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ABSTRACT

Delay-feedback reservoirs are a subset of reservoir computers characterized by a hardware-efficient architecture that trades spatial complexity
for temporal processing. It employs a single non-linear node, a delay line, and a time-multiplexed input signal to generate a network of “virtual
nodes,” effectively emulating a larger spatial neural network. One of the most powerful aspects of delay-feedback reservoirs is their versatility.
Our previous work found that the non-linear node performs two mathematical functions, a non-linear transform and integration. The non-
linear transform can be represented by any number of non-linear functions, making it difficult to optimize a delay-feedback reservoir to
solve a specific computational task. This work explores different non-linear functions in order to determine their effect on the dynamics
of the reservoir, in order to provide insight into this optimization problem. Five different non-linear functions are compared in terms of
performance, metrics, and utilization: Mackey-Glass, sine squared, double sinusoids, Tan, and Tanh. Our results find that the Mackey-Glass
non-linear function shows limited system dynamics, performing well on non-linear tasks but performing poorly on memory intensive tasks.
We then demonstrate the distinct system dynamics within the other four non-linear functions. We found that sine squared shows limited
overall performance, double sinusoid performs well in non-linear tasks, Tan resembles an odd valued exponent Mackey-Glass reservoir but
with greater parameter sensitivity, and tanh offers balanced performance across both task types. We find that modifying the system dynamics
of a reservoir is an important step toward optimizing a delay-feedback reservoir for specific computational tasks.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0286757

. INTRODUCTION

With traditional computing paradigms approaching their limit,
alternative paradigms need to be explored to keep up with mod-
ern computing demands. An alternative approach is to look toward

Traditional computing methods are increasingly challenged by
real-time computational problems, primarily because modern
systems often lack the bandwidth and processing power needed
for complex real-time tasks. An alternative solution is the delay-
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feedback reservoir, a machine learning paradigm inspired from
neurobiology that has proven effective in solving real-time com-
putational problems while offering greater hardware compati-
bility compared to other reservoir models. While delay-feedback
reservoirs are often easier to implement within hardware, the
design of a delay-feedback reservoir is complex, often leading
to inefficient use of the reservoir. This work aims to improve
efficiency by enabling the selection and optimization of the
non-linear function within a delay-feedback reservoir for a spe-
cific computational task, allowing for more efficient reservoir
systems.

biological systems, which exhibit the speed and robustness that are
desirable within modern computing systems. A promising compu-
tational paradigm is reservoir computing, inspired from recurrent
neural networks,"* which exploits the natural dynamical behavior
of a particular substrate in order to perform computation, greatly
improving efficiency compared to traditional computing paradigms.
This allows for a quick and efficient method of training a reservoir
computing system by only considering the dynamical substrate as a
“black box,” and only applying weights on the output of the system.
This has led to the reservoir computing framework being applied
to a wide range of systems, from traditional hardware, such as field
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programmable gate arrays (FPGAs) and analog circuitry,™ to non-
typical systems, such as memristors and even a bucket of water.”®

While reservoir computing has been shown to provide excel-
lent performance when processing real-time data, typical implemen-
tations require a large amount of randomly connected recurrent
neurons. This greatly increases the space required within hard-
ware due to the neurons, their interconnectivity, and I/O,” mak-
ing translation into hardware challenging; in order to minimize
the space required within hardware, an alternative approach called
delay-feedback reservoir computing® can be used.

A delay-feedback reservoir has the advantage of having only
one non-linear neuron (also known as a non-linear node) and a
time delay to create many “virtual neurons,” also known as virtual
nodes, allowing it to effectively emulate a much larger spatial recur-
rent neural network.” Multiple interesting physical implementations
of delay-feedback reservoirs have been developed, utilizing both
commercial components like FPGAs and op-amps,“'’ as well as spe-
cialized designs based on photonic and optoelectronic methods.'"'*
The delay-feedback reservoir has allowed reservoir computing to
become easier to realize within hardware, while providing excellent
results when processing time series prediction and other temporal
tasks.

Another powerful feature of using a delay-feedback reservoir
is that they are highly configurable. Our previous work found that
the non-linear node within a delay-feedback reservoir can be bro-
ken down into two key components:'’ a non-linear function, which
provides the non-linear transform of input data, and an integra-
tor, which integrates and mixes information to create memory. We
found that the integrator influences the timescale of the reservoir
system and its connectivity between virtual nodes,"* but the impact
of the non-linear function on system dynamics remains largely
unexplored. To assess the impact of the non-linear function on the
reservoir system, we begin by analyzing a traditional Mackey-Glass
based delay-feedback reservoir, evaluating how variations in the
Mackey-Glass exponent affect the reservoir in three distinct ways.
First, we evaluate the performance of the reservoir running two
computational benchmark tasks. Here, we choose NARMA-10 and
Santa Fe, as they require vastly different and opposite reservoir
characteristics for optimal computational performance.'”~'” We then
determine the characteristics of the reservoir in terms of system
metrics: generalization rank (GR), kernel quality (KQ), and linear
memory capacity (LMC). Finally, the utilization of the non-linear
function is analyzed by generating a heat-map of its input-output
relationship, which reveals the regions of the function actively used
during computation. We then explore alternative non-linear func-
tions and compare them to the typical Mackey-Glass based delay-
feedback reservoir by once again evaluating the reservoir in terms
of its performance, metrics, and utilization. This work aims to pro-
vide insights into optimizing a delay-feedback reservoir for specific
computational tasks by modifying the non-linear function.

Il. RESERVOIR COMPUTING
A. The reservoir computing framework

The reservoir computing framework is a biologically inspired
machine learning paradigm that utilizes the natural dynamical
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FIG. 1. The typical structure of a reservoir computer. It consists of three layers:
an input layer, which is randomly connected to the reservoir layer with random
fixed connections; a reservoir layer, which contains randomly connected recurrent
neurons with randomly generated weighted connections; an output layer, which is
randomly connected to the reservoir layer but has weights that are trainable.

behavior of a given system to perform computation. This framework
has become a popular method of training input-driven dynamical
systems as only the output weights of the system have to be calcu-
lated, which can be done inexpensively with linear regression based
training methods. A typical reservoir computing system consists of
three layers: reservoir, input, and output. The reservoir layer is a
dynamical black box, typically modeled as a set of recurrent neurons
connected by fixed random weights, which exhibits the following
dynamical properties: a non-linear transform of the input signal,
being able to represent the inputs in a high-dimensional state space,
and to have a short-term memory of the previous inputs of the
system. In order to produce a response from the reservoir layer,
inputs are randomly connected to the reservoir layer with fixed
random-weighted connections to create an input layer, perturbing
the reservoir layer to generate a dynamically rich response. The
output of the system is observed through trainable randomly con-
nected weights to the reservoir layer, creating an output layer that
can be calculated through a simple training algorithms, such as ridge
regression or Moore-Penrose pseudoinverse. A typical structure of
a reservoir computing system is depicted within Fig. 1.

B. Delay-feedback reservoir computing

First demonstrated by Appeltant in 2011,° the delay-feedback
reservoir takes advantage of delay-systems theory to emulate a much
larger spatial recurrent neural network with only a single non-
linear neuron and a time delay.” These emulated neurons, called
virtual nodes, are created by time-multiplexing the input signal with
a higher frequency masking signal. This gives the advantage over
other types of reservoir computing methods by providing a more
hardware-friendly and compact design over traditional reservoir
computing systems, which typically require a reservoir layer consist-
ing of many randomly connected recurrent neurons. The structure
of a delay-feedback reservoir is similar to conventional reservoir
computing systems, comprising of three layers: input, reservoir, and
output.
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FIG. 2. (1) The input signal, continuous u(t) or discrete u(k), undergoes a sample-and-hold operation to create /(t). This is then time-multiplexed by a masking signal, m(t),
to create the input sequence, J(f). This input sequence is then fed into the non-linear node. (2) The typical structure of a delay-feedback reservoir. A single non-linear neuron
(dark blue) is used with a time delay to create a network of connected virtual nodes (light blue). The total time delay is notated as z, which is often the same as the time period
of the input signal. The time period of the masking signal, notated as 6, defines the spacing between the virtual nodes. The number of virtual nodes, N, can be calculated

by .

