards, as the shock wave continues to propagate, the overpressure drops to
negative pressure and then gradually returns to atmospheric pressure. Whilst the
negative phase is critical for low-mass elements in the far-field [42], its contribution
to net impulse in the near-field is negligible. Therefore, in this section, the peak
overpressure and positive phase impulse of blast loads are chosen as blast load
parameters to analyse the influence law of fireball surface instability and stochastic

detonator location on blast loads.
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Fig. 5 Typical reflected overpressure time histories

3.2 Variability of blast load parameters induced by fireball surface instability

In order to characterise irregular features of fireball surface hydrodynamic instabilities,
numerical simulations were performed with stochastic charge shape. In FE model,
charge element is modelled and controlled by the two keywords in the LSDYNA,
including MAT HIGH EXPLOSIVE BURN and EOS JWL. The important parameters
for the charge are density, mass and detonation energy, which can mainly effect
variation in the blast load, like the peak overpressure and impulse. It is known that
density and mass are closely related to charge weight, and the unit of detonation
energy is J/m? or J/kg which is similarly related to charge weight. Therefore, in order
to control the variable and investigated fireball instability effect under same scaled
distance, it need to be guaranteed that the volume and weight of charge need to be
kept constant to keep the density, mass and detonation energy constant. Additionally,
the stochastic spatial distribution of blast wave from the stochastic oscillations at the
edge of the fireball or fireball surface instability is not able to be described even if
these parameters are randomized. Considering above reason, the stochastic charge
shape with the same charge weight and charge volume is considered to describe the

fireball instability and subsequent blast load parameter.
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This section first proposes a new algorithm for generating charge elements with
stochastic shape. The charge is described to occupy a single volume in the domain,
without an internal ‘hole’. The algorithm is therefore designed in order to prevent
such a hole from appearing, and is given by the following steps,

(a) Randomly choose a boundary location and add to the ‘pool’ of existing
boundaries;

(b) Calculate the element bordered on the boundary and take away the unfilled
elements among them;

(¢) Randomly chose and fill in one of the elements above;

(d) After filling in the specified element in Step (c), determine whether all of
elements bordered on the specified element in Step (c) are filled in. If not, the
coordinate of the element is added in the boundary pool.

(e) Determine whether all of the bordered elements in Step (d) are filled, if all of
elements adjacent to the bordered element are filled and the bordered element is
in the boundary pool, the bordered element is removed from the boundary pool.

(f) Loop from Step (a) to Step (e) until the designated area and volume is generated.
Fig. 6 shows the 2D and 3D explosive with stochastic charge shape, with charge

element numbers of 2000 and 4896 respectively, as defined through the

aforementioned algorithm. It is observed that there exists no ‘hole’ in the internal area
of the generated area and the proposed algorithm guarantees the stochastic

characteristic of charge shape.
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(a) 2D explosive (element number=2000) (b) 3D explosive (element number=4896)

Fig. 6 Explosive element with the random charge shape

Fig. 7 shows the pressure contour with fireball surface instability characterized

13 As shown

by the stochastic charge shape under the scaled distance of Z =1.0 m/kg
in Fig. 7 (c), it is observed from shock wave shape that the spatial distribution of
shock wave with the stochastic charge shape is non-uniform around the charge, which
appears visually similar to fireball surface instabilities observed in high speed video
footage of near-field explosions [26]. The raw high-speed video still or the edge
detection image only show that the edge of the fireball is a stochastic process.
Whether it is the stochastic oscillation at the edge of the fireball or fireball surface
instability, they finally result in the unstable shape of blast wave. FE analysis itself is
not be able to reproduce the unstable shape of blast wave induced stochastic
oscillations at the edge of the fireball. This paper proposes a stochastic algorithm and
try to reproduce unstable blast wave shape induced by the stochastic oscillation at the
edge of the fireball or fireball surface instability. Observed from Figure 7(c), this
stochastic algorithm can well reflect the stochastic blast wave shape induced by the
stochastic oscillation at the edge of the fireball or fireball surface instability.
Therefore, this approach can effectively emulate the stochastic features of a
shock wave induced by fireball surface instabilities. In addition, the pressure fringe

plot in Fig. 7 (c) shows that a stochastic charge shape will not only affect the spatial

distribution of a blast but will also influence the distribution of blast load parameters,
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Fig. 7 Pressure contour with fireball surface instability (Z=1.0 m/kg'?)

