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Abstract
Background  Artificial intelligence (AI), which includes machine learning and deep learning, is fundamentally changing 
public health in gastroenterology and hepatology—fields grappling with a significant global disease burden.
Objective  This review focuses on the population-level applications and impact of AI, highlighting its role in shifting health-
care strategies from reactive treatment to proactive prevention.
Results  AI demonstrates substantial improvements across many different areas. In colorectal cancer, AI models significantly 
boost detection rates, successfully identifying a large majority of high-risk individuals often missed by traditional screening 
methods. For metabolic dysfunction-associated steatotic liver disease (MASLD), advanced non-invasive tests offer a high 
degree of reliability in detecting liver fibrosis. The identification of viral hepatitis is enhanced with excellent accuracy, and 
gastrointestinal infection surveillance benefits from wastewater analysis that provides an early warning system weeks ahead 
of clinical case reporting. Furthermore, AI improves the diagnosis of upper GI cancers, such as gastric cancer, with higher 
diagnostic capability, and facilitates precision public health in inflammatory bowel disease (IBD) through highly accurate 
risk prediction models.
Challenges  Despite these important advances, significant hurdles remain. Key challenges include ensuring diverse and rep-
resentative data to prevent algorithmic bias, protecting patient privacy, establishing robust regulatory frameworks for new 
technologies, and successfully moving innovations from research settings into practical, real-world deployment.
Conclusion  The unequal distribution of AI development and access between high-income countries and low- and middle-
income countries risks exacerbating existing health disparities. To fully realize AI's transformative potential for global public 
health in gastroenterology and hepatology, these cross-cutting issues must be actively addressed through ethical design, 
rigorous validation, and equitable worldwide deployment.
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Introduction

Gastrointestinal (GI) and hepatological diseases represent 
a substantial and growing global public health burden, con-
tributing significantly to morbidity, mortality, and healthcare 
expenditures [1]. Traditional public health interventions, while 
foundational, often encounter limitations in their scalability, 

efficiency, and precision when addressing the complex and 
multifaceted nature of these conditions. The advent of arti-
ficial intelligence (AI), encompassing sophisticated method-
ologies such as machine learning (ML), deep learning (DL), 
and natural language processing (NLP), presents unparalleled 
opportunities to revolutionize public health approaches. These 
technologies can analyze vast and complex datasets, identify 
intricate patterns, and enabling predictive analytics in ways 
previously unimaginable [2].

The field of gastroenterology and hepatology is particu-
larly well suited for the application of AI. This specialty heav-
ily relies on various forms of imaging, including endoscopy, 
radiology, and pathology, which generate enormous volumes 
of visual data. Additionally, the increasing availability of elec-
tronic health records (EHR), multi-omics data (genomics, pro-
teomics, metabolomics), and detailed clinical notes provides 
a rich, high-dimensional data environment. The sheer volume 
and complexity of this information, while challenging for con-
ventional epidemiological and analytical methods, constitutes 
a profound asset for AI transformation. AI’s core strength lies 
precisely in its ability to process, interpret, and derive mean-
ingful patterns from such “big data,” thereby uncovering previ-
ously hidden population health dynamics [3]. This capability 
positions AI not merely as an incremental improvement but as 
a fundamental paradigm shift in how public health can lever-
age existing information to achieve more precise and impact-
ful interventions, making gastroenterology and hepatology a 
prime candidate for AI-driven public health innovation.

This comprehensive literature review systematically syn-
thesizes the current evidence on AI applications specifically 
tailored for population-level and public health interventions in 
gastroenterology and hepatology. It explicitly excludes appli-
cations focused solely on individual clinical decision-making. 
A central objective is to emphasize quantitative data and sta-
tistics, including prevalence, incidence, effect sizes, model 
performance metrics (such as Area under the Receiver Oper-
ating Characteristic curve, accuracy, sensitivity, specificity, 
precision, and recall), screening outcomes, and broader health 
impact. Furthermore, the review critically addresses pivotal 
cross-cutting themes: health equity, data privacy and ethics, 
regulatory frameworks, and implementation science. Global 
coverage is provided, comparing applications and challenges 
in high-income countries (HICs) and low- and middle-income 
countries (LMICs) whenever relevant data are available.

Applications of AI in GI‑Specific Public 
Health Initiatives

Colorectal Cancer

Colorectal cancer (CRC) remains a major global pub-
lic health challenge, ranking as the third most common 
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cancer and the second leading cause of cancer-related 
mortality worldwide. While population-based screening 
programs—including fecal tests and colonoscopy—have 
reduced CRC incidence and mortality over recent decades, 
persistent challenges remain. These include suboptimal 
patient adherence, the invasive and costly nature of cer-
tain screening modalities, and inequities in access and 
outcomes. Artificial intelligence (AI) offers promising 
avenues to enhance CRC control, optimize resource allo-
cation, and improve early detection [4].

AI-driven risk stratification is emerging as a key strat-
egy to personalize and optimize CRC screening. Beyond 
image-based diagnosis, machine-learning models have 
been developed using routinely collected electronic health 
record (EHR) data (age, sex, comorbidities, medications), 
routine blood tests—particularly complete blood count 
(CBC) parameters and their longitudinal trends—and stool 
testing data (e.g., fecal immunochemical test, FIT). These 
models demonstrate moderate-to-good discrimination, 
with typical AUC/c-index values of ~ 0.67–0.82. A promi-
nent example is the ColonFlag (also known as MeScore) 
algorithm, which combines age, sex, and CBC parameters 
to identify individuals at elevated near-term risk of CRC or 
advanced precancerous lesions. Validation studies in large 
US and European cohorts report AUCs of ~ 0.76–0.82, 
with sensitivity around 63% and specificity ~ 82%, depend-
ing on cohort and threshold. While values in the 0.7–0.8 
range indicate acceptable discrimination, the key advan-
tage of ColonFlag is its reliance on non-invasive, routinely 
collected data, making it suitable in settings where colo-
noscopy is not universally available [5].

Another key contribution comes from Nartowt et al. 
(2019), who trained and validated an artificial neural net-
work (ANN) on the US National Health Interview Survey 
(NHIS) dataset using 12–14 self-reportable personal health 
features (e.g., age, BMI, comorbidities, lifestyle factors). 
This model achieved a sensitivity of 0.63 ± 0.06, specific-
ity of 0.82 ± 0.04, and a concordance of 0.70 ± 0.02. In 
stratifying risk, only 6% of CRC cases were misclassified 
as low risk and 2% of non-CRC cases as high risk, demon-
strating the feasibility of AI-driven, self reportable health 
data for population-level risk stratification [6].

Other approaches have also demonstrated strong perfor-
mance. In a large multinational dietary study (n ≈ 109,343; 
CRC cases ≈ 7326), Rahman et al. (2023) reported that an 
ANN trained on dietary and sociodemographic variables 
misclassified only ~ 1% of CRC cases and 3% of non-CRC 
cases—implying a sensitivity of ~ 99% and specificity 
of ~ 97%. Although the precise input variables were not 
fully detailed, this work highlights the potential of novel, 
lifestyle-driven risk prediction models to complement 
existing clinical tools. By contrast, microbiome-derived 
features (e.g., stool metagenomics) and polygenic risk 

scores remain at the research stage and are not yet in rou-
tine use [7].