Within input layer, the input signal, continuous u(f) or discrete
u(k), undergoes a sample-and-hold operation of duration 6 to create
I(t). This signal is then time-multiplexed by a masking signal, m(#),
to create the input sequence, J(¢), which is the input to the non-linear
node. The time period of the sample-and-hold operation, notated
as 7, that typically defines the time delay within the delay line; this
process can be seen within Fig. 2. The number of virtual nodes, N,
within the delay-feedback reservoir system can be calculated by

N= (1)

T
7

The reservoir layer contains a single non-linear neuron and
a time delay, notated as t within this work. Within our previous
work, we found that the non-linear neuron can be separated into
two key parts: a non-linear function and an integrator.”” This greatly
increases the versatility of the delay-feedback reservoir as it allows
any non-linear function to be used with an integrator to provide
computation.

The output layer of the system collates the states of the delay-
feedback reservoir system by linear combination. Linear combina-
tion is where the output layer collects the states within each of the
virtual nodes, multiplies each node by a particular weight, and sums
all the virtual nodes together within a single time step. This can be
expressed as

N
=Y wix (kr - 1% (N — i)) , @)
i=1

where w; is the weight attributed to each virtual node i, x is the
output of the non-linear neuron at a given state, and y is the approx-
imated output signal. Figure 2 shows the typical structure of a
delay-feedback reservoir network.

C. The non-linear function

A desired property of a reservoir computing substrate is to pro-
vide a non-linear transform of the input stimuli. This non-linear
transform serves two purposes within a system: the ability to map
inputs to a high-dimensional non-linear space and to constrain
information within an attractor region.

If a system was purely linear, it would not be able to solve non-
linear problems due to a linear mapping of the inputs into the state
space of the neural network, as found within early artificial neu-
ral networks."” The non-linear part of the reservoir layer allows a
network to learn non-linear behaviors as inputs are mapped into a
high-dimensional, non-linearly transformed state space within the
network.

Another important feature that non-linearity provides is the
ability to constrain information within a specific operating range
by acting as an attractor. This can greatly help stabilize a system by
mapping very large or small information values, which may have
been produced by other components within a network, to values
centered around zero. This is particularly useful within physical
systems as there are often constraints, such as a maximum or min-
imum voltage, which could saturate or even cause damage to a
system.”'"~!

Unfortunately, a strong non-linear transform often comes with
a cost of a reduction in linear memory capacity, as a strong non-
linear transform weakens the connections between virtual nodes.
As different computational tasks require different computational
characteristics, it is often a trade-off between the characteristics of
a system to exhibit enough memory and non-linear transform to
reliably compute a given task.”

As previously discussed, an ability of the delay-feedback reser-
voir is to be able to separate the non-linear node into its func-
tional parts, a non-linear function and an integrator, allowing any
non-linear function to be used. As our previous work has exam-
ined the effect of the integrator stage on the characteristics of a
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delay-feedback reservoir, a new question arises: what effects do
different non-linear functions have on the characteristics of such
systems and can alternative non-linear functions be employed to
mitigate the trade-off between linear memory and non-linear trans-
formation? Within this work, the Mackey-Glass non-linear function
and several alternative non-linear functions will be investigated so
that the effects of the non-linear function can be evaluated in terms
of computational performance and system dynamics.

Ill. RESERVOIR EVALUATION
A. Benchmarks

To assess the performance of a reservoir computing system,
computational benchmarks can be employed to evaluate its capa-
bilities and enable comparisons between different systems. Among
the various types of benchmarks available, we focus on two tem-
poral benchmarks: the NARMA-10 benchmark, which demands
high memory capacity but low non-linearity and dimensionality;
and the Santa Fe Laser dataset, which presents the opposite chal-
lenge by requiring low memory capacity but high non-linearity and
dimensionality.

NARMA-10. The non-linear autoregressive moving average
task, or NARMA, is an imitation computational benchmark that
is widely used to evaluate the performance of neural and reservoir
networks.”” The challenge of the benchmark is that it requires both
(weak) non-linearity and a long-term dependency on previous input
stimuli (memory) to evaluate the dynamical capability of a reservoir.
The discrete-time NARMA-n benchmark is nth order, meaning it
relies on memory of n previous inputs from a lag of n time steps.
NARMA-10, in particular, is of the tenth order, meaning it relies on
inputs from a lag of ten time steps. The equation for the discrete
NARMA-10 sequence is

9

Vi1 = 0.3y, 4 0.05y, (Z yn_,-) + 15Uty o +0.1.  (3)

i=0

When using the NARMA-10 benchmark with a reservoir com-
puting system, the objective is to train the system to replicate the
dynamics of the NARMA-10 signal in response to the same input
sequence. The performance is then evaluated by comparing the
system’s trained output with the target output generated by the
NARMA-10 equation.

Santa Fe Laser (A). The Santa Fe Laser dataset A, also known
as Santa Fe or Laser, is a predictive, highly non-linear computa-
tional benchmark taken from observing a far-infrared laser within
a chaotic state.”” The goal of the Santa Fe benchmark is to train the
reservoir system to learn the dynamics of the dataset in order to pre-
dict the next n observations. In practice, the task often focuses on
predicting only the next observation, which minimizes the reliance
on previous input stimuli. As a result, this benchmark empha-
sizes the need for strong non-linear, high-dimensional processing
capabilities in the reservoir system, rather than a strong fading
memory.

ARTICLE pubs.aip.org/aip/cha

B. System metrics

Applying different computational benchmarks to a reservoir
system often gives different results. While benchmarks are valu-
able for assessing the performance of a reservoir on specific tasks,
they provide limited insight into the underlying dynamical behav-
ior of the system. To enable a more accurate and task-independent
evaluation, a set of metrics can be computed that characterizes the
reservoir itself.

1. Linear memory capacity

The linear memory capacity, or LMC, of a system is a measure
of how well previous input stimuli can be recalled from a reservoir
system. In terms of the LMC, it is a measure of how long a par-
ticular input can be stored within the reservoir before it degrades.
This is an extremely useful tool as it is often unclear why a particu-
lar task performs poorly on a given reservoir system; measuring the
LMC gives some indication of whether there is sufficient memory
available within the system for a particular task.

The LMC of a system is calculated by injecting a random
uniform distribution of numbers into the reservoir and then
training the output to recover the previous inputs u(k — i), for
i=1,2,3,...,2N, where N is the number of nodes within the reser-
voir, resulting in i outputs. The LMC is then measured by calculating
the variance between the output of the reservoir and the delayed
input, summed over all delays; the maximum memory capacity of
a system is always MC < N.”" The equation for calculating LMC can
be expressed as

cov? (u(k — i), y(k))
MC = Zm (4)

i=1

2. Kernel quality

The kernel quality, or KQ, is a measure of how well a reser-
voir system can create a non-linear representation of different input
streams. This can be viewed as how much dimensionality the system
has, or how well the system is able to separate distinct input patterns.
This measurement helps quantify the heterogeneity of non-linear
operations a system can perform, allowing the states of the reser-
voir to be linearly separable.”” The KQ of a reservoir system can be
calculated by the following steps:

1. Generate m (ideally greater than the amount of nodes within the
reservoir system) number of random input vectors, each with
a length of k; U = [uy, up, U3, . .., U], where u; is a series of k
random data points.

2. Inject the set of input vectors, U, into the reservoir system.

3. As the k data points are injected into the reservoir, collect the
states of the reservoir system, creating a matrix of size n x m.

4. Compute the singular values of the state matrix using singular
value decomposition.

5. The KQ is equal to the non-zero elements within the singular
value matrix.

The maximum value of the KQ is KQ < N, which implies that
all of the injected set of input vectors have been independently
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mapped within the reservoir. The closer KQ is to N, the better the
performance of the reservoir system will be.

3. Generalization rank

The generalization rank, or GR, of a reservoir system is a
measure of how well the system is able to generalize similar input
streams. In a real system, there are often external factors that degrade
the input signal quality, such as noise. The GR allows some insight
into how sensitive a reservoir system is and how well it can handle
small variations within its input. Calculating the GR of a reservoir
system is similar to calculating KQ, the steps are as follows:

1. Generate a single set of input vectors, notated as u, with k random
data points.

2. Create m copies of u (ideally greater than the amount of
nodes within the reservoir system) and apply a random
amount of noise to each data point within each input vector;
U = [ul,u;,u;,...,um].

3. Inject the set of input vectors, U, into the reservoir system.

4. As the k data points are injected into the reservoir, collect the
states of the reservoir system, creating a matrix of size n x m.

5. Compute the singular values of the state matrix using singular
value decomposition.

6. The GR is equal to the non-zero elements within the singular
value matrix.

The maximum value the GR is GR < N, but unlike the KQ, this
implies poor performance as every noisy input has been classified
differently. An ideal GR is that of 1, where the system is able to gen-
eralize all input vectors; the closer the GR is to 1, the more robust
the reservoir will be at handling input signal variances.