In order to analyse the uncertainty of blast loads induced by fireball surface
instability, a dimensionless fireball shape coefficient is proposed, which is defined by
the ratio of blast load parameters induced by the instable fireball surface calculated
from a numerical model with stochastic charge shape to that induced by the ideal
spherical fireball surface calculated from a numerical model with ideal spherical

charge shape. The detailed expression is described as follows,

instable fireball surface 3)

Fireball shape coefficient ( csg and csg) =

ideal spherical fireball surface

where, g and (g represent the ratio of peak overpressure and positive duration
impulse induced by the fireball surface instability to that induced by the ideal
spherical shock wave, respectively.

Fig. 8 shows the statistics and relationship for and against scaled

distance Z. It is observed that the envelope of Pcse and Icse becomes narrower with
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Fig. 9 Probability density of charge shape coefficient with different scaled distance (Number=600)

Commonly used hypothesis testing methods include S-W and K-S tests. However,
it should be noted that when the sample size is small, these tests are not sufficiently
sensitive, and when the sample size is large, the tests are too sensitive. Therefore, due
to the large number of samples in this paper, it is necessary to combine results from
the histograms with a Q-Q graph to more robustly analyse the distribution of data. The
Q-Q graph reflects the coincidence degree between the actual distribution of variables
and the theoretical distribution, and can be used to check whether the data obey a
certain distribution type. If the data follows a certain distribution, the data points
should coincide substantially with the theoretical line. Fig. 10 shows the Q-Q graph of
charge shape coefficient based on standard normal samples. It can be seen that the
data points on the Q-Q graph are distributed on a straight line, which effectively
coincides with the theoretical line, indicating that the data approximately follows a

normal distribution.
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The variability of Pcse and Icsk is fitted as a function of scaled distance, Z, as
shown in Fig. 11 and Fig. 12. It is observed that the mean of Pcse and Icsk is smaller
than, but tends towards 1.0, which suggests that the net effect of a stochastic charge
shape is a slight reduction in blast loading. It is observed from Fig. 12 that there exists
a seemingly greater variability at lower scaled distance Z for the peak overpressure
and impulse, which is in agreement with common observations of a decrease in

variability of blast loading as the situation approaches the far-field. The lines of best

fit for Pcsg and Icsg are listed in Table 6.
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Table 6 Distribution parameter of fireball shape coefficient

Parameter Mean Standard deviation Distribution
15121 — 23494 x +25054 x 2 —
0.8372 x 3, 7<1.2 m/kg'? (R?*=96.5%
el ) 0.0979 + 0.4066 x e~22610%
Pcse 2 Normal
0.9459 — 0.6081 x e 06281, Z>1.2 m/kg'"? (R*=98.6%)
(R?=99.9%)
—0.7563 + 4.6839 x
0.9349 — 22799 x 10~ x ~~omow, 7<]2 84547 x 2+63372x *-—
17116 x 4 7<1.2 m/kg'?
m/kg'? (R7=97.1%)
Icse (R?=99.9%) Normal
0.3981 +04485x —0.0921x 2,7>1.2 (0978 — 0.0390 x ¢ 06755,
m/kg'? (R?=99.3%
gl °) Z>1.2 m/kg'® (R™=99.9%)
443 3.3 Variability of blast load parameters induced by stochastic detonator location
444  In order to investigate the effect of stochastic detonator location on the blast wave, an
445  additional numerical study was undertaken, whereby the 3D coordinates of the
446  detonator location were randomly chosen. In the case of detonator locations lying
447  outside of the explosive charge, these were rejected and a new set of coordinates were
448  selected.
449 Fig. 13 shows the FE model of 1 kg spherical charge with stochastic detonator
450  location. The yellow pentagram represents the detonation point location in the internal
451  spherical charge. The distance between detonator location and charge centre is defined
452 as D=sqrt[x"2 + y"*2 + z"2], and is indicated in each sub-figure.
D0.0323 m D-0.0136 m D-0.0366 m D-0.0440 m D0.0477 m
D-0.0450 m D=0.0360 m D-0.0518m D-0,0260 m [D—-0.0503 m
D-0.0404 m D-0.0320 m D-0.0492 m D-0.0478 m D-0.0389 m
453 D=0.0403 m £=0.0392 m =0.0384 m D=0.046 m D=0.0422m
454 Fig. 13 1 kg TNT sphere with stochastic detonator location
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As previously, in order to analyse the uncertainty of near-field blast loads
induced by the stochastic detonator location, a dimensionless detonator location
coefficient is proposed. This is given by the ratio of the blast load parameters induced
by the stochastic detonator location to that induced by the centre-initiated detonation.

