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Abstract

Background Artificial intelligence (AI), which includes machine learning and deep learning, is fundamentally changing
public health in gastroenterology and hepatology—fields grappling with a significant global disease burden.

Objective This review focuses on the population-level applications and impact of Al, highlighting its role in shifting health-
care strategies from reactive treatment to proactive prevention.

Results AI demonstrates substantial improvements across many different areas. In colorectal cancer, AI models significantly
boost detection rates, successfully identifying a large majority of high-risk individuals often missed by traditional screening
methods. For metabolic dysfunction-associated steatotic liver disease (MASLD), advanced non-invasive tests offer a high
degree of reliability in detecting liver fibrosis. The identification of viral hepatitis is enhanced with excellent accuracy, and
gastrointestinal infection surveillance benefits from wastewater analysis that provides an early warning system weeks ahead
of clinical case reporting. Furthermore, Al improves the diagnosis of upper GI cancers, such as gastric cancer, with higher
diagnostic capability, and facilitates precision public health in inflammatory bowel disease (IBD) through highly accurate
risk prediction models.

Challenges Despite these important advances, significant hurdles remain. Key challenges include ensuring diverse and rep-
resentative data to prevent algorithmic bias, protecting patient privacy, establishing robust regulatory frameworks for new
technologies, and successfully moving innovations from research settings into practical, real-world deployment.
Conclusion The unequal distribution of Al development and access between high-income countries and low- and middle-
income countries risks exacerbating existing health disparities. To fully realize Al's transformative potential for global public
health in gastroenterology and hepatology, these cross-cutting issues must be actively addressed through ethical design,
rigorous validation, and equitable worldwide deployment.
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index
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HIV Human immunodeficiency virus
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DNN Deep neural networks
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APC Annual percentage change

IBS Irritable bowel syndrome

CDORPF  Comprehensive data optimization and risk
prediction framework

LLMS Large language models

DLW Doubly labeled water

HP Helicobacter pylori

HIPAA Health insurance portability and accountabil-
ity act

GDPR General data protection regulation

GI-AI4H Global initiative on Al for health

EU European Union

LFTs Liver function tests
PPV Positive predictive value
Introduction

Gastrointestinal (GI) and hepatological diseases represent
a substantial and growing global public health burden, con-
tributing significantly to morbidity, mortality, and healthcare
expenditures [1]. Traditional public health interventions, while
foundational, often encounter limitations in their scalability,
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efficiency, and precision when addressing the complex and
multifaceted nature of these conditions. The advent of arti-
ficial intelligence (AI), encompassing sophisticated method-
ologies such as machine learning (ML), deep learning (DL),
and natural language processing (NLP), presents unparalleled
opportunities to revolutionize public health approaches. These
technologies can analyze vast and complex datasets, identify
intricate patterns, and enabling predictive analytics in ways
previously unimaginable [2].

The field of gastroenterology and hepatology is particu-
larly well suited for the application of AL This specialty heav-
ily relies on various forms of imaging, including endoscopy,
radiology, and pathology, which generate enormous volumes
of visual data. Additionally, the increasing availability of elec-
tronic health records (EHR), multi-omics data (genomics, pro-
teomics, metabolomics), and detailed clinical notes provides
arich, high-dimensional data environment. The sheer volume
and complexity of this information, while challenging for con-
ventional epidemiological and analytical methods, constitutes
a profound asset for Al transformation. AI’s core strength lies
precisely in its ability to process, interpret, and derive mean-
ingful patterns from such “big data,” thereby uncovering previ-
ously hidden population health dynamics [3]. This capability
positions Al not merely as an incremental improvement but as
a fundamental paradigm shift in how public health can lever-
age existing information to achieve more precise and impact-
ful interventions, making gastroenterology and hepatology a
prime candidate for Al-driven public health innovation.

This comprehensive literature review systematically syn-
thesizes the current evidence on Al applications specifically
tailored for population-level and public health interventions in
gastroenterology and hepatology. It explicitly excludes appli-
cations focused solely on individual clinical decision-making.
A central objective is to emphasize quantitative data and sta-
tistics, including prevalence, incidence, effect sizes, model
performance metrics (such as Area under the Receiver Oper-
ating Characteristic curve, accuracy, sensitivity, specificity,
precision, and recall), screening outcomes, and broader health
impact. Furthermore, the review critically addresses pivotal
cross-cutting themes: health equity, data privacy and ethics,
regulatory frameworks, and implementation science. Global
coverage is provided, comparing applications and challenges
in high-income countries (HICs) and low- and middle-income
countries (LMICs) whenever relevant data are available.

Applications of Al in GI-Specific Public
Health Initiatives
Colorectal Cancer

Colorectal cancer (CRC) remains a major global pub-
lic health challenge, ranking as the third most common
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cancer and the second leading cause of cancer-related
mortality worldwide. While population-based screening
programs—including fecal tests and colonoscopy—have
reduced CRC incidence and mortality over recent decades,
persistent challenges remain. These include suboptimal
patient adherence, the invasive and costly nature of cer-
tain screening modalities, and inequities in access and
outcomes. Artificial intelligence (AI) offers promising
avenues to enhance CRC control, optimize resource allo-
cation, and improve early detection [4].

Al-driven risk stratification is emerging as a key strat-
egy to personalize and optimize CRC screening. Beyond
image-based diagnosis, machine-learning models have
been developed using routinely collected electronic health
record (EHR) data (age, sex, comorbidities, medications),
routine blood tests—particularly complete blood count
(CBC) parameters and their longitudinal trends—and stool
testing data (e.g., fecal immunochemical test, FIT). These
models demonstrate moderate-to-good discrimination,
with typical AUC/c-index values of ~0.67-0.82. A promi-
nent example is the ColonFlag (also known as MeScore)
algorithm, which combines age, sex, and CBC parameters
to identify individuals at elevated near-term risk of CRC or
advanced precancerous lesions. Validation studies in large
US and European cohorts report AUCs of ~0.76-0.82,
with sensitivity around 63% and specificity ~ 82%, depend-
ing on cohort and threshold. While values in the 0.7-0.8
range indicate acceptable discrimination, the key advan-
tage of ColonFlag is its reliance on non-invasive, routinely
collected data, making it suitable in settings where colo-
noscopy is not universally available [5].

Another key contribution comes from Nartowt et al.
(2019), who trained and validated an artificial neural net-
work (ANN) on the US National Health Interview Survey
(NHIS) dataset using 12—14 self-reportable personal health
features (e.g., age, BMI, comorbidities, lifestyle factors).
This model achieved a sensitivity of 0.63 +0.06, specific-
ity of 0.82+0.04, and a concordance of 0.70 +0.02. In
stratifying risk, only 6% of CRC cases were misclassified
as low risk and 2% of non-CRC cases as high risk, demon-
strating the feasibility of Al-driven, self reportable health
data for population-level risk stratification [6].

Other approaches have also demonstrated strong perfor-
mance. In a large multinational dietary study (n = 109,343;
CRC cases = 7326), Rahman et al. (2023) reported that an
ANN trained on dietary and sociodemographic variables
misclassified only ~ 1% of CRC cases and 3% of non-CRC
cases—implying a sensitivity of ~99% and specificity
of ~97%. Although the precise input variables were not
fully detailed, this work highlights the potential of novel,
lifestyle-driven risk prediction models to complement
existing clinical tools. By contrast, microbiome-derived
features (e.g., stool metagenomics) and polygenic risk

scores remain at the research stage and are not yet in rou-
tine use [7].