C. Evaluating reservoir computing

To compare the performance of a reservoir across different
experimental runs and benchmark tasks, a quantifiable performance
metric is required. In this case, we compute the error between the
reservoir’s trained output and the target output, and normalize it
using a relevant statistical measure. This results in the Normalized
Root Mean Square Error (NRMSE), a widely used metric for evalu-
ating both training and testing errors. The NRMSE is expressed as

T G =y’

1
NRMSE = | — .
m. o2y

@)

where m is the number of data samples within the experiment, Jy is
the trained reservoir output, y is the desired target function, and o
is the standard deviation.

An NRMSE value of 0 indicates a perfect match between the
reservoir’s output and the target function, while a value of 1 suggests
that the reservoir is merely predicting the mean of the target out-
put. In general, a lower NRMSE signifies better performance of the
reservoir on the given computational task.

pubs.aip.org/aip/cha

IV. THE MACKEY-GLASS BASED DELAY-FEEDBACK
RESERVOIR

The Mackey-Glass model is a first-order delay-differential
equation created by Michael Mackey and Leon Glass to model the
respiratory system and hematopoietic diseases, which are biological
functions that are subject to a time delay.”

Although initially used to model biological processes, the
Mackey-Glass system has been shown to exhibit a variety of
rich dynamical behaviors, such as strong non-linearity and high
dimensionality, making it ideal for hardware translation."*”* The
Mackey-Glass model was first applied to a DFRC system by
Appeltant within their original DFRC work.” The Mackey-Glass
equation was slightly simplified to facilitate its implementation in
hardware; the modified Mackey-Glass equation is given as

wp o BOE=DE
Sl ((x(t— 1) +8I)"

where I(t) is the pre-masked input signal, x(¢) is the reservoir state
vector, x(f) is the derivative of the reservoir state vector, x(t — 7)
is the delayed reservoir output, B is the coupling gain between the
non-linear function and integrator, y is the feedback strength for
the leaky integrator, § is an input scaling factor, and # is the non-
linearity factor.

The Mackey-Glass time delay-differential equation can be sep-
arated into two parts, the Mackey-Glass non-linear function and a
leaky integrator. This can be expressed as

x(t) = B (x(t— 1)+l
Tl ((x(t— 1) + 8"

yx(®), (6)

(7)
x(t) = —yx(1).

This makes the Mackey-Glass based reservoir an ideal candi-
date for investigating the effect of the non-linear function as it can
be investigated independently of the leaky integrator.

A. The Mackey-Glass non-linear function

While the Mackey-Glass based reservoir has been widely used,
research has focused on applying the Mackey-Glass equation within
hardware or simulation models, with the Mackey-Glass exponent
assumed to be an approximate level of the degree of non-linearity
the function has; the effect that the strength of the non-linearity has
on computational performance and system dynamics has not been
investigated.

In the computational model, the Mackey-Glass non-linear
function is defined by the following equation:

fo = ——, (8)

where 7 is the strength of the non-linearity of the equation.

To understand the effect that » has on the shape of the non-
linearity, Eq. (8) is plotted with several values of #; this is shown in
Fig. 3.

The graph in Fig. 3 shows several parameter sweeps of the
Mackey-Glass non-linear function where the exponent n is set
between 1 and 14. This figure shows three key features that the expo-
nent has on the shape on the non-linear function: the function has
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FIG. 3. A parameter sweep of different values of n within the Mackey—Glass non-linear equation. The value of n is swept between 1 and 14. Odd values (solid lines) of n can
be seen within the graph with an asymptote at x = —1, while even values (dashed lines) of n are y = x symmetrical.

a linear region of unity gradient centered around the origin that
becomes more linear as the value of the exponent increases, the func-
tion has an asymptote at x = —1 for odd values of the exponent,
and when considering the function within the feedback loop of the
delay-feedback reservoir, the attractor behavior it will exhibit.

For small values of n, the shape of the function is non-linear
with a strong attractor behavior where x is positive. However, for
negative values of x, the function becomes asymptotic, mapping
negative x values to positive y where x < —1. As the value of n
increases, the linear region around the origin becomes wider. This
reduces the attractor range as more of the function is mapped to
y = x, but the attractor behavior becomes stronger outside the linear
range.

Another feature of the Mackey-Glass non-linear function is
that for odd values of #, the function becomes asymptotic as x = —1.
When 7 is even, the function becomes odd, mapping f(—x) = —f(x).
This means that when negative values exist within the Mackey-Glass
delay-feedback reservoir system, they are simply mapped the same
way the positive values are. However, when 7 is odd, negative values,
which are x > —1, are drawn toward the asymptote, then mapped
positive when x < —1, causing negative values to be mapped to
positive within an odd # system.

Therefore, it can be said that for an even valued n system,
the attractor behavior maps values outside of the linear range of
the function toward zero, whereas for an odd valued n system, the
attractor maps positive and large negative values toward zero, and
maps small negative values toward positive values when outside of
the linear range of the function.

B. Simulation model

A Mackey-Glass based delay-feedback reservoir is created
within Simulink 23.2, a MathWorks simulation tool (MATLAB
2023b).”” The input and output layers of the DFRC system are
implemented in MATLAB. The input data is generated within the
MATLAB workspace and injected into the Simulink model, from
where the output of the DFRC system is returned into the MATLAB
workspace for reservoir training and evaluation. The model utilized
is illustrated in Fig. 4.

The Mackey-Glass non-linear function is built from Simulink
numeric model blocks, as shown within the blue rectangle within
Fig. 4. The non-linearity factor can be modified by changing the #n
parameter within the “non-linear” block. Although the integrator
is typically modeled as a leaky integrator, in this case, we repre-
sent it using an equivalent first-order system. The first-order system
approach is not only easier to represent in a real system, but it also
enables the use of a tunable time constant that can be kept consistent
across all experiments. The delay is implemented using the Simulink
“Transport Delay” block, which adds a signal delay of time length 7.

To evaluate the utilization of the Mackey-Glass non-linear
function, both its input and output are sampled using a sample-and-
hold mechanism. This is implemented via the Simulink “Sample
and Hold” block, which captures the data at a sampling interval
of 0. The output of the sample and hold functions are returned
to the MATLAB workspace using the two “To Workspace” blocks,
named “out.feedback_out” to record the input of the non-
linear function and “out . attractor_out” to record the output
of the non-linear function. The clock of the sample and hold blocks
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FIG. 4. A schematic of a delay-feedback reservoir, using the Mackey-Glass dynamical system as a non-linear function, and a first-order transfer function as the integration
stage, enabled to record the input and output of the Mackey—Glass non-linear equation, using a sample and hold function, at a sample period of 6. Model created within

Simulink 23.2.

are driven using a Simulink “Pulse Generator,” which generates a
clock with a duty cycle of 50%, with a period of 6.

The input signal, generated within MATLAB, is injected
into the reservoir using a “From Workspace” block, named
“Simu_InputSequence.” The states of the reservoir are
read from the model using a “To Workspace” block, named
“out .DFR_Out,” at a sample rate of ; this allows the states of each
virtual node to be sampled at the correct time. The captured states
are then transferred to the MATLAB workspace, where training and
system evaluation are performed.

C. Methodology

Using the experimental platform created, the effect that
the value of the exponent within the Mackey-Glass non-linear
equation has on the performance, dynamics, and utilization of a
delay-feedback reservoir system is investigated. The values of the
Mackey-Glass exponent, 7, are tested at 1,2,5,6,9, and 10. These
values were chosen as they exhibit the most significant changes
within the function shape, as seen in Fig. 3, and the odd and even
pairs are chosen to allow comparison of the different attractor
behaviors. A 200-node reservoir is given a 7 of 80 s and a timescale
of 400 ms, as this timescale was shown to provide the best results
for all benchmarks within our previous work."" As the input scaling
and coupling gain have a large effect on the computational perfor-
mance of the reservoir, a parameter sweep of both the input scaling
and coupling gain is performed for the NARMA-10 and Santa Fe
benchmarks and system metrics. Table I shows the model parameter
values and ranges for the proposed parameter sweep.

The procedure for generating the input sequences of both the
NARMA-10 and Santa Fe benchmarks within MATLAB are the
same. A sequence of 6000 data points ranging from [—1, 1], either
generated from the NARMA-10 equation or copied from the Santa
Fe dataset is time-multiplexed by a random-weighted no-offset
mask. A washout period (consisting of 100 data points) is used, with
the training and test datasets being split 80/20, respectively. Training
is performing using the Moore-Penrose pseudo-inverse algorithm.”

