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Abstract | The suite of techniques encompassing optical super-resolution microscopy (SRM) can
facilitate detailed visualization of biological structures and biochemical transformations at
unprecedented levels of resolution and contrast; however, they depend on imaging probes with
specific biophysical and photophysical properties. In this context, metal complexes with tunable
photo-excited states and stability towards photobleaching are promising candidates for advanced
imaging techniques. This review illustrates how, by selecting appropriate optical properties and
luminescence responses, metal complexes can be utilized as probes for a range of SRM techniques
including multimodal imaging to study subcellular architecture and dynamics with nanoscale
resolution. Limitations and challenges of the existing molecular probes are also discussed. By
highlighting these recent innovations and providing suggestions for future directions, this review
further underscores the importance of optical probes in pushing the boundaries of SR microscopy
and advancing our understanding of complex biological systems.

Introduction

Confocal laser scanning fluorescence microscopy (CLSM) is one of the most important tools for
real-time visualizing of cellular structures and intracellular metabolic processes in live cells. This
non-invasive technique has significantly contributed to the developments of cell and chemical
biology over the last few decades. 12 Yet, the spatial resolution of fluorescence microscopy is
restricted by the Abbe diffraction limit (Riatera = A/2NA, where R is spatial resolution A is the
average wavelength of illumination in the excitation wavelength band in fluorescence, NA is the
numerical aperture of the optical system). 2 This implies that for a typical confocal fluorescence
microscope operating in the visible spectrum, the smallest object that can be resolved by optical
microscopy is limited to = 200 nm. ® Furthermore, for 3D images, the Rayleigh criterion restricts
resolutions along the optical axis to Raxial ® A/2NA2.°

To address these issues, several approaches to SRM have been developed that achieve sub-
diffraction-limit resolution both in the lateral and axial direction, improving the resolution
capabilities of fluorescence imaging in the nanoscale regime. These techniques can provide multi-
colour, multidimensional, and dynamic information on biomolecules within living specimens at
spatial resolutions < 10 nm. >°
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Box 1 General Considerations for the Choice of the Luminophore in SRM:

The nature of the luminophores used for SRM is crucial in achieving desired outcomes. For
example, the 5-fold higher spatial resolution accomplished by stimulated emission depletion
(STED) requires a luminophore that can survive at least 25 on-off switching cycles under
irradiation with a depletion intensity that is approximately 25 times higher than the
characteristic saturation intensity of a luminophore in conventional CLSM use.®? Higher
switching cycles reduce the scanning step size and enhance Nyquist resolution. Luminophores
that are resistant to photobleaching permit higher depletion intensities promoting better
spatial resolution and extended observation times.!* Furthermore, the stimulated emission
cross-section of a luminophore, its intersystem crossing rate, and the cross-section of light-
induced transition to a non-emissive state are important parameters for the off-switching rate,
which is crucial to STED, ground state depletion (GSD), reversible saturable optical transition
(RESOLFT) and structured illumination microscopic (SIM) approaches.** Luminophores that can
achieve better Nyquist resolution in single-molecule localization microscopic (SMLM)
techniques require lower fluorescence on-off duty cycle values. This helps to minimize overlap
between stochastically activated luminophores, promoting high localization densities and
improved resolution. > Thus, although resistance towards photobleaching and off-switching
transition rates are crucial parameters for most super-resolution techniques, different
techniques have varying requirements in terms of the balance of non-emissive states and off-
switching transition properties. Consequently, a rationalized choice of luminophores must be
made for each technique.'’?° In fact, as new super-resolution microscopy technologies become
available, one of the crucial limiting factors for exploring their full live-cell imaging is the
availability of appropriate luminescent probes. 12 |n this context, synthetic organic molecules
are typically a popular choice owing to their facile functionalization, smaller sizes, and the
perceived appropriate lipophilicity balance for cell membrane permeability. 1%?°3* However,
such organic fluorophores typically suffer from issues around narrow Stokes shifts, short
luminescence lifetimes, shorter wavelength luminescence maximum, and photobleaching/
photodegradation. ¥ A range of purpose-built semiconductor quantum dots (QDs), up-
conversion nanocrystals (UCNPs), polymer dots (PDs), and graphene QDs have also been
explored for use as an imaging probe. Despite having favorable optical properties for imaging
applications, their uncertain surface biochemistry and systemic toxicity towards human
physiology have limited their use in real-time applications.®® The typical stability of transition
metal complexes towards photobleaching, along with their tunable optical properties are
ideally suited to address these issues. Despite such advantages, their usage in SRM is still in its
infancy. Nevertheless, with the expanding options for SRM techniques, the use of transition
metal complexes in this area is rapidly developing and, as this review illustrates, in many ways
they are ideally suited for such applications.