Large-scale cohort studies further illustrate the efficiency 
of AI-based stratification 5. In China, novel ML models 
designed using the data of 10,874 individuals achieved an 
AUC of 0.859 in the internal validation cohort, and AUC of 
0.888 in the temporal validation cohort [4]. In the United 
States, an AI model trained on a dataset of across 450,000 
individuals aged 45–80 years identified non-traditional CRC 
risk factors, aiding in improving detection rates from 2.4% 
(traditional methods) to 12%, with 91% individuals identi-
fied to be of higher risk as compared to previously thought 
[6, 8, 9].

Beyond modeling, AI is also being tested as a tool to 
address screening inequities. An AI-powered virtual patient 
navigator, trialed among under-screened patients in New 
York, doubled colonoscopy completion rates compared with 
usual care, with high acceptability [10]. During colonos-
copy, computer vision–assisted systems for real-time polyp 
detection have been shown in randomized controlled trials 
to increase adenoma detection rates by approximately 7–10 
absolute percentage points (corresponding to a 20–25% rela-
tive improvement) compared with conventional colonoscopy 
[11], and modeling studies suggest their widespread adop-
tion could further reduce CRC incidence in screened popu-
lations [9].

In high-income countries, CRC screening is shift-
ing toward risk-based strategies that incorporate clinical, 
genetic, and behavioral risk factors to guide the choice of 
modality. AI can further refine these approaches by inte-
grating multidimensional data, including socioeconomic and 
longitudinal health records. In LMICs, where colonoscopy 
capacity is constrained, AI-based stratification may provide 
a pragmatic means of prioritizing scarce resources, though 
challenges include limited availability of high-quality local 
datasets and poor generalizability of Western-trained mod-
els. Ongoing initiatives in Asia and Latin America are work-
ing to adapt and validate AI tools for diverse populations 
[12]. Ensuring algorithmic fairness remains critical: models 
trained on imbalanced datasets risk underestimating risk in 
certain ethnic or socioeconomic groups [13]. Diverse repre-
sentation in training cohorts and rigorous bias evaluation are 
therefore essential to achieving equitable population health 
benefits.

Metabolic Dysfunction‑Associated Steatotic Liver 
Disease

Metabolic dysfunction-associated steatotic liver disease 
(MASLD), formerly known as nonalcoholic fatty liver 
disease (NAFLD), is an increasingly prevalent global 
health concern, now affecting over 25–30% of the world’s 
population, with prevalence projected to rise further amid 



	 Digestive Diseases and Sciences

escalating rates of obesity and type 2 diabetes [14]. The 
majority of MASLD cases remain asymptomatic until pro-
gression to nonalcoholic steatohepatitis, advanced fibro-
sis, or cirrhosis—stages associated with elevated risks 
of liver-related morbidity and mortality. Liver fibrosis is 
the strongest predictor of adverse outcomes in MASLD, 
underscoring the need for effective population-level strat-
egies for early detection and risk stratification [15]. AI 
has emerged as a key enabler of non-invasive, scalable 
solutions for MASLD screening, prognostication, and 
surveillance.

Traditional screening approaches for MASLD—includ-
ing liver enzyme panels and ultrasound—suffer from limited 
sensitivity and specificity, particularly for early-stage dis-
ease. AI-powered image analysis offers substantial improve-
ments in this regard. Meta-analyses indicate that AI-assisted 
imaging models for detecting hepatic steatosis achieve 
pooled sensitivity in the low 90-percent range (≈ 91-92%) 
and pooled specificity also in the low 90-percent range 
(≈ 92-94%), with an AUC of around 0.97 [16]. Similarly, AI 
applications have enhanced the diagnostic utility of transient 
elastography (FibroScan) and MRI for assessing steatosis 
and fibrosis. One ML model employing vibration-controlled 
transient elastography demonstrated accurate longitudinal 
risk stratification for liver fibrosis [17]. In a study of NAFLD 
detection using NHANES 2017-2020 data, an XGBoost 
AutoML model achieved ≈ 86% AUC, ≈ 79.5% accuracy, 
≈ 77.3% sensitivity, and ≈ 80.2% specificity for diagnosing 
hepatic steatosis compared to controlled attenuation-param-
eter measurements AutoML models with XGBoost, valida-
tion sample: AUC = 0.859; accuracy = 0.795; sensitivity = 
0.773; specificity = 0.802 [18].

DL techniques have further advanced non-invasive 
assessment. For example, Choi et al. applied DL to con-
trast-enhanced CT (computed tomography) images from 
over 7000 patients, achieving area under the receiver oper-
ating characteristic curve (AUROCs) of 0.95 for cirrhosis 
(F4), 0.97 for advanced fibrosis (≥ F3), and 0.96 for sig-
nificant fibrosis (≥ F2). Comparable performance has been 
demonstrated using ultrasound and CT data in other stud-
ies, although variability across cohorts highlights the need 
for rigorous external validation [19]. Simple yet effective 
AI models using support vector machines (SVM) applied 
to routine demographic and biochemical markers have also 
shown promise. In a Japanese MASLD cohort, an SVM-
based model achieved AUROCs of 0.886 for significant 
fibrosis (≥ F2), 0.882 for advanced fibrosis (≥ F3), and 0.916 
for cirrhosis (F4), matching or exceeding conventional non-
invasive tests such as Fibrosis-4 Index (FIB-4) and Fibro-
Scan-AST (FAST) scores [20, 21]. These models eliminate 
the need for expensive imaging or specialized biomarkers, 
increasing feasibility for widespread implementation in pri-
mary care settings and community-based screening.

AI models are also being developed to predict progres-
sion from early MASLD to advanced fibrosis and cirrhosis, 
enabling targeted intervention for high-risk individuals. 
ML models incorporating routine clinical and laboratory 
data have predicted NASH (biopsy-confirmed) with ~ 86% 
sensitivity and ~ 81% accuracy. Random forest (RF) models 
combining common laboratory markers (e.g., AST, plate-
let count) have outperformed traditional scoring systems in 
identifying high-risk NASH patients, with AUROCs ~ 0.85 
[22, 23]. Further refinement of risk models has been 
achieved through the integration of insulin-related indices. 
One study demonstrated that models using homeostasis 
model assessment of insulin resistance (HOMA-IR), triglyc-
eride glucose-waist circumference index (TyG-WC), age, 
AST, and ethnicity achieved an AUROC of 0.960. HOMA-
IR and TyG-WC consistently emerged as core predictive 
factors across models [24].

These AI tools are increasingly being deployed in public-
facing platforms. For example, the Fatty Liver Foundation 
in the U.S. offers an online AI-based risk stratification tool 
enabling individuals to input basic health data and receive 
guidance on their likelihood of undiagnosed fibrosis, thereby 
promoting early medical engagement. AI also contributes to 
surveillance and precision public health efforts in MASLD. 
ML models applied to longitudinal cohort data have been 
used to forecast future MASLD incidence in populations, 
incorporating not only clinical factors but also environmen-
tal exposures and behavioral variables [25–27]. This enables 
public health authorities to identify communities at height-
ened risk and tailor prevention strategies accordingly.

Moreover, AI is facilitating personalized interventions. 
Early trials have explored AI-guided lifestyle coaching, 
where algorithms continuously analyze an individual’s diet, 
physical activity, and weight trajectory to generate adaptive 
recommendations aimed at halting or reversing MASLD 
progression [28]. While still nascent, such approaches offer 
promise for delivering scalable, tailored preventive inter-
ventions. While HICs are progressively integrating fibro-
sis screening into routine diabetes care, under-diagnosis 
remains a critical barrier in many LMICs. AI could help 
bridge this gap by enabling low-cost, scalable screening. 
For example, DL models capable of analyzing smartphone-
acquired ultrasound images could support community-based 
screening initiatives in rural LMIC settings, where access to 
specialist radiologists is limited [29].