V. MACKEY-GLASS EXPERIMENTS
A. Mackey-Glass system parameter sweeps

NARMA-10. Figure 5 shows the effects of the input scaling and
coupling gain on a 200-node delay-feedback reservoir system, eval-
uating the NARMA-10 computational benchmark, at six different
Mackey-Glass exponent values, . The parameter sweeps display the

TABLE I. Parameter values of the delay-feedback reservoir Simulink model during
the input scaling and coupling gain parameter sweep.

Chaos 35, 113107 (2025); doi: 10.1063/5.0286757
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Name Symbol Value
Coupling gain B 0-2
Input scaling factor ) 0-2
System timescale T 400 ms
Time delay T 80
Masking signal period 0 0.4
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FIG.5. Graphs showing the NRMSE values of a parameter sweep for a 200-node
system running the NARMA-10 benchmark, at six different Mackey-Glass expo-
nent values, with the input scaling and coupling gain ranging between 0.05
and 2.

NRMSE of the reservoir system at each sweep point as a color spec-
trum; the lowest calculated NRMSE value is shown as blue, with the
highest shown as yellow. As a system may be drawn into saturation
or become unstable, the maximum NRMSE value within all of the
parameter sweeps is set to 1.

When the Mackey-Glass exponent is set to 1, several obser-
vations can be made. First, the region of best performance for the
NARMA-10 benchmark is small and shows a very high sensitivity
to input scaling, showing a reasonable NRMSE value for an input
scaling of only 0.05-0.75, and a low sensitivity to the coupling gain.
Second, the overall performance of the system is poor, with a max-
imum NRMSE value of approximately 0.3, within this small region
of best performance. Third, it is likely that this region of best per-
formance has a strong localized Linear Memory Capacity (LMC)
as indicated by the sharp gradient moving from average to poor
performance.

A sensitivity to input scaling is to be expected due to the behav-
ior of the attractor. When the Mackey-Glass exponent is set to a
value of 1, the Mackey-Glass non-linear equation has a very small
linear region and a large weak attractor area, almost all values within
the system, except for the very small values, will be transformed and
pushed toward zero. When the input scaling is below 1, the signal
is attenuated so it is less likely to be affected by the attractor behav-
ior. As the integrator also attenuates, a wider range of coupling gains
can be utilized before the system is either negatively affected by the
attractor, or before the output of the integrator becomes too large to
overpower the attenuated input signal.

ARTICLE pubs.aip.org/aip/cha

Another observation is the difference between the odd and even
values of n. When # is even, the region of best performance spreads
diagonally from the origin and has a larger region of poor operation,
spreading to the top left of the parameter space, while for odd values,
the shape of the region of best performance is more concentrated
within a particular region of the parameter space. This behavior is
due to the mapping of values within the negative side of the attractor.

When the coupling gain is high and the input scaling is low,
information may be lost if the scaled input signal is considerably
smaller than the delayed reservoir output. This effect can be seen in
Fig. 5 as a region of poor performance in the top right of the parame-
ter sweeps. An additional effect that occurs within the region is when
there is no loss of scaled input data: the signal becomes large enough
to be affected by the attractor behavior of the non-linear function.

With an odd value of n, if a signal exceeds the linear range
within the non-linear function, then the signal is attenuated toward
zero proportional to its magnitude, whereas with even values of #,
only large positive signals are attenuated toward zero, with large
negative signals being mapped to attenuated positive values, and
small negative signals that exceed the linear range of the non-linear
function being mapped to large negative numbers; this is due to the
asymptotic behavior of the negative side of the attractor. The map-
ping of negative values to positive allows for some information to be
retained, while with odd values of 7, information would be simply
lost.

Santa Fe. Figure 6 shows the effects of the input scaling
and coupling gain on a 200-node delay-feedback reservoir system,
evaluating the Santa Fe computational benchmark, at six different
Mackey-Glass exponent values, #.

One of the most notable differences between the Santa Fe
and NARMA-10 benchmarks is the significantly better performance
within the Santa Fe benchmark. With the exception of when 7 is
equal to 1, the performance decreases as n increases. Given that the
Santa Fe benchmark requires strong non-linear dynamics within
a reservoir to achieve its best performance, it would be logical to
assume that the performance would decrease as the system becomes
more linear when 7 increases.

When the value of # is small and even, there is a very wide
region of best performance with virtually no sensitivity to input scal-
ing, and a moderate sensitivity to coupling gain. The NRMSE values
are small throughout most of the region of best performance, with
no localized region of peak performance. As the even value of n
increases, the sensitivity to input gain increases, with the distribu-
tion of low NRMSE values becoming more concentrated, creating a
noticeable localized region of peak performance around the center
of the parameter space. What appears to be task agnostic is the pro-
nounced region of poor operation, located within the top left of the
parameter space, which is present when # is even within the reser-
voir system running the NARMA-10 computational benchmarks.
Given that the region becomes more prominent as the even value
of n increases, this must be a property of the negative side of the
attractor.

When the value of n is above 1 and odd, the reservoir sys-
tem exhibits two regions of best performance, one in the bottom
left and the other in the top left region of the parameter space.
Both regions have a low sensitivity to coupling gain and an input
scaling sensitivity approximately between 0.05 and 1.2, with the
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FIG. 6. Graphs showing the NRMSE values of a parameter sweep for a 200-node
system running the Santa Fe benchmark, at six different Mackey-Glass exponent
values, with the input scaling and coupling gain ranging between 0.05 and 2.

best performing NRMSE results within the upper operating region.
However, as the odd value of # increases, the upper region of best
performance becomes smaller, which is due to the difference in sig-
nal sizes between the scaled input signal and the delayed reservoir
output.

When the value of #n is set to 1, the reservoir exhibits a simi-
lar region of best performance, as observed within the NARMA-10
reservoir system. Given that the shape of this region is different
when # has increased and is task agnostic, this strongly indicates
that there is a region of instability inherent to this non-linearity. This
can be explained by referring to the shape of the non-linear function
when 7 equals 1 in Fig. 3. Within this figure, it can be observed that
there is a very small linear region near the origin; therefore, any data
exceeding this linear region are affected by the attractor. Given the
nature of the negative side of the attractor, any signal that becomes
slightly negative is drawn toward the asymptote and then mapped
into the positive region. This may take several iterations around the
feedback loop as the attractor behavior is weak.

B. Mackey-Glass system metrics

Figure 7 shows the KQ, GR, and LMC of a 200-node delay-
feedback reservoir system during a parameter sweep of the input
scaling and coupling gain. This figure shows very different dynam-
ics for the odd and even values of n. A significant difference is
to be expected given the large variations observed throughout the
benchmark parameter sweeps.
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FIG. 7. Graphs showing a parameter sweep for a 200-node system, at six differ-
ent non-linear Mackey—Glass exponent values, with the input scaling and coupling
gain ranging between 0.05 and 2, for the following the system metrics: kernel
quality, generalization rank, and linear memory capacity.

For even values of n, both the KQ and GR exhibit a relatively
consistent pattern as the value of n increases, with the exception of
the top left of the parameter space. The value of KQ appears to be
high throughout all of the parameter sweeps, showing only a slight
sensitivity to coupling gain as the value of » increases, indicating
that the system is able to map input vectors onto a high-dimensional
non-linear space. However, the GR parameter sweep shows a minor
sensitivity to parameter changes, but indicates that the system’s abil-
ity to generalize input vectors is poor within the majority of the
parameter space, with the exception of the top left area of the param-
eter sweep. The distribution of the values of KQ and GR is mostly
uniform throughout all of the parameter sweeps, with the range
between the minimum and maximum values for KQ and GR being
2 and 3, respectively.

In the case of odd values of n, the parameter plots for KQ and
GR appear to be much more sporadic, indicating richer dynam-
ics. These richer dynamics are due to the negative section of the
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attractor when 7 is odd. The signal mapping of large negative num-
bers being drawn toward the asymptote, and then mapped into
the positive region, gives the system a much stronger non-linear
behavior compared to the even values of n.

The area of poor performance in the top left of the parameter
space of the KQ plots was also observed within both the NARMA-
10 and Santa Fe benchmark tasks. This region of poor performance,
which is due to loss of information from the difference in signal
sizes between the scaled input signal and delayed reservoir output,
is confirmed within the system metrics as a region where the system
is unable to map input vectors onto a high-dimensional non-linear
space.