A common consideration for any probe used in live cell microscopy or SRM techniques is its
toxicity, with phototoxicity being particularly relevant. By definition, the excited states of
molecules are more energetic and hence more reactive than their ground state. Commonly,
photobleaching of a probe is a cause of phototoxicity due to photoactivation of reactive oxygen




species, ROS.37* This typically occurs through two possible mechanisms; in Type | reactions,
ROS such as superoxide, peroxides, and hydroxyl radicals are generated through direct redox
reactions with a photoexcited probe. In a Type Il process, the triplet state of the probe
generates the ROS singlet oxygen through an energy transfer process. “>*! Such processes are
exploited in Photodynamic therapy, PDT. However, for PDT applications a higher-power laser
source and a photosensitizer with a high-energy excited state that can efficiently generate ROS
are selected. ***3 In optical bio-imaging, Type | and |l processes are minimized by a combination
of less intense laser sources and lowered probe concentrations. However, these conditions
require brightly emissive probes with relatively low emission energies which will decrease the
efficiency of ROS generation.** Probes with lowered excitation energies offers a second
advantage as biological tissue is more transparent to deep red and near-infrared wavelengths.

Box 2 | The potential of polypyridyl d®° transition metal complexes

The potential of metal complexes to address the issues discussed in Box 1 are exemplified by
hexacoordinated second/third-row transition metal complexes having D3 symmetry and nd®
electronic configuration — see Fig 1 for examples of structures discussed in this report. These
metal ions form low-spin diamagnetic complexes with coordinating ligands like NAN (2,2’-
bipyridyl / 1,10-phenanthroline and derivatives), NAC (2-phenyl pyridine) that are generally
kinetically inert in their ground and photoexcited states. Indeed, among such complexes, Ru(ll)-
polypyridine (Ru(NAN)3?* and cyclometalated Ir(lll) complexes (Ir(NAC)2(NAN)* have received
significant attention across a range of applications that exploit these distinctive and rich
photophysical properties.**>2 Typically, such complexes are stable towards substitution
reactions in aqueous buffer medium and also in biofluids. Their high absorptivity and
luminescence quantum yields mean they can be used at minimal concentrations for imaging
applications, reducing any disruptive effects to biological processes in live cells. Furthermore,
as they generally display long lifetime and luminescence maxima beyond 550 nm, the possibility
of interference from endogenous fluorophores is minimized.

These complexes have a characteristic metal-to-ligand charge-transfer, MLCT, transition band
in the visible region with high molar absorptivity () (~ 10* M1cm™@). >*°* This excitation
generally results in effective population of a singlet state (!S: !MLCT), which subsequently
undergoes an efficient (Disc ~ 1.0) intersystem crossing (ISC) to populate the 3MLCT excited
state. The ISC process is associated with a large Stoke shift (> 100 nm), so that emission occurs
at significantly longer wavelengths and minimizes inner filter effects. For Ru(ll)-polypyridyl
complexes a relatively long lifetime (~ 250 ns in ag. medium saturated with dissolved O5) is
observed for 3MLCT based emission at ~ 600 nm. >> While Ir(NAC)2(NAN)* complexes show a
strong vibrationally structured luminescence band having a maximum around ~ 710 - 725 nm
that is assigned to a mixed excited state with a large MLCT-based contribution. Typically, such
complexes show a slightly shorter luminescence lifetime compared to their Ru(ll) analogues
(~100 ns in aerated aq. solution). >#°%>8




Metal complexes and SRM: photophysical considerations

It has been established that the long emission lifetimes of complexes such as polypyridyl d® metal
complexes are exploitable in lifetime imaging microscopy. Although this is commonly labelled as
fluorescence lifetime imaging microscopy (FLIM), it is formally phosphorescence lifetime imaging
microscopy (PLIM). >>6° FLIM/PLIM not only allows the facile differentiation of long-lived emission
signals from relatively short-lived autofluorescence and light scattering but also enables multiplex
imaging. 6-%2 However, as outlined in Box 1 and 2, properties such as the high photostability of
these complexes render them promising candidates for several SRM modalities; 52 a case in point
being provided by a consideration of the ideal properties of a STED probe. %45

The lateral resolution (Riateral) of STED nanoscopy is linked to Imax (peak intensity of the STED laser)
and lsaty (STED laser threshold Intensity that results in 50% depletion of the emission intensity of
the probe molecule) through Eq. 1:
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Figure 1| Molecular structures of metal ion complexes utilized for SRM discussed in this review
article A Molecular structure of polypyridyl d® metal ion complexes. B. Molecular structures for
other luminescent transition metal complexes.



Taken together, the criteria discussed above suggest that the optical properties of an ideal
molecular probe for STED microscopy should exhibit good photostability, a long-lived emissive
state with a high-intensity red-to-NIR emission spectrum, and also display an overlap of its
emission spectrum with the STED depletion beam while avoiding re-excitation through ground
state absorbance. On top of these optical properties, for any probe to be exploited for intracellular
or in-vivo imaging applications, it should be physiologically benign and display cell membrane
permeability and organelle/tissue specificity. ®¢7 Facile functionalization of coordinating ligands
in such complexes not only offers the option to modulate their optical properties but, can also be
used to create luminophores that specifically bind to targeted organelles or structures. Complexes
that exhibit chemiluminescence are also highly attractive for in vivo imaging; as this emission
process does not require an excitation source it negates the interference caused by
autofluorescence and offers a much higher signal-to-noise ratio. ®¢7° In what follows, we outline
the potential of these systems as SRM probes as illustrated by selected recent reports.