However, several challenges remain. Most AI models for 
MASLD have been trained on Western or East Asian popula-
tions, raising concerns about generalizability to other con-
texts due to differences in body composition, comorbidities, 
and imaging protocols. Developing annotated local datasets 
and validating models in diverse populations is imperative 
to avoid introducing bias or misclassification. Cost-effective-
ness also warrants careful evaluation. The high sensitivity 
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of many AI-driven fibrosis models may lead to substantial 
false-positive rates, potentially overwhelming healthcare 
systems with unnecessary follow-up investigations. Imple-
mentation research is needed to optimize tiered screening 
pathways, ensuring that AI tools enhance rather than strain 
health service capacity [15].

Hepatitis

Chronic viral hepatitis—principally Hepatitis B virus (HBV) 
and Hepatitis C virus (HCV)—remains a major global public 
health challenge despite the availability of effective vaccines 
and antiviral therapies. An estimated 296 million people live 
with HBV and 58 million with HCV worldwide, with viral 
hepatitis causing ~ 1.5 million deaths annually—a burden 
comparable to human immunodeficiency virus (HIV) and 
tuberculosis [26]. A substantial proportion of infections 
remain undiagnosed; for HBV, only ~ 10% of infected per-
sons globally had been diagnosed as of 2019 [27]. Both the 
World Health Organization (WHO) and national agencies 
aim to eliminate viral hepatitis as a public health threat by 
2030, with targets including a 90% reduction in new infec-
tions and a 65% reduction in mortality from 2015 levels 
[28]. Achieving these goals requires closing gaps in testing, 
diagnosis, treatment initiation, and surveillance—domains 
where AI is emerging as a transformative tool.

AI and ML methods are being deployed to address one 
of the most formidable challenges in elimination: the large 
pool of undiagnosed individuals. ML models trained on 
EHR and claims data in the U.S. have demonstrated strong 
performance in identifying undiagnosed HCV. Common pre-
dictors included age, birth-cohort status (1945–1965), his-
tory of injection drug use, opioid or analgesic prescriptions, 
cirrhosis, HIV/AIDS diagnosis, elevated AST/ALT levels, 
and comorbidities such as diabetes, hypertension, hyperlipi-
daemia, depression, and anxiety. Additional demographic 
factors such as race/ethnicity (notably Black or Hispanic 
populations) further improved detection [29–32]. In one 
large study involving 10 million patients, stacked ensemble 
models achieved 97% precision at > 50% recall, far outper-
forming logistic regression (31% precision). Similarly, in 
hemodialysis cohorts, integrating aminotransferase cut-offs 
with patient age and dialysis duration yielded ~ 97% sensitiv-
ity for HCV detection [32].

Evidence from high-risk groups highlights the importance 
of incorporating biochemical markers into predictive algo-
rithms. In multiple studies of patients with type 2 diabetes, 
a majority of those with undiagnosed HCV presented with 
abnormal liver function tests (LFTs). For example, in one 
cohort of 176 diabetics, 72% of HCV-positive subjects had 
abnormal LFTs compared with only 25% of HCV-negative 
individuals [33, 34]. In a multi-ethnic UK cohort, diabetic 
patients with elevated ALT had significantly higher rates 

of HCV positivity—most notably among Afro-Caribbean 
patients, where positivity reached 28% with abnormal ALT 
versus 4% with normal ALT [35]. Other regional cohorts 
reported that 65–80% of HCV-positive diabetics had raised 
ALT, AST, or alkaline phosphatase, though up to 20–35% 
presented with normal enzyme levels [36]. These findings 
suggest that while elevated liver enzymes are a strong sig-
nal for case detection, relying on LFTs alone risks missing 
around one in five HCV-positive diabetic patients. AI models 
trained on broader data domains—including demographics, 
comorbid conditions, medication history, healthcare utiliza-
tion, and prescription data—offer the opportunity to enhance 
sensitivity and ensure fewer cases are missed.

Beyond claims and laboratory data, AI models can incor-
porate social and behavioral determinants. A LASSO regres-
sion model trained on diabetic patients achieved an AUC of 
0.81 for predicting HBV/HCV, with illicit drug use, pov-
erty, and race emerging as top predictors [31]. Other mod-
els using routine blood panels have classified HBV/HCV 
infections with very high accuracy. For example, in Kim 
et al., various machine learning models (including random 
forest and k-nearest neighbor) applied to NHANES diabetes/
hepatitis data achieved 96.75 % overall accuracy [31, 38]. 
Collectively, these findings highlight AI’s potential for effi-
cient prescreening in both high-risk and general populations.

AI also improves resource allocation for screening pro-
grams, an especially important consideration in LMICs. In 
a large HCV micro-elimination project in Romania, an ANN 
trained on risk-factor questionnaires achieved 81.5% sen-
sitivity while recommending ~ 13,400 individuals for test-
ing out of > 15,000 respondents. A more stringent version 
reduced the testing burden by 60% (to ~ 5200 tests) while 
still identifying 68% of positives [38, 39]. Such approaches 
can substantially improve cost-effectiveness and yield, ena-
bling scale-up of hepatitis testing programs (See Fig. 1).

Closing the diagnosis-to-treatment gap remains another 
barrier in the hepatitis care cascade. In the U.S., only 16% of 
3.5 million Americans with chronic HCV had received treat-
ment, and only 9% achieved sustained virological response 
[39]. AI tools are being leveraged to improve linkage to care. 
In Spain, health authorities used AI-powered text mining 
of EHRs to flag previously diagnosed HCV patients lost to 
follow-up, enabling targeted re-engagement [40]. In the U.S., 
NLP algorithms applied to clinical notes identified HIV/
HCV co-infected individuals not receiving therapy, facili-
tating targeted case management [41]. These interventions 
directly support WHO elimination goals by improving reten-
tion and ensuring timely treatment (See Fig. 2).

At the population level, AI models are increasingly used 
for surveillance and forecasting. Advanced ML methods 
such as ANNs and autoregressive integrated moving aver-
age (ARIMA) outperform traditional statistical models in 
predicting incidence trends. For example, ANNs achieved a 
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correlation coefficient of 0.71 for HAV incidence forecast-
ing, compared to 0.66 with ARIMA [30, 31]. In the U.S. and 
Europe, ML models integrating incidence, treatment uptake, 
and behavioral data are used to project progress toward 2030 
elimination targets. These often reveal major shortfalls, with 
many countries off-track due to lagging diagnosis and treat-
ment [42]. AI is also being applied to predict long-term 
outcomes in HBV and HCV patients, including risks of cir-
rhosis and hepatocellular carcinoma, which can guide sur-
veillance intensity and optimize resource allocation [43, 44].

High-income countries (HICs) have increasingly adopted 
AI in hepatitis programs. In the U.S., ML models integrated 
into EHR systems prompt HCV screening in birth cohorts 
and flag patients at risk of care disengagement [45]. In con-
trast, most LMICs—despite bearing the greatest HBV bur-
den—are at earlier stages of AI adoption. A key barrier is 
limited digital infrastructure, particularly lack of robust EHR 

systems. Nonetheless, early pilots are emerging: in Ethio-
pia, ML models have been trialed to predict HBV treatment 
outcomes and inform therapy prioritization [46]. Without 
technology transfer and capacity-building, however, global 
disparities in AI readiness risk widening the hepatitis elimi-
nation gap. Equity-focused initiatives led by WHO and inter-
national partners will be critical to ensure that AI tools are 
accessible and adapted for resource-limited settings.