Large-scale cohort studies further illustrate the efficiency
of Al-based stratification 5. In China, novel ML models
designed using the data of 10,874 individuals achieved an
AUC of 0.859 in the internal validation cohort, and AUC of
0.888 in the temporal validation cohort [4]. In the United
States, an AI model trained on a dataset of across 450,000
individuals aged 45-80 years identified non-traditional CRC
risk factors, aiding in improving detection rates from 2.4%
(traditional methods) to 12%, with 91% individuals identi-
fied to be of higher risk as compared to previously thought
[6, 8, 9].

Beyond modeling, Al is also being tested as a tool to
address screening inequities. An Al-powered virtual patient
navigator, trialed among under-screened patients in New
York, doubled colonoscopy completion rates compared with
usual care, with high acceptability [10]. During colonos-
copy, computer vision—assisted systems for real-time polyp
detection have been shown in randomized controlled trials
to increase adenoma detection rates by approximately 7-10
absolute percentage points (corresponding to a 20-25% rela-
tive improvement) compared with conventional colonoscopy
[11], and modeling studies suggest their widespread adop-
tion could further reduce CRC incidence in screened popu-
lations [9].

In high-income countries, CRC screening is shift-
ing toward risk-based strategies that incorporate clinical,
genetic, and behavioral risk factors to guide the choice of
modality. Al can further refine these approaches by inte-
grating multidimensional data, including socioeconomic and
longitudinal health records. In LMICs, where colonoscopy
capacity is constrained, Al-based stratification may provide
a pragmatic means of prioritizing scarce resources, though
challenges include limited availability of high-quality local
datasets and poor generalizability of Western-trained mod-
els. Ongoing initiatives in Asia and Latin America are work-
ing to adapt and validate Al tools for diverse populations
[12]. Ensuring algorithmic fairness remains critical: models
trained on imbalanced datasets risk underestimating risk in
certain ethnic or socioeconomic groups [13]. Diverse repre-
sentation in training cohorts and rigorous bias evaluation are
therefore essential to achieving equitable population health
benefits.

Metabolic Dysfunction-Associated Steatotic Liver
Disease

Metabolic dysfunction-associated steatotic liver disease
(MASLD), formerly known as nonalcoholic fatty liver
disease (NAFLD), is an increasingly prevalent global
health concern, now affecting over 25-30% of the world’s
population, with prevalence projected to rise further amid
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escalating rates of obesity and type 2 diabetes [14]. The
majority of MASLD cases remain asymptomatic until pro-
gression to nonalcoholic steatohepatitis, advanced fibro-
sis, or cirrhosis—stages associated with elevated risks
of liver-related morbidity and mortality. Liver fibrosis is
the strongest predictor of adverse outcomes in MASLD,
underscoring the need for effective population-level strat-
egies for early detection and risk stratification [15]. Al
has emerged as a key enabler of non-invasive, scalable
solutions for MASLD screening, prognostication, and
surveillance.

Traditional screening approaches for MASLD—includ-
ing liver enzyme panels and ultrasound—suffer from limited
sensitivity and specificity, particularly for early-stage dis-
ease. Al-powered image analysis offers substantial improve-
ments in this regard. Meta-analyses indicate that Al-assisted
imaging models for detecting hepatic steatosis achieve
pooled sensitivity in the low 90-percent range (~91-92%)
and pooled specificity also in the low 90-percent range
(%92-94%), with an AUC of around 0.97 [16]. Similarly, Al
applications have enhanced the diagnostic utility of transient
elastography (FibroScan) and MRI for assessing steatosis
and fibrosis. One ML model employing vibration-controlled
transient elastography demonstrated accurate longitudinal
risk stratification for liver fibrosis [17]. In a study of NAFLD
detection using NHANES 2017-2020 data, an XGBoost
AutoML model achieved = 86% AUC, ~79.5% accuracy,
~77.3% sensitivity, and ~ 80.2% specificity for diagnosing
hepatic steatosis compared to controlled attenuation-param-
eter measurements AutoML models with XGBoost, valida-
tion sample: AUC =0.859; accuracy = 0.795; sensitivity =
0.773; specificity =0.802 [18].

DL techniques have further advanced non-invasive
assessment. For example, Choi et al. applied DL to con-
trast-enhanced CT (computed tomography) images from
over 7000 patients, achieving area under the receiver oper-
ating characteristic curve (AUROCSs) of 0.95 for cirrhosis
(F4), 0.97 for advanced fibrosis (>F3), and 0.96 for sig-
nificant fibrosis (> F2). Comparable performance has been
demonstrated using ultrasound and CT data in other stud-
ies, although variability across cohorts highlights the need
for rigorous external validation [19]. Simple yet effective
Al models using support vector machines (SVM) applied
to routine demographic and biochemical markers have also
shown promise. In a Japanese MASLD cohort, an SVM-
based model achieved AUROCSs of 0.886 for significant
fibrosis (>F2), 0.882 for advanced fibrosis (>F3), and 0.916
for cirrhosis (F4), matching or exceeding conventional non-
invasive tests such as Fibrosis-4 Index (FIB-4) and Fibro-
Scan-AST (FAST) scores [20, 21]. These models eliminate
the need for expensive imaging or specialized biomarkers,
increasing feasibility for widespread implementation in pri-
mary care settings and community-based screening.
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Al models are also being developed to predict progres-
sion from early MASLD to advanced fibrosis and cirrhosis,
enabling targeted intervention for high-risk individuals.
ML models incorporating routine clinical and laboratory
data have predicted NASH (biopsy-confirmed) with~86%
sensitivity and ~ 81% accuracy. Random forest (RF) models
combining common laboratory markers (e.g., AST, plate-
let count) have outperformed traditional scoring systems in
identifying high-risk NASH patients, with AUROCs ~0.85
[22, 23]. Further refinement of risk models has been
achieved through the integration of insulin-related indices.
One study demonstrated that models using homeostasis
model assessment of insulin resistance (HOMA-IR), triglyc-
eride glucose-waist circumference index (TyG-WC), age,
AST, and ethnicity achieved an AUROC of 0.960. HOMA-
IR and TyG-WC consistently emerged as core predictive
factors across models [24].

These Al tools are increasingly being deployed in public-
facing platforms. For example, the Fatty Liver Foundation
in the U.S. offers an online Al-based risk stratification tool
enabling individuals to input basic health data and receive
guidance on their likelihood of undiagnosed fibrosis, thereby
promoting early medical engagement. Al also contributes to
surveillance and precision public health efforts in MASLD.
ML models applied to longitudinal cohort data have been
used to forecast future MASLD incidence in populations,
incorporating not only clinical factors but also environmen-
tal exposures and behavioral variables [25-27]. This enables
public health authorities to identify communities at height-
ened risk and tailor prevention strategies accordingly.

Moreover, Al is facilitating personalized interventions.
Early trials have explored Al-guided lifestyle coaching,
where algorithms continuously analyze an individual’s diet,
physical activity, and weight trajectory to generate adaptive
recommendations aimed at halting or reversing MASLD
progression [28]. While still nascent, such approaches offer
promise for delivering scalable, tailored preventive inter-
ventions. While HICs are progressively integrating fibro-
sis screening into routine diabetes care, under-diagnosis
remains a critical barrier in many LMICs. Al could help
bridge this gap by enabling low-cost, scalable screening.
For example, DL models capable of analyzing smartphone-
acquired ultrasound images could support community-based
screening initiatives in rural LMIC settings, where access to
specialist radiologists is limited [29].