The detailed expression is given as,

Detonator location coefficient ( p g and pg) = 4)

where, Ppre and Ipe represents the ratio of peak overpressure and impulse induced by
the stochastic detonator location to that induced by the centre-initiated detonation,
respectively.

Fig. 14 shows the statistics and relationship of Pprz and Iprr against scaled
distance. It is observed that the envelope of Pp.r becomes narrower with increasing
scaled distance, which again supports direct observation of blast parameter variability,
and is consistent with previous findings in this article. Whilst the relationship between
the envelope of Ip.r and scaled distance is unclear, both parameters are centred around
a mean value of approximately 1.0, suggesting that the net effect on global blast
loading is negligible. Considering the results locally, however, when the scaled
distance is 0.4 m/kg'?, the peak overpressure induced by the stochastic detonator
location is up to 1.4 times higher than that induced by the centre-initiated detonation,
and the impulse induced by the stochastic detonator location is up to 1.2 times higher
than that induced by the centre-initiated detonation. Compared to the difference
induced by the fireball surface instability, the difference induced by the detonator

location is clearly smaller.
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483 Fig. 15 shows the approximate distribution of Pp.r and Ip.e, which all appear to

484  be approximately uniformly distributed. The uniform distribution is determined
485  according to two parameters, minimum value a and maximum value b, given as U (a,
486 b).
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502 Fig. 15 Probability density of stochastic detonator location (Number=1500)
503
504 Fig. 16 shows the Q-Q graph of the stochastic detonator coefficient based on

505  uniformly distributed samples. It can be seen that the data points on the Q-Q diagram
506  are distributed on a straight line, which coincides with the theoretical line, indicating
507 that it approximately follows the uniform distribution.
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Fig. 16 Q-Q plot of detonator location coefficient

The variability of PpLe and /IpLe is described and fitted as a function of scaled
distance, Z, as shown in Fig. 17 and Fig. 18. It is observed that the parameters a and b
can be approximated by two segmented curves. When the scaled distance is less than
1.2 m/kg'3, the parameters a and b are best fitted by a polynomial for both pressure
and impulse; whereas when the scaled distance is more than 1.2 m/kg'3, the
parameters a and b are best fitted by the polynomial for pressure and an exponential
function for impulse. The detailed fitting expressions are listed in Table 7. Firstly, a
and b value depend on the statistic of data calculated by much numerical simulation.
The data is real and reliable. Furthermore, it can be seen from envelope of Figure 14
that blast variability induced by the stochastic detonator location is relatively small. It
can be found that there is a very small difference of value a from the range 1.0 to 1.3
in the y-axis in Figure 18 (a), and the same goes for value b from the range 0.76 to

0.90 although a and b are lowest under the scaled distance of 1.2. It is possible that
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4 Reliability design of near-field blast loads based on PSL-Blast

Reliability level and safety factor are defined with reference to Fig. 19. The safety
factor is labelled as A, which is consistent with the terminology in the UFC standard.
The nominal load obtained from UFC standard is multiplied by the safety factor 4 to
ensure that the actual load is equal to the value of blast load with a certain reliability
level. For example, a safety factor greater than 1 increases nominal loads resulting in

more conservative structural designs.

A Reliability level=1-exceedance probability

'
L]
.

Probability density

Exceedance probability

Safety factor A with different reliability level

Fig. 19 Reliability-based load factor for a reliability level

4.1 Computational procedure for PSL-Blast

Table 6 and Table 7 list the distribution parameters for the probabilistic model of
near-field blast loads. The critical input parameter in PSL-Blast includes the fireball
surface instability and stochastic detonator location. This paper focuses on the
variability from the internal part of charge more dedicatedly, especially close-in blast.
The probabilistic model of fireball surface instability and internal detonator location is
considered and established from the aspect of the blast mechanism for generating
blast load uncertainty because some high speed videos show the stochastic oscillations
at the edge of the fireball or fireball surface instability. Other variables such as
moisture content, wind speed, and wind direction might impact the fireball surface

instability. However, they were not included in this study due to numerical modeling
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limitations.