GI Infection Surveillance and Outbreak Prediction

GI infections—caused by pathogens such as norovirus, rota-
virus, Salmonella, Vibrio cholerae, and others—continue to 
pose a major global public health burden. In 2021, diar-
rheal diseases were responsible for approximately 1.2 mil-
lion deaths worldwide, including an estimated 390,000 
deaths among children under five years of age [47]. The 

Fig. 1   AI Applications in GI & Liver Public Health
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early detection and containment of GI outbreaks are critical 
for mitigating morbidity and mortality. However, traditional 
surveillance systems often lag behind the true dynamics of 
disease transmission and may miss asymptomatic cases that 
contribute to community spread. AI, particularly when inte-
grated with novel surveillance modalities such as wastewa-
ter-based epidemiology (WBE) and digital epidemiology, 
is driving a transformative shift from reactive to proactive 
public health responses in GI infection surveillance [48, 49].

Traditional surveillance for GI infections relies heavily 
on clinician-reported cases and laboratory confirmations, 
which introduce significant time delays. AI-driven syndro-
mic surveillance can accelerate outbreak detection by ana-
lyzing real-time signals from diverse data sources, includ-
ing emergency department (ED) visit records and symptom 
query data. For instance, ML models have been successfully 
applied to ED chief complaint data to identify spikes in GI 
illness several days before laboratory confirmations. One AI-
driven syndromic surveillance model retrospectively demon-
strated the capacity to provide earlier alerts for a Campylo-
bacter outbreak compared to conventional reporting systems. 

In resource-limited settings, simple ML models analyzing 
trends in clinic visits for diarrhea have been piloted to flag 
potential Vibrio cholerae outbreaks, enabling timely water 
safety interventions [51–53].

Advanced time-series algorithms, such as LSTM (long 
short-term memory) neural networks, have further been 
employed to forecast seasonal surges in GI infections. For 
example, LSTM models have successfully predicted rotavi-
rus peak periods, enabling healthcare systems to optimize 
resource allocation, including stockpiling oral rehydration 
solutions and preparing clinical capacity for anticipated case 
loads [52, 53].

Given that many individuals experiencing GI illness do 
not seek medical care, non-traditional data sources such 
as social media and web platforms can provide valuable 
complementary insights. A landmark initiative by the New 
York City (NYC) Department of Health demonstrated the 
utility of mining Yelp restaurant reviews using NLP algo-
rithms to detect foodborne illness signals. In this project, 
an NLP system scanned approximately 294,000 Yelp 
reviews over 9 months, identifying 129 potential cases of 

Fig. 2   Figure depicts highlights 
of top AI performance in Public 
Health GI
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foodborne illness. Subsequent investigations confirmed 
three previously undetected restaurant-related outbreaks, 
none of which had been reported through conventional 
complaint hotlines [54]. Notably, only 3% of illness inci-
dents flagged via Yelp overlapped with official reports, 
underscoring the value of AI in capturing signals from oth-
erwise unmonitored population segments. Such approaches 
are now gaining wider adoption; the UK Health Security 
Agency is exploring AI-based analysis of online restaurant 
reviews and social media to enhance foodborne disease 
surveillance [55]. By automatically classifying text for 
symptom and food-related mentions, AI augments con-
ventional surveillance systems and increases sensitivity to 
outbreaks that may otherwise go undetected (See Fig. 3).

WBE has emerged as a powerful tool for early detec-
tion of infectious disease outbreaks, including GI infections. 
WBE involves analyzing wastewater to detect the presence 
of viral, bacterial, and parasitic pathogens, providing an 
aggregated, population-level signal that is independent of 
healthcare-seeking behavior or clinical testing rates. One key 
advantage of WBE is its capacity to detect pathogens days or 
weeks before clinical cases surge. For example, in monitor-
ing norovirus GII, wastewater viral levels were found to pre-
cede syndromic reports and search term data by 2–3 weeks, 
offering a valuable lead time for public health response. AI 
integration further enhances WBE’s predictive capabilities. 
Hybrid models combining hydraulic simulations of sewer 
networks with ML (e.g., SVMs) have been used to local-
ize infection hotspots based on spatial patterns of pathogen 

Fig. 3   Challenges and Enablers 
of AI in GI Healthcare
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concentrations in wastewater. During the COVID-19 pan-
demic, similar approaches were extended to track SARS-
CoV-2, and more recently, AI models integrated with auto-
mated virus enrichment robots have demonstrated high 
correlation (87% explained variance) between wastewater 
monkeypox virus concentrations and clinically confirmed 
cases [49, 52, 53, 56].

For GI pathogens, ML models have also been used to pre-
dict weekly norovirus case counts by learning from waste-
water data and environmental factors (e.g., temperature, 
rainfall), achieving lead times of one week or more ahead 
of clinical reporting [52, 49, 56]. WBE offers enhanced 
specificity by detecting pathogen-specific nucleic acids (e.g., 
HuNoV GII RNA), thereby providing more accurate com-
munity infection metrics than general syndromic data alone 
(See Tables 1 and 2).

State-of-the-art GI outbreak prediction systems increas-
ingly leverage data fusion—integrating clinical, environ-
mental, digital, and laboratory data streams—via AI to 
generate comprehensive early warnings. Techniques such 
as Bayesian networks and DL architectures enable the com-
bination of heterogeneous inputs to improve outbreak detec-
tion accuracy. For example, an early warning system under 
development by the European Centre for Disease Prevention 
and Control integrates hospital admissions, Google Trends 
(searches for terms like “vomiting”), weather data, and news 
feeds to compute real-time outbreak probabilities for vari-
ous GI pathogens. Preliminary results demonstrate improved 
sensitivity relative to any single data source, although false-
positive rates remain a challenge. Moreover, NLP techniques 
are being used to parse social media posts and news articles 
to detect emerging GI outbreaks—such as norovirus out-
breaks on cruise ships—sometimes before formal notifica-
tions reach public health authorities [8, 51–56]. The fusion 
of WBE, clinical data, and digital epidemiology enables a 
more proactive approach to outbreak management.

HICs benefit from rich data ecosystems (e.g., wide-
spread internet access, comprehensive EHRs) that facili-
tate advanced AI-driven GI surveillance. However, LMICs, 
where GI infections such as cholera and dysentery are 
endemic, are also adopting innovative AI approaches. In 
Bangladesh, ML models utilizing satellite-derived river 
height, rainfall, and temperature data have been used to 
accurately predict cholera outbreaks, guiding targeted vac-
cination campaigns [57]. Mobile phone-based reporting 
systems, combined with AI, are also being piloted in LMIC 
settings to crowdsource symptom data for real-time out-
break detection [58]. Nevertheless, important equity con-
siderations must be addressed. Heavy reliance on digital data 
streams (e.g., social media, smartphones) may systemati-
cally underrepresent rural or low-income populations. The 
NYC Yelp project demonstrated that AI-based surveillance 
captured a demographically distinct population compared 

to traditional complaint systems [54]. To ensure inclusive 
surveillance, public health agencies must deploy multiple 
complementary AI models tailored to different population 
segments. Moreover, privacy concerns related to mining per-
sonal data must be carefully managed through transparent 
governance frameworks that balance public health benefits 
with individual rights.