A key observation, for both even and odd values of #, is that
although the shape of the parameter plots does change with an
increase of n, the values of KQ and GR seem to be independent
of the value of . Initially, this is a surprising result as the Santa
Fe benchmark performed significantly better with lower values of
n; therefore, it was expected that an increase in n would lead to a
lower KQ and a higher GR. However, on reflection, these parame-
ter sweeps show the true behavior of the Mackey-Glass non-linear
function. The shape of the Mackey-Glass non-linear function only
changes in three cases: when 7 is odd, even, or equal to 1. Increasing
the n value increases the width of the linear space around the origin
and increases the attractor strength. This means that the non-linear
transform is not dependent on the value of n, only if it is odd or
even. The exception to this is when 7 is equal to 1, where the shape
of the function is inherently unstable; this gives the system different
non-linear dynamics compared to when n ; 1.

Figure 7 also shows the relationship between the value of the
Mackey-Glass exponent and the LMC, showing that as the value of
n increases, so does the maximum memory capacity. This result is
to be expected as when the value of # increases, the wider the linear
region within the non-linear function becomes; this leads to more
information being passed between virtual nodes as the connection
strength increases.

Unlike within the KQ and GR parameter sweeps, the LMC
shows a minor difference between odd and even values of n. For odd
values of 1, a second region of memory appears in the center left of
the parameter space, but decreases in size as n increases. However,
for even values of n, there is only a single region of strong LMC,
but it appears to be less sensitive to input scaling. This behavior is
due to the shape of the non-linear function for odd and even values
of n.

Another observation is that the region of best performing
NRMSE values within the NARMA-10 benchmark correlate to the
areas with the highest memory within the LMC system metrics. This
can be seen by observing the distribution of LMC values within the
parameter sweep plots for the even values of #n, which are less sen-
sitive to input scaling and coupling gain than the odd values. This
diagonal LMC distribution is visible within the shape of the region
of best performance within the NARMA-10 benchmark.

The KQ does have an effect on the NARMA-10 benchmark,
as the region of poor KQ performance shown in the top left of the
parameter space negatively impacts the performance of the bench-
mark. With the KQ being so low, the reservoir is unable to map the
input vectors onto a high-dimensional non-linear space; therefore,
this becomes the dominant metric in terms of performance as the
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reservoir system is unable to recreate the input-output dynamics of
the NARMA-10 computational benchmark.

It was observed within the Santa Fe benchmark task that there
are two regions of best performance, a large area within the bottom
left of the parameter space (referred to as the lower region of best
performance) and a smaller but better performing area within the
center left of the parameter space (referred to as the upper region of
best performance). The upper region of best performance correlates
strongly to the KQ and GR plots, as the upper region of best perfor-
mance is placed in the locations where KQ is high, and where GR
is low. The lower region of best performance correlates strongly to
areas with high LMC rather than KQ or GR, most noticeably within
the odd cases of n, where the lower region of best performance is
much wider due to the greater CA within the parameter space. This
result is to be expected given the required dynamics for optimal
performance to perform the Santa Fe computational benchmark,
requiring high non-linearity and low-to-moderate memory.

C. Mackey-Glass function utilization

NARMA-10. Figure 8 shows the heat-maps of the input and
output behavior of the Mackey-Glass non-linear function for dif-
ferent values of the Mackey-Glass exponent, for a 200-node system,
evaluating the NARMA-10 benchmark.
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Inpu%ScaIing:O.OSA Coupling Gain:2. NRMSE:O.32.‘
T
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FIG. 8. Heat-maps of the input and output behavior of the Mackey-Glass
non-linear node, for different values of the Mackey-Glass exponent, running on
a 200-node delay-feedback reservoir system while evaluating the NARMA-10
benchmark.
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With the exception of the Mackey-Glass exponent, n, being
equal to 1, the heat-maps show that the non-linear function operates
exclusively within the linear range to achieve the best performance
for the NARMA-10 benchmark, utilizing both the positive and neg-
ative sides of the linear region, with the greatest point density being
closer to the origin. As the NARMA-10 benchmark does require
some non-linear dynamics in order for the reservoir to recreate the
input/output behavior of NARMA, it is likely that a linear function is
not the optimal function to achieve the best computational perfor-
mance; an alternative non-linear function with different dynamics
may lead to better computational performance.

An interesting observation is that when # is equal to 1, the
heat-maps confirm the inherent instability of the function, with the
instability showing a high utilization point density within a large
region of the non-linear function. This heat-map explains why the
behavior of this function is so different when # is equal to 1, as there
is such a strong non-linear mapping of values within the function
with very weak attractor behavior.

Santa Fe. Figure 9 shows the heat-maps of the input and
output behavior of the Mackey-Glass non-linear function for dif-
ferent values of the Mackey-Glass exponent, for a 200-node system,
evaluating the Santa Fe benchmark.

Unlike the NARMA-10 benchmark, which has the region
with the greatest point density within the linear region of the
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FIG. 9. Heat-maps of the input and output behavior of the Mackey-Glass
non-linear node, for different values of the Mackey-Glass exponent, running
on a 200-node delay-feedback reservoir system while evaluating the Santa Fe
benchmark.
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Mackey-Glass non-linear function, the region with the greatest
point density within the Santa Fe benchmark is at the peak of where
the attractor behavior is the strongest, for the majority of the heat-
maps. Given the requirement for strong non-linearity to compute
the Santa Fe benchmark, it is to be expected that the preferred region
would be at the point of greatest non-linearity within the function.

The best performance is found when the Mackey-Glass expo-
nent is at its lowest, where the linearity is at its highest and the
attractor effect is at its weakest, giving the function a less aggressive
non-linear transform, allowing for more of the non-linear function
to be utilized. Typically, within the even values of the Mackey-Glass
exponent, there is a localized high density point, with the rest of the
non-linear function being weakly utilized. However, within the odd
values of the Mackey-Glass exponent, the majority of the non-linear
function is utilized, with no clear localized usage area. The additional
utilization within the odd values of the Mackey-Glass exponent is
due to the strong negative attractor behavior, mapping strong nega-
tive values to positive values rather than toward 0, as observed with
the even Mackey-Glass exponent case.

VI. EXPLORING ALTERNATIVE NON-LINEAR
FUNCTIONS

Section V shows that the Mackey-Glass non-linear function
has three operating regions when the exponent is: odd, there is
an asymptote present within the function that causes an attractor
behavior that is able to map negative values to positive values; even,
the non-linear function is symmetrical, and this causes the attrac-
tor behavior to map negative values toward zero; equal to one, the
system is chaotic and unstable. This shows that the Mackey-Glass
non-linear function is limited in terms of non-linear dynamics, only
exhibiting a region of linearity and an attractor as its edges.

In order to find a better performing alternative non-linear
function, four different non-linear functions are to be investigated:
sine squared, double sinusoid, Tan, and Tanh.

A. Alternative non-linear functions

While the Mackey-Glass non-linear function has shown to
provide limited non-linear dynamics to a delay-feedback reservoir
system, there are other non-linear functions that have been used
within delay-feedback reservoir systems.

One of the most commonly used non-linear functions is the
sinesquared function,” which is popular in optical systems. As
this function is symmetrical, always positive, and highly non-linear
around the origin, this makes the sine squared function an ideal can-
didate for an alternative non-linear function; the function can be
seen within Fig. 10(a). While the strong non-linear region at the ori-
gin will benefit computational tasks requiring a strong non-linear
transform, other computational tasks such as NARMA-10 may be
unable to utilize this non-linearity, potentially leading to a decrease
in performance.

It was found that non-linear benchmark tasks, such as Santa Fe,
have high utilization at the points with the greatest non-linearity.
For the Mackey-Glass non-linear function, this was usually at the
peaks and troughs of the function. In order to further explore this
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FIG. 10. Four different non-linear functions to be evaluated as the non-linear
function within a 200-node delay-feedback reservoir system. (a) f(x) = sin®(2x),
(b) f(x) = 0.85sin(2x) + 0.2sin(8x), (c) f(x) = tan(x), and (d) f(x) = tanh(x).

phenomenon, a non-linear function constructed from double sinu-
soids is used giving a non-linear function with local minima and
maxima as well as a global minima and maxima. The equation for
the constructed non-linear function is given as

f(x) = 0.85sin(2x) + 0.2 sin(8x). 9)

This function can be seen within Fig. 10(b).

