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Abstract

Recent advancements in phase-field models have significantly reshaped the
landscape of fracture mechanics, which was dominated by the partition of
unity method in the early 21st century. In this study, we aim to leverage the
advantages of the two approaches by adopting a novel phase-field-regularised
partition of unity method to improve computational efficiency, robustness
and physical consistency. Specifically, we establish a connection between
early phase-field models and the partition of unity method for cohesive frac-
ture. To this end, we replace the standard discontinuous Heaviside enrich-
ment in the partition of unity method with a regularised and continuous
Heaviside function, leveraging the phase-field approximation of the Dirac-d
function. The proposed formulation effectively resolves ill-conditioning is-
sues in the traditional partition of unity method while retaining the key
advantages of discrete fracture representations, offering a distinct contrast to
traditional phase-field approaches for smeared crack models. These advan-
tages include eliminating the need for extremely fine meshes and providing
an unambiguous and physically consistent representation of the displacement
jump across a crack. Furthermore, by integrating Non-Uniform Rational B-
Splines (NURBS) for spatial discretisation, the approach enhances solution
accuracy compared to standard finite element formulations. Compatibility
enforcement is also modified to accommodate the crack diffused by the phase-
field approximation. Through numerical examples, including stationary and
propagating cracks, mesh refinement studies, and sensitivity analyses of the
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phase-field length scale, we establish an optimal prescription for the inter-
nal length scale based solely on the element size. The examples compare
the results obtained via the presented formulations with exact solutions and
other numerical techniques, demonstrating the accuracy, conditioning stabil-
ity, and computational efficiency of the methodology. The proposed method-
ology thus presents a robust alternative to conventional fracture models,
combining key advantages offered by discrete and smeared approaches.

Keywords: Phase-field model, extended finite element analysis,
isogeometric analysis, partition of unity method

1. Introduction

Fracture mechanics has always been an important topic of study in en-
gineering, and has attracted various numerical approaches to simulate the
fracture process effectively. At the early stages, the theorem of minimum
energy was developed for a predefined crack in an elastic solid [1]| inspired
by the observation of unbounded (singular) stresses in the vicinity of a sharp
notch [2], rendering the stresses useless for determination of crack propaga-
tion. Griffith’s theory of brittle fracture was expanded to ductile materials
[3], and later generalised for elastic-plastic solids [4]. A common feature of
all the previously mentioned contributions is the relatively small fracture
process zone compared to the size of the structure, which limits the focus to
Linear Elastic Fracture Mechanics (LEFM). Additionally, they fail to model
crack nucleation in an undamaged area away from the discontinuity and to
predict the direction of the crack growth except through a posterior: studies
[5], which required remeshing at the crack front after propagation. New tech-
niques were developed to address these issues in numerical fracture modelling,
following two main trends: smeared approaches, which account for deterio-
ration of the stiffness of the material in the micro-structure; and discrete
models, which explicitly represent fractures as distinct geometrical entities,
generating a discontinuous displacement field.

The smeared approaches involve embedding strain localisation within an
element [6, 7|, for instance, through the presence of high deformation gradi-
ents due to fracture. The displacement discontinuity is represented through
an additional, incompatible, Dirac-0 strain term [8], where the so-called em-
bedded crack is diffused within the element. Different variants of the embed-
ded discontinuity approach have been put forth [9], and comparative studies
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have been conducted [10]. One of the main issues which adhere to the embed-
ded approach is the ill-posedness in the presence of strain softening, which ne-
cessitates using extra information, such as incorporating higher-order deriva-
tives of displacement in the kinematics [11, 12| or adding non-local terms
[13], which are typically referred to as regularisation models. However, the
proposed remedies often do not yield a symmetric stiffness matrix, and re-
trieving the crack opening displacement is non-trivial |14, 15].

In the context of discrete fracture models, a displacement discontinuity
can be incorporated into continuum mechanics through a rigorous definition
of the fracture by extra degrees of freedom (DOFs). This can be obtained
either through interface elements located in between standard continuum
elements [16, 17|, or via Partition of Unity Method (PUM) [18], which al-
lows for local enrichment of nodal points of the cracked element with extra
DOFs, known as extended finite element analysis [19]. In this manuscript,
we distinguish eXtended Finite Element Method (XFEM), where Lagrange
polynomials are utilised as shape functions, from the broader term extended
finite element analysis, referring to a larger family of enriched approaches
including eXtended IsoGeometric Analysis (XIGA) [20]. The enriched ap-
proach decouples the crack path and the mesh layout, allowing both inter-
and intra-element fractures which enable arbitrary crack propagation. This
flexibility is absent in interface elements as the crack extension path should
be known a priori. Moreover, since interface elements are inserted in ad-
vance, a dummy stiffness must be adopted to avoid premature crack growth,
which can lead to spurious stress oscillations if the dummy stiffness is too
high [17]. The cohesive zone model, an extension of LEFM in the presence
of non-negligible fracture process zone [21, 22|, is widely used in discrete
models, including interface elements [23] and XFEM [24].

More recently, efforts have been primarily devoted to phase-field models
to simulate the fracture process. These models trace back to the minimisa-
tion of the total energy based on Griffith’s theory of brittle fracture [25] and
its regularised form [26]|. Afterwards, a majority of the phase-field literature
has been devoted to brittle fracture [27, 28, 29, 30, 31, 32, 33| and, by way of
analogy to gradient-enhanced damage mechanics [34, 35|, expanded to duc-
tile fracture 36, 37, 38]. Regarding the cohesive-zone phase-field models, two
alternative approaches can be identified: (i) the traction-separation relation-
ship is applied to a crack diffused by the phase-field approximation of the
Dirac-§, without any explicit degradation function used for the deterioration
of the bulk material [32, 39, 40, 41, 42|; (ii) a tailored degradation function,
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characterised and tuned through a uniform tension test, is applied to the bulk
material to replicate the mechanical response of a certain traction-separation
relationship [43, 44|, analogous to gradient damage models [45]. In this work,
we aim at enhancing the former through Partition of Unity Method (PUM),
while involving a degradation function will be explored in a future work. It
will be shown in the remainder that the former is reminiscent of regularised
discrete fracture models, for instance the regularised XFEM [46].

Extended finite element analysis requires crack tracking strategies, such
as level-set [47, 48] and fast marching [49, 50| methods, to define the tangen-
tial and normal vectors on the crack profile needed for the Heaviside function.
However, crack branching or coalescence pose significant challenges, such as
non-unique normal vectors at crack intersections, which becomes even more
difficult when accounting for three-dimensional problems [51]. In contrast,
phase-field models eliminate the need for crack tracking through adding a sep-
arate differential equation for the crack profile, allowing for simulating crack
propagation, coalescence and branching, particularly in three-dimensional
cases. However, this comes at the expense of utilising a very fine mesh [40].
To leverage the advantages of XFEM and phase-field models, several hybrid
approaches have been developed. For instance, in the context of LEFM, a
multi-resolution global-local enrichment is utilised for extended/generalised
finite element method. The phase-field model is only used for crack advance-
ment at the fine scale in the vicinity of the crack tip, while XFEM handles the
discontinuity elsewhere [52]. Another approach involves using XFEM for the
large scale displacement field, while a local phase-field solution determines
the crack propagation at the crack tip(s) for LEFM [53]. Taking advantage
of the known exponential form of a typical phase-field solution, exponential
shape functions were proposed to reduce the number of elements perpendicu-
lar to the crack path, while a fine mesh is still needed in the parallel direction
[54]. The ansatz presented in [54| for phase-field was recently transformed
to resolve compatibility issues and combined with XFEM for brittle fracture
[55]. Additionally, Thick Level-Set (TLS) method, a level-set-based damage
model [56], was successfully compared with phase-field models for brittle and
quasi-brittle fracture [57].

A well-known issue in extended finite element analysis is the ill-conditioning
of the stiffness matrix in certain scenarios, which can lead to the loss of ac-
curacy or, in case of linear dependency, results in a singular stiffness matrix
[58]. This typically occurs when the crack (i) aligns very close to the ele-
ment edge or (ii) divides the element into highly disproportionate sections,

4
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making it impossible to place sufficient integration points on one side of the
crack to properly account for the Heaviside enrichment [58, 59|. The mesh-
independent nature of extended finite element analysis generally makes it
difficult to avoid these scenarios, particularly in arbitrary propagating crack
problem. Several approaches have been proposed to mitigate the conditioning
issue, such as perturbation of the stiffness matrix [60, 61| or preconditioning
based on domain decomposition [62]. Retrieving the convergence rate of fi-
nite element analysis is the objective of a few other contributions [58, 63, 64].
All of these attempts, however, fail to directly resolve the robustness issue as-
sociated with the Heaviside enrichment in the ill-conditioning scenarios [65].
Instead, a posteriori re-arrangement of the mesh layout is the typical indi-
rect solution to both scenarios. Node snapping is an example, where nodes
are moved away from the crack path to resolve the conditioning issue.[59]
However, this approach nullifies the computational advantages given by de-
coupling the crack path from the mesh layout in XFEM. Another remedy
involves deviating the crack path [66, 67|, even though extra care must be
taken to limit the deviation to avoid other conditioning issues [59]. An alter-
native to avoid the linear dependency is orthonormalisation of shape func-
tions, as applied in XFEM [68] and in XIGA [69], however this approach does
not solve ill conditioning issues associated with cracks that split an element
disproportionately.

On the other hand, IsoGeometric Analysis (IGA) tends to outperform
the standard Finite Element Analysis (FEA) in accurate representation of
the geometry [70], versatility in providing arbitrary degree of (higher-order)
continuity at element boundaries [71], and a per-degree-of-freedom superi-
ority in accuracy and robustness [72, 73]. Non-Uniform Rational B-splines
(NURBS) are adopted in the present work. Regarding fracture, IGA was first
cast in an extended finite element analysis format, coined XIGA, for LEFM
[20], and later expanded to cohesive fracture [74]. IGA has been incorporated
in cohesive interface elements approach for fracture simulation as well [75].
Recently, blending XIGA with a meshfree method has successfully mitigated
the conditioning issue of the stiffness matrix associated with the Heaviside
function |76, as no fixed notion of spatial discretisation exist. Instead, the
overlapping support clouds of points provide sufficient space for the Heaviside
function integration in extreme scenarios of disproportionate fracture.

Herein, we aim at regularising XIGA using phase-field approximation of
the Dirac-0, enabled through the use of continuous exponential decay function
to regularise the Heaviside and the signed-distance level set functions by
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taking into account the relationship between these quantities. The concept
of regularised Heaviside function has already been implemented for XFEM
[46, 77, 78|, but these formulations fail to enforce compatibility constraints
and provide suitable guidelines for defining an appropriate regularization
length scale, all of which are further complicated in the context of IGA. For
instance, the inter-element sharing of control points complicates enrichment,
rendering the use of the standard enrichment prescription for the regularised
formulation questionable. In addition, it is imperative to investigate whether
the regularised formulation mitigates the conditioning issue of the stiffness
matrix associated with the Heaviside enrichment.