Upper GI Cancers (Gastric and Esophageal)

Cancers of the upper GI tract—principally gastric cancer 
and oesophageal cancer—remain major global contributors 
to cancer morbidity and mortality. Gastric cancer is the fifth 
most common malignancy worldwide, with over 1 million 
new cases and nearly 770,000 deaths in 2020, and exhibits 
high incidence in East Asia, parts of Latin America, and 
Eastern Europe. Oesophageal cancer, with approximately 
0.6 million new cases in 2020, is highly lethal, with two 
dominant histological subtypes: squamous cell carcinoma 
(ESCC), prevalent in East Asia and Eastern Africa, and 
adenocarcinoma, more common in Western countries [59]. 
Early detection is paramount to reducing mortality, as late-
stage diagnosis is common due to vague early symptoms. 
However, conventional screening methods, including endos-
copy, remain invasive, costly, and dependent on specialist 
expertise—barriers that limit participation and scalability, 
particularly in resource-constrained settings. In this con-
text, AI is emerging as a transformative tool to enhance the 
effectiveness, accessibility, and efficiency of upper GI cancer 
screening and surveillance.

AI-driven computer vision models—particularly convo-
lutional neural networks (CNNs) and deep neural networks 
(DNNs)—have demonstrated substantial potential in aug-
menting endoscopic detection of early-stage gastric cancer 
and ESCC [60]. AI-assisted white-light imaging endoscopy 
has reported diagnostic accuracy exceeding that of human 
experts. For example, one gastric cancer model achieved a 
per-image detection rate of 99.87%, compared with 88.2% 
for expert endoscopists. Similarly, AI-assisted systems 
for early gastric cancer have demonstrated detection rates 
of ~ 93.2% [60]. In oesophageal cancer screening, a DNN 
trained on 2428 endoscopic images achieved 97.8% sen-
sitivity, 85.4% specificity, and 91.4% overall accuracy for 
detecting ESCC—substantially outperforming both senior 
(88.8%) and junior endoscopists (77.2%) [61, 62]. A CNN 
trained on 6,473 narrow-band imaging endoscopic images 
for early dysplasia and ESCC achieved 98% sensitivity and 
95% specificity [62]. Importantly, AI assistance has been 
shown to significantly improve endoscopist performance, 
especially among less experienced clinicians, while reducing 
inter-observer variability and promoting more standardized 
diagnostic quality across healthcare settings.
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Despite these promising results, several limitations 
must be acknowledged. The exceptionally high detection 
rates often reported arise from retrospective studies using 
enriched image datasets under controlled conditions, which 
may not reflect real-world practice. Performance typically 
degrades in external or prospective validation, with sig-
nificant drops in specificity and positive predictive value 
(PPV), raising concerns about false-positive findings and 
overcalling of lesions. For example, broader evaluations of 
AI-assisted gastric cancer detection reported pooled sensi-
tivity of ≈ 86% and specificity of ≈ 93%, indicating strong 
but not perfect precision [63]. These findings suggest that 
while AI can substantially reduce missed lesions, it should 
currently be regarded as a supplementary tool rather than 
a replacement for real-time expert judgment. Future work 
must focus on prospective validation, improving specificity 
and PPV, and testing across diverse clinical settings.

Deployment in high-incidence regions is already demon-
strating tangible benefits. In China, mass screening programs 
for oesophageal and gastric cancer have integrated AI-based 
image analysis to improve lesion detection and workflow 
efficiency. One CNN trained on ~ 8400 oesophageal cancer 
images detected lesions < 1 cm in size—frequently missed 
by human observers—processing > 1100 test images in just 
27 s [60, 95]. Similarly, population-based screening pro-
grams in China have shown that AI integration improves 
early ESCC detection, thereby enhancing curability.

AI is also being applied to alternative, less invasive 
modalities in settings where endoscopy is not widely fea-
sible. For oesophageal cancer, sponge cytology (e.g., Cyto-
sponge) analyzed with ML algorithms has achieved > 90% 
specificity for distinguishing high-grade dysplasia from 
benign changes, supporting its role as a triage tool for endos-
copy referrals [4, 98]. In radiologic screening, DL models 
based on Faster R-CNN applied to barium meal studies 
increased diagnostic accuracy from 89.3% to 96.8% while 
reducing radiologist interpretation time. CNN-based mod-
els analyzing computed tomography images for oesopha-
geal cancer screening have achieved average accuracies of 
86.4% ± 5.6% [61, 100]. Gradient boosting models combin-
ing non-invasive features such as Helicobacter pylori infec-
tion status, blood markers, and demographic data have also 
demonstrated promising results [4, 61, 99].

In endemic regions such as the “oesophageal cancer belt” 
(East Africa to Central Asia) and high gastric cancer preva-
lence areas (e.g., Andean South America), AI-supported 
screening is being piloted to extend specialist capacity. In 
Iran, AI-assisted minimally invasive endoscopic programs 
have improved ESCC lesion detection and are being scaled 
across rural provinces [64]. In Honduras, portable AI-
enhanced endoscopy is enabling non-specialists to perform 
gastric cancer screening in remote areas, with AI guidance 
improving accuracy [65, 66]. These examples illustrate the Ta
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potential of AI to support task-shifting, empowering allied 
health personnel to deliver effective screening in contexts 
where gastroenterologists are scarce.

High-income countries (HICs) with established screening 
programs, such as Japan, are at the forefront of integrat-
ing AI into endoscopy for workflow efficiency and quality 
improvement [67, 68]. In contrast, most low- and middle-
income countries (LMICs) have yet to implement large-scale 
upper GI cancer screening due to financial and infrastruc-
tural constraints. AI cannot overcome fundamental limita-
tions in endoscopic capacity but can increase the efficiency 
and public health impact of limited programs. Key chal-
lenges for broader implementation include ensuring external 
validation across diverse populations—since most models 
are trained on East Asian datasets with limited generaliz-
ability—alongside regulatory approval, clinical safety moni-
toring, and cost-effectiveness evaluation [69, 70]. Economic 
modeling suggests that even modest improvements in early 
detection could make AI-assisted endoscopy cost-effective, 
given the high costs of late-stage cancer care [9]. Moreover, 
workflow optimization, reduced repeat procedures, and AI-
guided non-specialist screening could further offset costs.

Inflammatory Bowel Disease

Inflammatory bowel disease (IBD), comprising Crohn’s 
disease (CD) and ulcerative colitis (UC), represents an 
escalating global public health challenge. Historically con-
centrated in Western nations, IBD incidence and prevalence 
have risen sharply in newly industrialized regions since the 
late twentieth century, driven by urbanization, Westernized 
diets, and changing environmental exposures [71]. Glob-
ally, the prevalence of IBD increased from approximately 
3.3 million cases in 1990 to nearly 6.8 million cases by 2019 
[72]. In one cohort, 2021 prevalence reached 218.3 cases per 
100,000 people (77.2 for CD, 141.1 for UC), with incidence 
trends continuing to rise steadily [73, 74]. This epidemi-
ological shift underscores the need for global health sys-
tems—including those in LMICs—to prepare for increasing 
IBD burden. AI is emerging as a vital tool across multiple 
dimensions of IBD public health: refining epidemiological 
understanding, improving case detection and risk stratifi-
cation, quantifying broader societal burden, and advancing 
precision prevention research.