However, several challenges remain. Most AI models for
MASLD have been trained on Western or East Asian popula-
tions, raising concerns about generalizability to other con-
texts due to differences in body composition, comorbidities,
and imaging protocols. Developing annotated local datasets
and validating models in diverse populations is imperative
to avoid introducing bias or misclassification. Cost-effective-
ness also warrants careful evaluation. The high sensitivity
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of many Al-driven fibrosis models may lead to substantial
false-positive rates, potentially overwhelming healthcare
systems with unnecessary follow-up investigations. Imple-
mentation research is needed to optimize tiered screening
pathways, ensuring that Al tools enhance rather than strain
health service capacity [15].

Hepatitis

Chronic viral hepatitis—principally Hepatitis B virus (HBV)
and Hepatitis C virus (HCV)—remains a major global public
health challenge despite the availability of effective vaccines
and antiviral therapies. An estimated 296 million people live
with HBV and 58 million with HCV worldwide, with viral
hepatitis causing ~ 1.5 million deaths annually—a burden
comparable to human immunodeficiency virus (HIV) and
tuberculosis [26]. A substantial proportion of infections
remain undiagnosed; for HBV, only ~ 10% of infected per-
sons globally had been diagnosed as of 2019 [27]. Both the
World Health Organization (WHO) and national agencies
aim to eliminate viral hepatitis as a public health threat by
2030, with targets including a 90% reduction in new infec-
tions and a 65% reduction in mortality from 2015 levels
[28]. Achieving these goals requires closing gaps in testing,
diagnosis, treatment initiation, and surveillance—domains
where Al is emerging as a transformative tool.

Al and ML methods are being deployed to address one
of the most formidable challenges in elimination: the large
pool of undiagnosed individuals. ML models trained on
EHR and claims data in the U.S. have demonstrated strong
performance in identifying undiagnosed HCV. Common pre-
dictors included age, birth-cohort status (1945-1965), his-
tory of injection drug use, opioid or analgesic prescriptions,
cirrhosis, HIV/AIDS diagnosis, elevated AST/ALT levels,
and comorbidities such as diabetes, hypertension, hyperlipi-
daemia, depression, and anxiety. Additional demographic
factors such as race/ethnicity (notably Black or Hispanic
populations) further improved detection [29-32]. In one
large study involving 10 million patients, stacked ensemble
models achieved 97% precision at >50% recall, far outper-
forming logistic regression (31% precision). Similarly, in
hemodialysis cohorts, integrating aminotransferase cut-offs
with patient age and dialysis duration yielded ~97% sensitiv-
ity for HCV detection [32].

Evidence from high-risk groups highlights the importance
of incorporating biochemical markers into predictive algo-
rithms. In multiple studies of patients with type 2 diabetes,
a majority of those with undiagnosed HCV presented with
abnormal liver function tests (LFTs). For example, in one
cohort of 176 diabetics, 72% of HCV-positive subjects had
abnormal LFTs compared with only 25% of HCV-negative
individuals [33, 34]. In a multi-ethnic UK cohort, diabetic
patients with elevated ALT had significantly higher rates

of HCV positivity—most notably among Afro-Caribbean
patients, where positivity reached 28% with abnormal ALT
versus 4% with normal ALT [35]. Other regional cohorts
reported that 65-80% of HCV-positive diabetics had raised
ALT, AST, or alkaline phosphatase, though up to 20-35%
presented with normal enzyme levels [36]. These findings
suggest that while elevated liver enzymes are a strong sig-
nal for case detection, relying on LFTs alone risks missing
around one in five HCV-positive diabetic patients. Al models
trained on broader data domains—including demographics,
comorbid conditions, medication history, healthcare utiliza-
tion, and prescription data—offer the opportunity to enhance
sensitivity and ensure fewer cases are missed.

Beyond claims and laboratory data, AI models can incor-
porate social and behavioral determinants. A LASSO regres-
sion model trained on diabetic patients achieved an AUC of
0.81 for predicting HBV/HCYV, with illicit drug use, pov-
erty, and race emerging as top predictors [31]. Other mod-
els using routine blood panels have classified HBV/HCV
infections with very high accuracy. For example, in Kim
et al., various machine learning models (including random
forest and k-nearest neighbor) applied to NHANES diabetes/
hepatitis data achieved 96.75 % overall accuracy [31, 38].
Collectively, these findings highlight AI’s potential for effi-
cient prescreening in both high-risk and general populations.

Al also improves resource allocation for screening pro-
grams, an especially important consideration in LMICs. In
a large HCV micro-elimination project in Romania, an ANN
trained on risk-factor questionnaires achieved 81.5% sen-
sitivity while recommending ~ 13,400 individuals for test-
ing out of > 15,000 respondents. A more stringent version
reduced the testing burden by 60% (to~5200 tests) while
still identifying 68% of positives [38, 39]. Such approaches
can substantially improve cost-effectiveness and yield, ena-
bling scale-up of hepatitis testing programs (See Fig. 1).

Closing the diagnosis-to-treatment gap remains another
barrier in the hepatitis care cascade. In the U.S., only 16% of
3.5 million Americans with chronic HCV had received treat-
ment, and only 9% achieved sustained virological response
[39]. Al tools are being leveraged to improve linkage to care.
In Spain, health authorities used Al-powered text mining
of EHRs to flag previously diagnosed HCV patients lost to
follow-up, enabling targeted re-engagement [40]. In the U.S.,
NLP algorithms applied to clinical notes identified HIV/
HCYV co-infected individuals not receiving therapy, facili-
tating targeted case management [41]. These interventions
directly support WHO elimination goals by improving reten-
tion and ensuring timely treatment (See Fig. 2).

At the population level, Al models are increasingly used
for surveillance and forecasting. Advanced ML methods
such as ANNs and autoregressive integrated moving aver-
age (ARIMA) outperform traditional statistical models in
predicting incidence trends. For example, ANNs achieved a
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correlation coefficient of 0.71 for HAV incidence forecast-
ing, compared to 0.66 with ARIMA [30, 31]. In the U.S. and
Europe, ML models integrating incidence, treatment uptake,
and behavioral data are used to project progress toward 2030
elimination targets. These often reveal major shortfalls, with
many countries off-track due to lagging diagnosis and treat-
ment [42]. Al is also being applied to predict long-term
outcomes in HBV and HCV patients, including risks of cir-
rhosis and hepatocellular carcinoma, which can guide sur-
veillance intensity and optimize resource allocation [43, 44].

High-income countries (HICs) have increasingly adopted
Al in hepatitis programs. In the U.S., ML models integrated
into EHR systems prompt HCV screening in birth cohorts
and flag patients at risk of care disengagement [45]. In con-
trast, most LMICs—despite bearing the greatest HBV bur-
den—are at earlier stages of Al adoption. A key barrier is
limited digital infrastructure, particularly lack of robust EHR
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systems. Nonetheless, early pilots are emerging: in Ethio-
pia, ML models have been trialed to predict HBV treatment
outcomes and inform therapy prioritization [46]. Without
technology transfer and capacity-building, however, global
disparities in Al readiness risk widening the hepatitis elimi-
nation gap. Equity-focused initiatives led by WHO and inter-
national partners will be critical to ensure that Al tools are
accessible and adapted for resource-limited settings.