This work addresses the above-mentioned challenges by developing a for-
mulation that regularises XIGA using a phase-field approximation of the
Dirac-9, enforces compatibility for diffused crack descriptions, accommodates
nonlinear traction-separation relationships, and defines a spatially varying
length scale based on the characteristic element size. The article is struc-
tured as follows. Section 2 presents the ingredients at the bulk and the dis-
continuity for a phase-field regularised PUM for fracture analysis, followed
by the variational forms of the displacement and the phase-field in Section 3.
Next, the discretisation of the weak forms are discussed in Section 4, along
with a succinct introduction of NURBS formulated on Bézier-extraction to
comply with finite element data-structure [79|. Section 5 discusses implemen-
tation aspects, including compatibility enforcement of the regularised formu-
lation, the enrichment scheme and the integration strategy utilised. Finally,
some case studies, comprised of mesh refinement and singularity analysis for
traction-free cracks and cohesive fractures, are examined to demonstrate the
efficacy of the proposed formulation. Stationary and progressive fracturing
are explored in Section 6, while rate-independent materials are assumed and
isotropic elasticity is utilised for the bulk and the regularised layer.

2. Phase-field regularised partition of unity method

The partition of Unity Method (PUM) has been proven effective in ap-
proximating non-uniform fields with local high gradients. This is, for in-
stance, the case when dealing with fractures, as a discontinuity ['q is shown
within a continuous body € in Figure 1. PUM [60] approximates the ad-
ditional field by means of an enrichment function v and the set of shape
functions ¢,
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Figure 1: Boundary value problem 2 with the discontinuity I'y and cohesive tractions tg:
A) a sharp crack B) a diffused description of the discontinuity.

apun = Z%(ﬂf) (Z @iﬂj(x)) where Z%(X) =1 vxeQ (1)

where o" denote the approximated e field. Enriching the Finite Element
Analysis (FEA) with PUM leads to Generalised Finite Element Method
(GFEM) [60, 80] in terms of standard and (extrinsically|81]) enriched dis-
crete nodal values, ® and e, respectively

a = Gilw)ai+ ) aiw) (Z &ij%?(m) : (2)

Using the Heaviside sign function, GFEM is capable of representing a frac-
tured body similar to Figure 1 through

u' =a" + oA, " with 4, (z,) = {1| V2, > 0;—1|Va, < 0;0|x, = 0},
(3)
where u, 1 and u indicate the total, continuous and discontinuous displace-
ment fields, respectively. Dealing with cracks and voids, GFEM is referred
to as extended finite element analysis, and has been widely used for different
applications using Lagrange polynomials [81, 82, 83|, or by means of spline
technologies for isogeometric analysis [73, 76, 84].
In the absence of the acceleration, the quasi-static equilibrium equations
read
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—-V-o=b xe
u"= u xel,

o-ng= tyg x €Iy

where o is the Cauchy stress tensor, ng and n; are the vectors normal to the
fracture surface [y and the external traction surface I'y, respectively. The
prescribed values for displacements, tractions and body forces are referred to
as i1, t and b, respectively. We apply the weighted residual method to the
strong form in Equation (4) and utilise the divergence theorem to define a
general weak form of the potential energy as

gint Pext
7\

‘prot:,/gw(ﬁ(:lh)) dS;—r</th~uhdF+/QE-uthj (5)

where &; and Py indicate internal and external energy functions. The
strain energy function v reads,

¢:%a:e. (6)

Unlike explicit description of fracture by Griffith’s potential energy function
[39, 25, 26|, which allocates a distinct energy term to the fracture, we aim
to construct the fracture energy term from the displacement discontinuity,
which is characterised by the Heaviside function J#, = nq - V%r,. Here,
Pr, denotes the sign distance function, as illustrated in Figure 2.

Adopting the small displacement assumption, the infinitesimal strain field
becomes

e=Vu"= V! +04, Vou" + 20r, (4" ®°ng) (7)

continuous

Vv
discontinuous

where V30 = (VO + VOT)/2, @ indicates the symmetric tensor prod-
uct, and Jr, is the Dirac-delta at 'y, i.e., or, = Opirac (X — X¢) With x, =
argmin (||x* — x||) Vx* € I'q [39], which follows the identity nq-V.74, = 20r,.

Equation 7 can be expressed for strain components at the bulk and the
discontinuity, i.e., € = P + gld
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Figure 2: Consistent definition of the discontinuity: A) signed distance function Zr,
Heaviside sign function %, and Dirac-delta function dr,, B) Sharp and diffused definition
of the phase-field variable, dr, and d, respectively.

e’ =V + 4, Vu"  and €' =26, (0" ®° ng). (8)

Inserting Equation (8) into (5) and utilising the identity (O ®°e) : O =
(O - e - [ leads to the internal potential energy of the form

Eint = / PP (eP(uM)) dQ + / op, tq - 0" dQ (9)
Q Q
where tq = 0 - ng indicates the traction vector at the discontinuity and
b1 b . b
P 250:5 with ¢ =Ce (10)

following the Hooke’s law for an isotropic linear elastic material where C
indicates the stress-strain relationship.

The key difference between the discrete and regularised approaches emerges
in Equation (9), depending on how the last term is interpreted,
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discrete smeared
(11)

——
/ng(x)df — fgépd(x)gb(x)dﬂ — /Q&gb(x)dﬁ

where ¢(x) is an arbitrary continuous function, and d, represents the diffused
estimate of the Dirac-d function with the internal length scale parameter
¢ € RT. Fracture energy, the energy dissipated upon creation of a unit
fracture surface, reads

Gr=tq-0" = %td ] (12)
where
[l = (u")" — (") = (4] — o) " = 20" (13)

denotes the displacement jump, derived by taking advantage of the explicit
definition of the discontinuity in the discrete approach through the Heaviside
sign function, see Equation (3).

Utilising these findings, Equation (5) becomes

\I]pot:/wb (eb(uh» dQ+/5ngfdQ—/ t-uhdf—/b-uhdﬂ (14)
Q Q I Q

which is identical to the Griffith potential energy used in other cohesive
phase-field models 25, 32, 39, 41, 43, 52].

2.1. Dirac-delta approrimation

Now, we provide a smeared approximate of or, by means of an exponential
decay [29, 30, 39|

e, () % 3() = exp (— ‘”;“') | (15)

where z, = (x — X.) - ng(x.), and ng(x.) is the unit vector normal to the
interface at x., which is in-line with the signed distance function %r, =
|(x —x.) ng| = ||x—%||sign ((x — X¢) - nq), see Figure 2, with the Euclidean
norm shown by |||

10



236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

In order to avoid the ambiguities associated with generalisation of Equa-
tion (15) to multi dimensions [35, 39|, the phase-field variable, d € [0, 1],
was proposed which describes the state of the material: d = 0 for intact and

d = 1 for fully broken materials. The phase-field variable d = exp ( M> is
the solution of the Euler-Lagrange equation subjected to the constraints

d—40V2d= 0 xeO\Ily
d=1 x € Iy (16)
Vvd- Ny — 0 x € 0F) = {Ft7 u}

that is associated with

d" = arg {inf / S¢(d™) dQ} , (17)
dheS, Q

where d" denotes the approximated phase-field variable, the phase-field space
Sy = {d"|d"(x) =1 Vx €Ty} and

od*  od*
ox, Oz,
with 9d"/0z, = ng - Vd" and n} - ng = 1.

In a similar manner we can derive the Heaviside function approximation,
7. Recalling the identity ng - V.74, = 20r, and Equation (15) we can write

S (2) = 2/0% %éexp( '2) ds = sign () (1 — exp (—'?')) (19)

— I, (2a) (1 — 206,)

which is identical to the findings by Benvenuti et al. [46]. Finally, given
ng - V@r a = % a9

h h 2 h h 2 h h
5 = 46(61 Cdh 4 40 ) M(d A"+ 42 Vd" - vdY)  (18)

(20)

The effect of the length-scale parameter ¢ on the approximated Dirac-delta,
Heaviside and signed-distance functions has been presented in Figure 3.
As ¢ decreases the solution converges to analytical discrete functions, i.e.,

hmg_)o % = jfrd and hmg_m 9@ = grd.

11
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Figure 3: Effect of the phase-field internal length-scale parameter ¢ for the diffused values
of Dirac-delta (d;), the Heaviside (%) and the signed-distance (2;) functions. The crack
is located at « = 0 of a one-dimensional problem with length L

2.2. Constitutive relation at the discontinuity

The potential energy in Equation (14) is written for a non-negligible frac-
ture process zone, which lodges the nonlinear deformations and their gra-
dients. We adopt the cohesive-zone model in the form of tractions at the
discontinuity, i.e., tq (x.) at I'g, by means of a the dissipation energy defined

Gr = Gt ([u](xc). ), Vxc € T4 (21)

in terms of the displacement jump, defined in Equation (13), and the history
parameter K, which stores the maximum experienced displacement jump.
In the literature, many options have been proposed for different mechanical
behaviours [85], a few of which are explored in our examples. Hereafter, we
refer to [u]l(x.) simply by [u], as the notion of the displacement jump is only
valid for I'y and, therefore, meaningless elsewhere.

Recalling Equation (12) the tractions at I'q yield

12
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ta (ful. ) = 21 (22)

in the global coordinate system while the local values of the displacement
jump and the traction read

ta ([u], £) = R t5° ([u],6°), [u] = {[u], [uy“]} = R-[u] (23)

where [y and [, are the values of [] in the directions tangent and normal
to the crack path, respectively. R denotes the global-local rotation matrix.
The Kuhn-Tucker condition is adopted to enforce the irreversibility of the
displacement jump,

f ([[uloc]]’nloc) — [[uloc]] o nloc < 0 k[loc > 0 ,;‘.Iloc X f =0 (24)

where the function f determines the loading/unloading state based on the
maximum local opening experienced until the current time, i.e., K'°° =

MaX ¢ (—o0f] [[ulOC(T)]].

