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Abstract

Recent advancements in phase-field models have significantly reshaped the
landscape of fracture mechanics, which was dominated by the partition of
unity method in the early 21st century. In this study, we aim to leverage the
advantages of the two approaches by adopting a novel phase-field-regularised
partition of unity method to improve computational efficiency, robustness
and physical consistency. Specifically, we establish a connection between
early phase-field models and the partition of unity method for cohesive frac-
ture. To this end, we replace the standard discontinuous Heaviside enrich-
ment in the partition of unity method with a regularised and continuous
Heaviside function, leveraging the phase-field approximation of the Dirac-δ
function. The proposed formulation effectively resolves ill-conditioning is-
sues in the traditional partition of unity method while retaining the key
advantages of discrete fracture representations, offering a distinct contrast to
traditional phase-field approaches for smeared crack models. These advan-
tages include eliminating the need for extremely fine meshes and providing
an unambiguous and physically consistent representation of the displacement
jump across a crack. Furthermore, by integrating Non-Uniform Rational B-
Splines (NURBS) for spatial discretisation, the approach enhances solution
accuracy compared to standard finite element formulations. Compatibility
enforcement is also modified to accommodate the crack diffused by the phase-
field approximation. Through numerical examples, including stationary and
propagating cracks, mesh refinement studies, and sensitivity analyses of the

∗

Email address: f.fathi@sheffield.ac.uk (Farshid Fathi)



phase-field length scale, we establish an optimal prescription for the inter-
nal length scale based solely on the element size. The examples compare
the results obtained via the presented formulations with exact solutions and
other numerical techniques, demonstrating the accuracy, conditioning stabil-
ity, and computational efficiency of the methodology. The proposed method-
ology thus presents a robust alternative to conventional fracture models,
combining key advantages offered by discrete and smeared approaches.

Keywords: Phase-field model, extended finite element analysis,
isogeometric analysis, partition of unity method

1. Introduction1

Fracture mechanics has always been an important topic of study in en-2

gineering, and has attracted various numerical approaches to simulate the3

fracture process effectively. At the early stages, the theorem of minimum4

energy was developed for a predefined crack in an elastic solid [1] inspired5

by the observation of unbounded (singular) stresses in the vicinity of a sharp6

notch [2], rendering the stresses useless for determination of crack propaga-7

tion. Griffith’s theory of brittle fracture was expanded to ductile materials8

[3], and later generalised for elastic-plastic solids [4]. A common feature of9

all the previously mentioned contributions is the relatively small fracture10

process zone compared to the size of the structure, which limits the focus to11

Linear Elastic Fracture Mechanics (LEFM). Additionally, they fail to model12

crack nucleation in an undamaged area away from the discontinuity and to13

predict the direction of the crack growth except through a posteriori studies14

[5], which required remeshing at the crack front after propagation. New tech-15

niques were developed to address these issues in numerical fracture modelling,16

following two main trends: smeared approaches, which account for deterio-17

ration of the stiffness of the material in the micro-structure; and discrete18

models, which explicitly represent fractures as distinct geometrical entities,19

generating a discontinuous displacement field.20

The smeared approaches involve embedding strain localisation within an21

element [6, 7], for instance, through the presence of high deformation gradi-22

ents due to fracture. The displacement discontinuity is represented through23

an additional, incompatible, Dirac-δ strain term [8], where the so-called em-24

bedded crack is diffused within the element. Different variants of the embed-25

ded discontinuity approach have been put forth [9], and comparative studies26
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have been conducted [10]. One of the main issues which adhere to the embed-27

ded approach is the ill-posedness in the presence of strain softening, which ne-28

cessitates using extra information, such as incorporating higher-order deriva-29

tives of displacement in the kinematics [11, 12] or adding non-local terms30

[13], which are typically referred to as regularisation models. However, the31

proposed remedies often do not yield a symmetric stiffness matrix, and re-32

trieving the crack opening displacement is non-trivial [14, 15].33

In the context of discrete fracture models, a displacement discontinuity34

can be incorporated into continuum mechanics through a rigorous definition35

of the fracture by extra degrees of freedom (DOFs). This can be obtained36

either through interface elements located in between standard continuum37

elements [16, 17], or via Partition of Unity Method (PUM) [18], which al-38

lows for local enrichment of nodal points of the cracked element with extra39

DOFs, known as extended finite element analysis [19]. In this manuscript,40

we distinguish eXtended Finite Element Method (XFEM), where Lagrange41

polynomials are utilised as shape functions, from the broader term extended42

finite element analysis, referring to a larger family of enriched approaches43

including eXtended IsoGeometric Analysis (XIGA) [20]. The enriched ap-44

proach decouples the crack path and the mesh layout, allowing both inter-45

and intra-element fractures which enable arbitrary crack propagation. This46

flexibility is absent in interface elements as the crack extension path should47

be known a priori. Moreover, since interface elements are inserted in ad-48

vance, a dummy stiffness must be adopted to avoid premature crack growth,49

which can lead to spurious stress oscillations if the dummy stiffness is too50

high [17]. The cohesive zone model, an extension of LEFM in the presence51

of non-negligible fracture process zone [21, 22], is widely used in discrete52

models, including interface elements [23] and XFEM [24].53

More recently, efforts have been primarily devoted to phase-field models54

to simulate the fracture process. These models trace back to the minimisa-55

tion of the total energy based on Griffith’s theory of brittle fracture [25] and56

its regularised form [26]. Afterwards, a majority of the phase-field literature57

has been devoted to brittle fracture [27, 28, 29, 30, 31, 32, 33] and, by way of58

analogy to gradient-enhanced damage mechanics [34, 35], expanded to duc-59

tile fracture [36, 37, 38]. Regarding the cohesive-zone phase-field models, two60

alternative approaches can be identified: (i) the traction-separation relation-61

ship is applied to a crack diffused by the phase-field approximation of the62

Dirac-δ, without any explicit degradation function used for the deterioration63

of the bulk material [32, 39, 40, 41, 42]; (ii) a tailored degradation function,64
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characterised and tuned through a uniform tension test, is applied to the bulk65

material to replicate the mechanical response of a certain traction-separation66

relationship [43, 44], analogous to gradient damage models [45]. In this work,67

we aim at enhancing the former through Partition of Unity Method (PUM),68

while involving a degradation function will be explored in a future work. It69

will be shown in the remainder that the former is reminiscent of regularised70

discrete fracture models, for instance the regularised XFEM [46].71

Extended finite element analysis requires crack tracking strategies, such72

as level-set [47, 48] and fast marching [49, 50] methods, to define the tangen-73

tial and normal vectors on the crack profile needed for the Heaviside function.74

However, crack branching or coalescence pose significant challenges, such as75

non-unique normal vectors at crack intersections, which becomes even more76

difficult when accounting for three-dimensional problems [51]. In contrast,77

phase-field models eliminate the need for crack tracking through adding a sep-78

arate differential equation for the crack profile, allowing for simulating crack79

propagation, coalescence and branching, particularly in three-dimensional80

cases. However, this comes at the expense of utilising a very fine mesh [40].81

To leverage the advantages of XFEM and phase-field models, several hybrid82

approaches have been developed. For instance, in the context of LEFM, a83

multi-resolution global-local enrichment is utilised for extended/generalised84

finite element method. The phase-field model is only used for crack advance-85

ment at the fine scale in the vicinity of the crack tip, while XFEM handles the86

discontinuity elsewhere [52]. Another approach involves using XFEM for the87

large scale displacement field, while a local phase-field solution determines88

the crack propagation at the crack tip(s) for LEFM [53]. Taking advantage89

of the known exponential form of a typical phase-field solution, exponential90

shape functions were proposed to reduce the number of elements perpendicu-91

lar to the crack path, while a fine mesh is still needed in the parallel direction92

[54]. The ansatz presented in [54] for phase-field was recently transformed93

to resolve compatibility issues and combined with XFEM for brittle fracture94

[55]. Additionally, Thick Level-Set (TLS) method, a level-set-based damage95

model [56], was successfully compared with phase-field models for brittle and96

quasi-brittle fracture [57].97

A well-known issue in extended finite element analysis is the ill-conditioning98

of the stiffness matrix in certain scenarios, which can lead to the loss of ac-99

curacy or, in case of linear dependency, results in a singular stiffness matrix100

[58]. This typically occurs when the crack (i) aligns very close to the ele-101

ment edge or (ii) divides the element into highly disproportionate sections,102
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making it impossible to place sufficient integration points on one side of the103

crack to properly account for the Heaviside enrichment [58, 59]. The mesh-104

independent nature of extended finite element analysis generally makes it105

difficult to avoid these scenarios, particularly in arbitrary propagating crack106

problem. Several approaches have been proposed to mitigate the conditioning107

issue, such as perturbation of the stiffness matrix [60, 61] or preconditioning108

based on domain decomposition [62]. Retrieving the convergence rate of fi-109

nite element analysis is the objective of a few other contributions [58, 63, 64].110

All of these attempts, however, fail to directly resolve the robustness issue as-111

sociated with the Heaviside enrichment in the ill-conditioning scenarios [65].112

Instead, a posteriori re-arrangement of the mesh layout is the typical indi-113

rect solution to both scenarios. Node snapping is an example, where nodes114

are moved away from the crack path to resolve the conditioning issue.[59]115

However, this approach nullifies the computational advantages given by de-116

coupling the crack path from the mesh layout in XFEM. Another remedy117

involves deviating the crack path [66, 67], even though extra care must be118

taken to limit the deviation to avoid other conditioning issues [59]. An alter-119

native to avoid the linear dependency is orthonormalisation of shape func-120

tions, as applied in XFEM [68] and in XIGA [69], however this approach does121

not solve ill conditioning issues associated with cracks that split an element122

disproportionately.123

On the other hand, IsoGeometric Analysis (IGA) tends to outperform124

the standard Finite Element Analysis (FEA) in accurate representation of125

the geometry [70], versatility in providing arbitrary degree of (higher-order)126

continuity at element boundaries [71], and a per-degree-of-freedom superi-127

ority in accuracy and robustness [72, 73]. Non-Uniform Rational B-splines128

(NURBS) are adopted in the present work. Regarding fracture, IGA was first129

cast in an extended finite element analysis format, coined XIGA, for LEFM130

[20], and later expanded to cohesive fracture [74]. IGA has been incorporated131

in cohesive interface elements approach for fracture simulation as well [75].132

Recently, blending XIGA with a meshfree method has successfully mitigated133

the conditioning issue of the stiffness matrix associated with the Heaviside134

function [76], as no fixed notion of spatial discretisation exist. Instead, the135

overlapping support clouds of points provide sufficient space for the Heaviside136

function integration in extreme scenarios of disproportionate fracture.137

Herein, we aim at regularising XIGA using phase-field approximation of138

the Dirac-δ, enabled through the use of continuous exponential decay function139

to regularise the Heaviside and the signed-distance level set functions by140
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taking into account the relationship between these quantities. The concept141

of regularised Heaviside function has already been implemented for XFEM142

[46, 77, 78], but these formulations fail to enforce compatibility constraints143

and provide suitable guidelines for defining an appropriate regularization144

length scale, all of which are further complicated in the context of IGA. For145

instance, the inter-element sharing of control points complicates enrichment,146

rendering the use of the standard enrichment prescription for the regularised147

formulation questionable. In addition, it is imperative to investigate whether148

the regularised formulation mitigates the conditioning issue of the stiffness149

matrix associated with the Heaviside enrichment.150

This work addresses the above-mentioned challenges by developing a for-151

mulation that regularises XIGA using a phase-field approximation of the152

Dirac-δ, enforces compatibility for diffused crack descriptions, accommodates153

nonlinear traction-separation relationships, and defines a spatially varying154

length scale based on the characteristic element size. The article is struc-155

tured as follows. Section 2 presents the ingredients at the bulk and the dis-156

continuity for a phase-field regularised PUM for fracture analysis, followed157

by the variational forms of the displacement and the phase-field in Section 3.158