As the asymptotic behavior of the Mackey-Glass non-linear
function with odd exponent values yields richer reservoir dynam-
ics compared to even exponents, two popular activation functions
used within artificial neural networks are to be investigated:” Tan
and Tanh. The Tan non-linear function exhibits vertical asymptotes,
similar to an odd Mackey-Glass non-linear function, with diver-
gence to +00 as x — (7/2)” and to —oo as x — (r/2)*, whereas
the Tanh non-linear function exhibits horizontal asymptotes. Previ-
ous studies have shown that the Tanh non-linear function provides
strong performance and weak parameter sensitivity when used as
an activation function in neurons within echo-state networks,” a
property which may also extend to delay-feedback reservoirs. The
functions Tan and Tanh can be seen within Figs. 10(c) and 10(d),
respectively. The asymptotic behavior of these non-linear functions,
combined with their approximately linear region near the origin,
is expected to provide sufficient system dynamics to effectively
compute both the NARMA-10 and Santa Fe benchmarks.

It should be noted that in this work, the non-linear func-
tions are restricted to the form f(bx), whereas in general, they are
expressed as f(bx + ¢), where b is a multiplicative coefficient and
c is a bias term. The addition of a bias term shifts the operating
region of the function by an offset of value ¢, thereby redefining the
point around which the input data are centered. This is a particu-
larly powerful technique within physical systems as they often have
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constraints, for example, within optical systems which are restricted
to positive input values. An equivalent effect can be achieved by
changing the range of the input data: for example, an input range of
[—1, 1] corresponds to no bias term, as the data are centered around
0, while an input range of [0, 1] corresponds to a bias of 0.5, as the
data are centered around 0.5. In this work, no bias term is included,
as the model is based on an electrical implementation in which zero
is typically represented by 0 V.

B. Simulation model and methodology

The simulation model described in Sec. IV B is modified to
allow alternative non-linear functions to be used. This is achieved
by replacing the “Mackey-Glass non-linear function” section of the
simulation model, highlighted by the blue box in Fig. 4, with the
desired non-linear function.

Using the experimental platform, we investigate how each of
the four proposed non-linear functions influences the performance,
dynamics, and utilization of the delay-feedback reservoir system. As
with the Mackey-Glass based reservoir, a 200-node reservoir with
a 7 of 80s and a timescale of 400 ms is used, with a parameter
sweep of both the input scaling and coupling gain performed for the
NARMA-10 and Santa Fe benchmarks and system metrics. Table I
shows the model parameter values and ranges for the proposed
parameter sweep.

The procedure for generating input sequences for both the
NARMA-10 and Santa Fe benchmarks in MATLAB is identical
to that used with the Mackey-Glass based reservoir. A sequence
of 6000 data points ranging from [—1,1] is time-multiplexed by
a random-weighted no-offset mask, with a washout period of 100
data points used. The training and testing datasets are split 80/20,
respectively, with training performed using the Moore-Penrose
pseudo-inverse algorithm.

VII. ALTERNATIVE NON-LINEAR FUNCTIONS RESULTS
A. Alternative functions system parameter sweeps

NARMA-10. Figure 11 shows the effects of the input scaling
and coupling gain on a 200-node delay-feedback reservoir system,
evaluating the NARMA-10 computational benchmark, with four
different non-linear functions. As with previous experiments, the
parameter sweeps display the NRMSE of the reservoir system at each
sweep point as a color spectrum, the lowest NRMSE value shown in
blue and the highest in yellow. The maximum NRMSE value is set
to 1, which typically indicates the system may have been drawn into
saturation or has become unstable.

As predicted, the sine squared non-linear function has poor
performance when running the NARMA-10 computational bench-
mark, with only a small region of best performance present within
the center left of the parameter space, indicating that the function
is highly sensitive to both input scaling and coupling gain. This
poor performance and parameter sensitivity can be explained by the
highly non-linear origin of the sine squared non-linear function.

As the origin of the sine squared non-linear function can be
represented as a basin, a small change in the input within this basin
represents an attenuation in the output. This small change results in
an output that is less than the input, forcing the signal to be pushed
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FIG. 11. Graphs showing the NRMSE values of a parameter sweep for a
200-node system running the NARMA-10 benchmark, using four different
non-linear functions, with the input scaling and coupling gain ranging between
0.05and 2.

toward zero. However, as both input scaling and coupling gain
increase simultaneously, the signal within the non-linear function
increases until it becomes large enough to escape the basin, at which
point the output becomes larger than the input, forcing the signal
to become larger before being mapped back toward zero. If both the
input scaling and coupling gains are too large, the non-linear func-
tion will map the large input signals back toward zero, resulting in a
significantly attenuated output. This attenuated output is then com-
bined with a new input, which can be a large value if the input scaling
is large, resulting in the loss of information. This effect also occurs
when there is a significant difference between the input scaling and
coupling gain, causing either a new input or the delayed reservoir
output to dominate, leading to information loss. This causes a very
high sensitivity to system parameters, resulting in a small region of
best performance.

The performance of the double sinusoid non-linear function
performs better than the sine squared non-linear function with a
smaller minimum NRMSE value and a larger region of best oper-
ation. A greater overall performance is to be expected as the double
sinusoid non-linear function has an approximately linear origin,
which as seen in previous experiments increases the connection
strength between virtual nodes resulting in a greater LMC. An inter-
esting observation is that the region of best performance forms
a distinct diagonal pattern, approximately following y = x, with
the performance decreasing as the input scaling and coupling gain
increases; this pattern is a result of the interaction between the input
scaling, the coupling gain, and the linear operating region of the
function.

Similar to the sine squared non-linear function, a significant
difference between input scaling and coupling gain leads to a decline
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in performance. However, the linear region near the origin of the
double sinusoidal non-linear function results in a diagonal region of
best performance, as the non-linear function closely approximates a
linear response within that area. As the input scaling and coupling
gain increases, a larger signal is fed into the non-linear function,
increasing the likelihood of exceeding its linear region and reducing
the performance of the reservoir; this results in a region of decreased
performance within the upper right of the parameter space.

Both the Tan and Tanh non-linear functions outperform all
previously used non-linear functions when running the NARMA-
10 computational benchmark. The Tan non-linear function shows
a small region of best performance within the bottom left of the
parameter space, with performance being poor when both the input
scaling and coupling gain is greater than one. However, the tanh
non-linear function exhibits a much broader region of best perfor-
mance, covering most of the parameter space, with poor perfor-
mance limited to the upper right and lower regions, while showing
only minor sensitivity to input gain and low sensitivity to coupling
gain. Despite being different functions, the shape of both regions of
best performance can be attributed to the asymptotic behavior of the
non-linear functions.

The small region of best performance, shown within the param-
eter space, likely indicates the input scaling and coupling gain
parameters, where the Tan function behaves approximately linear.
When these parameters are exceeded, the signal within the function
behaves non-linearly and is drawn toward the vertical asymptotes.
As the asymptotes are vertical, signals drawn toward the asymp-
totes can be mapped to another value, which then could be mapped
toward zero or another value. If there is no external attenuation to
either the input signal or the delayed reservoir output, it is easy for
the reservoir system to become saturated, whereas within the tanh
non-linear function, the asymptotes are horizontal. The horizontal
asymptotes within the tanh function attenuate the signal, with large
input values been mapped to one, which is then mapped toward
zero. This behavior significantly decreases the sensitivity of both the
input scaling and coupling gain parameters as it is very difficult to
saturate the reservoir system. While this behavior makes a reservoir
system more robust, the downside of this behavior is that it can be
prone to information loss with large parameter values, as large sig-
nals with a value of two or greater are always mapped to the same
value; this effect can be seen in the parameter sweep within the upper
right region.

Santa Fe. Figure 12 shows the effects of the input scaling and
coupling gain on a 200-node delay-feedback reservoir system, eval-
uating the Santa Fe computational benchmark, with four different
non-linear functions.

As expected, one of the most notable differences between the
Santa Fe and NARMA-10 benchmarks is that the Santa Fe bench-
mark exhibits significantly better performance, both in terms of
NRMSE and parameter sensitivity. However, while the locations
and distribution of the areas of best performance appear differ-
ent, on closer inspection, the Santa Fe parameter sweeps show an
expanded version of the parameter sweeps performed within the
NARMA-10 benchmark. This is due to the Santa Fe computational
benchmark exploiting a larger portion of the parameter space when
compared to the NARMA-10 benchmark, as it can leverage the non-
linear components of the non-linear functions, a capability that the
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FIG. 12. Graphs showing the NRMSE values of a parameter sweep for a
200-node system running the Santa Fe benchmark, using four different non-linear
functions, with the input scaling and coupling gain ranging between 0.05 and 2.