3. Variational formulation

In line with the cohesive phase-field formulation [39, 42| which adopts the
elastic strain, we exploit the second principle of thermodynamics to formulate
the diffused version (I'y < ¢) of the internal potential energy in Equation

(9),

oY°®
Oe®
with the total strain & decomposed into elastic and diffused parts, i.e. € =

€° + &%, On the other hand, the explicit derivation of the energy dissipation
reads

g =0 & (25)

0<D=0:6—9y°=0:(&+&%) —

-d
D — di — E (%Vsﬁh+5£td.ﬁh)

dt dt (26)
- . 07 - B 00y -
S Avi L veN a—dfd 25ty - b+ gfa—;d

13
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where the first and the third terms represent the energy dissipated by further
opening of the existing crack, i.e. 0. The second and the fourth terms
indicate the energy dissipated through the extension of the cohesive zone
by an increment d. In the cohesive-zone modelling, the newly progressed
cohesive zone due to d is initially closed, i.e. [u] = a" = 0, and consequently
Gr = 0 as well as V*u" = 0, which remove the second and the fourth terms.
The elastic strain tensor yields

e =e—¢e'=e— V0" — 20, (0" ® nq) = Vo (27)
Finally, the total potential strain energy function becomes
W = / Y° (e (a")) A+ / v (e K)) dQ — Pex. (28)

Plugging tq = 0 - nq and Equation (27) into (28)

\Ilpot = / (%0' . (Vsﬁh + %Vsﬁh) + (Sg td ([[ll]],l‘&) . ﬁh) dQ)
Q

—/ t-uhdF—/b-uth.
Ft Q

Remark 1: Potential strain energy of a discrete Heaviside function

Had we not utilised the regularised description of the Heaviside function and
instead only focused on d,, the energy dissipation in Equation (26) would
become

(29)

ded d(
At dt

After applying [u] = a" = 0 for the newly progressed coheswe zone due to
d, the elastic strain becomes

D= — Setq-0") =20, tq - ~h+ga5€ (30)

e =ec—¢e'=¢-2 (0" ® ng) = V" + 4, Va' =&’ (31)
Finally, according to Equation (28), the total potential strain energy function
becomes

1
ot = / (50 (VR + o, VER") + 6 ta ([u], &) - ﬁh> K19
Q

—/ E.uhdr—/B-uth.
Ft Q

14
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which is identical to Equation (29) except for J¢ < J#,, and therefore
the same formulation can be used for discrete Heaviside formulation 7.
However, the condition number issue adhered to the discontinuous Heaviside
enrichment will certainly remain when the crack divides an element dispro-
portionately. Therefore, remedies identical to those of XFEM, referred in
Introduction (Section 1), must be adopted to circumvent the issue.

Remark 2: Retrieving cohesive phase-field formulation given by Verhoosel
and de Borst

Verhoosel and de Borst [39] proposed a cohesive phase-field formulation,
which was later utilised by other contributions for cohesive fracture [32,
40, 41, 42|. Here we prove that the formulation is a special form of our
phase-field-regularised PUM for fracture analysis. We start by rewriting the
infinitesimal strain field in Equation (7), while the last term is defined on the
displacement jump in Equation (13),

e =Vou = Vea + 4, VeR" + or, ([u] @° nr,)

with the elastic strain € = Vsa" + 5, V*u". Adopting the diffused Dirac-0
given by analytical phase-field solution the elastic strain can be rewritten in
terms of the total displacement u as

e = Veu" — 5, (" @ ny),

where [u] is substituted with v, a one-dimensional auxiliary jump field which
is not associated with the displacement field u". Using the newly derived

strain field, the total potential energy identical to Verhoosel and de Borst

1 s:.h h s h w1 ot
\ijot: EUZ(VU — dp (U ® Hd))+5gtd(v,lc)-v + -«
Q

[39] yields,
2
dQ
2 |0z, )

—/ E-uhdr—/B-uth.
Ft Q

ol 2
Oxn
has been weakly imposed by a penalty factor a to enforce a constant dis-

where the last term in the internal potential energy function, i.e., %a
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placement jump in the direction normal to the crack profile [32, 39, 41, 42]

ot

0y -

0,

with [u](z.) ~ v"(z.).

In other words, the formulation by Verhoosel and de Borst is retrieved
by removing the definition of the total displacement field, u" = a" + 5% a®,
from the energy function and utilising additional constraints to compensate
for the lack of inherent jump in phase-field models, in contrast to the PUM.
Inspired by the formulation proposed by Verhoosel and de Borst, the auxil-
iary jump field approximation has been upgraded using a first-order Taylor
series expansion on the total displacement field u [40, 86|, addressing the
absence of any explicit relationship between the displacement and the aux-
iliary jump field. In our formulation, however, the explicit definition of the
displacement jump in Equation (13) obviates the need for the auxiliary jump
field v, thereby eliminating the additional constraint imposed by the penalty
method and reducing the likelihood of perturbations in equilibrium. More-
over, the resulting jump complies with the PUM, while expansion series are
merely approximation tools.

Remark 3: Inclusion of damage-dependent degradation functions
In future developments, the presented formulation can be extended to accom-
modate a variety of damage-dependent degradation functions. This can help
achieve a more straightforward definition of the cohesive phase-field than
that given in available degradation-dependent contributions. Moreover, it
can help establish a direct relationship between the phase-field variable and
the level set function, which enables tracking of the crack by the phase-field
and accounting for crack propagation and branching. The latter is a major
shortcoming in discrete approaches which can be circumvented by adopting
phase-field, while using PUM on the other hand preserves the functionality
of the proposed approach with coarse meshes.

3.1. Displacement weak forms

We obtain the admissible displacement field by

h .
u’ = arg {mfuhesu \prot} , (33)
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where S, = {u"[u"(x) =u Vx €I, ue H(Q)}, and H" denotes the first
Hilbert space. Taking the variation of the newly derived potential energy
functions with respect to the displacement:

OV oy = 0 = / (0 (V60" + 2 V*6") + 26, t ([u], k) - 5 A =
Q

/ t- (6u" + gou") AT + / b - (64" + s40u") dQ. (34)
It Q

Equation (34) can be further decomposed into continuous and discontinuous
parts

/a:VSéﬁth:/ t-aﬁhdr+/b-5ﬁhd9 (35a)
Q Iy

Q

/ (0’ . %Vséﬁh + 25g td ([[u]],n) . (51~1h> dQ2 =
« (35h)
/E~%5ﬁhdF+/B~jﬁ6ﬁth
I Q
for the continuous and discontinuous equilibrium equations of the mechanical
problem. Integrating by parts and adopting the Dirac-delta for the test
functions ou and éu similar to the collocation method [87|, the updated
strong forms read

V.o(x)=b x € ()
{ o(x()f- n, =t x eIy (362)
20 (tq ([u],k) —0 -ng) = 4b  x€Q (36b)

It is noteworthy that the diffused (continuous) definition of the discontinuity,
;, allows for the use of the Dirac-9 as the test function, which is identical to
the collocated phase-field [88]. This is due to the requirement of the sifting
property of the Dirac-d at x*, i.e., [, ¢(2)0pirac (x — 2*) dQ = ¢ (2*), which
is violated if (discontinuous) discrete Heaviside function (.#4,) is used. For

further discussion and alternative solutions, the interested reader is referred
to Fathi et al. [87].
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3.2. Phase-field weak form

Taking the variation of the newly derived potential energy function in
Equation (29) with respect to the phase-field variable d yields

8\pr0t7d =0= / (0’ . &%”Mvsﬁh + 285g,dtd ([[u]],l‘&) . flh) dQ
Q

(37)
= [ 04,4 (8- 0") dr+/a%i,d(6-ﬁh) dQ
Ft Q
with s .
80,4 = d 2Zd +2Vd" - Vd", (38a)

0G4 = =20 I, 000,40 = —Hr, (6d" - d" + 42 V5d"-Vd").  (38b)

By applying the divergence theorem on the external traction (t = o - ng)
term the final form, after some rewriting, becomes (39|

aquotyd = O —

/85@7(1 (26%(}1 (0' . —stlh +V : (0’ . l~1h> +l_) : ﬁh) +2td ([[ll]]g,h)) : flh) dQ2=0
Q

J/

TV
constant0

(39)
— / 06, 4dQ =0
Q

In this paper, the Dirichlet constraints of the phase-field for pre-existing
cracks, i.e. d"p, = 1 in Equation (16), are imposed weakly [29, 31, 39].
This obviates manipulating the mesh in order to accommodate the Dirichlet
constraints [32]. Applying these conditions in the weak form leads to

/ (6d" d" + 4> VSd" - Vd") dQ + 2Lcq / 5d™ (d™ — 1) 0o (z,) dQ =0 (40)
Q Q

where ¢g is the non-negative coefficient weighing the weak imposition of the
Dirichlet constraint term [39]. Rewriting Equation (40) leads to
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/((1+]—")5dh-dh+4£2V5dh-th) dQ:/}“édth (41)
Q Q

with F, the driving force [39],

o

_ 2z —h « < h
¢ ) F<m )
0 otherwise

F = QEC() (S()(.I‘n), 60(1'11) = {
where h indicates the mesh size.

4. Discretisation

Herein, we focus on finite element implementation by discretising the
weak forms, in which the domain €2 is subdivided into non-overlapping smaller
sections, also known as elements

Nelm

=[] (43)

While Lagrange polynomials are typically used as the set of basis functions
for the customary finite element analysis [89, 90|, we adopt spline technology
used in isogeometric analysis (IGA) [70], particularly Non-uniform rational
B-splines (NURBS).

4.1. Bézier-extraction-based NURBS

We construct a NURBS surface on a univariate B-spline basis function,
ie. NB—sphne,

NIGA B-spline
W N Ep

S(€) = D> Nu@)Pr, Nip(§) = Wie)

that is defined by the Cox-de Boor formula[89] with W(£) = S0 N5 (&),
which utilise the weights w, and p denotes the order of the underlying knot
vector. niga is the number of control points P.

Use of Bézier extraction provides a direct transformation from physical
space to the parametric domain identical to the finite element data-structure.
Therefore, we use the Bézier extraction operator C

(44)
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(NB-spline>e — C°B. (45>

The superscript "e" denotes the element index, which is different from "e"

used for the elastic term, and B indicates a univariate Bernstein polynomial
within the input domain [—1 1],

Bip(©) = 501~ OBipa(©) + 51+ OBirpa6)  (460)
Bio(€) =1 (46D)
Bi,(§)=0 if k<1 or k>p+1 (46¢)

Generalisation to multi dimensions is possible via tensor product.