AI is enhancing the granularity and accuracy of global 
IBD surveillance. ML has been applied to model incidence 
patterns across geography and time, supporting proactive 
public health planning. A notable effort by the Global IBD 
Collaborative used ML clustering to categorize countries 
into four “epidemiologic stages” of IBD emergence and 
spread, identifying regions such as parts of South Asia and 
Africa where incidence is now rising and public health 
infrastructure must be prepared accordingly. The ML-driven 

analysis confirmed that societal westernization consistently 
precedes IBD emergence, informing policy planning on 
specialist training and care capacity expansion [71, 73, 74]. 
Administrative data analyses using AI also offer robust prev-
alence estimates. In the Netherlands, a RF model achieved an 
AUROC of 0.97 for identifying IBD cases in health records, 
with a prevalence of 577.6 per 100,000 and an incidence of 
20.1 per 100,000 in 2020 [75]. In the U.S., between 2001 
and 2018, IBD prevalence rose with an annual percentage 
change (APC) of 3.4% for CD and 2.8% for UC, with dispro-
portionate increases among non-Hispanic Black populations 
(CD APC = 5.0%, UC APC = 3.5%) [73, 80]. These findings, 
powered by AI, refine our understanding of evolving IBD 
epidemiology and help guide resource allocation.

Although classic screening programs do not exist for IBD, 
AI-driven tools can assist in case-finding and early interven-
tion. AI also supports risk stratification among diagnosed 
patients. ML models have been used to predict healthcare 
utilization, identifying the subset (~ 20%) of IBD patients 
likely to drive 80% of healthcare costs through hospitaliza-
tions or surgeries [76]. Public health programs can lever-
age such models to prioritize intensive interventions (e.g., 
early biologic therapy, nurse-led care pathways) for high-risk 
patients, improving outcomes and optimizing resource use. 
Furthermore, AI models predicting premature mortality in 
IBD have demonstrated AUROCs of 0.81–0.95, supporting 
population-level risk assessment [77].

Beyond clinical endpoints, AI techniques enrich our 
understanding of IBD’s broader societal impacts. NLP has 
been used to analyze social media content and online patient 
forums, providing real-time insights into quality of life and 
unmet needs. For example, sentiment analysis of thousands 
of Reddit posts from IBD communities revealed peaks in 
negative sentiment correlating with known disease activity 
trends, highlighting the potential of digital epidemiology to 
complement traditional surveillance [78]. AI models applied 
to insurance claims data further elucidate the economic 
burden of IBD, identifying key cost drivers and informing 
policy interventions. Such analyses support decisions around 
subsidizing medications or investing in mental health sup-
port, aiming to mitigate indirect burdens such as work dis-
ability and reduced quality of life [79, 80].

Although IBD prevention remains complex due to its 
multifactorial etiology, Geospatial AI analyses have identi-
fied IBD incidence clusters potentially linked to environ-
mental exposures such as pollution or climate factors, war-
ranting further investigation [81]. AI’s capacity to integrate 
multi-omics data—encompassing genomics, transcriptom-
ics, proteomics, metabolomics, and the microbiome—fur-
ther advances understanding of IBD pathogenesis and pro-
gression. The Comprehensive Data Optimization and Risk 
Prediction Framework (CDORPF), an ensemble ML model 
trained on gut microbiome data, achieved classification 
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accuracy, recall, and F1 scores exceeding 0.9 for IBD 
risk prediction [82–84]. A RF model based on laboratory 
markers attained AUROCs of 97% for CD and 91% for UC 
[85]. Large Language Models (LLMs) are also transform-
ing population-level IBD research. Fine-tuned LLMs have 
demonstrated high performance (F1 score improved from 
0.7 to 0.82) in structuring unstructured histology and radiol-
ogy reports from EHRs, unlocking vast real-world data for 
epidemiological analysis [84]. This capability accelerates 
research and supports privacy-compliant, large-scale AI-
driven public health solutions.

AI’s role in IBD public health varies by region. In HICs, 
where IBD care is advanced but costly, AI often enhances 
efficiency—for example, predicting which patients may 
avoid hospitalization or tailoring biologic therapy. In 
LMICs, where IBD awareness and diagnostic capacity may 
be limited, AI can help “put IBD on the map” by support-
ing case-finding and building virtual disease registries from 
fragmented health data. International collaborations, such as 
the Global IBD Visualization Project, are exploring feder-
ated learning approaches to enable AI training across mul-
tinational datasets without compromising data privacy [86]. 
This ensures that AI models become globally representative 
and equitable. However, careful attention to data privacy, 
algorithmic bias, and model generalizability is paramount, 
particularly when leveraging sensitive multi-omics datasets 
[83]. Equity concerns must also be addressed; as advanced 
analytics improve IBD care in well-resourced centers, efforts 
must be made to extend these benefits to underserved popu-
lations. Without intentional policy and implementation 
efforts, there is a risk of an “AI gap” in IBD public health.

Other Public Health Applications 
in Gastroenterology

Beyond specific disease-focused applications, AI is driving 
innovation across several cross-cutting domains in GI public 
health. These include dietary interventions and nutritional 
epidemiology, health inequalities monitoring, digital health 
promotion, and disease modeling for public health policy. 
Together, these applications demonstrate AI’s expanding 
role in precision public health, enabling more personalized, 
efficient, and equitable GI health interventions.

Dietary Interventions and Nutritional 
Epidemiology

Diet is a critical modifiable risk factor across a spectrum of 
GI diseases, including CRC, IBD, IBS, and NAFLD. How-
ever, conventional dietary assessment methods—such as 
food frequency questionnaires and 24-h dietary recalls—are 

labor-intensive, prone to recall bias, and of limited utility for 
large-scale, accurate nutritional surveillance.

AI-assisted dietary assessment tools, integrated into 
mobile or web-based platforms, are transforming this land-
scape. These tools are broadly categorized as image-based 
(leveraging computer vision for food recognition and nutri-
ent estimation) and motion sensor-based (analyzing wrist 
movement, jaw motion, and eating sounds to capture eating 
occasions). Image-based tools can provide real-time, objec-
tive dietary data, substantially reducing recall and reporting 
biases. For example, the SNAQ app demonstrated slightly 
higher agreement with doubly labeled water (DLW), the 
gold standard for energy intake measurement, than conven-
tional 24-h recall. Across studies, AI-based dietary tools 
report accuracy ranging from 60 to 95%, making them viable 
for both clinical and population-level applications [87].

AI also enhances the granularity of nutritional epidemiol-
ogy. Traditional analyses often focus on single nutrients; AI 
enables the analysis of complex dietary patterns and their 
associations with GI diseases. For example, ML has been 
used to identify dietary patterns that correlate with higher 
CRC risk in large cohorts—one study demonstrated that 
high processed meat intake combined with low fiber intake 
predicted CRC risk better than any single nutrient [7, 88]. 
These insights inform public health dietary guidelines.

At an individual level, AI is advancing precision nutri-
tion. In a randomized controlled trial for IBS, an AI-based 
personalized diet intervention, which used microbiome and 
dietary preference data to tailor recommendations, led to sig-
nificantly improved gut symptom scores compared to stand-
ard dietary advice [87, 90]. Furthermore, AI tools analyz-
ing genomic, metabolomic, and microbiome data are being 
explored to guide dietary interventions aimed at enhancing 
cognitive performance and mitigating gut–brain axis-related 
symptoms—highlighting the relevance of diet to both GI and 
neurological health [89].

The ability of AI-assisted tools to deliver real-time, objec-
tive dietary data at scale addresses a critical data gap in pub-
lic health nutrition. This enables more precise identification 
of dietary patterns linked to GI outcomes, supports targeted 
health promotion campaigns, and facilitates personalized 
nutritional guidance. However, technical challenges such as 
portion size estimation and data privacy concerns require 
ongoing research and governance [90].