A significant issue regarding model error relates to the possibility of a correlation
between variables. The estimation of correlation coefficients shows little or no
correlation. However, a moderate relationship is observed between fireball surface
instability and stochastic detonator location. It is clear that there is reasonable
statistical independence between each model error data, as such, blast load variability
of fireball surface instability and stochastic detonator location may be assumed as
statistically independent. If more appropriate comprehensive data sets are available
then this can be used to update the calculations herein. What is important herein is the
methodology of characterizing various sources of variability and uncertainty in the
development of a probabilistic blast loading model. Furthermore, Monte-Carlo
simulation is used as the computational tool. Each simulation of PSL-Blast run
consists of the following computational steps:

(a) Randomly generate variables;

(b) Infer explosive mass (/) and stand-off (R);

(c) Calculate scaled distance (2);

(d) Calculate peak overpressure Pmoder and impulse Inoder from blast loading model [2],

as shown in Fig. 20;

(e) Correct Puodel and Inoder With the fireball shape coefficient Pcse and Icsg;
(f) Correct Pmoder and Inode With the detonator location coefficient Pprr and Ipik;

After many simulations the probability distributions of P, and /. can be inferred.

100000

3 Reflected peak overpressure P (MPa)
10000 fp "~

~. — - = Reflected impulse I /w"* (Pas/kg'®)

1000

100

0.1

0.01 |

1E-3 1 —
0.1 1 10
Scaled distance Z (m/kg'?)

Fig. 20 Blast load parameters of spherical TNT in free air explosion [2]



579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599
600

4.2 Probabilistic analysis of blast parameter from the experiment

In order to verify the applicability of the probabilistic statistical model of blast loads,
probabilistic analysis of blast load parameters from blast test of top-end-initiated
spherical TNT and ConWep is carried out to estimate the exceedance probability of
peak overpressure and impulse.

4.2.1 Blast test of top-end-initiated spherical TNT [6]

The blast load parameters measured by Shi et al. [6] were utilized to analyse the
exceedance probability through the computational procedure of PSL-Blast. Fig. 21
shows the overall setup of the blast test. A 1500mmx1200mmx*25mm steel plate was
tightly bolted to a firm steel frame and five reflected pressure sensors were fixed on
the steel plate. A steel sleeve was screwed into the pre-drilled hole of the steel plate
into which the sensor was embedded appropriately. The pressure-receiving faces of
the sensors and the steel plate were strictly coplanar to make sure that accurate
measurement results were obtained. The charge was located by adjusting the length of
the string bag and the hook. Before detonating, the location of the charge was checked
to ensure it was within 2 mm tolerance. Testing point P2 is directly below the
explosive, i.e., angle of incidence 8 =0 . The distance between the explosive center

and the steel plate was 0.8m.

A .
Fig. 21 Blast test of top-end-initiated spherical TNT [6]
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The detailed test scheme and measured results are listed in Table 8. There are
some degrees of scatter in peak overpressure and impulse under the same blast
condition. Additionally, peak overpressure and impulse from blast tests of
top-end-initiated spherical TNT are slightly larger than that of UFC design manual,
which demonstrates that detonator location has a slight influence on the blast load

parameters under the near-field explosion.

Table 8 Summary of experimental data from Shi et al. [6]

Test Scaled Equivalent Experimental result UFC design manual
No. distance(m/kg'?) TNT mass P,(MPa)  I(MPa'ms) P,(MPa) [{(MPa-ms)
(kg)
S1 0.8 1.0 13.66 0.84 9.40 0.75
S2 0.8 1.0 10.53 0.66 9.40 0.75
S3 0.8 1.0 11.36 0.68 9.40 0.75

Fig. 22 and Fig. 23 show the probability distributions of P, and Z. (for 500,000
simulations) under three test conditions of S1, S2 and S3, respectively. It is observed
that the probability that the explosive load exceeds the experimental value under three
test conditions of S1, S2 and S3 is 1%, 5% and 2% for P, respectively. The
probability that the explosive load exceeds the experimental value under the three test
conditions of S1, S2 and S3 is 6%, 57% and 49% for I, respectively. It is found from
the test data and probability analysis that the exceedance probabilities of peak
overpressure and impulse under the three same working conditions are quite different,

indicating that there is a large uncertainty under near field blast loads.
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4.2.2 Predictive computer code ConWep
The blast load parameters calculated by ConWep [3] are used to analyze the
exceedance probability of P, and /. under PSL-Blast. Table 9 lists the blast load

parameters under two chosen scaled distances.