4.2. Phase-field discretisation

The phase-field weak form in Equation (41) is now discretised using finite
elements

d" = N,d, (47)

where d denotes the set of phase-field DOFs and N, is the NURBS set of
basis functions utilised for phase-field. Accordingly, the phase-field weak
form defined in Equation (41) leads to

F'El{it f;Xt
- (48)

/ [(1+F)NIN, +4°B]B,] dd = / FNIdQ
Q Q

where B contains the derivatives of the shape function, and F is given in
Equation (42). The tangent term corresponding to this equation yields

ofint
K= a;fi = / (1 +F)NGN, + 4°B;B,) dQ. (49)
Q
The regularised Dirac-d in Equation (18) is also discretised as
i 1 .
6 =d" (ZENdTNd + EBdTBd) d. (50)

A convergence study on Equation (48) for the problem of dimensions
L x W = 2 x 1-uniformly discretised into elements of size h-is presented in
Figure 4, where the [-error is defined
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L)2
[-error = / 0,dQY =Ty =W (/ 0¢dx,, — 1) (51)
Q —L)2

with I'y = W for this example. Moreover, L? norm and H! semi-norm errors
are used in this article as well,

1 2 2
3 B h 2 2 1 _ a_.h _ O%exat
L2-error — ( /Q (0" — ®cxct) dQ) H-error = ( /Q ( e o ) dQ)

(52)
The results for the linear and quadratic NURBS discretisations are sepa-
rated, in which L? and I' errors are explored for different scenarios. L2 norm

_ |z

2 )
and I'-error assesses the Dirac-0 identity which is directly used in the reg-

error compares the estimates with exact phase-field values d, = exp (

_ |z

ularisation, i.e., 0, = ﬁexp( 7) First, we explore the errors against

h-refinement for different length-scales at the fixed ¢y = 9. While the L%
errors in Figures 4A and G recommend larger length-scales, insensitivity
of the I'-errors in D and J are evident (except for the anomaly observed
for £ = h/20 in J). The results corresponding to different cgs, at the fixed
¢ = 2h/15 reveal different prescriptions for coarse and fine meshes. Never-
theless, Veg € {8,9,10} an approximately stable behaviour is observed for all
discretisations, which is supported by both L? and I' errors presented in Fig-
ures 4B, E, H and K. To consider ¢y and ¢ simultaneously, three-dimensional
surfaces are presented for a fixed discretisation (25 elements) in Figure 4.
Blue and orange surfaces indicate linear and quadratic NURBS, respectively.
L2- and T-error surfaces are sliced at particular length-scales in the subplots
C, F, I and L for better clarity. It is worth mentioning that, although the
above-mentioned optimum values for ¢y proved to be effective in this work,
co might generally be expected to be problem-dependent.
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Figure 4: Sensitivity analysis of the phase-field solution with respect to the length-scale
parameter ¢ and the constant cg. L2-norm error with respect to the exact phase-field
solution and I'-error are reported for different fs in A, D, G and J, adopting ¢g = 9. B, E,
H and K explore different cgs in the form of L? and I errors when the constant length-scale
¢ = 2h/15 is adopted for 25 elements. To explore the effect of ¢y and ¢ simultaneously, L2
and T errors are shown by three-dimensional surfaces on the top, where blue and orange
surfaces indicate linear and quadratic NURBS shape functions, respectively. The surfaces
are further sliced for various ¢s in C, F, I and L.
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ws 4.3. Displacement discretisation

aas Next, we discretise the displacement field u® for a regularised extended
us finite element analysis using a Bubnov-Galerkin approach as

u' = 4" + 40" = Nya + 4N, . (53)
aa7 Discretisation of the governing weak form in Equations (35a) and (35b)
448 yields

fiPt ﬁXt
T T — hda
/BgadQ = /Ngtdr+/N§bdQ (542)
Q I Q
fi~nt feixt

/Q ((Bgnr)TaJrza,_;NgRTthC) aQ = / (NP tdl + /Q (NP b dQ
Iy
(54b)

wmo with O = JZ0. The equations are then linearised in a Newton-Raphson
o iterative scheme with the tangent terms

K= (55)
K& KL
451 Where
fiAnt
K{. = 0 z :/BECBﬁdQ (56a)
au Q
452 . . T
Ofint Ofint
K2 = (K&)' = Lo _ (Za :/BTCB%nrdQ 56h
453
afint atloc
K2 = 2% — BT CB™ + 45, NI RT 4L RN, | dQ. (56
o= — [ (e ey aaNIRT 2 (56c)

ss¢  Noteworthy is that the displacement jump in Equation (13) is directly used
w5 in deriving the stiffness term presented in Equation (56¢).
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5. Implementation aspects

Herein, we mention the main implementation requirements for a PUM
regularised by phase-field for fracture analysis. The staggered solution scheme,
solving phase-field first to determine the state of the crack and then assess-
ing the balance of momentum for the determined crack state, is the well-
established choice in phase-field models [26, 30, 39|, which is also adopted
here for the numerical solution of phase-field.

5.1. Compatibility enforcement

Compatibility enforcement is a necessary component in extended finite
element analysis, which has been studied for different aspects of isogeometric
analysis in finite element |73, 74, 84| and meshfree approaches [76]. Two
numerical techniques have usually been adopted in the extended framework,
the shifting and the blending. The shifting localises the enriched field into a
narrow band in the directions perpendicular to the crack profile, mitigating
the error arisen from the additional enhanced term at nodal/control points.
Rewriting the shifted version of the displacement field in Equation (3) reads

uh7SH(X) = ZNﬁz (X) u; + Z \(%d ('TH) 1‘%}1 (xnz)) Nﬂz‘(x> U (57)

i€l ieZenr ]
‘%SdH (In)

where Z denotes the set of all control points in the domain and Z°™ indicates
the enriched subset of control points, i.e., Z*" C Z. Figure 5 illustrates
AN (x,). Tt is noted that a CO-continuity at element boundaries, accompa-
nied with the shifting technique, guarantees the enriched field confined by
the cracked elements boundaries only. This can be either achieved by the use
of Lagrange polynomials within a customary finite element framework or by
knot insertion in isogeometric analysis.|71]

The blending technique, on the other hand, removes the effect of disconti-
nuity at crack front arisen from the inter-element share of the control points.
This is imposed by employing a Heaviside step function, %@EL = 0 in front of
the crack tip and %E’L = 1 otherwise, in XIGA [74]. Applying the blending
technique to the shifted displacement field yields

24



2/3

13

b

~— o

o

standard

field

AN

crack
|
\
I

enriched

field

AN vs V()N

—— Discete
— (=h/4

— (=2h/15
— (=h/20

AN vs 2 V()N

—— Discete
— (=h/4

— £=2h/15
— (=h/20

ﬁ

T
—1.0

C

co -8 - o -

—0.5 0.0

Y

N

.9
Lot ¢
(] P
.o PR
[ ° !
¢ o [ 1
P
l‘ - i i
° ° | ° ° ¢
1
bl A :
¢ ° 1 - . '
O--.0. : o . i
h T o e )
Yy -~
[S) T_) o |
o, &
X Ty
1
N
0
0 1/3 2/3 1
y SH (i), ,
AN vs V()N
) N —— Discete
0.20 A £=h/4
— L=2h/15
0.15 - — =h/20
S
0.10 A
0.05 A
o-- 0
0.00 1
T T T T T
~1.0 —05 0.0 05 1.0
B Yy
SH SH (i)
K7, N vs 38, (O)N
0.00 4 —
co--0--[]-
0.05 A
—0.10 4
~a
—0.15 4 = Discete
—_— = h/4
| e=2m/15
“0209 __ y_ o
T T T T - T
—1.0 —0.5 0.0 0.5 1.0
D Y

Figure 5: Shifting technique comparison between the discrete and the regularised Heaviside
functions, L%’deH and L%”ZSH @, Shifting technique is shown for %ﬂpsdH in a Mode-I fracture of
quadratic NURBS, following the XIGA’s enrichment recipe (the green circles denote the
enriched control points). Univariate standard and enriched fields are illustrated for the
discontinuity in the Y-direction, while the medium is continuous along the X’-direction.
The results of the shifting techniques for an eleven-element discretisation are compared
for different length-scales in A. For further clarification, the set of shifted basis functions
associated with the enriched control points are represented separately in B, C and D.
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Figure 6: Comparison among the diffused Heaviside function and its shifted candidates.
Enriched set of shape functions (A, B and C) and and their gradients (D, E and F) are
presented for the enriched control points, indicated by green circles, individually.

5.1.1. Regularised compatibility enforcement technique

Now we derive compatibility enforcement on the regularised Heaviside
function in Equation (19).

=S Na(it Y A () (-2 Noyi (59)

€L ieZent

jﬁ(wn)

We employ the shifting technique for the diffused displacement field, lead-
ing to two candidates for the shifted, regularised, Heaviside functions:
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1) =Y Nox) @+ > (2, (@) = A2, (24,)) (1= 2£60) Na,

€L iezenr %SH‘(T) (22)
(60)
and
h SH (11) Z N
i€
N 61
3 (K, () (1= 205) — S, () (1= 205,)) Noyi. (V)

jezenr D
’%SH (ii) (xn)

To confirm 1img_>0 %SH = J SH, a comparison has been made between

%ﬂrsd and %” ) in Figure 5. Next, another comparison is made between the

Heaviside functions candidates, i.e., {JfriH,%,%iSH ,%SH (n)} in Figure

6. Shifting candidates are further applied to the equations in Section 4.3
by simply replacing the Heaviside function with the shifted candidates, i.e.,
(%ﬂq_%SH(p \/%SH ii)

As prev1ously dlscussed, the inter-element share of the control points un-
desirably extends the discontinuous field to the crack front. This has been
prevented through the blending technique used for sharp cracks, e.g., J4°"
Equation (58), to retrieve the intact behaviour of crack front. For the regu-
larised formulation, however, the contribution of the discontinuous (enriched)
field at the crack front, see the purple shade in Figure 7, is disregarded, ren-
dering use of additional Heaviside step function redundant. Consequently,
the notion of displacement jump becomes meaningless at the crack front (see
the purple shade in Figure 7), leading to cohesive traction elimination.

5.2. Integration and crack extension direction

Greville abscissae are naturally used in IGA integration of intact bod-
ies. Following the comprehensive study on extended isogeometric collocation
method, however, they are proven incompatible with PUM for fracture anal-
ysis, as enough integration points are needed at cracked sections for the
Heaviside function evaluation [87]. Hence, Gauss quadrature is used as the
standard integration scheme in this article. It is worth noting that neither
quadrature sub-cell strategy, such as tesselation typically used in XFEM, nor
equivalent polynomial approximants [46] are utilised in this study. Instead,
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Figure 7: Regularised evaluation of cohesive tractions. Points are first projected onto the
crack path (the solid blue line) where the displacement jump [u] is explicitly defined via
PUM. Accordingly, points x and x  share the same central point on the crack path x,
therefore sharing the displacement jump and cohesive traction which is finally diffused with
their respective d, values. Considering a fictitious crack extension profile distinguished by
the dotted blue line, cohesive tractions at x  are disregarded, as points in front of the
crack tip, indicated by the purple shade, are intact.

a 9 x 9 standard Gauss quadrature for fixed grid points are considered here,
see Figure 8, unless stated otherwise. This automatically forms a band of
improved integration around the crack path, as shown in Figure 8, which
becomes narrower with mesh refinement. Next, employing phase-field has
relaxed the line integration typically needed for cohesive-zone discrete frac-
ture models, which subsequently eliminates point projection |74, 91]. As an
alternative, the displacement jump at a given point x is evaluated at the clos-
est point on the crack profile, i.e., x, = argmin (||x* — x||) with x* € I'q, see
Figure 7. This is then weighted by the value of d,(x), identical to the constant
displacement jump at the diffused region used in Verhoosel and de Borst [39];
however, without additional constraint enforced on the displacement jump.
Crack initiation and propagation are introduced in the same manner as in
extended finite element analysis, through the level set technique and enrich-
ment. In this regard, our proposed approach offers no improvement over the
classical extended finite element analysis. However, it can still be improved
in terms of crack initiation and tracking by incorporating a degradation func-
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Figure 8: Integration point distribution. For a NURBS of orders p and ¢ in the X and
Y directions, a normal (p+1) x (¢+ 1) Gauss quadrature is utilised for non-enriched
elements, while a 9 x 9 is adopted for the elements with enriched control points, see the
yellow element with one enriched point. Here, the integration scheme is shown for the
quadratic NURBS, i.e., p = ¢ = 2. The green circles denote the enriched control points,
the red line indicate the crack profile, and a Cp-continuity is introduced through knot
insertion and is illustrated by the blue line.

tion — as discussed in Remark 3 — which would enable automated crack
path monitoring via a phase-field-dependent level-set function. This will be
the subject of our future work.