Gl Infection Surveillance and Outbreak Prediction

GI infections—caused by pathogens such as norovirus, rota-
virus, Salmonella, Vibrio cholerae, and others—continue to
pose a major global public health burden. In 2021, diar-
rheal diseases were responsible for approximately 1.2 mil-
lion deaths worldwide, including an estimated 390,000
deaths among children under five years of age [47]. The
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early detection and containment of GI outbreaks are critical
for mitigating morbidity and mortality. However, traditional
surveillance systems often lag behind the true dynamics of
disease transmission and may miss asymptomatic cases that
contribute to community spread. Al, particularly when inte-
grated with novel surveillance modalities such as wastewa-
ter-based epidemiology (WBE) and digital epidemiology,
is driving a transformative shift from reactive to proactive
public health responses in GI infection surveillance [48, 49].

Traditional surveillance for GI infections relies heavily
on clinician-reported cases and laboratory confirmations,
which introduce significant time delays. Al-driven syndro-
mic surveillance can accelerate outbreak detection by ana-
lyzing real-time signals from diverse data sources, includ-
ing emergency department (ED) visit records and symptom
query data. For instance, ML models have been successfully
applied to ED chief complaint data to identify spikes in GI
illness several days before laboratory confirmations. One Al-
driven syndromic surveillance model retrospectively demon-
strated the capacity to provide earlier alerts for a Campylo-
bacter outbreak compared to conventional reporting systems.

In resource-limited settings, simple ML models analyzing
trends in clinic visits for diarrhea have been piloted to flag
potential Vibrio cholerae outbreaks, enabling timely water
safety interventions [51-53].

Advanced time-series algorithms, such as LSTM (long
short-term memory) neural networks, have further been
employed to forecast seasonal surges in GI infections. For
example, LSTM models have successfully predicted rotavi-
rus peak periods, enabling healthcare systems to optimize
resource allocation, including stockpiling oral rehydration
solutions and preparing clinical capacity for anticipated case
loads [52, 53].

Given that many individuals experiencing GI illness do
not seek medical care, non-traditional data sources such
as social media and web platforms can provide valuable
complementary insights. A landmark initiative by the New
York City (NYC) Department of Health demonstrated the
utility of mining Yelp restaurant reviews using NLP algo-
rithms to detect foodborne illness signals. In this project,
an NLP system scanned approximately 294,000 Yelp
reviews over 9 months, identifying 129 potential cases of
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foodborne illness. Subsequent investigations confirmed
three previously undetected restaurant-related outbreaks,
none of which had been reported through conventional
complaint hotlines [54]. Notably, only 3% of illness inci-
dents flagged via Yelp overlapped with official reports,
underscoring the value of Al in capturing signals from oth-
erwise unmonitored population segments. Such approaches
are now gaining wider adoption; the UK Health Security
Agency is exploring Al-based analysis of online restaurant
reviews and social media to enhance foodborne disease
surveillance [55]. By automatically classifying text for
symptom and food-related mentions, Al augments con-
ventional surveillance systems and increases sensitivity to
outbreaks that may otherwise go undetected (See Fig. 3).

Fig.3 Challenges and Enablers
of Al in GI Healthcare

WBE has emerged as a powerful tool for early detec-
tion of infectious disease outbreaks, including GI infections.
WBE involves analyzing wastewater to detect the presence
of viral, bacterial, and parasitic pathogens, providing an
aggregated, population-level signal that is independent of
healthcare-seeking behavior or clinical testing rates. One key
advantage of WBE is its capacity to detect pathogens days or
weeks before clinical cases surge. For example, in monitor-
ing norovirus GII, wastewater viral levels were found to pre-
cede syndromic reports and search term data by 2-3 weeks,
offering a valuable lead time for public health response. Al
integration further enhances WBE’s predictive capabilities.
Hybrid models combining hydraulic simulations of sewer
networks with ML (e.g., SVMs) have been used to local-
ize infection hotspots based on spatial patterns of pathogen
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concentrations in wastewater. During the COVID-19 pan-
demic, similar approaches were extended to track SARS-
CoV-2, and more recently, Al models integrated with auto-
mated virus enrichment robots have demonstrated high
correlation (87% explained variance) between wastewater
monkeypox virus concentrations and clinically confirmed
cases [49, 52, 53, 56].

For GI pathogens, ML models have also been used to pre-
dict weekly norovirus case counts by learning from waste-
water data and environmental factors (e.g., temperature,
rainfall), achieving lead times of one week or more ahead
of clinical reporting [52, 49, 56]. WBE offers enhanced
specificity by detecting pathogen-specific nucleic acids (e.g.,
HuNoV GII RNA), thereby providing more accurate com-
munity infection metrics than general syndromic data alone
(See Tables 1 and 2).

State-of-the-art GI outbreak prediction systems increas-
ingly leverage data fusion—integrating clinical, environ-
mental, digital, and laboratory data streams—via Al to
generate comprehensive early warnings. Techniques such
as Bayesian networks and DL architectures enable the com-
bination of heterogeneous inputs to improve outbreak detec-
tion accuracy. For example, an early warning system under
development by the European Centre for Disease Prevention
and Control integrates hospital admissions, Google Trends
(searches for terms like “vomiting”), weather data, and news
feeds to compute real-time outbreak probabilities for vari-
ous GI pathogens. Preliminary results demonstrate improved
sensitivity relative to any single data source, although false-
positive rates remain a challenge. Moreover, NLP techniques
are being used to parse social media posts and news articles
to detect emerging GI outbreaks—such as norovirus out-
breaks on cruise ships—sometimes before formal notifica-
tions reach public health authorities [8, 51-56]. The fusion
of WBE, clinical data, and digital epidemiology enables a
more proactive approach to outbreak management.

HICs benefit from rich data ecosystems (e.g., wide-
spread internet access, comprehensive EHRs) that facili-
tate advanced Al-driven GI surveillance. However, LMICs,
where GI infections such as cholera and dysentery are
endemic, are also adopting innovative Al approaches. In
Bangladesh, ML models utilizing satellite-derived river
height, rainfall, and temperature data have been used to
accurately predict cholera outbreaks, guiding targeted vac-
cination campaigns [57]. Mobile phone-based reporting
systems, combined with Al are also being piloted in LMIC
settings to crowdsource symptom data for real-time out-
break detection [58]. Nevertheless, important equity con-
siderations must be addressed. Heavy reliance on digital data
streams (e.g., social media, smartphones) may systemati-
cally underrepresent rural or low-income populations. The
NYC Yelp project demonstrated that Al-based surveillance
captured a demographically distinct population compared

to traditional complaint systems [54]. To ensure inclusive
surveillance, public health agencies must deploy multiple
complementary Al models tailored to different population
segments. Moreover, privacy concerns related to mining per-
sonal data must be carefully managed through transparent
governance frameworks that balance public health benefits
with individual rights.

Upper Gl Cancers (Gastric and Esophageal)

Cancers of the upper GI tract—principally gastric cancer
and oesophageal cancer—remain major global contributors
to cancer morbidity and mortality. Gastric cancer is the fifth
most common malignancy worldwide, with over 1 million
new cases and nearly 770,000 deaths in 2020, and exhibits
high incidence in East Asia, parts of Latin America, and
Eastern Europe. Oesophageal cancer, with approximately
0.6 million new cases in 2020, is highly lethal, with two
dominant histological subtypes: squamous cell carcinoma
(ESCC), prevalent in East Asia and Eastern Africa, and
adenocarcinoma, more common in Western countries [59].
Early detection is paramount to reducing mortality, as late-
stage diagnosis is common due to vague early symptoms.
However, conventional screening methods, including endos-
copy, remain invasive, costly, and dependent on specialist
expertise—barriers that limit participation and scalability,
particularly in resource-constrained settings. In this con-
text, Al is emerging as a transformative tool to enhance the
effectiveness, accessibility, and efficiency of upper GI cancer
screening and surveillance.