Ruthenium(II) complexes as probes and theragnostics

In 2016, the Keyes group reported on two organelle-targeting STED probes, complexes 1 and 2,
which they found to be suitable for both continuous wave and time-gated STED organelle imaging.
L In this work, the authors exploited the properties of signal peptide to precisely target
intracellular localities or organelles. As shown in Fig 2, organelle-specific imaging was
accomplished by coordinating two different phenanthroline-peptide conjugates to a Ru'-moiety
to yield endoplasmic reticulum (1) and nuclear targeting (2) probes.
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Figure 2| CLSM and STED nanoscopy using Ru"-based organelle-targeting probes (a)-(d) CLSM
images of live Hela cells: (a) 1 in ER, (b) merged image of 1 with ER blue, (c) 2 in nucleus, (d)
merged image of 2 with DAPI. (e) STED images of 2 bound to chromosomal DNA in the nucleus
during metaphase. (f)-(k) STED images using complex 2 to show the different stages of cell division
in fixed Hela cells. Reprinted with permission from ref. 71, Royal Society of Chemistry.

In related work, the Thomas group and collaborators reported a cell-permeant heteroleptic
dinuclear Ru(ll)-polypyridyl complex, 3, that binds nuclear DNA (Kp> 10’ M) and stains chromatin.
Early studies showed luminescence in the near-infrared (NIR) wavelengths and were used to
image nuclear DNA within live cell nuclei. Subsequently, the long lifetime of the DNA-bound probe
could be exploited for lifetime imaging microscopy (Fig. 3) using a two-photon absorbance regime



in which FLIM was used to image nuclear DNA in live MCF-7 cells. 7> When the complex was used
in fixed cells it showed a luminescence lifetime of ~ 160 ns within the nucleus and a shorter
lifetime within the cytoplasm providing imaging with higher sensitivity without interference from
intracellular luminescence.”
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Figure 3| Multiple imaging modalities of Ru'-complex 3. (I) Two-photon phosphorescence
lifetime imaging of live MCF-7 cells pre-treated with complex 3 in serum-free media with (a)
lifetime mapping and (b) distribution, respectively. In both (a) and (b) lifetime data in a single cell
is shown to the right. (c) 2P-PLIM imaging using 3 in fixed permeabilized MCF7 cells (d)
corresponding emission decay (e) corresponding lifetime distribution. (ll) Left: 3D HyVolution
(dCLSM) and 3D-STED comparison for XY plane of a single fixed MCF7 cell treated with 3 (the white
squared insets are magnified below the images) Right: 3D-STED super-resolved reconstruction of
the whole nucleus volume (full 3D volume from 165 planes), where each single plane was imaged
at the highest X, Y, and Z STED resolution (3D-STED). Merged dCLSM and STED reconstructed 3D
surface rendered images in green and red colour, respectively. (lll) Images of live cell staining with
3. HyVolution (dCLSM) (a), 3D-STED (b), and STED (c); (i—iii) magnified images yellow boxes a, b,
and c, respectively. (d) TEM images of the localization of 3 (as contrast agent) (500 pM) in the
nucleus and mitochondria of an MCF7 cell. Reprinted with permission from ref. 72 and
73. Parts (l) adapted with permission from ref. 72, Wiley. Part (Il) and (lll) reprinted with
permission from ref. 73, American Chemical Society.

More detailed follow-on studies on the SRM/multimodal imaging capabilities of 3 revealed that
at low concentrations it solely localizes in mitochondria and it is only at higher concentrations that
localization in the nucleus occurs. In associated STED experiments, the large Stokes shifts (~170
nm) of complex 3 provided excellent matching to a 775 nm depletion line, which avoids anti-
Stokes excitation. Its long lifetime when bound to biomolecules facilitated its use in gated STED-
Fig 3 ll(a-c), where its performance was found to be superior to the commonly used dye,
AlexaFluor, which displays more pronounced photobleaching and a narrow Stokes’s shift. As it



incorporates two electron-dense Ru'" -metal centers, complex 3 is also a contrast agent for DNA
in transmission electron microscopy (TEM) (Fig. 3 lll-d). 7
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Figure 4|. SRM imaging of bacteria using antimicrobial theragnostic complexes 4 and 5. (I) SIM
images to visualize the localization of 4 in E. coli EC958 cells at 5, 20, and 60 min: (a) Fixed cells
are imaged using the luminescence of 4 (Aex = 450 nm/ A568 filter) and (b) phase contrast images;
(c) CLSM (Aex = 470 nm) and STED images (775 nm depletion laser, and a 780 nm vortex phase
plate) at 5, 20, 60, and 120 min. (e & f): Representative images showing section planes of full-
volume deconvoluted d-LSCM and d-3D STED of E. coli EC958 cells: Normalized emission intensity
profile (Black line: d-CLSM and Red line: d-3D STED) of the solid white lines drawn on top of
selected region of cells are plotted. () Visualization of localization of 5 in S. aureus SH1000 cells
using (a) d-CLSM (green), (b) STED nanoscopy (red) and (c) overlay image at 120 min incubation;
(d-f) SIM images (Co-staining using DAPI (300 nm)) using 5 at 60 min incubation: (d) 5; (e) DAPI
and (f), overlay of 5 and DAPI with colocalization scatter plot. [Aex = 488 nm using A568 filter/ For
DAPI Aex = 405 nm using the DAPI filter]. (iii) TEM images: Localization of 5 in E. coli EC958 cells
following treatment with MIC concentrations of 6 (a) 0 min, (b) 10 min (c), 60 min (d) 120 min
after exposure. Cell leakage/debris is revealed in b and c, although the images in c and c reveal
membranes that are still intact. [Bar = 1 um in all TEM images]. Reprinted with permission from
ref. 74 and 75. Parts (1) adapted with permission from ref. 74, American Chemical Society. Part (ll)
and (Ill) reprinted with permission from ref. 75, Royal Society of Chemistry.