Next, the discretisation of the weak forms are discussed in Section 4, along159

with a succinct introduction of NURBS formulated on Bézier-extraction to160

comply with finite element data-structure [79]. Section 5 discusses implemen-161

tation aspects, including compatibility enforcement of the regularised formu-162

lation, the enrichment scheme and the integration strategy utilised. Finally,163

some case studies, comprised of mesh refinement and singularity analysis for164

traction-free cracks and cohesive fractures, are examined to demonstrate the165

efficacy of the proposed formulation. Stationary and progressive fracturing166

are explored in Section 6, while rate-independent materials are assumed and167

isotropic elasticity is utilised for the bulk and the regularised layer.168

2. Phase-field regularised partition of unity method169

The partition of Unity Method (PUM) has been proven effective in ap-170

proximating non-uniform fields with local high gradients. This is, for in-171

stance, the case when dealing with fractures, as a discontinuity Γd is shown172

within a continuous body Ω in Figure 1. PUM [60] approximates the ad-173

ditional field by means of an enrichment function γ and the set of shape174

functions φφφ,175
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Figure 1: Boundary value problem Ω with the discontinuity Γd and cohesive tractions td:
A) a sharp crack B) a diffused description of the discontinuity.

ahPUM =
∑
i

φi(x)

(∑
j

aijγj(x)

)
where

∑
i

φi(x) = 1 ∀x ∈ Ω (1)

where •h denote the approximated • field. Enriching the Finite Element176

Analysis (FEA) with PUM leads to Generalised Finite Element Method177

(GFEM) [60, 80] in terms of standard and (extrinsically[81]) enriched dis-178

crete nodal values, •̂ and •̃, respectively179

ah =
∑
i

φ̂i(x) âi +
∑
i

φ̃i(x)

(∑
j

ãijHj(x)

)
. (2)

Using the Heaviside sign function, GFEM is capable of representing a frac-180

tured body similar to Figure 1 through181

uh = ûh + HΓd
ũh with HΓd

(xn) = {1 | ∀xn > 0;−1 | ∀xn < 0; 0 | xn = 0} ,
(3)

where u, û and ũ indicate the total, continuous and discontinuous displace-182

ment fields, respectively. Dealing with cracks and voids, GFEM is referred183

to as extended finite element analysis, and has been widely used for different184

applications using Lagrange polynomials [81, 82, 83], or by means of spline185

technologies for isogeometric analysis [73, 76, 84].186

In the absence of the acceleration, the quasi-static equilibrium equations187

read188
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
−∇ · σσσ = b̄ x ∈ Ω

uh = u x ∈ Γu

σσσ · nt = t x ∈ Γt

σσσ · nd = td x ∈ Γd

(4)

where σσσ is the Cauchy stress tensor, nd and nt are the vectors normal to the189

fracture surface Γd and the external traction surface Γt, respectively. The190

prescribed values for displacements, tractions and body forces are referred to191

as ū, t̄ and b̄, respectively. We apply the weighted residual method to the192

strong form in Equation (4) and utilise the divergence theorem to define a193

general weak form of the potential energy as194

Ψpot =

Eint︷ ︸︸ ︷∫
Ω

ψ
(
εεε(uh)

)
dΩ−

Pext︷ ︸︸ ︷(∫
Γt

t̄ · uh dΓ +

∫
Ω

b̄ · uh dΩ

)
(5)

where Eint and Pext indicate internal and external energy functions. The195

strain energy function ψ reads,196

ψ =
1

2
σσσ : εεε. (6)

Unlike explicit description of fracture by Griffith’s potential energy function197

[39, 25, 26], which allocates a distinct energy term to the fracture, we aim198

to construct the fracture energy term from the displacement discontinuity,199

which is characterised by the Heaviside function HΓd
= nd · ∇∇∇DΓd

. Here,200

DΓd
denotes the sign distance function, as illustrated in Figure 2.201

Adopting the small displacement assumption, the infinitesimal strain field202

becomes203

εεε =∇∇∇suh = ∇∇∇sûh︸ ︷︷ ︸
continuous

+HΓd
∇∇∇sũh + 2δΓd

(
ũh ⊗s nd

)︸ ︷︷ ︸
discontinuous

(7)

204

where ∇∇∇s□ = (∇∇∇□ + ∇∇∇□T)/2, ⊗s indicates the symmetric tensor prod-205

uct, and δΓd
is the Dirac-delta at Γd, i.e., δΓd

= δDirac (x− xc) with xc =206

argmin (∥x∗ − x∥) ∀x∗ ∈ Γd [39], which follows the identity nd·∇∇∇HΓd
= 2δΓd

.207

Equation 7 can be expressed for strain components at the bulk and the208

discontinuity, i.e., εεε = εεεb + εεεΓd209
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Figure 2: Consistent definition of the discontinuity: A) signed distance function DΓd
,

Heaviside sign function HΓd
and Dirac-delta function δΓd

, B) Sharp and diffused definition
of the phase-field variable, dΓd

and dℓ respectively.

εεεb =∇∇∇sûh + HΓd
∇∇∇sũh and εεεΓd = 2δΓd

(
ũh ⊗s nd

)
. (8)

Inserting Equation (8) into (5) and utilising the identity (□⊗s •) : ⃝ =210

⃝ · • ·□ leads to the internal potential energy of the form211

Eint =

∫
Ω

ψb
(
εεεb(uh)

)
dΩ +

∫
Ω

δΓd
td · ũh dΩ (9)

where td = σσσ · nd indicates the traction vector at the discontinuity and212

ψb =
1

2
σσσ : εεεb with σσσ = Cεεεb (10)

following the Hooke’s law for an isotropic linear elastic material where C213

indicates the stress-strain relationship.214

The key difference between the discrete and regularised approaches emerges215

in Equation (9), depending on how the last term is interpreted,216
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discrete smeared︷ ︸︸ ︷∫
Γ

ϕ(x) dΓ ←−
∫
Ω
δΓd

(x)ϕ(x) dΩ −→
︷ ︸︸ ︷∫
Ω

δℓϕ(x) dΩ
(11)

where ϕ(x) is an arbitrary continuous function, and δℓ represents the diffused217

estimate of the Dirac-δ function with the internal length scale parameter218

ℓ ∈ R+. Fracture energy, the energy dissipated upon creation of a unit219

fracture surface, reads220

Gf = td · ũh =
1

2
td · JuK (12)

where221

JuK =
(
uh
)+ − (uh

)−
=
(
H +

Γd
−H −

Γd

)
ũh = 2ũh (13)

222

denotes the displacement jump, derived by taking advantage of the explicit223

definition of the discontinuity in the discrete approach through the Heaviside224

sign function, see Equation (3).225

Utilising these findings, Equation (5) becomes226

Ψpot =

∫
Ω

ψb
(
εεεb(uh)

)
dΩ +

∫
Ω

δΓd
Gf dΩ−

∫
Γt

t̄ · uh dΓ−
∫
Ω

b̄ · uh dΩ (14)

which is identical to the Griffith potential energy used in other cohesive227

phase-field models [25, 32, 39, 41, 43, 52].228

2.1. Dirac-delta approximation229

Now, we provide a smeared approximate of δΓd
by means of an exponential230

decay [29, 30, 39]231

δΓd
(xn) ≈ δℓ(xn) =

1

2ℓ
exp

(
−|xn|

ℓ

)
, (15)

where xn = (x − xc) · nd(xc), and nd(xc) is the unit vector normal to the232

interface at xc, which is in-line with the signed distance function DΓd
=233

|(x−xc) ·nd| = ||x−xc|| sign ((x− xc) · nd), see Figure 2, with the Euclidean234

norm shown by ||□||.235
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In order to avoid the ambiguities associated with generalisation of Equa-236

tion (15) to multi dimensions [35, 39], the phase-field variable, d ∈ [0, 1],237

was proposed which describes the state of the material: d = 0 for intact and238

d = 1 for fully broken materials. The phase-field variable d = exp
(
− |xn|

2ℓ

)
is239

the solution of the Euler-Lagrange equation subjected to the constraints240 
d− 4ℓ2∇∇∇2d = 0 x ∈ Ω\Γd

d = 1 x ∈ Γd

∇∇∇d · n∂Ω = 0 x ∈ ∂Ω = {Γt,Γu}
. (16)

that is associated with241

dh = arg
{

inf
dh∈Sd

∫
Ω

δℓ(d
h) dΩ

}
, (17)

where dh denotes the approximated phase-field variable, the phase-field space242

Sd =
{
dh|dh(x) = 1 ∀x ∈ Γd

}
and243

δℓ =
1

4ℓ

(
dh · dh + 4ℓ2

∂dh

∂xn
· ∂d

h

∂xn

)
=

1

4ℓ

(
dh · dh + 4ℓ2∇∇∇dh · ∇∇∇dh

)
(18)

with ∂dh/∂xn = nd · ∇∇∇dh and nT
d · nd = 1.244

In a similar manner we can derive the Heaviside function approximation,245

Hℓ. Recalling the identity nd ·∇HΓd
= 2δΓd

and Equation (15) we can write246

Hℓ (xn) = 2

∫ xn

0

1

2ℓ
exp

(
−|ς|
ℓ

)
dς = sign (xn)

(
1− exp

(
−|xn|

ℓ

))
= HΓd

(xn) (1− 2ℓδℓ)

(19)

which is identical to the findings by Benvenuti et al. [46]. Finally, given247

nd · ∇∇∇DΓd
= HΓd

,248

Dℓ (xn) =

∫ xn

0

sign (ς)

(
1− exp

(
−|ς|
ℓ

))
dς

= |xn| − ℓ
(
1− exp

(
−|xn|

ℓ

))
= DΓd

(xn)− ℓ (1− 2ℓδℓ)

(20)

The effect of the length-scale parameter ℓ on the approximated Dirac-delta,249

Heaviside and signed-distance functions has been presented in Figure 3.250

As ℓ decreases the solution converges to analytical discrete functions, i.e.,251

limℓ→0 Hℓ = HΓd
and limℓ→0 Dℓ = DΓd

.252
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Figure 3: Effect of the phase-field internal length-scale parameter ℓ for the diffused values
of Dirac-delta (δℓ), the Heaviside (Hℓ) and the signed-distance (Dℓ) functions. The crack
is located at x = 0 of a one-dimensional problem with length L

2.2. Constitutive relation at the discontinuity253

The potential energy in Equation (14) is written for a non-negligible frac-254

ture process zone, which lodges the nonlinear deformations and their gra-255

dients. We adopt the cohesive-zone model in the form of tractions at the256

discontinuity, i.e., td (xc) at Γd, by means of a the dissipation energy defined257

Gf = Gf (JuK(xc),κκκ) , ∀xc ∈ Γd (21)

in terms of the displacement jump, defined in Equation (13), and the history258

parameter κκκ, which stores the maximum experienced displacement jump.259

In the literature, many options have been proposed for different mechanical260

behaviours [85], a few of which are explored in our examples. Hereafter, we261

refer to JuK(xc) simply by JuK, as the notion of the displacement jump is only262

valid for Γd and, therefore, meaningless elsewhere.263

Recalling Equation (12) the tractions at Γd yield264
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td (JuK,κκκ) =
∂Gf (JuK,κκκ)

∂JuK
(22)

265

in the global coordinate system while the local values of the displacement266

jump and the traction read267

td (JuK,κκκ) = RT · tloc
d

(
JulocK,κκκloc) , JulocK =

{
Juloc

s K, Juloc
n K
}
= R · JuK (23)

where □s and □n are the values of □ in the directions tangent and normal268

to the crack path, respectively. R denotes the global-local rotation matrix.269

The Kuhn-Tucker condition is adopted to enforce the irreversibility of the270

displacement jump,271

fff
(
JulocK,κκκloc

)
= JulocK− κκκloc ≤ 0 κ̇̇κ̇κloc ≥ 0 κ̇̇κ̇κloc · fff = 0 (24)

where the function fff determines the loading/unloading state based on the272

maximum local opening experienced until the current time, i.e., κκκloc =273

maxτ∈(−∞,t]Juloc(τ)K.274

3. Variational formulation275

In line with the cohesive phase-field formulation [39, 42] which adopts the276

elastic strain, we exploit the second principle of thermodynamics to formulate277

the diffused version (Γd ← ℓ) of the internal potential energy in Equation278

(9),279

0 ≤ Ḋ = σσσ : ε̇εε− ψ̇e = σσσ :
(
ε̇εεe + ε̇εεd

)
− ∂ψe

∂εεεe
: ε̇εεe = σσσ : ε̇εεd (25)

with the total strain εεε decomposed into elastic and diffused parts, i.e. εεε =280

εεεe + εεεd. On the other hand, the explicit derivation of the energy dissipation281

reads282

Ḋ =
dε̇εεd

dt
=

d

dt

(
Hℓ∇∇∇sũh + δℓ td · ũh

)
= Hℓ∇∇∇s ˙̃uh +∇∇∇sũh ∂Hℓ

∂d
ḋ+ 2δℓ td · ˙̃uh + Gf

∂δℓ
∂d

ḋ

(26)
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where the first and the third terms represent the energy dissipated by further283

opening of the existing crack, i.e. ˙̃u. The second and the fourth terms284

indicate the energy dissipated through the extension of the cohesive zone285

by an increment ḋ. In the cohesive-zone modelling, the newly progressed286

cohesive zone due to ḋ is initially closed, i.e. JuK = ũh = 0, and consequently287

Gf = 0 as well as ∇∇∇sũh = 0, which remove the second and the fourth terms.288

The elastic strain tensor yields289

εεεe = εεε− εεεd = εεε−Hℓ∇∇∇sũh − 2δℓ
(
ũh ⊗s nd

)
=∇∇∇sûh. (27)

Finally, the total potential strain energy function becomes290

Ψpot =

∫
Ω

ψe
(
εεεe
(
ûh
))

dΩ +

∫
Ω

ψd
(
εεεd
(
ũh,κκκ

))
dΩ− Pext. (28)

Plugging td = σσσ · nd and Equation (27) into (28)291

Ψpot =

∫
Ω

(
1

2
σσσ :
(
∇∇∇sûh + Hℓ∇∇∇sũh

)
+ δℓ td (JuK,κκκ) · ũh

)
dΩ

−
∫
Γt

t̄ · uh dΓ−
∫
Ω

b̄ · uh dΩ.