NARMA-10 benchmark is unable to do. The Santa Fe benchmark
also exhibits a reduced sensitivity to input scaling, which was also
observed within the Mackey-Glass based reservoirs.

Although the sine squared non-linear function achieves a low
minimum NRMSE, its performance remains highly sensitive to
parameter variations, a feature once again due to the strong non-
linear behavior at the origin. While the Santa Fe benchmark is able to
utilize more of the dynamics of the highly non-linear origin within
the sine squared function, it is still subject to the operating points
within the basin present at the origin of the function; this is due
to small signals being attenuated and larger signals being amplified.
The nature of this basin greatly increases the sensitivity to the system
parameters when compared to other non-linear functions. Despite
the strong non-linear behavior, which is often a desired attribute
when solving highly non-linear computational problems, the behav-
ior at the origin of the sine squared non-linear function appears to
reduce performance; with the minimum NRMSE value performing
similar to a high n valued Mackey-Glass based reservoir.

Out of the four chosen non-linear functions, the double sinu-
soid non-linear function exhibits the best NRMSE performance,
comparable to the best performing Mackey-Glass based reser-
voir systems, whereas the region of best performance within the
NARMA-10 benchmark formed an approximate diagonal, following
y = x, the region of best performance within the Santa Fe bench-
mark is y < x, with the bottom right diagonal of the parameter
space exhibiting relatively consistent NRMSE values. Similar to the
Mackey-Glass based reservoirs, there is a smaller second region of
operation within the center of the parameter space. At this point,
the signal can become large enough to strongly utilize both the local
and global minima and maxima, which appears to result in a per-
formance decrease. This is also evident in the parameter sweep, with
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the performance decreasing in the upper right as both input scaling
and coupling gain increase.

While both the Tan and tanh non-linear functions outper-
formed all previously tested non-linear functions when running the
NARMA-10 benchmark, the performance when running the Santa
Fe benchmark is comparable to that of the Mackey-Glass based
reservoir system in terms of NRMSE, indicating that the non-linear
dynamics within these functions are not as strong as the other
investigated non-linear functions. The regions of best operation
within the Tan and tanh non-linear functions resemble that of the
NARMA-10 benchmark, but with much less sensitivity within the
input scaling, as seen by a broader range within the parameter space.
Within these regions of best operation, the NRMSE values are more
consistently distributed, exhibiting a much steeper gradient between
areas of high and low performance. This behavior suggests that the
Santa Fe benchmark is able to leverage a larger portion of the param-
eter space, utilizing a broader range of the non-linear function when
compared to the NARMA-10 benchmark.

B. Alternative functions system metrics

Figure 13 shows the KQ, GR, and LMC of a 200-node delay-
feedback reservoir system during a parameter sweep of the input
scaling and coupling gain, when evaluating four different non-linear
functions.

The system metrics show very different dynamics for each of
the different non-linear functions, confirming that the chosen non-
linear functions do provide different dynamics to the reservoir.
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FIG. 13. Graphs showing a parameter sweep for a 200-node system, using
four different non-linear functions, with the input scaling and coupling gain rang-
ing between 0.05 and 2, for the following the system metrics: kernel quality,
generalization rank, and linear memory capacity.
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The sine squared non-linear function exhibits a large KQ
and GR throughout most of the parameter space, with a small
region within the upper left displaying a few smaller values. This
implies that the sine squared non-linear function is able to map the
input vectors onto a high-dimensional non-linear space, but unable
to generalize between inputs. This observation is consistent with
the sine squared parameter sweep presented in Sec. VII A, which
demonstrated that the function is capable of providing a non-linear
transformation, but is susceptible to saturation.

The LMC remains low across the majority of the parameter
space, with higher values predominantly concentrated in the cen-
ter left region. Given the strong non-linear behavior focused around
the origin of the function, a small LMC is to be expected as the con-
nections between virtual nodes will be weak. This effect is reflected
in the poor performance of the NARMA-10 parameter sweep, where
the region of best performance is located within the center left of the
parameter space.

The system metrics of the double sinusoid non-linear function
also shows a large KQ and GR throughout most of the parameter
space, but has a larger region in the center left displaying smaller
values. While this indicates the reservoir is able to generalize inputs
well, it is unable to map inputs into high-dimensional space, which
is a much more important metric when computing temporal com-
putational problems. The poor KQ within this region is a result
of information loss between large coupling gains and small input
scaling. This effect is reduced as the coupling gain increases, as
these signals are being non-linearly transformed by the local minima
and maxima, which are attenuating the signal proportionally. This
results in a universal region of poor performance, as seen by both
the NARMA-10 and Santa Fe parameter sweeps, where the upper
left corner exhibits this behavior.

The LMC of the double sinusoid function is significantly higher
than that of the sine squared function. This increase is due to the
presence of the linear region within the function, which creates
stronger connections between virtual nodes, as information is lin-
early mapped to adjacent virtual nodes. This is further supported
by the observation that the distribution of LMC values across the
parameter space exhibits a diagonal pattern, a similar observation
made within the distribution of NRMSE values within the parameter
sweep for the NARMA-10 benchmark.

The shape and distribution of the KQ and GR system met-
rics in the Tan function closely resemble those observed in the
Mackey-Glass based reservoirs with odd exponent values of n, a
similarity that can be attributed to the presence of the vertical
asymptotes in both functions. When the input scaling and coupling
gain are high enough for the Tan function to utilize the asymptotic
behavior of the function, signals are drawn toward the asymptote
and then mapped to another value. This can create rich dynamics, as
seen within the odd exponent Mackey-Glass based reservoirs where
large negative signals are mapped to the positive region of the func-
tion and then mapped toward zero, but as there are asymptotes in
both the positive and negative regions of the Tan function, it is more
likely to create instability as Tan lacks the attractor mechanism to
bring the signal back toward zero quickly. This is reflected in the sys-
tem metric plots, where the KQ and GR values demonstrate a region
of consistency within the lower left of the parameter space, which
also corresponds to the region where the concentration of LMC is at
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its highest. This lower left region within the parameter space corre-
lates to the regions of best performance within the parameter sweeps
for both the NARMA-10 and Santa Fe benchmark tasks and is where
the Tan function exhibits approximately linear behavior.

The system metrics within the tanh non-linear function once
again demonstrates how the horizontal asymptote can decrease the
sensitivity of parameters, with all but the upper left region of the
parameter space having high KQ and GR values. Although the
high GR throughout the parameter space implies that the reser-
voir cannot generalize inputs, the KQ indicates strong mapping
of input vectors into a high-dimensional space. The poor GR can
be attributed to the fanh non-linear function providing a weak
attenuating transform to the reservoir. While the tanh exhibits a
strong enough non-linear transform to perform computation, it is
insufficient for the reservoir to differentiate between similar inputs.

Similar to the double sinusoid non-linear function, the poor
KQ performance within the upper left region of the tanh non-
linear function creates a region of poor performance within both
the NARMA-10 and Santa Fe parameter sweeps. This is once again
due to the loss of information with large coupling gains and small
input scaling. However, unlike the double sinusoid function, the
tanh function cannot differentiate between different large signals,
with all strong signals being mapped toward 1; therefore, the region
of poor performance is spread wider across the parameter space.

The LMC system metric for the tanh non-linear function shows
a greater sensitivity to input scaling than with the KQ and GR, but
occupies a significantly broader range than the other non-linear
functions. The lower left of the parameter space shows the highest
concentration of LMC, which once again corresponds to the linear
operating region of the tanh function. This broader range of LMC is
reflected within the NARMA-10 parameter sweeps, where the best
NRMSE values are within the lower left of the parameter space, with
the performance decreasing as the input scaling and coupling gain
increases.

C. Alternative function utilization

NARMA-10. Figure 14 shows the heat-maps of the input and
output behavior of four different non-linear functions, for a 200-
node system, evaluating the NARMA-10 benchmark.

With the exception of the sine squared non-linear function, the
heat-maps demonstrate that the function exclusively operates within
the linear region of the non-linear functions, with the greatest point
density at the origin, a result also observed within the Mackey-Glass
based reservoir systems. The heat-maps also show that only a small
area of the linear region is used, with the signals typically operat-
ing within [—0.1, 0.1] to maintain operation within the approximate
linear region. In contrast, the heat-map shows that the sine squared
non-linear function operates across a broad range of its domain,
with the highest point density concentrated in the basin near the
origin. This utilization provides insight into why the performance of
the sine squared non-linear function was so poor, as it is unable to
provide a linear region for the NARMA-10 benchmark to operate
within, forcing the reservoir to operate within a non-linear region.