The Thomas group went on to examine the bactericidal properties of complexes related to 3 and
identified promising leads that display broad-spectrum activity with low minimum inhibitory
concentration, MICs, even in multidrug-resistant, MDR, strains. In this work, the multimodal
imaging capabilities of the newly identified complexes facilitated investigations into their
mechanism of action. For example, through SRM studies the activity of complex 4 was attributed

8



to its ability to disrupt the cell walls and outer membranes of Gram-positive and Gram-negative
bacteria. 3-D STED images of the pathogenic EC958 E coli MDR strain treated with 4 showed that
that the cationic compound rapidly localizes on the negatively charged bacterial outer membrane,
followed by internalization. TEM images confirmed the compound-induced cell lysis in the same
time window (<1 hour) - Fig 4. 7

Subsequent studies revealed that complex 5, the mononuclear analogue of 4, is also a broad-
spectrum antimicrobial reagent. MIC values for 5 are comparable to ampicillin and oxacillin and,
like 4, it also maintains its activity in pathogenic multi- and pan-drug resistant strains. SRM studies
revealed that, unlike its dinuclear analogue, complex 5 is cell permeant and also has a different
mode of action. ”> SIM and STED studies, used to identify its intracellular targets within EC958 and
S aureus cells, showed that 5 adopted a distinctive localization pattern quite different to that for
4, which is characteristic of bacterial DNA staining; while TEM images confirmed that bacterial
membranes were still largely intact after treatment and cell death - Fig 4.

Probes containing other second- and third-row d¢ transition metal
centers

The cell uptake and SRM imaging capabilities of dinuclear Ru/Re complexes have also been
reported by the Thomas group and collaborators. Complexes 6 and 7 incorporate two potential
DNA intercalating moieties linked by different linking ligand “tethers”. Although these systems
were found to bind to DNA with comparable affinities, 778 steady-state and time correlated single
photon counting (TCSPC) studies revealed the presence of the amine functionalities in the linker
of 7 had a significant influence on the intracellular localizations and imaging properties of the
complexes — Fig 5.
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Figure 5| Live MCF-7 cell uptake of Ru/Re complex 7; comparison of deconvoluted-CLSM images
and deconvoluted STED (d-STED) microscopic images. CLSM images of mitochondrial staining
with 7 is shown in red (a), with Mitotracker in Green (b), and STEM image with in cyan (c). White
squared insets (i) and (i) in (a), are magnified in (f) and (g), respectively; d-CLSM in red and-STED
in cyan are shown. (d) and (e) show 2D scatter plot and surface map to reveal that the colocalized
objects in yellow. Normalized intensity line profiles of the white lines in (f for region i) and (g for
region ii) are also shown. Reprinted with permission from ref. 76, American Chemical Society.

Importantly, complex 7 showed concentration-dependent localization and photophysical
properties that were suited to SIM and STED nanoscopies, which enabled tracking the
dynamics of the subcellular localization within live cells at sub-diffraction limits. It is well-
established that light-switch complexes show “switch-on” emission responses in lipophilic
environments, including lipid-rich regions.”®8° The fact that emission for complex 7 is seen
from lysosomes and mitochondria suggests the complex localizes in such environments.

9
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Figure 6| Examples of the use of Os" and Ir'"' complexes as super-resolutions live cell probes in
both prokaryotes and eukaryotes. A. SIM images to real the uptake of Os complexes by S. aureus
(MRSA strain) cells. 3D Z-stack projection, SIM colocalisation study using S. aureus MRSA after 1
hour incubation of cells with MIC concentrations of fac-10 (top) and mer-10 (bottom). (i) Image
obtained on excitation of 10 (ii) Images obtained by simultaneous staining with DAPI. (iii) Overlay
of both channels. (iv) 3D surface plots for the selected cells shown in the corresponding white
boxes of the colocalization images, showing emission intensity for 10 and DAPI. B. (i) cartoon
representation for mitochondria—lysosome (MLC) contact, (ii) and (iii): Images for tracking MLC
contact in live Penta knockout Hela cells using complex 11. Left: cells treated with 10 x 10° M
carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 12 h [Scale bars = 10.0 um)]. Insert: White
rectangle to show MLC, (presented in C) [Scale bars = 1.00 um]. Right, top: 3D SIM surface plot
after 30° rotation with white arrows to identify MLC events. Right, bottom: expanded images to
reveal a representative MLC event. C. 1-6: Time evolution of one MLC in a living cell; white solid
lines indicate fluorescence intensity shown to the right. [Scale bars: (a) 10.0 um, (b) 1.0 um].
Reprinted with permission from ref. 82 and 85. Parts (A) adapted with permission from ref. 82,
Royal Society of Chemistry. Part (B) and (C) are reprinted with permission from ref. 85, Wiley.
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Analogous Os(ll)-tris2,2’-bipyridyl derivatives (8 — 10) also possess exceptional stability towards
photobleaching, high luminescence quantum vyield, long-lived luminescence, and large Stokes
shift, which minimize background noise. For example, an Os" complex closely related to 3 was
found to have very similar multimodal imaging properties. However, thanks to a red shift in
emission (Aem >750 nm), this system functions as a near-infrared STED probe.®! The mechanism of
action of potential therapeutics based on Os(Il) centres has also been explored by SIM. The
diastereomers (mer- and fac- forms) of complexes 8 — 10 were synthesized and isolated and their
efficacies as antimicrobials were investigated.®? These six complexes were found to be active
against Gram-positive bacteria with mer-10 being the most active against pathogenic strains at
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activities comparable to conventional antibiotics. SIM studies with this complex, which displays
red emission, showed cellular uptake within MRSA cells (Fig. 6A) and revealed clear binding to
bacterial DNA (Pearson's coefficient: ~ 0.95 with DAPI).