Al-driven computer vision models—particularly convo-
lutional neural networks (CNNs) and deep neural networks
(DNNs)—have demonstrated substantial potential in aug-
menting endoscopic detection of early-stage gastric cancer
and ESCC [60]. Al-assisted white-light imaging endoscopy
has reported diagnostic accuracy exceeding that of human
experts. For example, one gastric cancer model achieved a
per-image detection rate of 99.87%, compared with 88.2%
for expert endoscopists. Similarly, Al-assisted systems
for early gastric cancer have demonstrated detection rates
0of ~93.2% [60]. In oesophageal cancer screening, a DNN
trained on 2428 endoscopic images achieved 97.8% sen-
sitivity, 85.4% specificity, and 91.4% overall accuracy for
detecting ESCC—substantially outperforming both senior
(88.8%) and junior endoscopists (77.2%) [61, 62]. A CNN
trained on 6,473 narrow-band imaging endoscopic images
for early dysplasia and ESCC achieved 98% sensitivity and
95% specificity [62]. Importantly, Al assistance has been
shown to significantly improve endoscopist performance,
especially among less experienced clinicians, while reducing
inter-observer variability and promoting more standardized
diagnostic quality across healthcare settings.

@ Springer



Digestive Diseases and Sciences

ssaujsnqol [opow Suraoiduir 1oy [eONLID UOHel
-0QE[[0d [EUOTIBUISIUT ‘SUOTIEITWII] BIep 908} SOTIN'T
juowaSeurwW [Ny
-o1ed o1mnbal su1adu0d AoeArid (SOIINT UI QAP
Are
-qo[3 yuawAordop 1y 9[qenbs syroddns (fenuasse
Sums9) seiq orwrIos[e ‘ssoudrey uo siseyduwyg
SUIOUOD Ay
UTBWI A9eINdde [eo1uydd) pue Koealld {(QTIVN
‘adi ‘O¥D) sudredwes orqnd 10 jueyroduy

QIO 9AT)OQYJ2-1S0D PUE ‘UONOAIP A[Ied ‘SuIp[ng
Ansi3ar1 syroddns Ty ‘oouaprour DA Jursearouy

urewalr

so3uo[reyo A10je[n3aI1 pue AJI[IqezIferauas ‘(semp
-UOH ‘UeJ] “*3°9) SUOISAI DIIAI'T OTWPUD UI SI0[Id

QOUR[[IOAINS

PIseq-o[IqOW pue ‘dJewWI]D ‘9)I[[ores YIm Sur
-Jeaoutl SOIIAT ‘Sweans eyep your Jurderoad] sOIH

Sur[ess Joj [eONLID AIMONINSLIIUI [BNFIP
‘syorrd DA SurStows sOIH ur uondope ySTHq
IV punosenn
paseq-auoydirews eia sOIAT ut sded a3priq
03 Tenuajod ¢Furuaaros sisoIqy Suners3aur sOIH
soSuo[reyd urewar A)i[iqe
-ZITe10uos pue ssouarey (SOIJA UT SOOINOSAT P
-] 9ziwndo 03 Ty $SOTH Ul SUruoaIos paseq-ysry

SUONUAIIUL JOJ Sunse)

o1Ieuads sa[qeus ‘Aotjod yireay orqnd surrojug
uoneonpa

pazieuosiod GuowoFeIuo pue yoranno pasearou]

UOBIO[[B 9JIN0SAI
9[qelnbeo swriojur ‘sanrnbaur usppIy Jo uondAIq

SuonuaAIIUI A1e391p uoIs1oaxd ‘surayed ysii
-y31y Jo UONEdYIUPI ‘BIep AIBIDIP 9)eINdR IO

uopIng pasud
-11adxe-juoned ojur sjygisur <syuaned 3s00-y3iy

JO uoneoynuapl pasoIduwr (QdUB[[IOAINS PIdURYUY
Ayiqerrea
JAI9SqO-10)ul paonpar {Adoosopus aznriorid

0] Surudarosaid {uonoalep uoIs9[ Afre parorduy

SUOTIUQAISNUT PIJoSIe] {SPUQI] [BUOSBIS
Jo Surpopow 9ANOIPaId {UOT)ORIOP Je2IINO IST[IRE

ssa13o01d uoneunUIS 10J SUNSLOIO] PIOUBYUD
‘o180 0} afeyuI] paAoIduw {UOTOIIP 9SLO PAsLaIdU]

uonewns? Ysu pazijeuosiad cuonorpaid
SISOIQY puE JUTUIIIOS JAISBAUI-UOU PasoIduy
uon
-09)op BWIOUAPE padueyuo (sdnoid parresiopun
Ul Q0UAIRYPE JAYIIY FuruaaIds pajegre; paroxdwy

(uononpar urxojeye eIA J9oULD

IOAT] “8°9) uonuaAdld 10y S[OPOW JIWOU0II
UoALIP-TY $(1101Ad "H “3'9) s[opour paseq-juady

suGredwes eIpaw [e100s pajagIe)-Ty ‘uon
-owoxd 3uruoaIds pue UOTIRUIIIRA JO] S)OqIeYd [V

syoeduur

Aymba uonuoAIdIUI JO UOTIRINWIS ¢ZUTUIIOS
pue AISAT[Op 21ed ur santredsip AJnuapt 0) T

SISATeue

uw1oned A1e191p 10J A {SWYILIoI[e uonnnu
pazifeuosiad $S[00) JUSWISSISSE AIRIAIP POseq-TV

uorneIdaul

SOTWO-T}[NWI $JUSUWISSISSE USPING I0J JIN

{(AdY0dD ‘A4Y) uoneoynens YSLI ‘ejep dANRISI
-urwpe ur Surpuy-ased ‘Jurepow [esr3ojoruapidyg

S[epoW IILWOIq Paseq-poo[q

¢soFewr o130[01peI uo Ty ‘A30[0140 oFuods
pasuequa-TV (NN ‘NND) Adoosopua paisisse-Ty

SWwAISAs Jur

-urem A[Ies pajerSojur (Sururur JN/eIpW [B100S
IV +HIM ((eIep Q) 90UB[[IOAINS OTWOIPUAS

3ur)SBOAI0} PUL AJUB[[IOAINS USALIP-TY ‘dn-mof

-10J-01-150] AJrIuapr 03 J7IN ‘sdnois JYsu-y3my ut
Surfopour YS1I paseq-Ty ‘SYHH UT Surpuy-ased TN

S[00}

YSLI SUI[UO (Y ‘NAS) S[PPOW YSLI TIIN/LD
‘Ayder3o)se[o JUSISULI) ‘PUNOSEI[N PAOUBYU-TY

Kdoosouo[od

PAISISSB-Y $Q0UQIaYpPE SUTUAIOS 0] SI0JeI1ARU
[eMIA TV INNV/ TN SUIsn uonesynens ysry

Korjod 29 Surfopowr aseasIp 1D

uonowoid yeay [eNsiq

Suniojiuow sanienbour yieoy

K3ojorwepida [euon
-1INU 29 SUONUIAINUI ATeII

9sBasIp [omoq KIojerumeuy

s100ued [0 roddn

QOUB[[I9AING UOIOJJUI [

(ADH/AGH/AVH) shneday [eirp

ATAVN/AISVIA

Jadue)d [B)32I0[0D)