Table 9 Summary of ConWep [3]

Test Scaled Equivalent ConWep [3] UFC [2]
No. distance(m/kg'?) TNT mass P,(MPa) [I{(MPams) P,(MPa) I{(MPams)
(kg)
0.93 10 6.20 1.33 6.18 1.32
2 0.46 10 35.78 3.49 36.52 3.55

Fig. 24 and Fig. 25 show the probability distributions of P: and /: (for 500,000
simulations) under two scaled distances 0.93 m/kg'? and 0.46 m/kg!”, respectively. It
is observed that the distributions of blast load parameters of P: and /; are normally
distributed. Under the scaled distance Z=0.93 m/kg'® and Z=0.46 m/kg'?, the
exceedance probabilities of P are 13% and 17%, respectively; the exceedance
probabilities of I are 32% and 36%, respectively. It is found from the test data and
probability analysis that the exceedance probability of peak overpressure and impulse
calculated by ConWep under near field blast loads are high, and the values are not
conservative, so they cannot meet values of the peak overpressure and impulse in the
explosion scene with the higher requirements. Therefore, it may be necessary to

propose blast load safety factors of blast loads to satisfy the uncertainty of near-field
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4.3 Reliability-based safety factor of near-field blast loads

The probability analysis of field blast test in Section 4.2 shows that the near field blast
loads are highly uncertain, and the blast loads predicted by ConWep are conservative,
which is also suggested in recent experimental work [43]. In order to consider values
of blast loads in different blast scenarios, UFC design manual [2] suggests a 20%
increase of the charge’s TNT equivalent weight in the blast resistance design.
However, previous studies [44-45] argue that there seems to be little evidence to
support the 20% mass-increase safety factor, this may not be the most appropriate way
to deal with uncertainty and blast load variability. Fig. 26 shows the probability
distributions of peak overpressure P, and impulse /- obtained from PSL-Blast for

10-kg TNT at ranges of 1.0, 1.2, 1.6, 2.0 and 5.0 m. It is observed that reliability level
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Tables 10 and Tables 11 lists the reliability levels of design loads calculated in
accordance with UFC design manual [2] that includes the 20% mass-increase safety
factor for structural design. It is observed that 20% mass-increase safety factor results
in reliability levels of 0.81-0.99 and 0.80—0.99 for peak overpressure and impulse,
respectively. The reliability level of the design load decreases gradually with
decreasing scaled distance. Although the probability that the actual load is greater than
the design load is slightly less than the probability that the actual load is greater than
the nominal load, the design load considering 20% mass-increase safety factor in the
UFC standard does not have a very high level of reliability under near field blast loads
as expected. It is noted that this is only the variability of a single blast scenario where
W and R are known. If the full spectrum of terrorist threats for a target structure were
considered where, for example, ' may range from several kilograms to several tonnes,
and R from several metres to hundreds of metres, then the variability of blast loading
will be significantly greater than the values reported herein. Therefore, before any
definitive conclusions can be made about the conservatism (or non-conservatism) of
ConWep [3] and other design tools for blast loads, more research is necessary to be
conducted to calculate the probability of blast loads in threat scenarios with a larger

range of W and R.
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Table 10 Reliability level of peak overpressure considering 20% mass-increase safety factor

Explosive Scaled ) Design load including S
Range . Nominal . Reliability
mass of TNT distance 20% mass-increase
(m) load (MPa) level
(kg) (m/kg'?) safety factor (MPa)
10 1.0 0.46 36.5 40.14 0.81
10 1.2 0.56 23.40 27.81 0.93
10 1.6 0.74 11.6 13.42 0.96
10 2.0 0.93 6.18 7.46 0.98
10 5.0 2.32 0.42 0.61 0.99

Table 11 Reliability level of impulse considering 20% mass-increase safety factor

. . Design load including
Explosive Scaled Nominal

Range ] 20% mass-increase S
mass of TNT distance load Reliability level
(m) safety factor
(kg) (m/kg'?)  (Mpa-ms)
(Mpa-'ms)
10 1.0 0.46 3.55 4.03 0.90
10 1.2 0.56 2.67 3.15 0.92
10 1.6 0.74 1.81 2.07 0.94
10 2.0 0.93 1.32 1.54 0.97
10 5.0 2.32 0.43 0.49 0.91