The in-cell properties of several cyclcometalated Ir'" complexes have been investigated. 88 In

2018, the Chao group used complex 11 to track mitochondria and their dynamics in live cells
through SIM at ~80 nm resolutions (Fig. 6B).  As the probe provided detailed images of
mitochondrial ultrastructures such as christae, the authors concluded it specifically binds to
mitochondrial membranes. The probe could also be used to temporally track mitochondrial fission
and fusion dynamics.2® In combination with the commercial probe, LysoTracker Green, complex
11 was also used to reveal hitherto unseen details of close mitochondria-lysosome membrane
contacts and observe the organelles fusion after mitochondrial-damage-induced mitophagy (Fig.
6B and C). #

The route toward super-resolution CLEM

Transition complexes of d®-metal centers have also found a role as probes for combined super-
resolution imaging modalities. An area with particular potential is correlative light electron
microscopy, CLEM, 8788 which offers the possibility of combining both imaging selectivity and
nanometer resolution to provide structural and dynamic details of cellular ultra-structures. While
the use of Ir''-complexes as multimodal SIM/TEM probes had already been demonstrated,?® the
first successful demonstration of true super-resolution CLEM with a metal complex appeared in a
report from the Zhang, Tian, and Battaglia groups, who reported on a cyclometalated Ir'"-complex
12 capable of binding to tubulin at vinblastine biding sites, °® a molecule with which it bears some
similarities. Complex 12 displayed low toxicity toward both cancer-derived (A549, HelLa, MCF-7,
HepG2, and HEK), and primary cell lines (HDF and HELF) and shows a bright red “switch-on”
luminescence which is specifically induced by binding to tubulin - Fig. 7A. This observation was
confirmed through co-localization with an a-tubulin antibody and microtubules in fixed cells. This
approach provided a fundamental tool to monitor microtubule dynamics in live cells during
mitosis and image microtubule-rich hippocampal tissue. By combining this capability with the
contrast enhancement 13 provides in TEM, CLEM imaging was accomplished, Fig 7B, so that
individual intracellular microtubules could be identified at up to sub-nanometre resolutions.

In a subsequent study, an iridium(lll) complex that can image a second cytoskeletal element was
reported.’* Complex 13 is non-emissive in solution; however, when its weakly coordinated water
molecules are displaced by direct coordination to His40 amino acid residues on actin protein
fibers, the emission is switched on — Fig 7C. This effect is specific to actin as minimal emission
enhancement is observed with other proteins and amino acids. By exploiting this effect, STED
images of actin fibers in live HFL1 fibroblasts could be generated. Through correlating the
emission of 13 in ultrathin cell sections with corresponding scanning-TEM images individual 8 nm
diameter actin filaments could be resolved — Fig 7D.

CLEM imaging of intracellular DNA structure has also been accomplished using “DNA light-switch”
complexes 14 and 15. As mentioned above, such complexes are non-emissive in aqueous solution
and only display their characteristic M—dppz-based emission when they intercalate into DNA.
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Figure 7| Correlative light electron microscopy, CLEM, can be combined with SRM when using
selected metal complexes. A. HepG2 cell fixed and stained with 5x 10 M of 12; microtubule
images by confocal, STED (full power) and time-gated STED (15 ns) microscopy. B. Fluorescence
imaging (left), scanning—transmission electron microscopy (center) and CLEM (right) images of
microtubules labelled with 12 in HepG2 cells. The images obtained using light and EM microscopy
were taken from the same site. C. Confocal and STED imaging of live HFL1 cells labelled with 5 uM
13 for an incubation period of 60 min Scale bar = 2 um. D. Fibril structure of mouse heart tissue
treated with 13 revealed by scanning-transmission electron microscopy (left-hand side), STED
(center) and Correlation Light-Electron Microscopy (CLEM) (right-hand side). (i) and (ii) show
zoomed-in views of parallel (i) and vertical (ii) actin filaments via CLEM. E. CLEM images show
mitotic cells stained by 14 visualizing chromosome aggregation and decondensation during
mitosis. Cells stained with 14 after fixation. F. Top: Deconvoluted CLSM (left) and STED images
(right) of chromosomes stained by 15 during metaphase. Right: enhanced resolution by STED can
be observed in the comparison of dCLSM / STED images in enlarged box (i). Bottom: corresponding
data after protocol for mitochondria. Reprinted with permission from ref. 90, 91, 92 and
93. Parts (A) and (B) adapted with permission from ref. 90, Wiley. Part (C) and (D) reprinted with
permission from ref. 91, Elsevier. Part (E) reprinted with permission from ref. 92, American
Chemical Society. Part (F) reprinted with permission from ref. 93, Oxford University Press.