(29)

Remark 1: Potential strain energy of a discrete Heaviside function292

Had we not utilised the regularised description of the Heaviside function and293

instead only focused on δℓ, the energy dissipation in Equation (26) would294

become295

Ḋ =
dε̇εεd

dt
=

d

dt

(
δℓ td · ũh

)
= 2δℓ td · ˙̃uh + G ∂δℓ

∂d
ḋ. (30)

After applying JuK = ũh = 0 for the newly progressed cohesive zone due to296

ḋ, the elastic strain becomes297

εεεe = εεε− εεεd = εεε− 2δℓ
(
ũh ⊗s nd

)
=∇∇∇sûh + HΓd

∇∇∇sũh = εεεb. (31)
Finally, according to Equation (28), the total potential strain energy function298

becomes299

Ψpot =

∫
Ω

(
1

2
σσσ :
(
∇∇∇sûh + HΓd

∇∇∇sũh
)
+ δℓ td (JuK,κκκ) · ũh

)
dΩ

−
∫
Γt

t̄ · uh dΓ−
∫
Ω

b̄ · uh dΩ.

(32)
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which is identical to Equation (29) except for Hℓ ← HΓd
, and therefore300

the same formulation can be used for discrete Heaviside formulation HΓd
.301

However, the condition number issue adhered to the discontinuous Heaviside302

enrichment will certainly remain when the crack divides an element dispro-303

portionately. Therefore, remedies identical to those of XFEM, referred in304

Introduction (Section 1), must be adopted to circumvent the issue.305

Remark 2: Retrieving cohesive phase-field formulation given by Verhoosel306

and de Borst307

Verhoosel and de Borst [39] proposed a cohesive phase-field formulation,308

which was later utilised by other contributions for cohesive fracture [32,309

40, 41, 42]. Here we prove that the formulation is a special form of our310

phase-field-regularised PUM for fracture analysis. We start by rewriting the311

infinitesimal strain field in Equation (7), while the last term is defined on the312

displacement jump in Equation (13),313

εεε =∇∇∇suh =∇∇∇sûh + HΓd
∇∇∇sũh + δΓd

(JuK⊗s nΓd
)

314

with the elastic strain εεεe =∇∇∇sûh+HΓd
∇∇∇sũh. Adopting the diffused Dirac-δ315

given by analytical phase-field solution the elastic strain can be rewritten in316

terms of the total displacement u as317

εεεe =∇∇∇suh − δℓ
(
vh ⊗s nd

)
,

318

where JuK is substituted with v, a one-dimensional auxiliary jump field which319

is not associated with the displacement field uh. Using the newly derived320

strain field, the total potential energy identical to Verhoosel and de Borst321

[39] yields,322

Ψpot =

∫
Ω

(
1

2
σσσ :
(
∇∇∇suh − δℓ

(
vh ⊗s nd

))
+ δℓ td

(
vh,κκκ

)
· vh + 1

2
α

∣∣∣∣∂vh∂xn

∣∣∣∣2
)

dΩ

−
∫
Γt

t̄ · uh dΓ−
∫
Ω

b̄ · uh dΩ.

where the last term in the internal potential energy function, i.e., 1
2
α
∣∣∣ ∂vh∂xn

∣∣∣2323

has been weakly imposed by a penalty factor α to enforce a constant dis-324
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placement jump in the direction normal to the crack profile [32, 39, 41, 42]325

∂vh

∂xn
= 0,

with JuK(xc) ≈ vh(xc).326

In other words, the formulation by Verhoosel and de Borst is retrieved327

by removing the definition of the total displacement field, uh = ûh+HΓd
ũh,328

from the energy function and utilising additional constraints to compensate329

for the lack of inherent jump in phase-field models, in contrast to the PUM.330

Inspired by the formulation proposed by Verhoosel and de Borst, the auxil-331

iary jump field approximation has been upgraded using a first-order Taylor332

series expansion on the total displacement field u [40, 86], addressing the333

absence of any explicit relationship between the displacement and the aux-334

iliary jump field. In our formulation, however, the explicit definition of the335

displacement jump in Equation (13) obviates the need for the auxiliary jump336

field v, thereby eliminating the additional constraint imposed by the penalty337

method and reducing the likelihood of perturbations in equilibrium. More-338

over, the resulting jump complies with the PUM, while expansion series are339

merely approximation tools.340

Remark 3: Inclusion of damage-dependent degradation functions341

In future developments, the presented formulation can be extended to accom-342

modate a variety of damage-dependent degradation functions. This can help343

achieve a more straightforward definition of the cohesive phase-field than344

that given in available degradation-dependent contributions. Moreover, it345

can help establish a direct relationship between the phase-field variable and346

the level set function, which enables tracking of the crack by the phase-field347

and accounting for crack propagation and branching. The latter is a major348

shortcoming in discrete approaches which can be circumvented by adopting349

phase-field, while using PUM on the other hand preserves the functionality350

of the proposed approach with coarse meshes.351

3.1. Displacement weak forms352

We obtain the admissible displacement field by353

uh = arg
{

inf
uh∈Su

Ψpot

}
, (33)
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where Su =
{
uh|uh(x) = ū ∀x ∈ Γu, u ∈ H1(Ω)

}
, and H1 denotes the first354

Hilbert space. Taking the variation of the newly derived potential energy355

functions with respect to the displacement:356

∂Ψpot, u = 0 =⇒
∫
Ω

(
σσσ :
(
∇∇∇sδûh + Hℓ∇∇∇sδũh

)
+ 2δℓ td (JuK,κκκ) · δũh

)
dΩ =∫

Γt

t̄ ·
(
δûh + Hℓδũ

h
)
dΓ +

∫
Ω

b̄ ·
(
δûh + Hℓδũ

h
)
dΩ. (34)

Equation (34) can be further decomposed into continuous and discontinuous357

parts358 ∫
Ω

σσσ :∇∇∇sδûh dΩ =

∫
Γt

t̄ · δûh dΓ +

∫
Ω

b̄ · δûh dΩ (35a)
359 ∫

Ω

(
σσσ : Hℓ∇∇∇sδũh + 2δℓ td (JuK,κκκ) · δũh

)
dΩ =∫

Γt

t̄ ·Hℓ δũ
h dΓ +

∫
Ω

b̄ ·Hℓ δũ
h dΩ

(35b)

for the continuous and discontinuous equilibrium equations of the mechanical360

problem. Integrating by parts and adopting the Dirac-delta for the test361

functions δû and δũ similar to the collocation method [87], the updated362

strong forms read363 {
∇∇∇ · σσσ(x) = b̄ x ∈ Ω
σσσ(x) · nt = t̄ x ∈ Γt

(36a)

364

2δℓ (td (JuK,κκκ)− σσσ · nd) = Hℓ b̄ x ∈ Ω (36b)

It is noteworthy that the diffused (continuous) definition of the discontinuity,365

Hℓ, allows for the use of the Dirac-δ as the test function, which is identical to366

the collocated phase-field [88]. This is due to the requirement of the sifting367

property of the Dirac-δ at x∗, i.e.,
∫
Ω
ϕ(x)δDirac (x− x∗) dΩ = ϕ (x∗), which368

is violated if (discontinuous) discrete Heaviside function (HΓd
) is used. For369

further discussion and alternative solutions, the interested reader is referred370

to Fathi et al. [87].371
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3.2. Phase-field weak form372

Taking the variation of the newly derived potential energy function in373

Equation (29) with respect to the phase-field variable d yields374

∂Ψpot, d = 0 =⇒
∫
Ω

(
σσσ : ∂Hℓ, d∇∇∇sũh + 2 ∂δℓ, d td (JuK,κκκ) · ũh

)
dΩ

=

∫
Γt

∂Hℓ, d

(
t̄ · ũh

)
dΓ +

∫
Ω

∂Hℓ, d

(
b̄ · ũh

)
dΩ

(37)

with375

∂δℓ, d =
δdh · dh

2ℓ
+ 2ℓ∇∇∇δdh · ∇∇∇dh, (38a)

376

∂Hℓ, d = −2ℓHΓd
∂δℓ, d = −HΓd

(
δdh · dh + 4ℓ2∇∇∇δdh · ∇∇∇dh

)
. (38b)

377

By applying the divergence theorem on the external traction (t̄ = σσσ · nd)378

term the final form, after some rewriting, becomes [39]379

∂Ψpot, d = 0 =⇒∫
Ω

∂δℓ, d
(
2ℓHΓd

(
σσσ : −∇∇∇sũh +∇∇∇ ·

(
σσσ · ũh

)
+ b̄ · ũh

)
+ 2 td (JuKℓ,κκκ) · ũh

)︸ ︷︷ ︸
constant̸=0

dΩ = 0

=⇒
∫
Ω

∂δℓ, d dΩ = 0

(39)

In this paper, the Dirichlet constraints of the phase-field for pre-existing380

cracks, i.e. dh|Γd
= 1 in Equation (16), are imposed weakly [29, 31, 39].381

This obviates manipulating the mesh in order to accommodate the Dirichlet382

constraints [32]. Applying these conditions in the weak form leads to383

∫
Ω

(
δdh dh + 4ℓ2∇∇∇δdh · ∇∇∇dh

)
dΩ + 2ℓc0

∫
Ω

δdh (dh − 1) δ0 (xn) dΩ = 0 (40)

where c0 is the non-negative coefficient weighing the weak imposition of the384

Dirichlet constraint term [39]. Rewriting Equation (40) leads to385
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∫
Ω

(
(1 + F)δdh · dh + 4ℓ2∇∇∇δdh · ∇∇∇dh

)
dΩ =

∫
Ω

Fδdh dΩ (41)

with F , the driving force [39],386

F = 2ℓc0 δ0(xn), δ0(xn) =

{
2
h

(
1− 2|xn|

h

)
−h
2
≤ xn ≤ h

2

0 otherwise
, (42)

where h indicates the mesh size.387

4. Discretisation388

Herein, we focus on finite element implementation by discretising the389

weak forms, in which the domain Ω is subdivided into non-overlapping smaller390

sections, also known as elements391

Ω =

nelm⋃
e

Ωe. (43)

While Lagrange polynomials are typically used as the set of basis functions392

for the customary finite element analysis [89, 90], we adopt spline technology393

used in isogeometric analysis (IGA) [70], particularly Non-uniform rational394

B-splines (NURBS).395

4.1. Bézier-extraction-based NURBS396

We construct a NURBS surface on a univariate B-spline basis function,397

i.e. NB-spline,398

S(ξξξ) =

nIGA∑
k=1

Nk(ξξξ)Pk, Nk,p(ξ) =
wkN

B-spline
k,p

W(ξ)
. (44)

that is defined by the Cox-de Boor formula[89] withW(ξ) =
∑n

k=1N
B-spline
k (ξ)wk399

which utilise the weights w, and p denotes the order of the underlying knot400

vector. nIGA is the number of control points P.401

Use of Bézier extraction provides a direct transformation from physical402

space to the parametric domain identical to the finite element data-structure.403