In this article, the crack extension direction is determined by the nonlocally-
averaged maximum principal stress at the crack tip — an approach commonly
used in the extended finite element analysis. The reason behind the non-local
averaging [92] is the stress oscillations around the crack tip [24, 74|, despite
the improvements in stress estimation by spline technologies. Crack nucle-
ation occurs when the majority of the points on the potential crack extension
satisfy the evolution criterion on the ultimate tensile strength ¢, i.e., tqg > t,.
Therefore, no improvement is made here regarding the extension direction
and propagation in comparison with the extended finite element analysis. An
alternative could be treating the phase-field as damage variable, beyond a
mere regularisation term, by considering a degradation function, which will
be explored in our future work.
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6. Numerical examples

The efficacy of the proposed formulation is examined here at the hand
of multiple numerical examples for stationary and propagating fractures.
Herein, 1 element is assumed in the )-direction, unless two values are re-
ported in the format () x [, where () and [ indicate the number of elements
used in the X and Y directions, respectively.

6.1. Traction-free stationary crack

A mode-I traction-free fracture is explored in a plate subjected to sinu-
soidal body forces as our first example, see Figure 9. Young’s modulus of
E =1 and the cross-section area A = 1 are assumed. The exact solution
reads:

L sin (rx) — 42 ifxr <0
u™ = (62)
Ssin (ma) + =2 ifr >0
1 1
ex — _ = 63
o 7T(3os(7r:z:) - (63)

The absence of tractions at the crack eliminates [, 26, N7 RT 9 dQ and
Jo 46, N7 RT 0t¢/0[u] RN; dQ in Equations (54)b and (56)c, respectively,
enabling direct investigation on the effect of §, on the regularised Heaviside
function 77, and the associated shifting technique.
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6.1.1. Enrichment scheme assessment

We first explore a potential relationship between the phase-field variable
d and the enrichment of individual control points, with the objective to find
a prescription for the enrichment scheme. Quadratic NURBS is assumed
for the discretisation of 25 uniform elements, and phase-field is evaluated
analytically through direct evaluation of the exponential decay in Equation
(15). Figure 10 shows the displacement (u) and the stress (o) results, which
are compared with the exact analytical solution for three different enrichment
criteria and length-scales.

First we explore the non-shifted displacement field ul(x), in Equation
(59), and compare the results of the enrichment criterion d > le — 1 shown
in Figure 10A. The length-scale ¢ = h/4 gives the best agreement with re-
spect to the exact solution, even though negligible oscillations are observed
for the stress curve at the peak. In comparison with the enrichment scheme
in XIGA [73, 74|, control points corresponding to the cracked element are
enriched, only ¢ = h/4 matches, while ¢ = 2h/15 and ¢ = h/20 are under-
enriched. A similar pattern is also observed for d > le — 4, where ¢ = 2h/15
coincides with the XIGA enrichment. It is interesting to see the effect of
over-enrichment in ¢ = h/4, where displacement agreement is satisfactory,
but oscillations result in stress estimates. ¢ = h/20 shows under-enrichment,
leading to an incorrect displacement jump at the crack. For d > le — 7,
XIGA’s enrichment with £ = h/20 returns satisfactory results for both dis-
placement and stress comparisons. For other length-scales, however, over-
enrichment exhibit oscillations which are more pronounced for ¢ = h/4 and
less noticeable for ¢ = 2h/15 (with only one additional column of control
points enriched at each side of the crack).

Instability is an immediate consequence of over-enrichment for u?’ SH () (x)
in Figure 10B, as the stiffness matrix becomes singular. This is reminis-
cent of the ill-conditioning issue of the discrete fracture analysis with over-
enrichment. While the combination of under-enrichment and XIGA’s recipe
renders stable solutions, the errors are significant. Thus, no further investi-
gation is carried out on u?’ SH() (x). On the other hand, u?’ SH(@) (x) renders
stable results for all enrichment scenarios. Again, the best agreement is ob-
served for XIGA’s prescription, while, in general, the results are very similar
to those of ul}(x), though with a completely different set of shape functions
utilised, see Figure 6.

Overall, the XIGA enrichment recipe appears to be the most suitable op-
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tion, irrespective of the phase-field value. According to XIGA, control points
corresponding to the cracked element should be enriched. Hereafter, we only
investigate the enrichment scheme proposed by XIGA. Another observation is
that, by adopting the XIGA’s enrichment scheme, stress oscillations slightly
appear for ¢ = h/4, and disappear with smaller length-scales adopted. It
can be deduced that, maintaining the XIGA’s prescription, the length-scale
parameter ¢ should be smaller than A/4 in a uniform mesh of length h.
The physical interpretation of this choice is that the regularised phase-field
variable d, majorly occupies the cracked element and vanished elsewhere,
see Figure 2B. This is in line with the philosophy of extended finite element
analysis, which localises the (discontinuous) enriched field within the cracked
element.

6.1.2. p-refinement: continuity-order assessment

One of the main features of IGA is the higher inter-element continuity
provided by NURBS basis functions, which increases with p-refinement by
elevating the continuity-degree of NURBS. A uniform discretisation of 25
elements is adopted following the enrichment scheme prescribed by XIGA.
Analytical 0, defined in Equation (15) is utilised here. The results are pre-
sented for displacement and stress estimates, which are compared with the
analytical solution, in Figure 11. Two scenarios are explored for displacement
field candidates: the non-shifted displacement field u}(x) and the shifted

h, SH (ii)
U, (x) format.

Similar to the results in Section 6.1.1, no difference between the results
of the non-shifted formula u(x) and the shifted version u*" ™ (x) is ob-
served. Stress oscillations observed for ¢ = h/4, which are more pronounced
for quartic and less for quadratic and cubic NURBS basis functions, while
satisfactory results are obtained for other length-scales. This is reminis-
cent of the conclusion made in the previous section about confining d, by
choosing ¢ < h/4. Moreover, the good agreement observed in Figure 10 for
p-refinement is another validation of the hypothesis about the best enrich-
ment scheme. Therefore, the term "enrichment" refers to the XIGA’s recipe
in the remainder.
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Figure 10: Establishing a relationship between the enriched field and the phase-field vari-
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and the stress results of our proposed approach, indicated by the dashed black line, com-
pared with the analytical solution, given by the solid red line. Enriched control points
corresponding to the enrichment criterion defined on the phase-field variable d are illus-
trated by green circles. Note that the crack is located at the middle of the plate.
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Figure 11: p-refinement comparison for (A) ul(x) and (B) u?’SH (i) (x). Green circles in-

dicate the enriched control points associated with each NURBS. The results are compared
with the analytical solution denoted by the red solid curves, comprised of displacement u
and stress o estimates.

6.1.3. Analytical vs numerical phase-field

So far the analytical §, in Equation 15 has been utilised in the previous ex-
amples. Now, we explore the numerical evaluation of the phase-field formula
given in Sections 3.2 and 4.2. A 25-element discretisation with the length
scale ¢ = 2h/15 and the penalty factor ¢g = 9 are adopted based on the
investigations carried out in Section 4.2. The displacement and stress results
are shown in Figure 12 for various combinations of NURBS utilised for me-
chanical and phase-field problems. A chamfered response is observed for the
displacements at a short distance at each side of the crack (see the zoom sec-
tions of u in 12A). No substantial difference between analytical and numerical
phase-field solutions is observed for the displacements in Figure 12A, with all
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solutions showing acceptable accuracy. This is further supported by the L2
norm error on displacements in Figure 12C, where no significant disparity is
observed between the analytical and numerical results. On the other hand,
the stresses exhibit different responses for the p-refinement within the me-
chanical problem, as shown in Figure 12A (see o columns of Lin (u), Quad (u)
and Cub (u)). Unsurprisingly, regardless of phase-field, oscillatory stresses
result for linear NURBS utilised in the mechanical problem, as a quadratic
approximate is needed to ensure continuous gradient of displacement.

It is best to compare phase-field independently by checking the I'-error
introduced previously, which allows for assessing the quality of §, estimates
for p-refinement. Figure 12B compare the approximated regularised Dirac-ds
against the exact values given by the exponential decay in Equation (15). A
tortuous solution is observed for the linear order while quadratic and cubic
NURBS guarantee a smooth response. The I'-error in 12B determines the
best NURBS order to satisfy the central identity fQ 0,dQ2 = T'q, with the
orders ranked as quadratic, cubic and linear based on the least error.

In a comparison between numerical and analytical solutions of phase-
field, those oscillation caused by the former are more pronounced, which
are substantially mitigated by p-refinement, consistently improving as we
move away from Lin (u) towards Cub (u), which is also confirmed by the H!
semi-norm error of the mechanical problem given in Figure 12D, where both
analytical and numerical solutions improve with p-refinement. To determine
the best combination, H! semi-norm errors suggest Cub (u)-Quad (d) by
looking at the yellow bars, which is in line the I' error in Figure 12B for
numerical phase-field solutions.

6.2. Cohesive fracture: linear traction-separation relationship

Now, cohesive tractions are considered for a uniform tension test of a plate
cracked in the middle, as depicted in Figure 13A. The effect of the length-scale
on analytical estimates of J, is presented in Figure 13B, which are compared
with the numerical estimates in C. The importance of such example lies in
the cohesive terms which rely on the quality of the §, estimate, particularly
in £ and K2 of Equations (54)b and (56)c. A linear traction-separation
relationship is utilised, 7.e.,

G — %k; [l ta =k [un]. (64)
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Figure 12: Analytical vs numerical solution for the phase-field problem. Displacement
(u) and stress (o) responses are represented in A for different combinations of NURBS
chosen for phase-field and mechanical problems, while B compares numerical §, against
the analytical (exact) evaluation, assessed by the I'-error. L? norm and H! semi-norm
errors of the mechanical problem are given in C and D in the form of bar graphs.

with a constant tangent £ = 1. The material parameters read: Young’s
modulus F = 1; Poisson’s ratio v = 0; and the cross-section area A = 1. Due
to the symmetry with respect to the X-axis, only 1 element is considered
in the )Y-direction, reminiscent of a one-dimensional example. The exact
solution is given by
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tion at the dashed blue line. Analytical §; values are shown in B, and numerical d,s are
compared to the analytical results in C.

k?fE if 0<x<L/2
ueX — ) ) (65>
kzle + k}ffE if L/2<x<L
o GkE
O T WLTE (66)

where u®™ and ¢ indicate the exact displacement and stress, respectively.
Following the results by Section 6.1, two scenarios are considered here:
the non-shifted Heaviside function .7 (x,); the shifted Heaviside function
%SH (i) (n). The former is already presented in Section 4.3, whose formula-
tions are also valid for the shifted Heaviside by changing ™ <— e () (see
Appendix Appendix A for the definition of these enriched terms).