Although these complexes are not usually cell-permeant, the Zhu group have reported that if ion
paired with 2,3,4,5-tetrachlorophenolate, TeCP, counter-anions they can be delivered into live
cells and their imaging capability is dependent on the enantiomer employed. The osmium(ll)
complex 14 has a characteristic deep red emission (Aem = 750 nm) when bound to DNA and it was
reported that when delivered through this method into Hela cells A-14 displayed much higher
nuclear emission than A-14 even though both enantiomers are taken up at comparable
concentrations. This effect resulted in well-defined SIM images of nuclear DNA. Furthermore, the
complex still displayed pronounced luminescence after cells were fixed, treated with OsO,4 and
processed for TEM imaging, thus providing the opportunity to produce SR-optical/electron
microscopy CLEM images of nuclear DNA and even chromosomal aggregation in mitosis — Fig 7E.%2
A recent report from the same researchers on the related ruthenium complex 15 has described a
method to selectively image nuclear and mitochondrial DNA.
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As might be expected, the authors report that complex 15 could be used as a STED probe for
nuclear DNA when delivered through ion-pairing with TeCP. However, if Hela cells treated this
way were then washed with fresh buffer and incubated for a further 3 hours, the complex was
found to shift its localization to mitochondria. Colocalization studies with probes such as
picogreen offered evidence that the complex specifically binds to mitochondrial DNA, mtDNA.
Again, it was found that A-15 displayed brighter emission from nuclei or mitochondria than A-15.
So, using this protocol, SR-images of both nuclear and mt-DNA were obtained Fig 7F. %

Platinum(II) probes

Apart from d®-octahedral complexes, another metal center that has attracted attention for SR
applications is the square planar Pt(ll) d® electronic configuration. Normally, bi- and tri-dentate
Pt(ll) complexes with the general formula [Pt(NAN).Cl, or [Pt(NANAN)CI]* (NANAN: 2,2":6°,2"'-
terpyridine or its derivatives) are non-emissive or possess negligible luminescence quantum yield
at room temperature due to an efficient non-radiative decay involving low-lying MC (d—d) excited
states. % However, the replacement of CI~ with a strong-field ligand raises the energy of the
deactivating d—d states to facilitate room temperature luminescence. 7 Importantly, the Pt(ll)-
center favors mixing of the singlet and triplet manifolds due to effective spin-orbit coupling and
efficiently populates the first excited triplet state (T1), °°” which leads to emission lifetimes in the
range of hundreds of nanoseconds to tens of microseconds.

Using this effect, the Yam research group reported on a binuclear platinum complex 16 with a
large Stokes shift (Aex = 405 NM, Aem = 530 nm and 700 M / Tavg = 10.8 US; Aex = 488 NmM, Aem = 700/
Tag = 0.16 ps) (Fig 7). Complex 16 was found to be an attractive dye for SIM as it displays
negligible photobleaching and could specifically label autolysosome in live Hela cells Fig 8A. These
images revealed that upon continuous light stimulation, the luminescence intensity of
autolysosomes decreased gradually, while that of the nucleus increased gradually, indicating that
16 escapes from autolysosomes to the nucleus (Fig. 8B and C). As autophagy plays a very
significant role in tumor genesis, the real-time tracking of autolysosomes by this probe may have
arole in diagnosis.
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Figure 8| Specifically imaging cellular processes and sub-organelle structures with late-
transition or post transition metal complexes. |. SIM images for colocalization of 16 within (a)
endosome, (b) autolysosome, (c) lysosome and (d) mitochondria. Images were observed under
SIM 640 and 561 or 488 nm channels, (Pearson'’s correlation coefficient, PCC). Il. Co-localization
of 16 in different SIM channels (merged, 640 and 561 or 488 nm channel) following laser
irradiation for 5 min; (Ila) expansion of white rectangle 1 showing co-localization of 16 in the
membrane and (lIb) Expansion of white rectangle 2 showing co-localization of 16 with the nucleus.
[ll. The dynamics process of photoactivated 16 escaping from the autolysosomes to the nucleus,
with the luminescence intensity gradually decreasing in autolysosomes and increasing in the
nucleus. IV. The CLSM and STED images (Aex = 405 nm, Aem = 595 nm) of live HepG2 cells stained
with 17. V. Left: 3D-STED images of SiR-DNA staining (Aex = 670 nm and Aem=700 nm) of live HepG2
cells treated with 18 Right: ITSA1 (histone deacetylase activator) treated cells (to activate histone
acetylation), incubated with 18, imaged under STED to construct the 3D micrograph: note that
the selected ROI highlighted (1-3) represent; histone condensation, aggregates, and cavity regions
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(Scale bar = 2 um). Reprinted with permission from ref. 98, 99 and 101. Parts () - (lll) adapted
with permission from ref. 98, Wiley. Part (IV) reprinted with permission from ref. 99, Royal Society
of Chemistry. Part (V) reprinted with permission from ref. 101, American Chemical Society.