Therefore, we use the Bézier extraction operator C404
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(
NB-spline)e = CeBBB. (45)

The superscript "e" denotes the element index, which is different from "e"405

used for the elastic term, and BBB indicates a univariate Bernstein polynomial406

within the input domain [−1 1],407

Bk,p(ξ) =
1

2
(1− ξ)Bk,p−1(ξ) +

1

2
(1 + ξ)Bk−1,p−1(ξ) (46a)

408

B1,0(ξ) ≡ 1 (46b)
409

Bk,p(ξ) ≡ 0 if k < 1 or k > p+ 1. (46c)

Generalisation to multi dimensions is possible via tensor product.410

4.2. Phase-field discretisation411

The phase-field weak form in Equation (41) is now discretised using finite412

elements413

dh = Nd d̂, (47)

where d̂ denotes the set of phase-field DOFs and Nd is the NURBS set of414

basis functions utilised for phase-field. Accordingly, the phase-field weak415

form defined in Equation (41) leads to416

fint
d̂

fext
d̂︷ ︸︸ ︷∫

Ω

[
(1 + F)NT

dNd + 4ℓ2BT
dBd

]
dΩ d̂ =

︷ ︸︸ ︷∫
Ω

FNT
d dΩ

(48)

where B contains the derivatives of the shape function, and F is given in417

Equation (42). The tangent term corresponding to this equation yields418

Kd̂d̂ =
∂f int

d̂

∂d̂
=

∫
Ω

(
(1 + F)NT

dNd + 4ℓ2BT
dBd

)
dΩ. (49)

The regularised Dirac-δ in Equation (18) is also discretised as419

δℓ = d̂T

(
1

4ℓ
NT

dNd + ℓBT
dBd

)
d̂. (50)

A convergence study on Equation (48) for the problem of dimensions420

L×W = 2× 1–uniformly discretised into elements of size h–is presented in421

Figure 4, where the Γ-error is defined422
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Γ-error =
∫
Ω

δℓ dΩ− Γd = W

(∫ L/2

−L/2

δℓ dxn − 1

)
(51)

with Γd = W for this example. Moreover, L2 norm and H1 semi-norm errors423

are used in this article as well,424

L2-error =
(∫

Ω

(
•h − •exct

)2
dΩ

) 1
2

H1-error =

(∫
Ω

(
∂•h

∂x
− ∂•exct

∂x

)2

dΩ

) 1
2

(52)
The results for the linear and quadratic NURBS discretisations are sepa-425

rated, in which L2 and Γ errors are explored for different scenarios. L2 norm426

error compares the estimates with exact phase-field values dℓ = exp
(
− |xn|

2ℓ

)
,427

and Γ-error assesses the Dirac-δ identity which is directly used in the reg-428

ularisation, i.e., δℓ = 1
2ℓ
exp

(
− |xn|

ℓ

)
. First, we explore the errors against429

h-refinement for different length-scales at the fixed c0 = 9. While the L2-430

errors in Figures 4A and G recommend larger length-scales, insensitivity431

of the Γ-errors in D and J are evident (except for the anomaly observed432

for ℓ = h/20 in J). The results corresponding to different c0s, at the fixed433

ℓ = 2h/15 reveal different prescriptions for coarse and fine meshes. Never-434

theless, ∀c0 ∈ {8, 9, 10} an approximately stable behaviour is observed for all435

discretisations, which is supported by both L2 and Γ errors presented in Fig-436

ures 4B, E, H and K. To consider c0 and ℓ simultaneously, three-dimensional437

surfaces are presented for a fixed discretisation (25 elements) in Figure 4.438

Blue and orange surfaces indicate linear and quadratic NURBS, respectively.439

L2- and Γ-error surfaces are sliced at particular length-scales in the subplots440

C, F, I and L for better clarity. It is worth mentioning that, although the441

above-mentioned optimum values for c0 proved to be effective in this work,442

c0 might generally be expected to be problem-dependent.443
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Figure 4: Sensitivity analysis of the phase-field solution with respect to the length-scale
parameter ℓ and the constant c0. L2-norm error with respect to the exact phase-field
solution and Γ-error are reported for different ℓs in A, D, G and J, adopting c0 = 9. B, E,
H and K explore different c0s in the form of L2 and Γ errors when the constant length-scale
ℓ = 2h/15 is adopted for 25 elements. To explore the effect of c0 and ℓ simultaneously, L2

and Γ errors are shown by three-dimensional surfaces on the top, where blue and orange
surfaces indicate linear and quadratic NURBS shape functions, respectively. The surfaces
are further sliced for various ℓs in C, F, I and L.
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4.3. Displacement discretisation444

Next, we discretise the displacement field uh for a regularised extended445

finite element analysis using a Bubnov-Galerkin approach as446

uh = ûh + Hℓũ
h = Nû û+ HℓNũ ũ. (53)

Discretisation of the governing weak form in Equations (35a) and (35b)447

yields448

fint
û fext

û︷ ︸︸ ︷∫
Ω

BT
û σσσ dΩ =

︷ ︸︸ ︷∫
Γt

NT
û t̄ dΓ +

∫
Ω

NT
û b̄ dΩ

(54a)

fint
ũ fext

ũ︷ ︸︸ ︷∫
Ω

(
(Benr

ũ )Tσσσ + 2δℓ N
T
ũ RT tloc

d

)
dΩ =

︷ ︸︸ ︷∫
Γt

(Nenr
ũ )T t̄ dΓ +

∫
Ω

(Nenr
ũ )T b̄ dΩ

(54b)
with □enr = Hℓ□. The equations are then linearised in a Newton-Raphson449

iterative scheme with the tangent terms450

K =

 KΩ
ûû KΩ

ûũ

KΩ
ũû KΩ

ũũ

 (55)

where451

KΩ
ûû =

∂f int
û

∂û
=

∫
Ω

BT
û CBû dΩ (56a)

452

KΩ
ûũ =

(
KΩ

ũû

)T
=
∂f int

û

∂ũ
=

(
∂f int

ũ

∂û

)T

=

∫
Ω

BT
û CBenr

ũ dΩ (56b)
453

KΩ
ũũ =

∂f int
ũ

∂ũ
=

∫
Ω

(
(Benr

ũ )T CBenr
ũ + 4δℓ N

T
ũ RT ∂t

loc
d

∂JuK
RNũ

)
dΩ. (56c)

Noteworthy is that the displacement jump in Equation (13) is directly used454

in deriving the stiffness term presented in Equation (56c).455
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5. Implementation aspects456

Herein, we mention the main implementation requirements for a PUM457

regularised by phase-field for fracture analysis. The staggered solution scheme,458

solving phase-field first to determine the state of the crack and then assess-459

ing the balance of momentum for the determined crack state, is the well-460

established choice in phase-field models [26, 30, 39], which is also adopted461

here for the numerical solution of phase-field.462

5.1. Compatibility enforcement463

Compatibility enforcement is a necessary component in extended finite464

element analysis, which has been studied for different aspects of isogeometric465

analysis in finite element [73, 74, 84] and meshfree approaches [76]. Two466

numerical techniques have usually been adopted in the extended framework,467

the shifting and the blending. The shifting localises the enriched field into a468

narrow band in the directions perpendicular to the crack profile, mitigating469

the error arisen from the additional enhanced term at nodal/control points.470

Rewriting the shifted version of the displacement field in Equation (3) reads471

uh,SH(x) =
∑
i∈I

Nûi
(x) ûi +

∑
i∈Ienr

(HΓd
(xn)−HΓd

(xni))︸ ︷︷ ︸
H SH

Γd
(xn)

Nũi
(x) ũi. (57)

where I denotes the set of all control points in the domain and Ienr indicates472

the enriched subset of control points, i.e., Ienr ⊂ I. Figure 5 illustrates473

H SH
Γd

(xn). It is noted that a C0-continuity at element boundaries, accompa-474

nied with the shifting technique, guarantees the enriched field confined by475

the cracked elements boundaries only. This can be either achieved by the use476

of Lagrange polynomials within a customary finite element framework or by477

knot insertion in isogeometric analysis.[71]478

The blending technique, on the other hand, removes the effect of disconti-479

nuity at crack front arisen from the inter-element share of the control points.480

This is imposed by employing a Heaviside step function, H BL
Γd

= 0 in front of481

the crack tip and H BL
Γd

= 1 otherwise, in XIGA [74]. Applying the blending482

technique to the shifted displacement field yields483
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Figure 5: Shifting technique comparison between the discrete and the regularised Heaviside
functions, H SH

Γd
and H

SH (i)
ℓ . Shifting technique is shown for H SH

Γd
in a Mode-I fracture of

quadratic NURBS, following the XIGA’s enrichment recipe (the green circles denote the
enriched control points). Univariate standard and enriched fields are illustrated for the
discontinuity in the Y-direction, while the medium is continuous along the X -direction.
The results of the shifting techniques for an eleven-element discretisation are compared
for different length-scales in A. For further clarification, the set of shifted basis functions
associated with the enriched control points are represented separately in B, C and D.
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uh,SH(x) =
∑
i∈I

Nûi
(x) ûi +

∑
i∈Ienr

H BL
Γd

(xs) (HΓd
(xn)−HΓd

(xni))︸ ︷︷ ︸
H SH

Γd
(xn)

Nũi
(x) ũi.

(58)

Figure 6: Comparison among the diffused Heaviside function and its shifted candidates.
Enriched set of shape functions (A, B and C) and and their gradients (D, E and F) are
presented for the enriched control points, indicated by green circles, individually.

5.1.1. Regularised compatibility enforcement technique484

Now we derive compatibility enforcement on the regularised Heaviside485

function in Equation (19).486

uhℓ (x) =
∑
i∈I

Nûi
(x) ûi +

∑
i∈Ienr

HΓd
(xn) (1− 2ℓδℓ)︸ ︷︷ ︸

Hℓ(xn)

Nũi
ũi (59)

We employ the shifting technique for the diffused displacement field, lead-487

ing to two candidates for the shifted, regularised, Heaviside functions:488
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u
h,SH (i)
ℓ (x) =

∑
i∈I

Nûi
(x) ûi +

∑
i∈Ienr

(
HΓd

(xn)−HΓd

(
xnj
))

(1− 2ℓδℓ)︸ ︷︷ ︸
H

SH (i)
ℓ (xn)

Nũi
ũi

(60)
and489

u
h,SH (ii)
ℓ (x) =

∑
i∈I

Nûi
(x) ûi

+
∑
i∈Ienr

(HΓd
(xn) (1− 2ℓδℓ)−HΓd

(xni) (1− 2ℓδℓi))︸ ︷︷ ︸
H

SH (ii)
ℓ (xn)

Nũi
ũi.