6.2.1. Length-scale sensitivity analysis

First, we conduct a parametric study of the effect of the length-scale
on the mechanical response in the presence of cohesive terms by adopting
¢e{h,h/2,h/4,h/5 h/6,2h/15 h/8, h/10,h/15, h/20}. The results are pre-
sented for 9 elements in the top two rows of Figure 14. As observed in Figure
2B, the tangent of analytical d, at the peak spans the distance 4¢, for which
we endeavor to find a physical interpretation with respect to the discrete
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fracture model. The results in 14A |, B, E and F show the optimum solution
when 4/ is within the cracked element. Specifically, in a uniform mesh of
length h (h = L/9 in the X-direction), choosing h = 4¢ renders the optimum
solution for the non-shifted Heaviside formulation, as shown in Figure 14A
and B. A slightly larger element length, h = 5¢ in X-direction, or equiva-
lently a slightly smaller length-scale ¢ = h/5, exhibits the optimum solution
for the shifted Heaviside formulation, %SH (ii), depicted in 14E and F. This
is in agreement with the findings in Section 6.1. In the case of numerical
phase-field presented in Figure 14C, D, G and H, comprehensively studied
in Section 6.1, cubic and quadratic NURBS are adopted for the mechanical
and phase-field problems, for which ¢ = h/10 exhibits the optimum solution
for the non-shifted and shifted Heaviside formulations.

The length-scale sensitivity analysis provides a physical interpretation
that a majority of dy should be limited to the cracked element, at least the
distance occupied by the gradient of dy at the peak (4¢) in Figure 2B, if
not entirely. Therefore, £ = h/4 can be used as a reference value for the
phase-field regularised PUM, which can vary according to the quality of 9,
estimates. The disparity between the optimum length-scales found for ana-
lytical (¢ ~ h/4) and numerical (¢ < h/4) simulations could be attributed to
the blunted peak of the numerical estimates, which leads to a wider tangent
(lower gradient values) of d, at the peak (where crack locates), and conse-
quently a flatter dy, see Figure 13C for a comparison between analytical and
numerical estimates of d,.

6.2.2. h-refinement: discretisation stability

Next, we investigate the effect of the mesh refinement for analytical and
numerical phase-field solutions by choosing the discretisation from the list
{7,9,11,25,57,103} in the X-direction. The results are reported for the op-
timum length-scales obtained in the previous section, see the bottom two rows
in Figure 14. The displacement results, Figures 141, K, M, O, are difficult to
distinguish from the exact solution, while the stress results shown in Figures
14J, L, N and P exhibit clear superiority of the shifted Heaviside formulation,
%SH @ Unsurprisingly, the analytical phase-field formulation (Figures 14J
and N) outperforms the numerical implementation (Figures 14L and P) in
terms of accuracy. Regarding the stability, all the cases of discretisations
converge to the expected results with the trend of better accuracy yielded
for finer meshes, as shown by the arrows in Figures 141, K, M and O. For the
displacements, the finest mesh (103 elements) leads to the best results for

38



730

731

732

733

734

735

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

both analytical and numerical phase-field solutions. Regarding the stresses,
however, the amplitude of the oscillations increases with mesh refinement,
but they are also more concentrated to the crack location, see Figures 14J,
L, N and P. Between analytical solutions in Figures 14N and J, the stress
oscillations for the shifted Heaviside are negligible in value compared with
the non-shifted formulation.

The optimum length-scale results from the analytical and numerical stud-
ies are collected in Figure 15. As also supported by L? norm and H! semi-
norm errors in E and F, the shifted Heaviside formulation exhibits better
accuracy for both displacements and stresses in A and B, respectively. For
the numerical phase-field, however, while L? norm errors are very close for
quadratic and cubic NURBS, the results by the quadratic discretisation ex-
cels from the cubic in terms of the H! semi-norm errors in H and the stresses
reported in D. Even though lower H! sermi-norm error is observed for the
non-shifted Heaviside function, a more consistent behaviour is observed for
the quadratic shifted Heaviside in H. The best results are obtained with the
shifted Heaviside function regularised by the analytical phase-field solution,
while higher errors and relatively high-amplitude oscillations are observed
for non-shifted Heaviside formulation and the stress results of the numerical
phase-field solution. Hence, only the shifted Heaviside formulation regu-
larised by analytical phase-field is utilised hereafter.

6.2.3. Sensitivity analysis of singularity

Many approaches have been exploited to mitigate the conditioning issue
of the stiffness matrix in extended finite element analysis, as explored in In-
troduction section. This issue is majorly adhered to two scenarios in which
the same reason of inadequate integration of the Heaviside enrichment at
one side of the crack can cause the singularity of the stiffness matrix. These
scenarios happen when highly disproportionate sections are faced within an
element: either the crack path and the element edge align too close to each
other; or the crack divides an element too close to a corner. Herein, we ex-
plore the hypothesis whether the diffused crack definition can mitigate the
ill-conditioning issues. This is motivated by the fact that, unlike discrete
fracture models, diffusing the crack leads to a continuous Heaviside function,
as explored in Section 2.1. Therefore, within the cracked element, less de-
pendency to proper integration of the Heaviside function is anticipated, since
a transition zone for the discontinuity is defined after crack diffusion.
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Figure 14: Comparison between the non-shifted (.#7) and the shifted (%SH (”)) Heaviside
formulation of the displacement (u) and stress (o) results cast for the constant cohesive
traction-separation relationship. The results are compared against the exact solution and
the numerical result by Verhoosel and de Borst [39], indicated by the solid red and the
dashed black lines, respectively. The analytical solution of the phase-field is assumed for
the left two columns, while numerical phase-field approach is utilised for the right two
columns. Horizontally, the top two rows represent the effect of the length-scale £ for the
fixed 9 x 1 elements, whereas mesh refinement is the focus at the bottom two rows.

We have conducted a comprehensive study on the first scenario when
the crack aligns with the edge of element at a very close distance. The
shifted Heaviside formulation and the analytical phase-field description are
adopted for this example with ¢ = izmin/ 5, where fzmin denotes the min-
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Figure 15: Displacement and stress results of analytical (A and B) and numerical phase-
field (C and D) cast for the optimum length-scales specific to the shifted and non-shifted
Heaviside functions. 9 elements are considered in the X-direction. L? norm and H' semi-
norm errors are presented in E and F for the analytical phase-field, while G and H show
these error norms associated with cubic and quadratic NURBS used for numerical phase-
field. Quadratic displacement field is preserved for all cases.

imum length of the enriched elements. The results are shown in Figure
16. To examine the sensitivity of the distance between the element edge
(see the blue edge in A) and the crack path to cause singularity, condi-
tion numbers of the stiffness matrix are reported for different distances, i.e.,
Dginguiarity € {0.001,0.002, 0.005, 0.01,0.05,0.07143}. The results are shown
in B comparing the current study with linear interpolation for XFEM and
quadratic NURBS for XIGA. For the normalised distances less than 0.005,
both XFEM and XIGA report super high condition numbers, while XFEM
exhibits the best performance (the least condition number). The results of
the current study yields the most stable condition numbers that is approxi-
mately equal to XIGA for Dgnguarity/L = 0.071 at the beginning.

While assessing the condition number of the stiffness matrix is the best
indicator of singularity, it is never an assessment of the performance of the
mechanical problem. Therefore, we present the displacement and stress re-
sults compared with the exact solution and a numerical reference in Figures
16C and D. While displacements return accepted results, the stress plot of
the farthest distance are in good agreement with the exact solution. For
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Dgingularity/ L = 0.001, however, the stress plot is slightly worse than the case
0.071. Noteworthy is the fact that the quality of the coarse mesh (7 ele-
ments in the X-direction) also plays a significant role in worse stress results,
see Figure 16B for a comparison between the two meshes. The accuracy is
further assessed by L? norm and H! semi-norm errors presented in E, where
approximately 4 x 1072 results for both errors at Deingularity /L = 1 X 107,
From the stability point of view, the condition number remains in the range
]1.4 x 10* 1.7 x 10*[ even for Dsingularity/L = 1 x 10716,

The second scenario of conditioning issue, when the crack divides the
element too close to a corner, happens frequently in extended finite element
analysis since the crack path and the underlying mesh layout are independent,
see the yellow elements in Figure 17B. The results in D and E indicated by
the green dashed line exhibit excellent agreement with the exact solution for
quadratic NURBS, even though the crack exactly passes the corner of the
two yellow elements at the middle of the plate. Noteworthy is the fact that
the absence of Kronecker-¢ in CP~!, p > 2 has no effect on the ill-conditioning
issue, as observed for C! in quadratic NURBS.

6.2.4. Irregular discretisation

One of the main features of the phase-field-regularised PUM developed
here is the capability of handling irregular discretisations even for the coars-
est meshes typically used in discrete fracture models. We have adopted the
shifted regularised Heaviside formulation and the analytical phase-field de-
scription here, while ¢ = Pomin /5 is the length-scale defined on the minimum
element length of the enriched elements. The first case explores moving the
edge of the cracked element onto the crack path, see the mesh in Figure 16B
for Dsingutarity/L = 0.001. The results are presented by the dotted blue line
in Figures 16C and D, showing excellent agreement for the displacement and
accepted result for the stress against exact results. It is noteworthy that the
results of the stress could be highly improved with the mesh refinement, as
is explored for the next example.
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Figure 16: Sensitivity analysis of singularity due to Heaviside enrichment. The blue
edge in A gradually approaches the crack and the corresponding condition numbers are
plotted for different distances, Dgingularity, in B. The results are also compared with XFEM
and XIGA. The farthest and closest distances, whose meshes are shown in Figure B, are
compared with the exact solution and the numerical reference[39] for the displacement
and stress graphs in C and D. L2 norm and H! semi-norm errors are plotted along with
their corresponding condition numbers of the current approach in E, in the distance range
[1x1071¢ 1x1072].