Box 3 | The potential of first-row transition metal complexes

As the above examples illustrate, over the last decade, precious metal complexes have proven
to possess great potential as probes for super-resolution microscopy. However, many of these
metals have low abundance and are correspondingly expensive. Although this may not be a
limiting factor in such specialized applications, probes constructed from more readily available,
earth-abundant metals would offer an attractive alternative and recently the possibilities of
such systems have begun to be investigated.

First-row transition metal ions with d® configuration (eg; Fe?*, Co**) effectively populate *MLCT
electronically excited on photoexcitation at the respective absorption maximum. However, for
first-row d® transition metal complexes, the crystal field splitting (A) is smaller than second and
third-row transition metal ions, which is attributed to a lower energy for the *MC and 3MC
states than !MLCT and T? states. This accounts for a faster deactivation of the excited states.
Recent reports suggest that with appropriate chelating ligand design, it is possible to develop
metastable first-row transition metal ion complexes (lifetime < 10 ns). While the
photochemistry of metal complexes having d’ (Co?*, Ni**) and d® (Ni®*) electronic configurations
is less rich than d® in terms of photo- and redox-stabilities, photosensitizers derived from metal
ions with 3d%° (Cu*, Zn?') electronic configuration do show interesting properties. A filled
electronic d-shell eliminates the MC states and allows relatively more stable 3MLCT states to
dominate photophysical properties. Hence the emergence of the use of Zn** complexes as
imaging reagents.

Multifunctional super-resolution probes based on first-row transition
metals

Tian, et al. have investigated the SR imaging capabilities of several first-row transition metal
complexes. They specifically targeted mitochondria using a Zn(ll)-based complex, 17, that
incorporated terpyridyl-based ligands connected to thiophene units to extend electronic
delocalization. *® The presence of an organic ligand with donor-rt-acceptor interactions favoring
a distinct push-pull electron effect accounts for its unique optical properties. *°° This complex,
which displays red-emission assigned to a photostable MLCT excited state, was found to bind to
mtDNA in cell-free conditions. It is taken up by live HepG2 cells and co-localizes with MitoTracker
Deep-Red, confirming its mitochondrial localization. More detailed tests revealed that 17 binds to
mtDNA and not mitochondrial membranes and live-cell STED produced detailed images of the
folded crista structures within mitochondria -Fig 8D.

In a follow-up study, a STED probe for the imaging of histones and histone processing was
developed. In this report, the same central Zn'(tpy), unit was appended with electron-rich azide
moieties on the periphery of the tpy ligands, which provide a targeting moiety for the cationic
charge of histones, to yield complex 18.2%! In cell-free conditions, involving various possible
substrates including amino acids and nucleic acids, it was found that binding to histones uniquely
resulted in a large increase in its green emission, which also blue-shifted by 25 nm. As the complex
showed low toxicity toward HepG2 cells, its potential for live-cell STED imaging was investigated.
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Through CLSM imaging, it was found that the complex was cell-permeant and localized in the
nucleus, while studies involving ribonucleases confirmed that its binding target within this
location was neither DNA nor RNA. In-cell histone binding was confirmed by colocalization with a
fluorescent anti-histone antibody. The researcher then went on to show that the increased
resolution provided by STED, meant that 18 could be used in live cells to investigate and image
morphology changes, such as condensation, induced by histone acetylation -Fig 8E and F.

Related terpyridyl ligands were also used in the construction of Mn" complexes for multimodal SR
images. The first study on such systems involved the identification of a complex that could be
used for both STED and magnetic resonance imaging. This is an attractive proposition as, taken
together, the two modalities offer a combination of imaging live cells at tens of nanometers
resolution and the capability of visualizing tissue at depth. The extended tpy ligands of complexes
19 incorporate triphenylamine groups as electron donors and hydroxymethyl moieties to improve
water solubility and its coordination with Mn" provides a paramagnetic center for MRI.

Axon
terminal

C 3D STED of a single nucleolus
stained by image capacity 30%
ined by 19 (i ity 30%)

DFC

Corresponding TEM micrograph

Dense fibrillar
component (DFC)

200 nm
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Figure 9| Examples of using Mn" complexes as multimodal SRM probes. A. Top: MR micrographs
of a mouse brain incubated with 19. Bottom: (Left) CLSM colocalization staining of a brain slice
with 19 and MAP2 antibody used to mark neurons; (Right) STED micrograph from a selected
region showing myelin and axon structures. B. Top: CLSM and STED micrographs of the brain slice
treated with 19 Bottom: a selected region (Box c in the upper image) showing a single myelin
wrapping the axon fibre. C. Left: 3D-STED micrograph of the ultra-details of a single nucleolus
stained with 10 uM complex, 20. Right: TEM a micrograph of cells incubated with 20 uM of 20 and
stained without osmium tetroxide clearly showed the structure of different regions of the
nucleolus. D. Three-dimensional confocal laser scanning images of fixed Hela cells incubated with
10 uM complex, 20 for 30 min and immunofluorescent label with a ribosome marker - monoclonal
to RPS3, after 6 h of insulin treatment, 6 h of starvation treatment, and normal culture,
respectively. Reprinted with permission from ref. 102 and 104. Parts (A) and (B) adapted with
permission from ref. 102, Royal Society of Chemistry. Part (C) and (D) reprinted with permission
from ref. 104, Elsevier.