(61)

To confirm limℓ→0 H SH
ℓ = H SH

Γd
, a comparison has been made between490

H SH
Γd

and H SH (i)
ℓ in Figure 5. Next, another comparison is made between the491

Heaviside functions candidates, i.e.,
{

H SH
Γd
,Hℓ,H

SH (i)
ℓ ,H SH (ii)

ℓ

}
in Figure492

6. Shifting candidates are further applied to the equations in Section 4.3493

by simply replacing the Heaviside function with the shifted candidates, i.e.,494

Hℓ ^ H SH (i)
ℓ ∨H SH (ii)

ℓ .495

As previously discussed, the inter-element share of the control points un-496

desirably extends the discontinuous field to the crack front. This has been497

prevented through the blending technique used for sharp cracks, e.g., H BL
Γd

in498

Equation (58), to retrieve the intact behaviour of crack front. For the regu-499

larised formulation, however, the contribution of the discontinuous (enriched)500

field at the crack front, see the purple shade in Figure 7, is disregarded, ren-501

dering use of additional Heaviside step function redundant. Consequently,502

the notion of displacement jump becomes meaningless at the crack front (see503

the purple shade in Figure 7), leading to cohesive traction elimination.504

5.2. Integration and crack extension direction505

Greville abscissae are naturally used in IGA integration of intact bod-506

ies. Following the comprehensive study on extended isogeometric collocation507

method, however, they are proven incompatible with PUM for fracture anal-508

ysis, as enough integration points are needed at cracked sections for the509

Heaviside function evaluation [87]. Hence, Gauss quadrature is used as the510

standard integration scheme in this article. It is worth noting that neither511

quadrature sub-cell strategy, such as tesselation typically used in XFEM, nor512

equivalent polynomial approximants [46] are utilised in this study. Instead,513
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Figure 7: Regularised evaluation of cohesive tractions. Points are first projected onto the
crack path (the solid blue line) where the displacement jump JuK is explicitly defined via
PUM. Accordingly, points x and x

′
share the same central point on the crack path xc,

therefore sharing the displacement jump and cohesive traction which is finally diffused with
their respective δℓ values. Considering a fictitious crack extension profile distinguished by
the dotted blue line, cohesive tractions at x

′′
are disregarded, as points in front of the

crack tip, indicated by the purple shade, are intact.

a 9× 9 standard Gauss quadrature for fixed grid points are considered here,514

see Figure 8, unless stated otherwise. This automatically forms a band of515

improved integration around the crack path, as shown in Figure 8, which516

becomes narrower with mesh refinement. Next, employing phase-field has517

relaxed the line integration typically needed for cohesive-zone discrete frac-518

ture models, which subsequently eliminates point projection [74, 91]. As an519

alternative, the displacement jump at a given point x is evaluated at the clos-520

est point on the crack profile, i.e., xc = argmin (∥x∗ − x∥) with x∗ ∈ Γd, see521

Figure 7. This is then weighted by the value of δℓ(x), identical to the constant522

displacement jump at the diffused region used in Verhoosel and de Borst [39];523

however, without additional constraint enforced on the displacement jump.524

Crack initiation and propagation are introduced in the same manner as in525

extended finite element analysis, through the level set technique and enrich-526

ment. In this regard, our proposed approach offers no improvement over the527

classical extended finite element analysis. However, it can still be improved528

in terms of crack initiation and tracking by incorporating a degradation func-529

28



Figure 8: Integration point distribution. For a NURBS of orders p and q in the X and
Y directions, a normal (p+ 1) × (q + 1) Gauss quadrature is utilised for non-enriched
elements, while a 9 × 9 is adopted for the elements with enriched control points, see the
yellow element with one enriched point. Here, the integration scheme is shown for the
quadratic NURBS, i.e., p = q = 2. The green circles denote the enriched control points,
the red line indicate the crack profile, and a C0-continuity is introduced through knot
insertion and is illustrated by the blue line.

tion — as discussed in Remark 3 — which would enable automated crack530

path monitoring via a phase-field-dependent level-set function. This will be531

the subject of our future work.532

In this article, the crack extension direction is determined by the nonlocally-533

averaged maximum principal stress at the crack tip — an approach commonly534

used in the extended finite element analysis. The reason behind the non-local535

averaging [92] is the stress oscillations around the crack tip [24, 74], despite536

the improvements in stress estimation by spline technologies. Crack nucle-537

ation occurs when the majority of the points on the potential crack extension538

satisfy the evolution criterion on the ultimate tensile strength tu, i.e., td ≥ tu.539

Therefore, no improvement is made here regarding the extension direction540

and propagation in comparison with the extended finite element analysis. An541

alternative could be treating the phase-field as damage variable, beyond a542

mere regularisation term, by considering a degradation function, which will543

be explored in our future work.544
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Figure 9: Plate subjected to sinusoidal body forces with a traction-free middle-crack.

6. Numerical examples545

The efficacy of the proposed formulation is examined here at the hand546

of multiple numerical examples for stationary and propagating fractures.547

Herein, 1 element is assumed in the Y-direction, unless two values are re-548

ported in the format⃝×□, where⃝ and □ indicate the number of elements549

used in the X and Y directions, respectively.550

6.1. Traction-free stationary crack551

A mode-I traction-free fracture is explored in a plate subjected to sinu-552

soidal body forces as our first example, see Figure 9. Young’s modulus of553

E = 1 and the cross-section area A = 1 are assumed. The exact solution554

reads:555

uex =


1
π2 sin (π x)− 1+x

π
if x < 0

1
π2 sin (π x) +

1−x
π

if x ≥ 0
(62)

σex =
1

π
cos (π x)− 1

π
(63)

556

The absence of tractions at the crack eliminates
∫
Ω
2δℓ N

T
ũ RT tloc

d dΩ and557 ∫
Ω
4δℓ N

T
ũ RT ∂tloc

d /∂JuKRNũ dΩ in Equations (54)b and (56)c, respectively,558

enabling direct investigation on the effect of δℓ on the regularised Heaviside559

function Hℓ, and the associated shifting technique.560
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6.1.1. Enrichment scheme assessment561

We first explore a potential relationship between the phase-field variable562

d and the enrichment of individual control points, with the objective to find563

a prescription for the enrichment scheme. Quadratic NURBS is assumed564

for the discretisation of 25 uniform elements, and phase-field is evaluated565

analytically through direct evaluation of the exponential decay in Equation566

(15). Figure 10 shows the displacement (u) and the stress (σ) results, which567

are compared with the exact analytical solution for three different enrichment568

criteria and length-scales.569

First we explore the non-shifted displacement field uhℓ (x), in Equation570

(59), and compare the results of the enrichment criterion d ≥ 1e− 1 shown571

in Figure 10A. The length-scale ℓ = h/4 gives the best agreement with re-572

spect to the exact solution, even though negligible oscillations are observed573

for the stress curve at the peak. In comparison with the enrichment scheme574

in XIGA [73, 74], control points corresponding to the cracked element are575

enriched, only ℓ = h/4 matches, while ℓ = 2h/15 and ℓ = h/20 are under-576

enriched. A similar pattern is also observed for d ≥ 1e− 4, where ℓ = 2h/15577

coincides with the XIGA enrichment. It is interesting to see the effect of578

over-enrichment in ℓ = h/4, where displacement agreement is satisfactory,579

but oscillations result in stress estimates. ℓ = h/20 shows under-enrichment,580

leading to an incorrect displacement jump at the crack. For d ≥ 1e − 7,581

XIGA’s enrichment with ℓ = h/20 returns satisfactory results for both dis-582

placement and stress comparisons. For other length-scales, however, over-583

enrichment exhibit oscillations which are more pronounced for ℓ = h/4 and584

less noticeable for ℓ = 2h/15 (with only one additional column of control585

points enriched at each side of the crack).586

Instability is an immediate consequence of over-enrichment for uh,SH (i)
ℓ (x)587

in Figure 10B, as the stiffness matrix becomes singular. This is reminis-588

cent of the ill-conditioning issue of the discrete fracture analysis with over-589

enrichment. While the combination of under-enrichment and XIGA’s recipe590

renders stable solutions, the errors are significant. Thus, no further investi-591

gation is carried out on u
h,SH (i)
ℓ (x). On the other hand, uh,SH (ii)

ℓ (x) renders592

stable results for all enrichment scenarios. Again, the best agreement is ob-593

served for XIGA’s prescription, while, in general, the results are very similar594

to those of uhℓ (x), though with a completely different set of shape functions595

utilised, see Figure 6.596

Overall, the XIGA enrichment recipe appears to be the most suitable op-597

31



tion, irrespective of the phase-field value. According to XIGA, control points598

corresponding to the cracked element should be enriched. Hereafter, we only599

investigate the enrichment scheme proposed by XIGA. Another observation is600

that, by adopting the XIGA’s enrichment scheme, stress oscillations slightly601

appear for ℓ = h/4, and disappear with smaller length-scales adopted. It602

can be deduced that, maintaining the XIGA’s prescription, the length-scale603

parameter ℓ should be smaller than h/4 in a uniform mesh of length h.604

The physical interpretation of this choice is that the regularised phase-field605

variable dℓ majorly occupies the cracked element and vanished elsewhere,606

see Figure 2B. This is in line with the philosophy of extended finite element607

analysis, which localises the (discontinuous) enriched field within the cracked608

element.609

6.1.2. p-refinement: continuity-order assessment610

One of the main features of IGA is the higher inter-element continuity611

provided by NURBS basis functions, which increases with p-refinement by612

elevating the continuity-degree of NURBS. A uniform discretisation of 25613

elements is adopted following the enrichment scheme prescribed by XIGA.614

Analytical δℓ defined in Equation (15) is utilised here. The results are pre-615

sented for displacement and stress estimates, which are compared with the616

analytical solution, in Figure 11. Two scenarios are explored for displacement617

field candidates: the non-shifted displacement field uhℓ (x) and the shifted618

u
h,SH (ii)
ℓ (x) format.619

Similar to the results in Section 6.1.1, no difference between the results620

of the non-shifted formula uhℓ (x) and the shifted version u
h,SH (ii)
ℓ (x) is ob-621

served. Stress oscillations observed for ℓ = h/4, which are more pronounced622

for quartic and less for quadratic and cubic NURBS basis functions, while623

satisfactory results are obtained for other length-scales. This is reminis-624

cent of the conclusion made in the previous section about confining dℓ by625

choosing ℓ < h/4. Moreover, the good agreement observed in Figure 10 for626

p-refinement is another validation of the hypothesis about the best enrich-627

ment scheme. Therefore, the term "enrichment" refers to the XIGA’s recipe628

in the remainder.629
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Figure 10: Establishing a relationship between the enriched field and the phase-field vari-
able d for (A) uh

ℓ (x), (B) uh, SH (i)
ℓ (x) and (C) uh, SH (ii)

ℓ (x). u and σ denote the displacement
and the stress results of our proposed approach, indicated by the dashed black line, com-
pared with the analytical solution, given by the solid red line. Enriched control points
corresponding to the enrichment criterion defined on the phase-field variable d are illus-
trated by green circles. Note that the crack is located at the middle of the plate.
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Figure 11: p-refinement comparison for (A) uh
ℓ (x) and (B) u

h, SH (ii)
ℓ (x). Green circles in-

dicate the enriched control points associated with each NURBS. The results are compared
with the analytical solution denoted by the red solid curves, comprised of displacement u
and stress σ estimates.

6.1.3. Analytical vs numerical phase-field630

So far the analytical δℓ in Equation 15 has been utilised in the previous ex-631

amples. Now, we explore the numerical evaluation of the phase-field formula632

given in Sections 3.2 and 4.2. A 25-element discretisation with the length633

scale ℓ = 2h/15 and the penalty factor c0 = 9 are adopted based on the634

investigations carried out in Section 4.2. The displacement and stress results635

are shown in Figure 12 for various combinations of NURBS utilised for me-636

chanical and phase-field problems. A chamfered response is observed for the637

displacements at a short distance at each side of the crack (see the zoom sec-638

tions of u in 12A). No substantial difference between analytical and numerical639

phase-field solutions is observed for the displacements in Figure 12A, with all640
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solutions showing acceptable accuracy. This is further supported by the L2
641

norm error on displacements in Figure 12C, where no significant disparity is642

observed between the analytical and numerical results. On the other hand,643

the stresses exhibit different responses for the p-refinement within the me-644

chanical problem, as shown in Figure 12A (see σ columns of Lin (u), Quad (u)645

and Cub (u)). Unsurprisingly, regardless of phase-field, oscillatory stresses646

result for linear NURBS utilised in the mechanical problem, as a quadratic647

approximate is needed to ensure continuous gradient of displacement.648

It is best to compare phase-field independently by checking the Γ-error649

introduced previously, which allows for assessing the quality of δℓ estimates650

for p-refinement. Figure 12B compare the approximated regularised Dirac-δs651

against the exact values given by the exponential decay in Equation (15). A652

tortuous solution is observed for the linear order while quadratic and cubic653

NURBS guarantee a smooth response. The Γ-error in 12B determines the654

best NURBS order to satisfy the central identity
∫
Ω
δℓdΩ = Γd, with the655

orders ranked as quadratic, cubic and linear based on the least error.656

In a comparison between numerical and analytical solutions of phase-657

field, those oscillation caused by the former are more pronounced, which658

are substantially mitigated by p-refinement, consistently improving as we659

move away from Lin (u) towards Cub (u), which is also confirmed by the H1
660

semi-norm error of the mechanical problem given in Figure 12D, where both661

analytical and numerical solutions improve with p-refinement. To determine662

the best combination, H1 semi-norm errors suggest Cub (u)-Quad (d) by663

looking at the yellow bars, which is in line the Γ error in Figure 12B for664

numerical phase-field solutions.665

6.2. Cohesive fracture: linear traction-separation relationship666

Now, cohesive tractions are considered for a uniform tension test of a plate667

cracked in the middle, as depicted in Figure 13A. The effect of the length-scale668

on analytical estimates of δℓ is presented in Figure 13B, which are compared669

with the numerical estimates in C. The importance of such example lies in670

the cohesive terms which rely on the quality of the δℓ estimate, particularly671

in f intũ and Kint
ũũ of Equations (54)b and (56)c. A linear traction-separation672

relationship is utilised, i.e.,673

Gf =
1

2
k JunK2, td = k JunK. (64)
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Figure 12: Analytical vs numerical solution for the phase-field problem. Displacement
(u) and stress (σ) responses are represented in A for different combinations of NURBS
chosen for phase-field and mechanical problems, while B compares numerical δℓ against
the analytical (exact) evaluation, assessed by the Γ-error. L2 norm and H1 semi-norm
errors of the mechanical problem are given in C and D in the form of bar graphs.