An inclined mesh is adopted in Figure 17 for the quadratic NURBS (see A
and B) to investigate a more complex discretisation example complemented
by defining a C°-continuous line (see the blue line in A and B) by knot inser-
tion [71], while a linear NURBS is also assessed in C. This example provides
an additional validation of the enrichment scheme suggested in Section 6.1.1:
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control points corresponding to cracked elements are enriched, regardless of
the distance to the crack path, which is the only factor in the phase-field
variable determination.
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Figure 17: Assessment of phase-field-regularised PUM for irregular meshes shown for (A)
14 x 1 quadratic, (B) 16 x 10 quadratic and 16 x 10 linear NURBS elements. The C°-
continuous line (see the blue line in A and B) is introduced by means of knot insertion
to include all typical features of a general mesh in IGA, while all grids of C are C°-
continuous due to linear NURBS adopted. The displacement (D) and stress (E) results
are compared for mesh refinement of quadratic NURBS shown in A and B. Utilising the
same discretisation, 16 x 10 elements in F (displacement) and G (stress), the effect of
NURBS order is assessed for linear (C) and quadratic (B) NURBS. It is noted that the
results are plotted for the top edge of the rectangle.

For quadratic NURBS, the results for the displacement in D are almost
identical for the meshes proposed in A and B, while there is an obvious
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difference in the stresses shown in E. As observed in A, use of only 1 element
in the Y-direction causes a non-uniform enrichment spread over the entire
geometry, which is against the localised nature of enrichment. The effect of
mesh refinement in B is twofold: a more uniform mesh is introduced for the
proposed inclined discretisation; a locally distributed enrichment results due
to the smaller support of the refined enriched elements. The stress results
significantly improve for the mesh refinement presented in B. In comparison
with linear NURBS, however, both displacement and stress results improve
when linear NURBS is adopted. Regarding the ill-conditioning of the stiffness
matrix, it is proven that the presence or absence of Kronecker-d has no effect
on the performance of our proposed formulation, as both C! (quadratic) and
C% (linear) NURBS have been explored here. Moreover, the satisfactory
results of this example refute any relation between the enrichment scheme
and the phase-field variable d. It is worth noting that a singular matrix
results when the discrete Heaviside formulation, discussed in remark 1 in
Section 3, is utilised.

6.2.5. Gauss quadrature sensitivity analysis

So far, as shown previously in Figure 8, the number of Gauss points used
for the standard field has been the minimum requirement for full integration
(p+1) x (¢ + 1) using univariate NURBS of orders p and ¢, while a 9 x 9
Gauss quadrature has been utilised for the enriched terms to efficiently handle
d¢, a steep exponential decay function. Therefore, we assess whether the
quality of the enhanced field 4" is majorly dependent on the quantity of
the Gauss points used in the Gauss quadrature. Herein, we examine three
irregular meshes, similar to those utilised in Sections 6.2.3 and 6.2.4, in order
to find the optimum number of Gauss points needed for integration. The
shifted Heaviside formulation given in Equation (61) is only adopted here
with £ = A /5. We choose a quadratic bivariate NURBS (p = ¢ = 2) for the
mechanical problem and, therefore, a 3 x 3 Gauss quadrature is adopted for
the standard field. For the phase-field, we exploit the analytical exponential
decay to exclude the possible effect of the errors associated with numerical
phase-field solutions.
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Figure 18: Assessment of  the Gauss quadrature for irregu-
lar ~ meshes shown for the knot vectors denoted by: 2y =
{0,0,0,0.1428,0.2857,0.4285,0.53,0.7142,0.85714,1,1,1} and Z, = {0,0,0,1,1,1}
in A; 2, = {0,0,0,0.1428,0.2857,0.4285, 0.49,0.54,0.64,1,1,1} and =, = {0,0,0,1,1,1}
in B; 2, = {0,0,0,0.1428,0.2857,0.4285,0.5,0.5,0.5714,0.7142,0.8571,1,1,1} and

=, ={0,0,0,0.5,1,1,1} in C. The L? norm and H' semi-norm errors are presented in D
and E.

The results are presented for L? norm and H! semi-norm errors of the
number of Gauss points in Figure 18. The extent of irregularity increases
for the discretisations adopted from A to C. The errors in D and E exhibit
uniform results for the meshes in A and B. An inclined mesh is examined
in C, while a minimum 2 elements is needed in the )-direction to prevent
the enriched control points from spreading across the entire domain, which
can significantly affect the mechanical response, as shown in Section 6.2.4.
The results of this case show that a minimum 10 Gauss points are needed
to guarantee an almost stable H' semi-norm error. The same L2 norm error
exhibits stable errors using a minimum 9 Gauss points used. It is noteworthy
that the L? norm errors are less restrictive than the H! semi-norm errors in
terms of the number of Gauss points. In general, it is proved that the number
of Gauss points needed are subjective to the quality of discretisation, with

46



872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

local mesh refinement playing the pivotal role (see Figure 18B).

6.3. Cohesive fracture: nonlinear traction-separation relationship

A nonlinear traction-separation relationship is examined here to better
assess the efficacy of the proposed formulation and confirm the conclusions
made in previous sections. The geometry and the material properties remain
the same as Section 6.2. The energy adopted at the interface reads

G = Ge (1 - (1 + [[Z:]]> exp <— HZ:“)) (67)

with v, = G/ (t,exp(1)). The traction description at the discontinuity yields

= g = 9o o () (68)

where the critical fracture energy G. = 1 and the tensile fracture strength
t, = 0.75 are adopted for this example. Dealing with a nonlinear prob-
lem, an iterative Newton-Raphson solver is adopted with a non-uniform
displacement-controlled increments:

Au = 0.066667  if u°d <2

Au = 0.15 if a°d > 2 - (69)

1Tlnew — ﬁold 4 Aﬁ, {
Based on the previous sections, the optimum length-scale ¢ = Pomin /5 is

adopted here for %SH @ The analytical phase-field, in the form of the expo-
nential decay function, is adopted in this section. The relative energy norm
error is calculated by comparing the integral below the force-displacement
curve with the energy released by the crack path

‘fooofdu - gc : lcr|
gc'lcr

(70)

E-error =
with [., denoting the crack length.

6.3.1. Irregular discretisation and Gauss points sensitivity analysis

Effect of discretisation irregularity is hardly explored for phase-field mod-
els in the presence of nonlinear cohesive relationship. Herein, we have adopted
two extreme cases of irregular meshes, see Figures 19A and C, for which the
mechanical response is presented through a force-displacement curve plotted
for various numbers of Gauss points used for the enriched terms. Based on
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the results of the linear traction-opening relation, reported in Section 6.2, a
minimum number of 10 Gaussian points return satisfactory results. Hence,
we have investigated 10, 11 and 12 points for the Gauss quadrature of en-
riched term, while maintaining the (p+1) x (¢+1) Gauss quadrature for the
standard displacement integration.

The force-displacement curves are shown in Figures 19B and D. While
both non-uniform (A) and irregular (C) meshes exhibit satisfactory results
for all integration points examined, 12 Gauss points successfully capture the
behaviour at the peak, particularly for the inclined mesh in D. The errors are
reported in Table 1, showing a clear improvement with 12 GPs for the inclined
mesh. Regarding the errors of the non-uniform mesh, the poor quality of
discretisation, particularly the significant difference in element sizes, cause
considerable error after the peak. This is clearly improved by exploiting a
uniform discretisation of the same number of elements examined in Figure
20A, which exhibits good agreement with the exact solution in C.

6.3.2. h-refinement

To complement the discretisation stability study in Section 6.2, the effect
of discretisation is assessed in the presence of nonlinear traction-separation
relationship. This example is pivotal in showcasing the role of PUM in com-
patibility with coarse meshes. Uniform discretisations (7, 11 and 25 elements)
are adopted here, see Figure 20. The mechanical responses in the form of the
force-displacement curve are shown in C, which are compared with the exact
(discrete) solution and the numerical results by Verhoosel and de Borst [39].
The results are presented for 7 and 25 elements using 12 Gauss points show-
ing excellent agreements with the exact solution, which proves the stability
of h-refinement solution using the proposed length-scale. This is supported
by the energy norm errors (Equation (70)) reported in Table 1 as well, which
quantifies the errors associated with Figure 20C with values less than 1%.
In comparison with other numerical techniques, our proposed formulation is
compatible with super coarse discretisations, as the results of the 7-element
mesh is closer to the exact results than 800 elements utilised by Verhoosel
and de Borst [39]. As discussed in details in Remark 2 (see Section 3), the
proposed formulation in Verhoosel and de Borst is a special case of the cur-
rent formulation in the absence of PUM and the consistent displacement
jump definition.
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Discretisation Energy norm error Gauss quadrature
10 GPs | 11 GPs | 12 GPs
Non-unifrom Relative error (%) 7.7095 | 8.114 10.482
mesh
Inclined mesh Relative error (%) 4.035 4.090 0.312
Discretisation
Uniform mesh Relative error (%) 7 elems | 11 elems | 25 elems
0.826 0.813 0.774

Table 1: Relative energy norm errors for different discretisation cases. Gauss quadrature
of the enriched terms is explored by the number of Gauss points (GPs) used for irregular
meshes, while mesh refinement is investigated for uniform discretisation.
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Figure 19: Force-displacement response of irregular discretisation in the pres-
ence of cohesive tractions. Two discretisations are investigated: non-uniform
mesh E, = {0,0,0,0.14285714, 0.28571429, 0.42857143, 0.49, 0.54, 0. 64,1, 1, 1}
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Figure 20: Effect of h-refinement in the presence of non-linear traction-separation rela-
tionship. 7 and 25 elements are presented in A and B, while the corresponding force-
displacement curves are shown in C, which are compared to those of Verhoosel and de
Borst [39] given in black.

6.4. Delamination peel test

Our final example investigates the progressive crack propagation via a peel
test, shown in Figure 21, where a traction-free initial slit is considered in a
double cantilever beam. The material properties are taken as: the Young’s
modulus, £ = 100 MPa; the Poisson’s ratio, v = 0.3; the critical fracture
energy, G. = 0.1 N/mm; and the tensile fracture strength, ¢, = 1 MPa.
The traction-crack opening relationship follows the exponential cohesive-zone
model, i.e.,

Gr = —Geexp (—t—i[[un]]) 7 (71)

where the cohesive traction relation at the discontinuity yields

tq = a(Eszi]] =ty exp (—;—t[[un]]> . (72)

A history parameter x identical to the one discussed in Section 2.2 replaces
the displacement opening [u,] to ensure irreversibility of fracture opening
imposed by the Kuhn-Tucker condition.