SUOTJEIOPISUOI/)XJUO0D [BqO[D)

joedwysindino Aoy

suonjeordde v

BOIE JSBASI(J/UTEWO]

saanenul yireay uonendod ogroads-10 ur suoneodrdde [y jo Arewwung | a|qel

pringer

AQs



Digestive Diseases and Sciences

Table2 Summary of key cross-cutting challenges and mitigation strategies for the equitable, ethical, and effective implementation of AI in population-level gastroenterology and hepatology

public health

Mitigation strategies/best practices

Key challenges

Theme

Inclusive, representative datasets- Subgroup analyses and debiasing- Community

Bias from unrepresentative training data- Underperformance in LMICs- Risk of

Health equity

engagement in Al development- International collaboration and adaptation for

LMIC contexts
Federated learning and privacy-preserving techniques- Explainable AI- Mandating

exacerbating existing disparities

Data privacy and ethics Privacy risks from large, granular datasets- Inconsistent global data governance-

algorithmic transparency- Clear accountability pathways- Complementing, not

replacing, clinical judgment

Bias and inequitable model performance- Lack of transparency and explainabil-

ity- Unclear accountability for Al-driven errors

Harmonized cross-border AI governance- Lifecycle assessment of Al tools- Trans-

Regulatory frameworks Fragmented oversight, especially for population-level Al tools- Lack of clear vali-

parency mandates (e.g., EU Al Act)- Promoting clinician and public health Al

literacy

dation and monitoring standards- Uncertainty around accountability in public

health AI applications

Multidisciplinary collaboration- User-centered design and iterative improvement-

Implementation science Gap between high-performing Al models and real-world adoption- Data general-

Prospective real-world validation- Behavioral interventions (e.g., digital nudges)-

Focus on human and organizational factors for successful adoption

izability concerns- Black-box models undermine trust- Infrastructure and cost

barriers- Workflow integration challenges

Despite these promising results, several limitations
must be acknowledged. The exceptionally high detection
rates often reported arise from retrospective studies using
enriched image datasets under controlled conditions, which
may not reflect real-world practice. Performance typically
degrades in external or prospective validation, with sig-
nificant drops in specificity and positive predictive value
(PPV), raising concerns about false-positive findings and
overcalling of lesions. For example, broader evaluations of
Al-assisted gastric cancer detection reported pooled sensi-
tivity of &~ 86% and specificity of &~ 93%, indicating strong
but not perfect precision [63]. These findings suggest that
while Al can substantially reduce missed lesions, it should
currently be regarded as a supplementary tool rather than
a replacement for real-time expert judgment. Future work
must focus on prospective validation, improving specificity
and PPV, and testing across diverse clinical settings.

Deployment in high-incidence regions is already demon-
strating tangible benefits. In China, mass screening programs
for oesophageal and gastric cancer have integrated Al-based
image analysis to improve lesion detection and workflow
efficiency. One CNN trained on ~ 8400 oesophageal cancer
images detected lesions < 1 cm in size—frequently missed
by human observers—processing > 1100 test images in just
27 s [60, 95]. Similarly, population-based screening pro-
grams in China have shown that Al integration improves
early ESCC detection, thereby enhancing curability.

Al is also being applied to alternative, less invasive
modalities in settings where endoscopy is not widely fea-
sible. For oesophageal cancer, sponge cytology (e.g., Cyto-
sponge) analyzed with ML algorithms has achieved > 90%
specificity for distinguishing high-grade dysplasia from
benign changes, supporting its role as a triage tool for endos-
copy referrals [4, 98]. In radiologic screening, DL models
based on Faster R-CNN applied to barium meal studies
increased diagnostic accuracy from 89.3% to 96.8% while
reducing radiologist interpretation time. CNN-based mod-
els analyzing computed tomography images for oesopha-
geal cancer screening have achieved average accuracies of
86.4% +5.6% [61, 100]. Gradient boosting models combin-
ing non-invasive features such as Helicobacter pylori infec-
tion status, blood markers, and demographic data have also
demonstrated promising results [4, 61, 99].

In endemic regions such as the “oesophageal cancer belt”
(East Africa to Central Asia) and high gastric cancer preva-
lence areas (e.g., Andean South America), Al-supported
screening is being piloted to extend specialist capacity. In
Iran, Al-assisted minimally invasive endoscopic programs
have improved ESCC lesion detection and are being scaled
across rural provinces [64]. In Honduras, portable Al-
enhanced endoscopy is enabling non-specialists to perform
gastric cancer screening in remote areas, with Al guidance
improving accuracy [65, 66]. These examples illustrate the
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potential of Al to support task-shifting, empowering allied
health personnel to deliver effective screening in contexts
where gastroenterologists are scarce.

High-income countries (HICs) with established screening
programs, such as Japan, are at the forefront of integrat-
ing Al into endoscopy for workflow efficiency and quality
improvement [67, 68]. In contrast, most low- and middle-
income countries (LMICs) have yet to implement large-scale
upper GI cancer screening due to financial and infrastruc-
tural constraints. Al cannot overcome fundamental limita-
tions in endoscopic capacity but can increase the efficiency
and public health impact of limited programs. Key chal-
lenges for broader implementation include ensuring external
validation across diverse populations—since most models
are trained on East Asian datasets with limited generaliz-
ability—alongside regulatory approval, clinical safety moni-
toring, and cost-effectiveness evaluation [69, 70]. Economic
modeling suggests that even modest improvements in early
detection could make Al-assisted endoscopy cost-effective,
given the high costs of late-stage cancer care [9]. Moreover,
workflow optimization, reduced repeat procedures, and Al-
guided non-specialist screening could further offset costs.

Inflammatory Bowel Disease

Inflammatory bowel disease (IBD), comprising Crohn’s
disease (CD) and ulcerative colitis (UC), represents an
escalating global public health challenge. Historically con-
centrated in Western nations, IBD incidence and prevalence
have risen sharply in newly industrialized regions since the
late twentieth century, driven by urbanization, Westernized
diets, and changing environmental exposures [71]. Glob-
ally, the prevalence of IBD increased from approximately
3.3 million cases in 1990 to nearly 6.8 million cases by 2019
[72]. In one cohort, 2021 prevalence reached 218.3 cases per
100,000 people (77.2 for CD, 141.1 for UC), with incidence
trends continuing to rise steadily [73, 74]. This epidemi-
ological shift underscores the need for global health sys-
tems—including those in LMICs—to prepare for increasing
IBD burden. Al is emerging as a vital tool across multiple
dimensions of IBD public health: refining epidemiological
understanding, improving case detection and risk stratifi-
cation, quantifying broader societal burden, and advancing
precision prevention research.

Al is enhancing the granularity and accuracy of global
IBD surveillance. ML has been applied to model incidence
patterns across geography and time, supporting proactive
public health planning. A notable effort by the Global IBD
Collaborative used ML clustering to categorize countries
into four “epidemiologic stages” of IBD emergence and
spread, identifying regions such as parts of South Asia and
Africa where incidence is now rising and public health
infrastructure must be prepared accordingly. The ML-driven
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analysis confirmed that societal westernization consistently
precedes IBD emergence, informing policy planning on
specialist training and care capacity expansion [71, 73, 74].
Administrative data analyses using Al also offer robust prev-
alence estimates. In the Netherlands, a RF model achieved an
AUROC of 0.97 for identifying IBD cases in health records,
with a prevalence of 577.6 per 100,000 and an incidence of
20.1 per 100,000 in 2020 [75]. In the U.S., between 2001
and 2018, IBD prevalence rose with an annual percentage
change (APC) of 3.4% for CD and 2.8% for UC, with dispro-
portionate increases among non-Hispanic Black populations
(CD APC=5.0%, UC APC=3.5%) [73, 80]. These findings,
powered by Al, refine our understanding of evolving IBD
epidemiology and help guide resource allocation.