Health Inequalities Monitoring

AI offers powerful tools to reveal and address disparities 
in GI health outcomes and care delivery. By mining large-
scale health data, ML algorithms can identify geographic, 
racial, and socioeconomic patterns in disease burden and 
healthcare access. For instance, a study applying ML to 
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U.S. EHR data found that African American IBD patients 
were less likely to receive high-quality care measures—an 
inequity associated with higher hospitalization rates [5, 91, 
92]. Similarly, predictive analytics in CRC screening have 
been used to map neighborhoods with low screening uptake 
based on social determinants, enabling targeted deployment 
of mobile screening units.

AI can also model the equity impacts of interventions. 
One simulation study demonstrated that if an AI-based 
CRC risk stratification tool systematically underestimated 
risk in minority populations due to biased training data, it 
could exacerbate health disparities—prompting developers 
to adjust algorithms to ensure fairness. Consequently, the 
GI community is actively developing frameworks for ethical 
AI deployment that mandate testing for algorithmic bias and 
representation of diverse populations [91].

Digital Health Promotion

AI is enhancing digital health promotion in GI by enabling 
scalable, personalized communication. Chatbots powered 
by NLP are being used to educate the public about preven-
tive measures such as hepatitis vaccination and colonos-
copy preparation. In Latin America, a bilingual AI chatbot 
promoting HBV vaccination engaged tens of thousands of 
young adults at a fraction of the cost of traditional cam-
paigns [92, 93].

AI also enables targeted health messaging via social 
media. Public health agencies can use algorithms to iden-
tify users at elevated risk (e.g., members of heavy alcohol 
use forums who might benefit from information on alcohol-
related liver disease) and deliver tailored educational con-
tent. While this approach can amplify reach and engagement, 
it raises privacy considerations that must be carefully man-
aged to maintain public trust [93, 94].

GI Disease Modeling and Policy

AI-driven simulation models are increasingly informing 
public health policy decisions in GI. Agent-based models, 
for example, have been used to simulate HP transmission 
dynamics in communities, allowing policymakers to test 
the potential impact of interventions such as mass antibi-
otic treatment on future gastric cancer incidence. Similarly, 
AI-driven economic models have evaluated interventions 
such as food fortification with micronutrients to prevent 
liver cancer by reducing aflatoxin exposure. These models 
integrate complex, multifactorial data—including epide-
miological, behavioral, and economic inputs—into action-
able insights for resource allocation. However, the accuracy 
of such models is highly dependent on data quality, which 

remains a challenge in LMIC settings where data may be 
sparse or fragmented. International data-sharing initiatives 
and collaborative modeling efforts are essential to improve 
the robustness of AI-driven policy simulations.

Cross‑Cutting Themes: Equity, Privacy, 
Regulation, and Implementation

AI offers transformative opportunities for public health 
applications in gastroenterology and hepatology, yet it also 
raises several complex cross-cutting challenges that tran-
scend disease-specific domains. Key considerations include 
health equity, data privacy and ethics, regulatory oversight, 
and the practical implementation of AI in real-world health-
care settings. These factors must be addressed thoughtfully 
to ensure that AI-driven innovations ultimately improve 
health outcomes in an equitable, trustworthy, and sustain-
able manner.

Health Equity

AI has the potential to either exacerbate or ameliorate exist-
ing health disparities. The outcome depends critically on 
how AI tools are designed, validated, and deployed. Unrep-
resentative training data can perpetuate bias; for example, 
a CRC risk model trained primarily on European popula-
tions may underperform when applied to African or Asian 
populations. Furthermore, algorithmic design choices may 
inadvertently amplify inequities if they overweight factors 
correlated with socioeconomic status or structural determi-
nants of health. To mitigate these risks, several best practices 
are being adopted across the field. These include incorporat-
ing race and ethnicity as model inputs where appropriate, 
conducting rigorous subgroup analyses, applying debias-
ing techniques, and ensuring that AI development teams 
are diverse and inclusive [91]. Community engagement is 
increasingly recognized as essential; the meaningful involve-
ment of underserved populations in AI tool development 
can help identify and address potential inequitable impacts 
early. In gastroenterology, frameworks have been proposed 
to institutionalize practices such as bias audits, algorithmic 
transparency, and diversity in research cohorts. Addressing 
global disparities in AI development and deployment is also 
crucial. The majority of AI studies in GI and hepatology 
to date have been conducted in HICs, with relatively few 
originating from LMICs. Without deliberate adaptation, AI 
models developed in HICs may not generalize well to LMIC 
contexts. Promoting AI literacy, ensuring inclusive data col-
lection, and fostering international collaborations are criti-
cal to achieving the WHO vision of an AI ecosystem that 
advances health equity and the Sustainable Development 
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Goals. The overarching goal is not simply to create power-
ful AI tools, but to do so in a way that leaves no population 
behind [7, 91].

Data Privacy and Ethics

AI applications in GI public health rely heavily on large 
datasets, including EHRs, imaging, genomics, and, increas-
ingly, non-traditional sources such as social media or mobile 
phone data. This reliance raises significant concerns around 
data privacy, security, and informed consent. Anonymiza-
tion techniques are essential but imperfect; as datasets grow 
in size and granularity, the risk of patient re-identification 
increases [95]. Furthermore, global variation in data pro-
tection standards—such as HIPAA (Health Insurance Port-
ability and Accountability Act) in the U.S. and GDPR 
(General Data Protection Regulation) in Europe—creates 
inconsistencies in data governance [96]. Particularly con-
cerning are novel data streams, such as internet searches 
or phone metadata used for outbreak prediction, which 
often fall outside established regulatory frameworks. Algo-
rithmic bias represents another critical ethical concern. AI 
models trained on skewed datasets can exhibit differen-
tial performance across demographic groups, compound-
ing health inequities. In gastroenterology and hepatology, 
where disease patterns vary significantly across ethnic and 
geographic populations, ensuring that AI models perform 
equitably across diverse groups is paramount. Transpar-
ency and explainability of AI systems are also essential for 
ethical deployment. The “black-box” nature of many DL 
models impedes trust and informed consent; patients must 
understand how AI influences their care and have confidence 
that its outputs are interpretable and accountable. Moreo-
ver, legal responsibility for AI-driven errors remains poorly 
defined, raising challenging questions of liability [97]. To 
address these concerns, federated learning is being explored 
to enable collaborative model training without centralizing 
sensitive data, while privacy-preserving techniques such as 
differential privacy and homomorphic encryption further 
enhance data protection. Promoting explainable AI is vital 
to build clinician and patient trust, and regulatory guidelines 
should mandate algorithmic transparency and clearly defined 
accountability pathways. Ultimately, AI must complement—
not replace—clinical judgment, preserving the central role 
of the physician–patient relationship.

Regulatory Frameworks

The regulatory landscape for AI in healthcare remains frag-
mented and underdeveloped. While regulatory agencies 
such as the U.S. Food and Drug Administration (FDA) and 

European authorities have approved clinical AI devices, such 
as AI-based polyp detection in colonoscopy, oversight for 
population-level health applications is less defined. Tools 
used for screening prioritization or outbreak prediction often 
lack clear regulatory pathways, creating uncertainty regard-
ing validation standards, accountability, and performance 
monitoring. For example, if a public health department 
employs an AI model to prioritize CRC screening for certain 
groups, it remains unclear who is accountable if the model 
underperforms or introduces bias. International initiatives 
are beginning to address these gaps. The WHO’s Global 
Initiative on AI for Health (GI-AI4H) emphasizes govern-
ance, transparency, and ethical principles for the adoption 
of AI in public health. Similarly, the European Union’s AI 
Act mandates transparency regarding data provenance and 
model scope—an approach that could serve as a model for 
global harmonization. Moving forward, harmonizing cross-
border data sharing and AI oversight, adopting risk-based 
approaches and lifecycle assessments for AI tools, mandat-
ing transparency and data quality standards, and promoting 
equitable infrastructure access will be essential. Addition-
ally, educating clinicians and public health professionals 
about AI will equip them with the skills needed to critically 
evaluate and safely integrate AI tools [92, 94, 96, 98].