As shown in Figure 21A, quadratic NURBS elements are used across dif-
ferent spatial discretisations to support mesh objectivity. The enriched con-
trol points are highlighted with green circles. A simple enrichment scheme
is adopted for crack propagation: all control points belonging to the cracked
elements are enriched regardless of the inter-element share of control points,
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provided that the enriched terms to be manually removed from the displace-
ment field calculations at all partially-enriched elements in front of the crack
tip. The deformed shape after crack propagation is shown in B and C, illus-
trating displacement and stress fields in the )-direction, respectively.
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Figure 21: Peel test of (A) a double cantilever beam with an initial slit subjected to
prescribed displacement @. The zoom box illustrates the enrichment scheme utilised (only
enriched control points are shown by green circles). The deformed shape is shown in the
forms of the (B) displacement and (C) stress fields in the Y-direction. A parametric study
on the internal length scale ¢ is conducted in D, followed by the mesh sensitivity analysis
in E. The results are compared with interface elements (90 x 7) and the XIGA approch
(100 x 9).
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So far, we have observed that ¢ = h/5 is a good choice for stationary crack
problems explored in the preceding sections. Nevertheless, we have conducted
a parametric study for the progressively propagating crack in the peel test, as
investigated in Figure 21D for the fixed mesh 100 x 9, where the first and the
second digits denote the number of elements along the length and the width of
the problem, respectively. A converging trend is observed by decreasing the
internal length scale ¢ where the factors {2/11,1/6,1/7,1/8} render excellent
agreement with the results generated by the predefined interface elements
and XIGA (see D in Figure 21). This proves that the results are almost
insensitive to the length scales below a specific value, a potential alternative
to the length scale sensitivity observed in other phase-field contributions.

Next, a mesh sensitivity analysis is presented in Figure 21E, while fixing
the internal length scale £ = h/6. The results demonstrate good agreement
with those of interface elements and XIGA irrespective of the various spatial
discretisations examined with minimal effects on the mechanical response.

It is worth comparing the computational cost of the present study with
that of XIGA [74] and the classical phase field model|39]. The comparison is
based on the final configuration of the problem, in which the crack propagates
for 34 elements after an initial traction-free slit of 10 elements. Rather than
reporting computation time — which is subjective to quality of machine’s
computing processor and would requires rerunning all the comparison candi-
dates with the same machine — we follow the cost estimation approach used
in collocation method [88, 87|. Specifically, we correlate the computational
cost with the stiffness matrix assembly effort, measured by the number of
integration points.

Recalling that the full integration for a bivariate NURBS basis function of
order p requires (p+1) X (p+1), we assume that full integration is employed
in [39], even though the exact number of integration points is not reported.
Full integration is also used for the standard term in XIGA and our proposed
approach. However, the number of points used for the enriched terms differs:
XIGA adopts 7 x 7 integration points, while the current study uses 12 x 12
integration points for the enriched terms. Additionally, XIGA requires a line
integration for the enriched crack interface, for which 9 integration points
are used.

Regarding discretisation, we adopt the minimum number of elements re-
ported for this example in [39], namely 50 x 40 elements, which is comparable
to the 100x 9 elements used in both XIGA and our proposed approach. XIGA
and the current study adopt C!-continuous discretisations for the standard
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e and enriched fields. In contrast, the classical phase field model employed C2-
w0 continuous elements for the displacement field, and C°-continuous elements
o1 for both the auxiliary displacement jump and the phase field [39]. It is noted
02 that [39] employed Lagrange polynomials, while the isogeometric version in
03 [41] adopted high-order NURBS with C°-continuity at element boundaries,
sa  which prevents the typical inter-element share of control points. Moreover,
os the enriched field u in XIGA and in this study is defined locally, forming
w6 a narrow band at the vicinity of the crack path. In contrast, the auxiliary
o7 displacement jump used in the classical phase field is defined globally. Con-
w8 sequently, the total number of DOFs in the phase field model reaches 40724,
o9 while XIGA and our approach use 2520 DOFs. Further details are provided
in Table 2.

1000

1001

1002

1003

1004

1005

1006

1007

1008

’ Type H Computational cost (DOFs & GPs) H Cost reduction ‘
u v d Y icuvaCosti || wrt PE (%)
E 36542 DOFs | 2091 DOFs | 2091 DOFs 407221 DOFs —
32000 GPs | 32000 GPs | 8000 GPs 72000 GPs —
= " " d D icaadcosti | wat PF (%)
E E 2244 DOFs | 276 DOFs — 2520 DOFs 93.81
8100 GPs | 32400 GPs — 40500 GPs 43.75
< U a d D icaaacosti | wat PF (%)
O 2244 DOFs | 276 DOFs — 2520 DOFs 93.81
s 8100 GPs 11331 GPs — 19431 GPs 73.01

Table 2: Computational cost for stiffness matrix assembly, compared across the phase-
field (PF) method [39], the proposed phase-field-regularised partition of unity method
(PF-PUM), and extended isogeometric analysis (XIGA) [74]. The comparison is based on
the number of integration/Gauss points (GPs) and degrees of freedom (DOFs). In this
context, u, v, 4, @ and d denote the full displacement, the auxiliary displacement jump,
the standard displacement, the enriched displacement and phase fields, respectively.

Table 2 presents the computational cost of each approach, specified in
terms of DOFs and number of integration/Gauss points, to provide a fair
estimation of the stiffness matrix assembly effort. Notably, the current study
and XIGA have the same number of DOFs — representing approximately
94% reduction with respect to that of the phase field model. However, the
number of Gauss points reveals a higher computational cost for our proposed
approach compared to XIGA. While the phase field model requires 72000 in-
tegration points, our approach uses 40500, corresponding to a reduction of
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approximately 44%. As expected for a discrete approach, the reduction is
even more pronounced for XIGA, around 73%. These results demonstrate
that, in addition to the other advantages discussed in this study, our pro-
posed approach is significantly more computationally efficient than the clas-
sical phase field model. Particularly, in terms of integration points, the pro-
posed approach corresponds to a computational effort that falls between the
classical phase field model and XIGA. Moreover, the computational cost of
the present study can potentially approach that of XIGA with improved nu-
merical integration for the local exponential decay function in the enriched
displacement field.

7. Concluding remarks

A consistent formulation has been constructed for fracture analysis based
on the phase-field-regularised Partition of Unity Method (PUM), in which
the Dirac-d in the form of the exponential decay function is approximated for
the crack diffusion. The proposed formulation possesses the advantages of a
discrete approach, particularly its efficacy with coarse meshes, which is not
achieved with conventional phase-field formulations. Adopting PUM allows
for an unambiguous displacement jump definition at the discontinuity based
on the existing enriched degrees of freedom, leading to an opening behaviour
reflecting the true nature of fracture. This also obviates the need to adopt
any auxiliary field to compensate the lack of necessary relation between the
jump and displacement fields, as utilised in the customary formulation of the
cohesive phase-field models.

Enrichment strategy is an inseparable part of PUM for fracture analysis,
and has been explored for our proposed formulation for phase-field regularised
PUM. After conducting a comprehensive investigation on the potential rela-
tionship between the enrichment scheme and the phase-field variable d, it has
been proven that the enrichment identical to that of XIGA renders the most
satisfactory results, while under-enrichment leads to a wrong displacement
jump at the crack, leading to incorrect displacement and stress evaluations.
Over-enrichment, on the other hand, leads to acceptable displacement re-
sults. However, oscillatory stress estimates are directly proportional to the
extent of over-enrichment. For the progressively fracturing cracks, we have
adopted the simplest approach by enriching the control points of the cracked
elements entirely, regardless of the inter-element share between the intact
and cracked elements. However, the enriched terms must be removed from
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the formulations when considering the intact elements in front of the crack
tip.

In a comparison between the analytical evaluation of the diffused Dirac-
0 and the numerical solution of the phase-field problem, quadratic NURBS
(C'-continuous at element boundaries) renders the minimum error for satis-
fying the identity fQ 0,d€) = T'y. For the coupled phase-field and mechanical
problems, however, different combinations have been explored. The best so-
lution pertains to cubic NURBS (C*-continuous at element boundaries) for
the mechanical field and quadratic for the phase-field problem. Nevertheless,
significant stress oscillations are observed for the phase-field numerical ap-
proach in general, while the analytical exponential decay function exhibits
satisfactory results, provided that enough Gauss points are utilised for the
regularised enriched terms. It has been observed that using 12 Gauss points
guarantees proper integration of the discontinuous enriched field, while main-
taining the full integration for the intact standard terms ((p + 1) x (¢ + 1)
Gauss points for the NURBS surface of orders p ® ¢) suffices.

The optimum length-scale has been assessed against h-refinement in the
presence of linear and nonlinear traction-separation relationships at the dis-
continuity. In the examples tested in this article, the minimum length scale
to achieve converging results was found to be in the range h/6 < ¢ < h/4.
If length scales smaller than the identified thresholds are adopted, the re-
sults do not significantly depend on the length scale. When an adequate
length scale is adopted, the results are also shown to be insensitive to mesh
refinement.

Next, a comprehensive study has been conducted on the conditioning is-
sue associated with extended finite element analysis. Our formulation has
successfully resolved the issue by the continuous description of the Heavi-
side function generated by the diffused representation of the crack. Irregular
discretisation has also been investigated for biased mesh layouts to further
prove the efficacy of our formulations. Finally, the approach has been bench-
marked against crack propagation, indicating excellent agreement with XIGA
and interface elements results.

Regarding arbitrary crack paths, our proposed approach offers no im-
provement over the classical extended finite element analysis, as it borrows
the same crack initiation and propagation strategies used in the extended
finite element analysis — through the level-set technique, maximum princi-
pal stress, and enrichment. By adopting a degradation function, however,
the crack initiation and tracking would benefit from automated crack path
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083 monitoring via a phase-field-dependent level-set function. This enhancement
s« will be the focus of our future work.

1085 This work advances the numerical analysis of fracture mechanics, present-
wss ing a formulation that delivers robust predictions with relatively low com-
ws7 putational costs. Furthermore, it opens up opportunities for future develop-
wss ments and applications. Notably, the current formulation can be extended to
wss accommodate conventional damage-dependent degradation functions, lead-
w0 ing to formulations capable of reproducing a wide range of material behaviors
wa and fracture patterns.
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un  Appendix A. Enriched shape-function vector and strain-displacement
1102 matrix

1103 For simplicity, we define the following notation for the enriched strain-
nos  displacement and basis function matrices

ON,,;
%, U
B = 4, (1) (1= 208) By, = #4, (1) (1 —208) | 0 Nu | wiezom

0X>
ON., ON,,

X2  9X1
(A.1a)
1105
enr Nu O - enr
No" = o, (24) (1 — 2000) Ny, = 1, (z0) (1 — 206,) [ 0 N Viel
T (AD)

1106
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oz Where x,, denotes the normal signed distance of the point x from the crack
nee path. The formulation for the shifted Heaviside function, i.e., " @ s
109 given next

B () = (U4, (2) (1 — 200, (2)) — A2, (21) (1 — 205, (22)))
ANy,

0

0X1 A2
0 G Vi e I A2

ONu, ONu,

0Xao 0X1

1110
N0 = (7, () (1 — 208, (2a)) — A2, (o) (1 - 2060 (1))

N, 0 e (A2D)

{ 0 N, } Vi e I°M.
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