The aforementioned research shows that the reliability level of the design load
considering the 20% mass-increase safety factor in the UFC standard is relatively low
under the near field blast loads. In order to satisfy the value of blast loads in threat
scenes with different reliability levels, the reliability-based safety factor of blast loads
is proposed. Some decision makers may be more interested in the 0.50 reliability
(mean) blast load given that the threat scenario may already be a conservative (or
worst-case) estimate of explosive mass or range. The military may be more interested
in ensuring that there is 95% certainty of damaging a military target and so might be
interested in a lower reliability level (such as 0.05 or 0.25 of blast load). Table 12 and
Table 13 show the reliability-based safety factors of peak overpressure and impulse
from PSL-Blast under different scaled distances. It is observed that there is a 0.9
reliability level of blast loads with safety factors close to 1.0. To achieve a higher
reliability level, a higher safety factor is required. As shown in Table 12 and Table 13,

the safety factor of peak overpressure and impulse in the case of 0.05 reliability level
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can be as low as 0.44 and 0.65, respectively; the safety factor of peak overpressure
and impulse in the case of 0.99 reliability level can be as high as 1.49 and 1.34,
respectively. Meanwhile, an increase in scaled distance results in safety factors which
are relatively insensitive to reliability level, reflective of the observation that larger
scaled distances exhibit smaller variability of blast loads. According to the safety
factors of blast loads given in Table 12 and Table 13, designers can select certain peak
overpressure and impulse values based on a certain reliability level, which provides an

evidenced and risk-based approach to the specification of blast loading.

Table 12 Reliability-based safety factors of peak overpressure

Reliability 7=0.5 7Z=1.0 Z=1.5 7=2.0 7=2.5 7=3.0

level A (m/kg"?) (m/kg"?) (m/kg"?) (m/kg"?) (m/kg"?) (m/kg"?)
0.05 0.44 0.56 0.66 0.71 0.73 0.74
0.25 0.66 0.70 0.79 0.83 0.85 0.86
0.50 0.82 0.81 0.89 0.93 0.94 0.94
0.90 1.00 0.93 1.00 1.03 1.04 1.04
0.95 1.29 1.11 1.16 1.18 1.19 1.17
0.99 1.49 1.24 1.27 1.29 1.28 1.26

Table 13 Reliability-based safety factors of impulse

Reliability 7=0.5 Z=1.0 Z=1.5 7=2.0 7=2.5 7=3.0
level A (m/kg'3) (m/kg'3) (m/kg'?) (m/kg'?) (m/kg'®)  (m/kg'®)
0.05 0.65 0.69 0.63 0.73 0.75 0.71
0.25 0.81 0.79 0.73 0.84 0.87 0.81
0.50 0.92 0.87 0.81 0.93 0.95 0.90
0.90 1.04 0.95 0.90 1.02 1.05 0.99
0.95 1.22 1.07 1.02 1.15 1.18 1.12
0.99 1.34 1.15 1.10 1.24 1.27 1.21

5. Summary and conclusions

In this paper, a finite element model of air and TNT is established and validated
against existing experimental data, in order to investigate the characteristics of blast
waves generated by non-standard charges, namely stochastic shapes and detonator
location. The numerical study was designed to emulate hydrodynamic surface
instabilities observed in experimental testing of near-field explosions, and the

influence rule of stochastic charge shape and detonator location is statistically
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analysed between scaled distances of 0.4 to 3.0 m/kg!”. Through the established

computational procedure, probabilistic analysis of blast load parameters from

experiment tests is carried out. Finally, the reliability level of design load from UFC
design manual is estimated and the safety factor of blast loads with different reliability
levels for PSL-Blast is suggested.

The main findings are as follows:

(1) A stochastic alogrithm of finite element is proposed to provide an innovative
method for the uncertainty analysis of blast load in the numerical simulation.

(2) The peak overpressure and impulse of blast loads induced by fireball surface
instability are normally distributed.

(3) The peak overpressure and impulse of blast loads induced by stochastic detonator
location are uniformly distributed.

(4) The reliability level of the peak overpressure and impulse of blast loads
considering 20% mass-increase safety factor in the UFC design manual gradually
decreases with a decrease in scaled distance, and hence reveal a lower reliability
of near-field blast load parameters.

(5) The reliability level of peak overpressure and impulse with safety factor of blast
loads close to 1.0 is approximately 0.90. A decrease in scaled distance intensifies
the uncertainty of blast, and the interdependency between safety factor and
reliability level increases.
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