with a constant tangent k = 1. The material parameters read: Young’s674

modulus E = 1; Poisson’s ratio ν = 0; and the cross-section area A = 1. Due675

to the symmetry with respect to the X -axis, only 1 element is considered676

in the Y-direction, reminiscent of a one-dimensional example. The exact677

solution is given by678
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Figure 13: Uniform opening test of (A) a plate cracked at the middle, indicated by the
red solid line. Cohesive tractions are characterised by the fracture energy Gf and tensile
strength tu at the crack location. δℓ values are plotted for a uniform 9-element discretisa-
tion at the dashed blue line. Analytical δℓ values are shown in B, and numerical δℓs are
compared to the analytical results in C.

uex =


ūkx

kL+E
if 0 ≤ x < L/2

ūkx
kL+E

+ ūE
kL+E

if L/2 < x ≤ L
(65)

679

σex =
ūkE

kL+ E
(66)

where uex and σex indicate the exact displacement and stress, respectively.680

Following the results by Section 6.1, two scenarios are considered here:681

the non-shifted Heaviside function Hℓ (xn); the shifted Heaviside function682

H SH (ii)
ℓ (xn). The former is already presented in Section 4.3, whose formula-683

tions are also valid for the shifted Heaviside by changing •enr ← •enr (ii) (see684

Appendix Appendix A for the definition of these enriched terms).685

6.2.1. Length-scale sensitivity analysis686

First, we conduct a parametric study of the effect of the length-scale687

on the mechanical response in the presence of cohesive terms by adopting688

ℓ ∈ {h, h/2, h/4, h/5, h/6, 2h/15, h/8, h/10, h/15, h/20}. The results are pre-689

sented for 9 elements in the top two rows of Figure 14. As observed in Figure690

2B, the tangent of analytical dℓ at the peak spans the distance 4ℓ, for which691

we endeavor to find a physical interpretation with respect to the discrete692
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fracture model. The results in 14A , B, E and F show the optimum solution693

when 4ℓ is within the cracked element. Specifically, in a uniform mesh of694

length h (h = L/9 in the X -direction), choosing h = 4ℓ renders the optimum695

solution for the non-shifted Heaviside formulation, as shown in Figure 14A696

and B. A slightly larger element length, h = 5ℓ in X -direction, or equiva-697

lently a slightly smaller length-scale ℓ = h/5, exhibits the optimum solution698

for the shifted Heaviside formulation, H SH (ii)
ℓ , depicted in 14E and F. This699

is in agreement with the findings in Section 6.1. In the case of numerical700

phase-field presented in Figure 14C, D, G and H, comprehensively studied701

in Section 6.1, cubic and quadratic NURBS are adopted for the mechanical702

and phase-field problems, for which ℓ = h/10 exhibits the optimum solution703

for the non-shifted and shifted Heaviside formulations.704

The length-scale sensitivity analysis provides a physical interpretation705

that a majority of dℓ should be limited to the cracked element, at least the706

distance occupied by the gradient of dℓ at the peak (4ℓ) in Figure 2B, if707

not entirely. Therefore, ℓ = h/4 can be used as a reference value for the708

phase-field regularised PUM, which can vary according to the quality of δℓ709

estimates. The disparity between the optimum length-scales found for ana-710

lytical (ℓ ≈ h/4) and numerical (ℓ≪ h/4) simulations could be attributed to711

the blunted peak of the numerical estimates, which leads to a wider tangent712

(lower gradient values) of dℓ at the peak (where crack locates), and conse-713

quently a flatter δℓ, see Figure 13C for a comparison between analytical and714

numerical estimates of δℓ.715

6.2.2. h-refinement: discretisation stability716

Next, we investigate the effect of the mesh refinement for analytical and717

numerical phase-field solutions by choosing the discretisation from the list718

{7, 9, 11, 25, 57, 103} in the X -direction. The results are reported for the op-719

timum length-scales obtained in the previous section, see the bottom two rows720

in Figure 14. The displacement results, Figures 14I, K, M, O, are difficult to721

distinguish from the exact solution, while the stress results shown in Figures722

14J, L, N and P exhibit clear superiority of the shifted Heaviside formulation,723

H SH (ii)
ℓ . Unsurprisingly, the analytical phase-field formulation (Figures 14J724

and N) outperforms the numerical implementation (Figures 14L and P) in725

terms of accuracy. Regarding the stability, all the cases of discretisations726

converge to the expected results with the trend of better accuracy yielded727

for finer meshes, as shown by the arrows in Figures 14I, K, M and O. For the728

displacements, the finest mesh (103 elements) leads to the best results for729
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both analytical and numerical phase-field solutions. Regarding the stresses,730

however, the amplitude of the oscillations increases with mesh refinement,731

but they are also more concentrated to the crack location, see Figures 14J,732

L, N and P. Between analytical solutions in Figures 14N and J, the stress733

oscillations for the shifted Heaviside are negligible in value compared with734

the non-shifted formulation.735

The optimum length-scale results from the analytical and numerical stud-736

ies are collected in Figure 15. As also supported by L2 norm and H1 semi-737

norm errors in E and F, the shifted Heaviside formulation exhibits better738

accuracy for both displacements and stresses in A and B, respectively. For739

the numerical phase-field, however, while L2 norm errors are very close for740

quadratic and cubic NURBS, the results by the quadratic discretisation ex-741

cels from the cubic in terms of the H1 semi-norm errors in H and the stresses742

reported in D. Even though lower H1 sermi-norm error is observed for the743

non-shifted Heaviside function, a more consistent behaviour is observed for744

the quadratic shifted Heaviside in H. The best results are obtained with the745

shifted Heaviside function regularised by the analytical phase-field solution,746

while higher errors and relatively high-amplitude oscillations are observed747

for non-shifted Heaviside formulation and the stress results of the numerical748

phase-field solution. Hence, only the shifted Heaviside formulation regu-749

larised by analytical phase-field is utilised hereafter.750

6.2.3. Sensitivity analysis of singularity751

Many approaches have been exploited to mitigate the conditioning issue752

of the stiffness matrix in extended finite element analysis, as explored in In-753

troduction section. This issue is majorly adhered to two scenarios in which754

the same reason of inadequate integration of the Heaviside enrichment at755

one side of the crack can cause the singularity of the stiffness matrix. These756

scenarios happen when highly disproportionate sections are faced within an757

element: either the crack path and the element edge align too close to each758

other; or the crack divides an element too close to a corner. Herein, we ex-759

plore the hypothesis whether the diffused crack definition can mitigate the760

ill-conditioning issues. This is motivated by the fact that, unlike discrete761

fracture models, diffusing the crack leads to a continuous Heaviside function,762

as explored in Section 2.1. Therefore, within the cracked element, less de-763

pendency to proper integration of the Heaviside function is anticipated, since764

a transition zone for the discontinuity is defined after crack diffusion.765
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Figure 14: Comparison between the non-shifted (Hℓ) and the shifted (H SH (ii)
ℓ ) Heaviside

formulation of the displacement (u) and stress (σ) results cast for the constant cohesive
traction-separation relationship. The results are compared against the exact solution and
the numerical result by Verhoosel and de Borst [39], indicated by the solid red and the
dashed black lines, respectively. The analytical solution of the phase-field is assumed for
the left two columns, while numerical phase-field approach is utilised for the right two
columns. Horizontally, the top two rows represent the effect of the length-scale ℓ for the
fixed 9× 1 elements, whereas mesh refinement is the focus at the bottom two rows.

We have conducted a comprehensive study on the first scenario when766

the crack aligns with the edge of element at a very close distance. The767

shifted Heaviside formulation and the analytical phase-field description are768

adopted for this example with ℓ = h̃min/5, where h̃min denotes the min-769
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Figure 15: Displacement and stress results of analytical (A and B) and numerical phase-
field (C and D) cast for the optimum length-scales specific to the shifted and non-shifted
Heaviside functions. 9 elements are considered in the X -direction. L2 norm and H1 semi-
norm errors are presented in E and F for the analytical phase-field, while G and H show
these error norms associated with cubic and quadratic NURBS used for numerical phase-
field. Quadratic displacement field is preserved for all cases.

imum length of the enriched elements. The results are shown in Figure770

16. To examine the sensitivity of the distance between the element edge771

(see the blue edge in A) and the crack path to cause singularity, condi-772

tion numbers of the stiffness matrix are reported for different distances, i.e.,773

Dsingularity ∈ {0.001, 0.002, 0.005, 0.01, 0.05, 0.07143}. The results are shown774

in B comparing the current study with linear interpolation for XFEM and775

quadratic NURBS for XIGA. For the normalised distances less than 0.005,776

both XFEM and XIGA report super high condition numbers, while XFEM777

exhibits the best performance (the least condition number). The results of778

the current study yields the most stable condition numbers that is approxi-779

mately equal to XIGA for Dsingularity/L = 0.071 at the beginning.780

While assessing the condition number of the stiffness matrix is the best781

indicator of singularity, it is never an assessment of the performance of the782

mechanical problem. Therefore, we present the displacement and stress re-783

sults compared with the exact solution and a numerical reference in Figures784

16C and D. While displacements return accepted results, the stress plot of785

the farthest distance are in good agreement with the exact solution. For786
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Dsingularity/L = 0.001, however, the stress plot is slightly worse than the case787

0.071. Noteworthy is the fact that the quality of the coarse mesh (7 ele-788

ments in the X -direction) also plays a significant role in worse stress results,789

see Figure 16B for a comparison between the two meshes. The accuracy is790

further assessed by L2 norm and H1 semi-norm errors presented in E, where791

approximately 4 × 10−2 results for both errors at Dsingularity/L = 1 × 10−11.792

From the stability point of view, the condition number remains in the range793

]1.4× 104 1.7× 104[ even for Dsingularity/L = 1× 10−16.794

The second scenario of conditioning issue, when the crack divides the795

element too close to a corner, happens frequently in extended finite element796

analysis since the crack path and the underlying mesh layout are independent,797

see the yellow elements in Figure 17B. The results in D and E indicated by798

the green dashed line exhibit excellent agreement with the exact solution for799

quadratic NURBS, even though the crack exactly passes the corner of the800

two yellow elements at the middle of the plate. Noteworthy is the fact that801

the absence of Kronecker-δ in Cp−1,p ≥ 2 has no effect on the ill-conditioning802

issue, as observed for C1 in quadratic NURBS.803

6.2.4. Irregular discretisation804

One of the main features of the phase-field-regularised PUM developed805

here is the capability of handling irregular discretisations even for the coars-806

est meshes typically used in discrete fracture models. We have adopted the807

shifted regularised Heaviside formulation and the analytical phase-field de-808

scription here, while ℓ = h̃min/5 is the length-scale defined on the minimum809

element length of the enriched elements. The first case explores moving the810

edge of the cracked element onto the crack path, see the mesh in Figure 16B811

for Dsingularity/L = 0.001. The results are presented by the dotted blue line812

in Figures 16C and D, showing excellent agreement for the displacement and813

accepted result for the stress against exact results. It is noteworthy that the814

results of the stress could be highly improved with the mesh refinement, as815

is explored for the next example.816
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Figure 16: Sensitivity analysis of singularity due to Heaviside enrichment. The blue
edge in A gradually approaches the crack and the corresponding condition numbers are
plotted for different distances, Dsingularity, in B. The results are also compared with XFEM
and XIGA. The farthest and closest distances, whose meshes are shown in Figure B, are
compared with the exact solution and the numerical reference[39] for the displacement
and stress graphs in C and D. L2 norm and H1 semi-norm errors are plotted along with
their corresponding condition numbers of the current approach in E, in the distance range[
1× 10−16 1× 10−2

]
.