An interesting observation is that the minimum NRMSE
achieved by the double sinusoid function differs from that of the
Tan and Tanh functions, despite all of the functions operating
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FIG. 14. Heat-maps of the input and output behavior for four different
non-linear functions, running on a 200-node delay-feedback reservoir system
while evaluating the NARMA-10 benchmark.

within their linear region, a feature due to the gradients of the lin-
ear regions. The gradient of the double sinusoid function within
its linear region is greater than one, whereas the gradients of the
Tan and Tanh functions within their linear regions are approxi-
mately one. This causes the input signal to be transformed into a
larger output signal within the double sinusoid function, but gives
a unity transform within the Tan and Tanh functions. This suggests
that, for the NARMA-10 benchmark, the optimal function identified
in this study is y = x, indicating that the presence of a non-linear
transformation is detrimental to NRMSE performance.

Another notable observation from the heat-maps indicates how
the non-linear functions would behave under the influence of addi-
tive noise when computing the NARMA-10 benchmark. With the
exception of the sine squared non-linear function, the functions
operate within a small portion of their respective linear regions. This
suggests that mild additive noise would not drive the system into
divergence or cause data loss, since the perturbations would remain
within the linear operating range. In contrast, for the sine squared
non-linear function, even a small amount of noise could result in
data loss, as small input variations can produce disproportionately
large changes in the output.

Santa Fe. Figure 15 shows the heat-maps of the input and out-
put behavior of four different non-linear functions, for a 200-node
system, evaluating the Santa Fe benchmark.

In contrast to the NARMA-10 benchmark, the heat-maps show
a strong utilization across the entire domain of the non-linear func-
tions, with the highest point density occurring at the origin of the
functions. A noticeable observation is the region of high point den-
sity within the double sinusoid non-linear function, indicating the
strong utilization of the local minima and maxima within the func-
tion. This result is to be expected, as the Santa Fe benchmark has a
requirement for strong non-linearity to in order to be computed.
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FIG. 15. Heat-maps of the input and output behavior for four different
non-linear functions, running on a 200-node delay-feedback reservoir system
while evaluating the Santa Fe benchmark.

A notable observation is the similarity in the utilization of the
sine squared non-linear function across both the NARMA-10 and
Santa Fe benchmarks. For the other three non-linear functions, it
is possible to modify the operating region of the function, in order
to change or introduce new non-linear behavior, by adjusting the
input scaling and coupling gain. However, this is not possible with
the sine squared non-linear function. A change in the input scal-
ing and coupling gain does not introduce any additional non-linear
behavior, as the strongest non-linear behavior is at the origin of the
function, which is always present with an input range of [—1, 1].
However, a change in the parameters does affect the strength of the
non-linearity and it is highly sensitive to minor changes; leading to
an increased parameter sensitivity. This results in the sine squared
non-linear function being unable to provide a different response to
different benchmark tasks, restricting its use as a general non-linear
function when operating around the origin.

While the heat-maps for the NARMA-10 benchmark suggest
overall robustness to additive noise, the heat-maps for the Santa Fe
benchmark indicate that only the tan and tanh functions exhibit
comparable robustness. With the exception of the sine squared non-
linear function, the other functions operate within a relatively small
region of operation, suggesting that mild additive noise would not
drive the system into divergence. However, the double sinusoid
function exhibits a stronger non-linear transform, and it is likely that
additive noise would cause significant data loss and lead to incorrect
mappings of input values. By contrast, the tan and tanh func-
tions exhibit much milder non-linear transformations, which greatly
reduces the likelihood of data loss within the reservoir system.

VIill. CONCLUSIONS

The delay-feedback reservoir offers a versatile and hardware-
efficient framework for performing temporal computational tasks.
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One of the most powerful aspects of this framework is its abil-
ity to decouple the non-linear node into two fundamental com-
ponents: a non-linear function and an integrator. This modu-
lar structure enables the system dynamics of the reservoir to
be modified by changing the non-linear function or integrator
timescale.

In this study, we investigate the system dynamics of a delay-
feedback reservoir through the evaluation of key metrics: Normal-
ized Root Mean Squared Error (NRMSE), Kernel Quality (KQ),
Generalization Rank (GR), and Linear Memory Capacity (LMC).
We begin by analyzing the dynamics of a Mackey-Glass based reser-
voir to assess the performance characteristics of the Mackey-Glass
non-linear function. Subsequently, we explore four alternative non-
linear functions, sine squared, double sinusoid, Tan, and Tanh,
to examine their respective impacts on the reservoir’s dynamic
behavior.

We show that the Mackey-Glass non-linear function is limited
within its system dynamics, only producing three different oper-
ating states when the Mackey-Glass exponent is: odd there is an
asymptote present within the function, which causes an attractor
behavior that is able to map negative values to positive values; even,
the non-linear function is symmetrical, and this causes the attrac-
tor behavior to map negative values toward zero; equal to one, the
system is chaotic and unstable. While it achieves strong NRMSE per-
formance on benchmark tasks that demand significant non-linear
transformation, its performance degrades on memory intensive
tasks. Additionally, we observe that in certain operating modes, the
Mackey-Glass non-linear function displays low sensitivity to system
parameters.

We then demonstrate four alternative non-linear functions,
which introduce distinct system dynamics to the reservoir system.
The sine squared function exhibits a basin effect, where small values
are attenuated and larger values tend back toward zero, due to the
function always being positive and strongly non-linear at the origin.
The lack of an approximately linear region at the origin greatly lim-
its the performance of computational tasks that require memory, as
observed within the NARMA-10 benchmark, and the basin effect
creates a strong sensitivity to parameters. In contrast, the double
sinusoid function combines an approximately linear region at the
origin with multiple local extrema. The linear segment strengthens
the memory capacity of the system by increasing the connectivity
between virtual nodes, while the extrema create a strong non-linear
transform. This results in the double sinusoid function delivering
the best performance on benchmarks emphasizing non-linearity,
with moderate sensitivity to parameter variations. The Tan non-
linear function introduces vertical asymptotes, resembling the odd
exponent Mackey-Glass non-linear function. This results in rich
non-linear dynamics outside of the origin of the function, but with-
out a mechanism of the input values to return to toward zero, values
are prone to divergence, thus resulting in instability and a strong
sensitivity to parameter variations. Finally, the tanh non-linear func-
tion provides a smooth sigmoidal non-linearity, with a near-linear
origin, and horizontal asymptotes. The central linearity at the ori-
gin of the function allows for a strong non-linear memory, while
the saturation at large amplitudes prevents divergence. This bal-
ances non-linear dynamics and robustness, as observed within the
NRMSE values of the NARMA-10 and Santa Fe parameter sweeps,
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resulting in a more general-purpose performance when compared
to the task-specific strengths of the other non-linearities.

This study shows that the non-linear function can be tuned
to create different non-linear behaviors and system dynamics, lead-
ing to an increase in performance. These changes in behavior and
dynamics can be achieved within the Mackey-Glass non-linear
function by changing the exponent value, which can be changed
relatively easily within hardware without a hardware redesign, typ-
ically by changing the bias resistor values. The dynamics within
alternative non-linear functions and the Mackey-Glass non-linear
function can also be modified by the input scaling and coupling
gain, which can be reconfigured during run-time through recon-
figurable gain devices such as op-amps. This creates a framework
that allows systems to be tuned to provide the required system
dynamics to solve a particular computational task, within physical
delay-feedback reservoir systems.

Future work may investigate the effect of incorporating a bias
term into the system design, for example, within the sine squared
non-linear function. It was observed that the sine squared function
performed poorly when the input data were centered around the
origin of the function. Additional performance may be achieved by
introducing a bias term to shift the operating point into the approxi-
mately linear region, rather than being confined to the basin near the
origin. This modification could potentially enhance the function’s
ability to compute a broader range of tasks.

In conclusion, we have found that it is difficult to create a
universal non-linear function that can provide the necessary dynam-
ics to compute computational tasks with different computational
requirements in terms of the lowest NRMSE values, without the
ability to change the input scaling and coupling gain parameters
in real-time. However, it is possible to create a general non-linear
function that can reduce sensitivity to system parameters for a wide
range of computational tasks, but with a performance reduction
compared to a tailored non-linear function for a specific compu-
tational task. This gives rise to considering reconfigurable hardware
reservoir computers.
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