Although classic screening programs do not exist for IBD,
Al-driven tools can assist in case-finding and early interven-
tion. Al also supports risk stratification among diagnosed
patients. ML models have been used to predict healthcare
utilization, identifying the subset (~20%) of IBD patients
likely to drive 80% of healthcare costs through hospitaliza-
tions or surgeries [76]. Public health programs can lever-
age such models to prioritize intensive interventions (e.g.,
early biologic therapy, nurse-led care pathways) for high-risk
patients, improving outcomes and optimizing resource use.
Furthermore, AI models predicting premature mortality in
IBD have demonstrated AUROCS of 0.81-0.95, supporting
population-level risk assessment [77].

Beyond clinical endpoints, Al techniques enrich our
understanding of IBD’s broader societal impacts. NLP has
been used to analyze social media content and online patient
forums, providing real-time insights into quality of life and
unmet needs. For example, sentiment analysis of thousands
of Reddit posts from IBD communities revealed peaks in
negative sentiment correlating with known disease activity
trends, highlighting the potential of digital epidemiology to
complement traditional surveillance [78]. Al models applied
to insurance claims data further elucidate the economic
burden of IBD, identifying key cost drivers and informing
policy interventions. Such analyses support decisions around
subsidizing medications or investing in mental health sup-
port, aiming to mitigate indirect burdens such as work dis-
ability and reduced quality of life [79, 80].

Although IBD prevention remains complex due to its
multifactorial etiology, Geospatial Al analyses have identi-
fied IBD incidence clusters potentially linked to environ-
mental exposures such as pollution or climate factors, war-
ranting further investigation [81]. AI’s capacity to integrate
multi-omics data—encompassing genomics, transcriptom-
ics, proteomics, metabolomics, and the microbiome—fur-
ther advances understanding of IBD pathogenesis and pro-
gression. The Comprehensive Data Optimization and Risk
Prediction Framework (CDORPF), an ensemble ML model
trained on gut microbiome data, achieved classification
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accuracy, recall, and F1 scores exceeding 0.9 for IBD
risk prediction [82—84]. A RF model based on laboratory
markers attained AUROCS of 97% for CD and 91% for UC
[85]. Large Language Models (LLMs) are also transform-
ing population-level IBD research. Fine-tuned LLMs have
demonstrated high performance (F1 score improved from
0.7 to 0.82) in structuring unstructured histology and radiol-
ogy reports from EHRs, unlocking vast real-world data for
epidemiological analysis [84]. This capability accelerates
research and supports privacy-compliant, large-scale Al-
driven public health solutions.

AT’s role in IBD public health varies by region. In HICs,
where IBD care is advanced but costly, Al often enhances
efficiency—for example, predicting which patients may
avoid hospitalization or tailoring biologic therapy. In
LMICs, where IBD awareness and diagnostic capacity may
be limited, Al can help “put IBD on the map” by support-
ing case-finding and building virtual disease registries from
fragmented health data. International collaborations, such as
the Global IBD Visualization Project, are exploring feder-
ated learning approaches to enable Al training across mul-
tinational datasets without compromising data privacy [86].
This ensures that Al models become globally representative
and equitable. However, careful attention to data privacy,
algorithmic bias, and model generalizability is paramount,
particularly when leveraging sensitive multi-omics datasets
[83]. Equity concerns must also be addressed; as advanced
analytics improve IBD care in well-resourced centers, efforts
must be made to extend these benefits to underserved popu-
lations. Without intentional policy and implementation
efforts, there is a risk of an “Al gap” in IBD public health.

Other Public Health Applications
in Gastroenterology

Beyond specific disease-focused applications, Al is driving
innovation across several cross-cutting domains in GI public
health. These include dietary interventions and nutritional
epidemiology, health inequalities monitoring, digital health
promotion, and disease modeling for public health policy.
Together, these applications demonstrate AI’s expanding
role in precision public health, enabling more personalized,
efficient, and equitable GI health interventions.

Dietary Interventions and Nutritional
Epidemiology

Diet is a critical modifiable risk factor across a spectrum of
Gl diseases, including CRC, IBD, IBS, and NAFLD. How-
ever, conventional dietary assessment methods—such as
food frequency questionnaires and 24-h dietary recalls—are

labor-intensive, prone to recall bias, and of limited utility for
large-scale, accurate nutritional surveillance.

Al-assisted dietary assessment tools, integrated into
mobile or web-based platforms, are transforming this land-
scape. These tools are broadly categorized as image-based
(leveraging computer vision for food recognition and nutri-
ent estimation) and motion sensor-based (analyzing wrist
movement, jaw motion, and eating sounds to capture eating
occasions). Image-based tools can provide real-time, objec-
tive dietary data, substantially reducing recall and reporting
biases. For example, the SNAQ app demonstrated slightly
higher agreement with doubly labeled water (DLW), the
gold standard for energy intake measurement, than conven-
tional 24-h recall. Across studies, Al-based dietary tools
report accuracy ranging from 60 to 95%, making them viable
for both clinical and population-level applications [87].

Al also enhances the granularity of nutritional epidemiol-
ogy. Traditional analyses often focus on single nutrients; Al
enables the analysis of complex dietary patterns and their
associations with GI diseases. For example, ML has been
used to identify dietary patterns that correlate with higher
CRC risk in large cohorts—one study demonstrated that
high processed meat intake combined with low fiber intake
predicted CRC risk better than any single nutrient [7, 88].
These insights inform public health dietary guidelines.

At an individual level, Al is advancing precision nutri-
tion. In a randomized controlled trial for IBS, an Al-based
personalized diet intervention, which used microbiome and
dietary preference data to tailor recommendations, led to sig-
nificantly improved gut symptom scores compared to stand-
ard dietary advice [87, 90]. Furthermore, Al tools analyz-
ing genomic, metabolomic, and microbiome data are being
explored to guide dietary interventions aimed at enhancing
cognitive performance and mitigating gut-brain axis-related
symptoms—highlighting the relevance of diet to both GI and
neurological health [89].

The ability of Al-assisted tools to deliver real-time, objec-
tive dietary data at scale addresses a critical data gap in pub-
lic health nutrition. This enables more precise identification
of dietary patterns linked to GI outcomes, supports targeted
health promotion campaigns, and facilitates personalized
nutritional guidance. However, technical challenges such as
portion size estimation and data privacy concerns require
ongoing research and governance [90].

Health Inequalities Monitoring

Al offers powerful tools to reveal and address disparities
in GI health outcomes and care delivery. By mining large-
scale health data, ML algorithms can identify geographic,
racial, and socioeconomic patterns in disease burden and
healthcare access. For instance, a study applying ML to
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U.S. EHR data found that African American IBD patients
were less likely to receive high-quality care measures—an
inequity associated with higher hospitalization rates [5, 91,
92]. Similarly, predictive analytics in CRC screening have
been used to map neighborhoods with low screening uptake
based on social determinants, enabling targeted deployment
of mobile screening units.

Al can also model the equity impacts of interventions.
One simulation study demonstrated that if an Al-based
CRC risk stratification tool systematically underestimated
risk in minority populations due to biased training data, it
could exacerbate health disparities—prompting developers
to adjust algorithms to ensure fairness. Consequently, the
GI community is actively developing frameworks for ethical
Al deployment that mandate testing for algorithmic bias and
representation of diverse populations [91].