An inclined mesh is adopted in Figure 17 for the quadratic NURBS (see A817

and B) to investigate a more complex discretisation example complemented818

by defining a C0-continuous line (see the blue line in A and B) by knot inser-819

tion [71], while a linear NURBS is also assessed in C. This example provides820

an additional validation of the enrichment scheme suggested in Section 6.1.1:821
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control points corresponding to cracked elements are enriched, regardless of822

the distance to the crack path, which is the only factor in the phase-field823

variable determination.824

Figure 17: Assessment of phase-field-regularised PUM for irregular meshes shown for (A)
14 × 1 quadratic, (B) 16 × 10 quadratic and 16 × 10 linear NURBS elements. The C0-
continuous line (see the blue line in A and B) is introduced by means of knot insertion
to include all typical features of a general mesh in IGA, while all grids of C are C0-
continuous due to linear NURBS adopted. The displacement (D) and stress (E) results
are compared for mesh refinement of quadratic NURBS shown in A and B. Utilising the
same discretisation, 16 × 10 elements in F (displacement) and G (stress), the effect of
NURBS order is assessed for linear (C) and quadratic (B) NURBS. It is noted that the
results are plotted for the top edge of the rectangle.

For quadratic NURBS, the results for the displacement in D are almost825

identical for the meshes proposed in A and B, while there is an obvious826
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difference in the stresses shown in E. As observed in A, use of only 1 element827

in the Y-direction causes a non-uniform enrichment spread over the entire828

geometry, which is against the localised nature of enrichment. The effect of829

mesh refinement in B is twofold: a more uniform mesh is introduced for the830

proposed inclined discretisation; a locally distributed enrichment results due831

to the smaller support of the refined enriched elements. The stress results832

significantly improve for the mesh refinement presented in B. In comparison833

with linear NURBS, however, both displacement and stress results improve834

when linear NURBS is adopted. Regarding the ill-conditioning of the stiffness835

matrix, it is proven that the presence or absence of Kronecker-δ has no effect836

on the performance of our proposed formulation, as both C1 (quadratic) and837

C0 (linear) NURBS have been explored here. Moreover, the satisfactory838

results of this example refute any relation between the enrichment scheme839

and the phase-field variable d. It is worth noting that a singular matrix840

results when the discrete Heaviside formulation, discussed in remark 1 in841

Section 3, is utilised.842

6.2.5. Gauss quadrature sensitivity analysis843

So far, as shown previously in Figure 8, the number of Gauss points used844

for the standard field has been the minimum requirement for full integration845

(p+ 1) × (q + 1) using univariate NURBS of orders p and q, while a 9 × 9846

Gauss quadrature has been utilised for the enriched terms to efficiently handle847

δℓ, a steep exponential decay function. Therefore, we assess whether the848

quality of the enhanced field ũh is majorly dependent on the quantity of849

the Gauss points used in the Gauss quadrature. Herein, we examine three850

irregular meshes, similar to those utilised in Sections 6.2.3 and 6.2.4, in order851

to find the optimum number of Gauss points needed for integration. The852

shifted Heaviside formulation given in Equation (61) is only adopted here853

with ℓ = h̃min/5. We choose a quadratic bivariate NURBS (p = q = 2) for the854

mechanical problem and, therefore, a 3× 3 Gauss quadrature is adopted for855

the standard field. For the phase-field, we exploit the analytical exponential856

decay to exclude the possible effect of the errors associated with numerical857

phase-field solutions.858
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Figure 18: Assessment of the Gauss quadrature for irregu-
lar meshes shown for the knot vectors denoted by: Ξx =
{0, 0, 0, 0.1428, 0.2857, 0.4285, 0.53, 0.7142, 0.85714, 1, 1, 1} and Ξy = {0, 0, 0, 1, 1, 1}
in A; Ξx = {0, 0, 0, 0.1428, 0.2857, 0.4285, 0.49, 0.54, 0.64, 1, 1, 1} and Ξy = {0, 0, 0, 1, 1, 1}
in B; Ξx = {0, 0, 0, 0.1428, 0.2857, 0.4285, 0.5, 0.5, 0.5714, 0.7142, 0.8571, 1, 1, 1} and
Ξy = {0, 0, 0, 0.5, 1, 1, 1} in C. The L2 norm and H1 semi-norm errors are presented in D
and E.

The results are presented for L2 norm and H1 semi-norm errors of the859

number of Gauss points in Figure 18. The extent of irregularity increases860

for the discretisations adopted from A to C. The errors in D and E exhibit861

uniform results for the meshes in A and B. An inclined mesh is examined862

in C, while a minimum 2 elements is needed in the Y-direction to prevent863

the enriched control points from spreading across the entire domain, which864

can significantly affect the mechanical response, as shown in Section 6.2.4.865

The results of this case show that a minimum 10 Gauss points are needed866

to guarantee an almost stable H1 semi-norm error. The same L2 norm error867

exhibits stable errors using a minimum 9 Gauss points used. It is noteworthy868

that the L2 norm errors are less restrictive than the H1 semi-norm errors in869

terms of the number of Gauss points. In general, it is proved that the number870

of Gauss points needed are subjective to the quality of discretisation, with871
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local mesh refinement playing the pivotal role (see Figure 18B).872

6.3. Cohesive fracture: nonlinear traction-separation relationship873

A nonlinear traction-separation relationship is examined here to better874

assess the efficacy of the proposed formulation and confirm the conclusions875

made in previous sections. The geometry and the material properties remain876

the same as Section 6.2. The energy adopted at the interface reads877

Gf = Gc
(
1−

(
1 +

JunK
vn

)
exp

(
−JunK

vn

))
(67)

with vn = Gc/ (tu exp(1)). The traction description at the discontinuity yields878

td =
∂Gf
∂JunK

= Gc
JunK
v2n

exp

(
−JunK

vn

)
(68)

where the critical fracture energy Gc = 1 and the tensile fracture strength879

tu = 0.75 are adopted for this example. Dealing with a nonlinear prob-880

lem, an iterative Newton-Raphson solver is adopted with a non-uniform881

displacement-controlled increments:882

ūnew = ūold +∆ū,

{
∆ū = 0.066667 if ūold ≤ 2
∆ū = 0.15 if ūold > 2

. (69)

Based on the previous sections, the optimum length-scale ℓ = h̃min/5 is883

adopted here for H SH (ii)
ℓ . The analytical phase-field, in the form of the expo-884

nential decay function, is adopted in this section. The relative energy norm885

error is calculated by comparing the integral below the force-displacement886

curve with the energy released by the crack path887

E-error =

∣∣∫∞
0
f du− Gc · lcr

∣∣
Gc · lcr

(70)

with lcr denoting the crack length.888

6.3.1. Irregular discretisation and Gauss points sensitivity analysis889

Effect of discretisation irregularity is hardly explored for phase-field mod-890

els in the presence of nonlinear cohesive relationship. Herein, we have adopted891

two extreme cases of irregular meshes, see Figures 19A and C, for which the892

mechanical response is presented through a force-displacement curve plotted893

for various numbers of Gauss points used for the enriched terms. Based on894
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the results of the linear traction-opening relation, reported in Section 6.2, a895

minimum number of 10 Gaussian points return satisfactory results. Hence,896

we have investigated 10, 11 and 12 points for the Gauss quadrature of en-897

riched term, while maintaining the (p+1)× (q+1) Gauss quadrature for the898

standard displacement integration.899

The force-displacement curves are shown in Figures 19B and D. While900

both non-uniform (A) and irregular (C) meshes exhibit satisfactory results901

for all integration points examined, 12 Gauss points successfully capture the902

behaviour at the peak, particularly for the inclined mesh in D. The errors are903

reported in Table 1, showing a clear improvement with 12 GPs for the inclined904

mesh. Regarding the errors of the non-uniform mesh, the poor quality of905

discretisation, particularly the significant difference in element sizes, cause906

considerable error after the peak. This is clearly improved by exploiting a907

uniform discretisation of the same number of elements examined in Figure908

20A, which exhibits good agreement with the exact solution in C.909

6.3.2. h-refinement910

To complement the discretisation stability study in Section 6.2, the effect911

of discretisation is assessed in the presence of nonlinear traction-separation912

relationship. This example is pivotal in showcasing the role of PUM in com-913

patibility with coarse meshes. Uniform discretisations (7, 11 and 25 elements)914

are adopted here, see Figure 20. The mechanical responses in the form of the915

force-displacement curve are shown in C, which are compared with the exact916

(discrete) solution and the numerical results by Verhoosel and de Borst [39].917

The results are presented for 7 and 25 elements using 12 Gauss points show-918

ing excellent agreements with the exact solution, which proves the stability919

of h-refinement solution using the proposed length-scale. This is supported920

by the energy norm errors (Equation (70)) reported in Table 1 as well, which921

quantifies the errors associated with Figure 20C with values less than 1%.922

In comparison with other numerical techniques, our proposed formulation is923

compatible with super coarse discretisations, as the results of the 7-element924

mesh is closer to the exact results than 800 elements utilised by Verhoosel925

and de Borst [39]. As discussed in details in Remark 2 (see Section 3), the926

proposed formulation in Verhoosel and de Borst is a special case of the cur-927

rent formulation in the absence of PUM and the consistent displacement928

jump definition.929
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Discretisation Energy norm error Gauss quadrature
10 GPs 11 GPs 12 GPs

Non-unifrom
mesh

Relative error (%) 7.7095 8.114 10.482

Inclined mesh Relative error (%) 4.035 4.090 0.312

Uniform mesh Relative error (%)
Discretisation

7 elems 11 elems 25 elems
0.826 0.813 0.774

Table 1: Relative energy norm errors for different discretisation cases. Gauss quadrature
of the enriched terms is explored by the number of Gauss points (GPs) used for irregular
meshes, while mesh refinement is investigated for uniform discretisation.

Figure 19: Force-displacement response of irregular discretisation in the pres-
ence of cohesive tractions. Two discretisations are investigated: non-uniform
mesh Ξx = {0, 0, 0, 0.14285714, 0.28571429, 0.42857143, 0.49, 0.54, 0.64, 1, 1, 1}
and Ξy = {0, 0, 0, 1, 1, 1} shown in A; inclined mesh Ξx =
{0, 0, 0, 0.14285714, 0.28571429, 0.42857143, 0.5, 0.5, 0.57142857, 0.71428571, 0.85714286, 1, 1, 1}
and Ξy = {0, 0, 0, 0.5, 1, 1, 1} shown in B.
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Figure 20: Effect of h-refinement in the presence of non-linear traction-separation rela-
tionship. 7 and 25 elements are presented in A and B, while the corresponding force-
displacement curves are shown in C, which are compared to those of Verhoosel and de
Borst [39] given in black.