The complex was found to internalize within HepG2 cells and its MLCT luminescence was
compatible with both conventional and two-photon absorbance CLSM. Using these techniques,
co-localization studies with commercial probes, as well as ICP-MS, revealed that the complex is
distributed throughout the cytosolic region in the lipid-rich ER. The authors then went on to
demonstrate the potential of 19 for multiscale imaging using ex-vivo tissue and whole organs.®?
For example, not only could an entire mouse brain be imaged at enhanced contrasts through MRI
when treated with the complex, but -when sectioned into 20 um slices- details of the myelin
sheaths of individual neuronal axons could be obtained using the luminescent properties of 19 -
Fig 9A and B.

Consequently, a recent report has extended this approach, demonstrating how a
thermodynamically stable Mn(ll)-complex of a salen-derivative incorporated within a porous SiO,-
nanoparticle decorated with folate moieties (Average diameter of 19.3 + 2 nm) could be exploited
for multimodal imaging, including magnetic resonance imaging.1®

The nucleolus is the largest intranuclear organelle and is the ribosome factory of the cell, where
ribosome components are processed and assembled. As highly proliferative cancer cells have an
increased demand for protein synthesis, they frequently possess enlarged nucleoli. The nucleolus
also has a role to play in a variety of processes ranging from stress sensing to telomere formation
and, apart from carcinogenesis, nucleolar dysfunction is associated with a variety of other
diseases including neurodegenerative disorders. Consequently, probes that could image the
nucleolus and its dynamics at high resolutions would have relevance across a range of disciplines,
from fundamental studies in cell biology to diagnostic devices.

The structure of 19 was adapted to yield a complex that could be used as an STED probe for
nucleolar RNA. Highly charged complex, 20 incorporates a tpy ligand which in itself had previously
been shown to target ribosomal RNA in live cells. Cell-free studies with a variety of biomolecules
showed that the intensity of the emission from the complex is significantly enhanced and red-
shifted only when binding to RNA. CLS-based colocalization experiments in live Hela cells using
small molecule probes and specific immunofluorescent proteins, as well as ribonuclease-based
digests, confirmed that 20 localizes in and stains nucleolar RNA.1** However, by exploiting the
excellent STED capabilities of the complex, highly detailed images revealing individual
compartments within the nucleolus were obtained -Fig 9C. In particular, dense and porous fibrillar
structures were observed, which were interpreted as being the dense fibrillar component, DFC,
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and fibrillar centres, FC. The FC mostly contains RNA polymerase | sub-units and pre-rRNA
transcripts are found in the DFC, with actual transcription of rRNA largely occurring at the FC-DFC
boundary. By also using an immunofluorescent labelling antibody for ribosomes themselves, 1%
the authors went on to use STED to investigate cells where translation rates were modulated
either by exposure to insulin or serum starvation. In these experiments distinctive changes in the
number, size, and morphology of FCs as well as ribosome aggregation were observed and
qguantified — Fig 9D.

Conclusions and Outlook

In the last two decades, the number of techniques and possible applications of SRM have
burgeoned. Optical nanoscopy at ~10 nm scales are now commonplace and, with the recent
development of MINFLUX, spatial resolutions down to 1 nm, along with millisecond time
resolutions, in live cells have been claimed.¢2%° However, all these new techniques are reliant
on identifying dedicated probes with highly defined photophysical and biophysical properties.!°
In this context, the facile tunability of both the functional group chemistry and photo-excited
states of metal complexes through designed synthesis offers great potential and new
opportunities in developing targeted probes for specific SRM modalities. As illustrated by several
examples discussed above, this is particularly true in terms of multimodal imaging and multiplex
imaging. Also, designing dedicated correlative light and electron microscopy (CLEM) probes to
enable researchers to directly correlate information obtained on a light and an electron
microscope. The quest for multimodal probes that are both fluorescent and electron-dense not
only will help researchers to label specific organelle/object(s) in a biological sample with improved
resolution but also will enable them to precisely overlay electron and fluorescent images.
Although metal complexes are now being exploited in a wide range of SRM techniques, there are
still lacunae to be filled. For example, there has been surprisingly little activity in exploring their
use in stochastic imaging techniques, such as PALM and STORM.!'15 Yet, as illustrated by the
work reported by Tang, et al on Zn'(salen) complexes STORM probes for mitochondria,'*® it is
quite possible to produce metal complexes with innate high fluorescence “off/on” ratios and the
organelle-specificity required for such entities. There is also a distinct need to focus on identifying
organelle-specific transition metal complexes having distinctly different luminescence decay
profile for simultaneous imaging of multiple organelle (multiplexing) to examine subtle
interactions among immune cells, stroma, matrix, and malignant cells within the tumor
microenvironment. Such information would have significant translational impact. However,
challenges such as probe quenching, and non-uniform probe delivery can impact its effectiveness,
particularly in thick or dense tissue samples. Despite these limitations, techniques, and probe
design advancements continue to enhance its applicability for high-resolution tissue imaging.
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Super-resolution microscopy techniques can break conventional optical diffraction limits, but
their performance can only be optimized by using probes with appropriate biophysical and
photophysical properties. This review highlights how transition-metal complexes are being
designed to meet these challenges.
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