Implementation Science

Perhaps the most underappreciated challenge in AI-driven 
GI public health is the translation of promising models into 
real-world impact. Many high-performing AI models remain 
confined to academic publications, with limited uptake in 
clinical or public health practice. Implementation science 
provides valuable frameworks to address this gap. Key bar-
riers include data quality and generalizability, as many AI 
models are trained on small, retrospective datasets that may 
not generalize to diverse real-world populations; lack of 
explainability, which undermines clinician trust; unresolved 
ethical and legal concerns around accountability; high infra-
structure costs; and poor integration with existing clinical 
workflows. Overcoming these barriers requires multidisci-
plinary collaboration, user-centered design, and rigorous 
prospective validation. Behavioral interventions—such as 
digital nudges—offer a promising pathway for promoting 
AI-driven public health behaviors. Digital nudges have been 
shown to significantly improve cancer screening adher-
ence, highlighting that human factors such as engagement, 
usability, and clinician buy-in are as critical as technical 
performance. Successful implementation examples, such as 
AI-driven HCV screening in U.S. community clinics, under-
score the importance of iterative design and user training. In 
one such case, initial resistance due to poorly designed alerts 
and perceived workflow disruption was mitigated through 
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redesign and staff education, leading to improved uptake 
and testing rates. Ultimately, moving AI from bench to pub-
lic health impact requires robust pilot programs, real-world 
validation, and a deep focus on the human and organiza-
tional factors that shape healthcare delivery. Without such 
efforts, even the most sophisticated AI models will fail to 
achieve their potential to improve population GI and liver 
health [99–102].

Discussion

The evidence presented in this comprehensive review under-
scores the transformative potential of AI in advancing pop-
ulation-level gastroenterology and hepatology public health 
goals. AI is fundamentally reshaping approaches to disease 
surveillance, screening, risk stratification, and intervention 
optimization, enabling a crucial shift from reactive to proac-
tive public health strategies.

Across diverse disease areas, AI has demonstrated con-
sistent and measurable quantitative improvements. In CRC, 
AI models have significantly increased detection rates by 
identifying non-traditional risk factors, potentially predicting 
thousands of future cases and optimizing screening resource 
allocation [103]. For MASLD, AI-developed non-invasive 
tests show high diagnostic accuracy and sensitivity for fibro-
sis, with optimal predictive models achieving AUROCs 
as high as 0.960 [104]. In viral hepatitis, AI models have 
achieved exceptional precision (up to 97%) and accuracy (up 
to 99.56%) in identifying undiagnosed populations, offering 
a powerful tool to accelerate progress toward global elimi-
nation targets GI infection surveillance is being revolution-
ized by AI’s integration with WBE, providing early warning 
signals weeks before clinical cases emerge and capturing 
a high percentage of outbreak variability [49, 50, 53]. For 
upper GI cancers, AI-assisted endoscopy and non-invasive 
methods have shown superior diagnostic rates and accuracy, 
even outperforming human experts, thereby democratizing 
early cancer detection, particularly in resource-limited set-
tings [60, 61]. In IBD, AI is enabling precision public health 
by analyzing complex multi-omics data and predicting risk 
with high AUROCs (up to 0.97), moving beyond broad epi-
demiological trends to granular, data-driven strategies. Fur-
thermore, AI-assisted dietary assessment tools are bridging 
critical data gaps in nutritional epidemiology, providing real-
time, objective dietary data with high accuracy, enabling 
more precise population-level nutritional interventions.

The synergistic potential of combining different AI 
technologies—such as ML for risk stratification, NLP 
for extracting insights from EHRs, and DL for advanced 
image analysis—is immense. When integrated with novel 
data sources like WBE, these combinations create powerful 

tools for comprehensive population health monitoring and 
intervention.

However, realizing AI’s full transformative potential in 
population GI health requires navigating significant over-
arching challenges. Systemic issues related to data qual-
ity, algorithmic bias, patient privacy, and the “black-box” 
nature of many AI models remain substantial hurdles. The 
“pacing gap” between the rapid advancement of AI tech-
nology and the slower development of adequate legal and 
regulatory frameworks is a major constraint, hindering wide-
spread, ethical, and safe deployment [97]. Furthermore, the 
observed disparities in AI research and implementation, pre-
dominantly concentrated in HICs with limited representation 
from LMICs, pose a significant threat to global health equity. 
If not addressed proactively, AI could inadvertently amplify 
existing health inequalities by creating solutions that are not 
generalizable or accessible to underserved populations [1].

Despite these challenges, significant opportunities exist. 
AI can bridge existing resource gaps in healthcare, democ-
ratize access to specialized diagnostics, and enable person-
alized public health interventions at scale, particularly in 
regions with limited medical infrastructure. The increasing 
availability of large, diverse datasets (e.g., through EHRs, 
multi-omics initiatives) and ongoing advancements in 
explainable AI offer promising pathways to overcome cur-
rent limitations.

While AI demonstrates significant promise in improving 
detection and risk stratification, its ultimate impact on pop-
ulation-level morbidity and mortality—such as a measurable 
reduction in disease incidence, improved survival rates, or 
decreased hospitalization rates—requires long-term, pro-
spective studies and successful implementation science. The 
measurable benefits, such as increased detection rates and 
improved diagnostic accuracy, are crucial steps, but their 
translation into tangible health outcomes at the population 
level is the ultimate measure of success. The observed dis-
parity in AI research and implementation, predominantly 
in HICs, with a notable exception of China, highlights the 
critical need for equitable development and deployment of 
AI solutions tailored to the unique challenges and resource 
constraints of LMICs. International collaborations and 
knowledge sharing are paramount to ensure that AI benefits 
all populations, not just those in well-resourced settings.

Conclusion

AI is unequivocally poised to become an indispensable 
tool for advancing population-level gastroenterology and 
hepatology public health goals. Its unparalleled capabilities 
for enhanced surveillance, precise screening, targeted risk 
stratification, and optimized intervention strategies offer a 
transformative pathway to better health outcomes globally.
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To fully realize AI’s profound potential, concerted efforts 
are imperative from researchers, policymakers, healthcare 
systems, and industry stakeholders. These efforts must 
address critical challenges related to data ethics, ensuring 
privacy and mitigating algorithmic bias through diverse and 
representative datasets. Regulatory harmonization across 
international borders is crucial to provide a clear, consistent 
framework for AI development and deployment, fostering 
innovation while safeguarding public trust and accountabil-
ity. Furthermore, equitable access to AI technologies must 
be prioritized, particularly for LMICs and underserved com-
munities, to prevent the exacerbation of existing health dis-
parities. Future endeavors must emphasize interdisciplinary 
collaboration, robust real-world validation through imple-
mentation science, and a steadfast commitment to health 
equity, ensuring that AI serves as a powerful force for a more 
just and healthier world for all.
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