6.4. Delamination peel test930

Our final example investigates the progressive crack propagation via a peel931

test, shown in Figure 21, where a traction-free initial slit is considered in a932

double cantilever beam. The material properties are taken as: the Young’s933

modulus, E = 100 MPa; the Poisson’s ratio, ν = 0.3; the critical fracture934

energy, Gc = 0.1 N/mm; and the tensile fracture strength, tu = 1 MPa.935

The traction-crack opening relationship follows the exponential cohesive-zone936

model, i.e.,937

Gf = −Gc exp
(
− tu
Gc

JunK
)
, (71)

where the cohesive traction relation at the discontinuity yields938

td =
∂Gf
∂JunK

= tu exp

(
− tu
Gc

JunK
)
. (72)

A history parameter κ identical to the one discussed in Section 2.2 replaces939

the displacement opening JunK to ensure irreversibility of fracture opening940

imposed by the Kuhn-Tucker condition.941

As shown in Figure 21A, quadratic NURBS elements are used across dif-942

ferent spatial discretisations to support mesh objectivity. The enriched con-943

trol points are highlighted with green circles. A simple enrichment scheme944

is adopted for crack propagation: all control points belonging to the cracked945

elements are enriched regardless of the inter-element share of control points,946
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provided that the enriched terms to be manually removed from the displace-947

ment field calculations at all partially-enriched elements in front of the crack948

tip. The deformed shape after crack propagation is shown in B and C, illus-949

trating displacement and stress fields in the Y-direction, respectively.950

Figure 21: Peel test of (A) a double cantilever beam with an initial slit subjected to
prescribed displacement ū. The zoom box illustrates the enrichment scheme utilised (only
enriched control points are shown by green circles). The deformed shape is shown in the
forms of the (B) displacement and (C) stress fields in the Y-direction. A parametric study
on the internal length scale ℓ is conducted in D, followed by the mesh sensitivity analysis
in E. The results are compared with interface elements (90 × 7) and the XIGA approch
(100× 9).
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So far, we have observed that ℓ = h/5 is a good choice for stationary crack951

problems explored in the preceding sections. Nevertheless, we have conducted952

a parametric study for the progressively propagating crack in the peel test, as953

investigated in Figure 21D for the fixed mesh 100×9, where the first and the954

second digits denote the number of elements along the length and the width of955

the problem, respectively. A converging trend is observed by decreasing the956

internal length scale ℓ where the factors {2/11, 1/6, 1/7, 1/8} render excellent957

agreement with the results generated by the predefined interface elements958

and XIGA (see D in Figure 21). This proves that the results are almost959

insensitive to the length scales below a specific value, a potential alternative960

to the length scale sensitivity observed in other phase-field contributions.961

Next, a mesh sensitivity analysis is presented in Figure 21E, while fixing962

the internal length scale ℓ = h/6. The results demonstrate good agreement963

with those of interface elements and XIGA irrespective of the various spatial964

discretisations examined with minimal effects on the mechanical response.965

It is worth comparing the computational cost of the present study with966

that of XIGA [74] and the classical phase field model[39]. The comparison is967

based on the final configuration of the problem, in which the crack propagates968

for 34 elements after an initial traction-free slit of 10 elements. Rather than969

reporting computation time — which is subjective to quality of machine’s970

computing processor and would requires rerunning all the comparison candi-971

dates with the same machine — we follow the cost estimation approach used972

in collocation method [88, 87]. Specifically, we correlate the computational973

cost with the stiffness matrix assembly effort, measured by the number of974

integration points.975

Recalling that the full integration for a bivariate NURBS basis function of976

order p requires (p+1)× (p+1), we assume that full integration is employed977

in [39], even though the exact number of integration points is not reported.978

Full integration is also used for the standard term in XIGA and our proposed979

approach. However, the number of points used for the enriched terms differs:980

XIGA adopts 7× 7 integration points, while the current study uses 12× 12981

integration points for the enriched terms. Additionally, XIGA requires a line982

integration for the enriched crack interface, for which 9 integration points983

are used.984

Regarding discretisation, we adopt the minimum number of elements re-985

ported for this example in [39], namely 50×40 elements, which is comparable986

to the 100×9 elements used in both XIGA and our proposed approach. XIGA987

and the current study adopt C1-continuous discretisations for the standard988
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and enriched fields. In contrast, the classical phase field model employed C2-989

continuous elements for the displacement field, and C0-continuous elements990

for both the auxiliary displacement jump and the phase field [39]. It is noted991

that [39] employed Lagrange polynomials, while the isogeometric version in992

[41] adopted high-order NURBS with C0-continuity at element boundaries,993

which prevents the typical inter-element share of control points. Moreover,994

the enriched field ũ in XIGA and in this study is defined locally, forming995

a narrow band at the vicinity of the crack path. In contrast, the auxiliary996

displacement jump used in the classical phase field is defined globally. Con-997

sequently, the total number of DOFs in the phase field model reaches 40724,998

while XIGA and our approach use 2520 DOFs. Further details are provided999

in Table 2.1000

Type Computational cost (DOFs & GPs) Cost reduction

P
F

u v d
∑

i=u,v,d costi w.r.t PF (%)

36542 DOFs 2091 DOFs 2091 DOFs 40724 DOFs —
32000 GPs 32000 GPs 8000 GPs 72000 GPs —

P
F
-

P
U

M û ũ d
∑

i=û,ũ,d costi w.r.t PF (%)

2244 DOFs 276 DOFs — 2520 DOFs 93.81
8100 GPs 32400 GPs — 40500 GPs 43.75

X
IG

A û ũ d
∑

i=û,ũ,d costi w.r.t PF (%)

2244 DOFs 276 DOFs — 2520 DOFs 93.81
8100 GPs 11331 GPs — 19431 GPs 73.01

Table 2: Computational cost for stiffness matrix assembly, compared across the phase-
field (PF) method [39], the proposed phase-field-regularised partition of unity method
(PF-PUM), and extended isogeometric analysis (XIGA) [74]. The comparison is based on
the number of integration/Gauss points (GPs) and degrees of freedom (DOFs). In this
context, u, v, û, ũ and d denote the full displacement, the auxiliary displacement jump,
the standard displacement, the enriched displacement and phase fields, respectively.

Table 2 presents the computational cost of each approach, specified in1001

terms of DOFs and number of integration/Gauss points, to provide a fair1002

estimation of the stiffness matrix assembly effort. Notably, the current study1003

and XIGA have the same number of DOFs — representing approximately1004

94% reduction with respect to that of the phase field model. However, the1005

number of Gauss points reveals a higher computational cost for our proposed1006

approach compared to XIGA. While the phase field model requires 72000 in-1007

tegration points, our approach uses 40500, corresponding to a reduction of1008
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approximately 44%. As expected for a discrete approach, the reduction is1009

even more pronounced for XIGA, around 73%. These results demonstrate1010

that, in addition to the other advantages discussed in this study, our pro-1011

posed approach is significantly more computationally efficient than the clas-1012

sical phase field model. Particularly, in terms of integration points, the pro-1013

posed approach corresponds to a computational effort that falls between the1014

classical phase field model and XIGA. Moreover, the computational cost of1015

the present study can potentially approach that of XIGA with improved nu-1016

merical integration for the local exponential decay function in the enriched1017

displacement field.1018

7. Concluding remarks1019

A consistent formulation has been constructed for fracture analysis based1020

on the phase-field-regularised Partition of Unity Method (PUM), in which1021

the Dirac-δ in the form of the exponential decay function is approximated for1022

the crack diffusion. The proposed formulation possesses the advantages of a1023

discrete approach, particularly its efficacy with coarse meshes, which is not1024

achieved with conventional phase-field formulations. Adopting PUM allows1025

for an unambiguous displacement jump definition at the discontinuity based1026

on the existing enriched degrees of freedom, leading to an opening behaviour1027

reflecting the true nature of fracture. This also obviates the need to adopt1028

any auxiliary field to compensate the lack of necessary relation between the1029

jump and displacement fields, as utilised in the customary formulation of the1030

cohesive phase-field models.1031

Enrichment strategy is an inseparable part of PUM for fracture analysis,1032

and has been explored for our proposed formulation for phase-field regularised1033

PUM. After conducting a comprehensive investigation on the potential rela-1034

tionship between the enrichment scheme and the phase-field variable d, it has1035

been proven that the enrichment identical to that of XIGA renders the most1036

satisfactory results, while under-enrichment leads to a wrong displacement1037

jump at the crack, leading to incorrect displacement and stress evaluations.1038

Over-enrichment, on the other hand, leads to acceptable displacement re-1039

sults. However, oscillatory stress estimates are directly proportional to the1040

extent of over-enrichment. For the progressively fracturing cracks, we have1041

adopted the simplest approach by enriching the control points of the cracked1042

elements entirely, regardless of the inter-element share between the intact1043

and cracked elements. However, the enriched terms must be removed from1044
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the formulations when considering the intact elements in front of the crack1045

tip.1046

In a comparison between the analytical evaluation of the diffused Dirac-1047

δ and the numerical solution of the phase-field problem, quadratic NURBS1048

(C1-continuous at element boundaries) renders the minimum error for satis-1049

fying the identity
∫
Ω
δℓ dΩ = Γd. For the coupled phase-field and mechanical1050

problems, however, different combinations have been explored. The best so-1051

lution pertains to cubic NURBS (C2-continuous at element boundaries) for1052

the mechanical field and quadratic for the phase-field problem. Nevertheless,1053

significant stress oscillations are observed for the phase-field numerical ap-1054

proach in general, while the analytical exponential decay function exhibits1055

satisfactory results, provided that enough Gauss points are utilised for the1056

regularised enriched terms. It has been observed that using 12 Gauss points1057

guarantees proper integration of the discontinuous enriched field, while main-1058

taining the full integration for the intact standard terms ((p + 1) × (q + 1)1059

Gauss points for the NURBS surface of orders p⊗ q) suffices.1060

The optimum length-scale has been assessed against h-refinement in the1061

presence of linear and nonlinear traction-separation relationships at the dis-1062

continuity. In the examples tested in this article, the minimum length scale1063

to achieve converging results was found to be in the range h/6 ≤ ℓ < h/4.1064

If length scales smaller than the identified thresholds are adopted, the re-1065

sults do not significantly depend on the length scale. When an adequate1066

length scale is adopted, the results are also shown to be insensitive to mesh1067

refinement.1068

Next, a comprehensive study has been conducted on the conditioning is-1069

sue associated with extended finite element analysis. Our formulation has1070

successfully resolved the issue by the continuous description of the Heavi-1071

side function generated by the diffused representation of the crack. Irregular1072

discretisation has also been investigated for biased mesh layouts to further1073

prove the efficacy of our formulations. Finally, the approach has been bench-1074

marked against crack propagation, indicating excellent agreement with XIGA1075

and interface elements results.1076

Regarding arbitrary crack paths, our proposed approach offers no im-1077

provement over the classical extended finite element analysis, as it borrows1078

the same crack initiation and propagation strategies used in the extended1079

finite element analysis — through the level-set technique, maximum princi-1080

pal stress, and enrichment. By adopting a degradation function, however,1081

the crack initiation and tracking would benefit from automated crack path1082
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monitoring via a phase-field-dependent level-set function. This enhancement1083

will be the focus of our future work.1084

This work advances the numerical analysis of fracture mechanics, present-1085

ing a formulation that delivers robust predictions with relatively low com-1086

putational costs. Furthermore, it opens up opportunities for future develop-1087

ments and applications. Notably, the current formulation can be extended to1088

accommodate conventional damage-dependent degradation functions, lead-1089

ing to formulations capable of reproducing a wide range of material behaviors1090

and fracture patterns.1091
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Appendix A. Enriched shape-function vector and strain-displacement1101

matrix1102

For simplicity, we define the following notation for the enriched strain-1103

displacement and basis function matrices1104

Benr
ui

= HΓd
(xn) (1− 2ℓδℓ)Bui

= HΓd
(xn) (1− 2ℓδℓ)


∂Nui

∂X1
0

0
∂Nui

∂X2
∂Nui

∂X2

∂Nui

∂X1

 ∀i ∈ Ienr

(A.1a)
1105

Nenr
ui

= HΓd
(xn) (1− 2ℓδℓ)Nui

= HΓd
(xn) (1− 2ℓδℓ)

[
Nui

0
0 Nui

]
∀i ∈ Ienr

(A.1b)
1106
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where xn denotes the normal signed distance of the point x from the crack1107

path. The formulation for the shifted Heaviside function, i.e., H SH (ii)
ℓ is1108

given next1109

Benr (ii)
ui

=
(
HΓd

(xn) (1− 2ℓ δℓ (xn))−HΓd

(
xin
) (

1− 2ℓ δℓ
(
xin
)))

∂Nui

∂X1
0

0
∂Nui

∂X2
∂Nui

∂X2

∂Nui

∂X1

 ∀i ∈ Ienr
(A.2a)

1110

Nenr (ii)
ui

=
(
HΓd

(xn) (1− 2ℓ δℓ (xn))−HΓd

(
xin
) (

1− 2ℓ δℓ
(
xin
)))[

Nui
0

0 Nui

]
∀i ∈ Ienr.

(A.2b)
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