Digital Health Promotion

Al is enhancing digital health promotion in GI by enabling
scalable, personalized communication. Chatbots powered
by NLP are being used to educate the public about preven-
tive measures such as hepatitis vaccination and colonos-
copy preparation. In Latin America, a bilingual Al chatbot
promoting HBV vaccination engaged tens of thousands of
young adults at a fraction of the cost of traditional cam-
paigns [92, 93].

Al also enables targeted health messaging via social
media. Public health agencies can use algorithms to iden-
tify users at elevated risk (e.g., members of heavy alcohol
use forums who might benefit from information on alcohol-
related liver disease) and deliver tailored educational con-
tent. While this approach can amplify reach and engagement,
it raises privacy considerations that must be carefully man-
aged to maintain public trust [93, 94].

Gl Disease Modeling and Policy

Al-driven simulation models are increasingly informing
public health policy decisions in GI. Agent-based models,
for example, have been used to simulate HP transmission
dynamics in communities, allowing policymakers to test
the potential impact of interventions such as mass antibi-
otic treatment on future gastric cancer incidence. Similarly,
Al-driven economic models have evaluated interventions
such as food fortification with micronutrients to prevent
liver cancer by reducing aflatoxin exposure. These models
integrate complex, multifactorial data—including epide-
miological, behavioral, and economic inputs—into action-
able insights for resource allocation. However, the accuracy
of such models is highly dependent on data quality, which
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remains a challenge in LMIC settings where data may be
sparse or fragmented. International data-sharing initiatives
and collaborative modeling efforts are essential to improve
the robustness of Al-driven policy simulations.

Cross-Cutting Themes: Equity, Privacy,
Regulation, and Implementation

Al offers transformative opportunities for public health
applications in gastroenterology and hepatology, yet it also
raises several complex cross-cutting challenges that tran-
scend disease-specific domains. Key considerations include
health equity, data privacy and ethics, regulatory oversight,
and the practical implementation of Al in real-world health-
care settings. These factors must be addressed thoughtfully
to ensure that Al-driven innovations ultimately improve
health outcomes in an equitable, trustworthy, and sustain-
able manner.

Health Equity

Al has the potential to either exacerbate or ameliorate exist-
ing health disparities. The outcome depends critically on
how Al tools are designed, validated, and deployed. Unrep-
resentative training data can perpetuate bias; for example,
a CRC risk model trained primarily on European popula-
tions may underperform when applied to African or Asian
populations. Furthermore, algorithmic design choices may
inadvertently amplify inequities if they overweight factors
correlated with socioeconomic status or structural determi-
nants of health. To mitigate these risks, several best practices
are being adopted across the field. These include incorporat-
ing race and ethnicity as model inputs where appropriate,
conducting rigorous subgroup analyses, applying debias-
ing techniques, and ensuring that Al development teams
are diverse and inclusive [91]. Community engagement is
increasingly recognized as essential; the meaningful involve-
ment of underserved populations in Al tool development
can help identify and address potential inequitable impacts
early. In gastroenterology, frameworks have been proposed
to institutionalize practices such as bias audits, algorithmic
transparency, and diversity in research cohorts. Addressing
global disparities in Al development and deployment is also
crucial. The majority of Al studies in GI and hepatology
to date have been conducted in HICs, with relatively few
originating from LMICs. Without deliberate adaptation, Al
models developed in HICs may not generalize well to LMIC
contexts. Promoting Al literacy, ensuring inclusive data col-
lection, and fostering international collaborations are criti-
cal to achieving the WHO vision of an Al ecosystem that
advances health equity and the Sustainable Development
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Goals. The overarching goal is not simply to create power-
ful AT tools, but to do so in a way that leaves no population
behind [7, 91].

Data Privacy and Ethics

Al applications in GI public health rely heavily on large
datasets, including EHRs, imaging, genomics, and, increas-
ingly, non-traditional sources such as social media or mobile
phone data. This reliance raises significant concerns around
data privacy, security, and informed consent. Anonymiza-
tion techniques are essential but imperfect; as datasets grow
in size and granularity, the risk of patient re-identification
increases [95]. Furthermore, global variation in data pro-
tection standards—such as HIPAA (Health Insurance Port-
ability and Accountability Act) in the U.S. and GDPR
(General Data Protection Regulation) in Europe—creates
inconsistencies in data governance [96]. Particularly con-
cerning are novel data streams, such as internet searches
or phone metadata used for outbreak prediction, which
often fall outside established regulatory frameworks. Algo-
rithmic bias represents another critical ethical concern. Al
models trained on skewed datasets can exhibit differen-
tial performance across demographic groups, compound-
ing health inequities. In gastroenterology and hepatology,
where disease patterns vary significantly across ethnic and
geographic populations, ensuring that AI models perform
equitably across diverse groups is paramount. Transpar-
ency and explainability of Al systems are also essential for
ethical deployment. The “black-box” nature of many DL
models impedes trust and informed consent; patients must
understand how Al influences their care and have confidence
that its outputs are interpretable and accountable. Moreo-
ver, legal responsibility for Al-driven errors remains poorly
defined, raising challenging questions of liability [97]. To
address these concerns, federated learning is being explored
to enable collaborative model training without centralizing
sensitive data, while privacy-preserving techniques such as
differential privacy and homomorphic encryption further
enhance data protection. Promoting explainable Al is vital
to build clinician and patient trust, and regulatory guidelines
should mandate algorithmic transparency and clearly defined
accountability pathways. Ultimately, Al must complement—
not replace—clinical judgment, preserving the central role
of the physician—patient relationship.

Regulatory Frameworks

The regulatory landscape for Al in healthcare remains frag-
mented and underdeveloped. While regulatory agencies
such as the U.S. Food and Drug Administration (FDA) and

European authorities have approved clinical Al devices, such
as Al-based polyp detection in colonoscopy, oversight for
population-level health applications is less defined. Tools
used for screening prioritization or outbreak prediction often
lack clear regulatory pathways, creating uncertainty regard-
ing validation standards, accountability, and performance
monitoring. For example, if a public health department
employs an Al model to prioritize CRC screening for certain
groups, it remains unclear who is accountable if the model
underperforms or introduces bias. International initiatives
are beginning to address these gaps. The WHO’s Global
Initiative on Al for Health (GI-AI4H) emphasizes govern-
ance, transparency, and ethical principles for the adoption
of Al in public health. Similarly, the European Union’s Al
Act mandates transparency regarding data provenance and
model scope—an approach that could serve as a model for
global harmonization. Moving forward, harmonizing cross-
border data sharing and Al oversight, adopting risk-based
approaches and lifecycle assessments for Al tools, mandat-
ing transparency and data quality standards, and promoting
equitable infrastructure access will be essential. Addition-
ally, educating clinicians and public health professionals
about Al will equip them with the skills needed to critically
evaluate and safely integrate Al tools [92, 94, 96, 98].

Implementation Science

Perhaps the most underappreciated challenge in Al-driven
GI public health is the translation of promising models into
real-world impact. Many high-performing Al models remain
confined to academic publications, with limited uptake in
clinical or public health practice. Implementation science
provides valuable frameworks to address this gap. Key bar-
riers include data quality and generalizability, as many Al
models are trained on small, retrospective datasets that may
not generalize to diverse real-world populations; lack of
explainability, which undermines clinician trust; unresolved
ethical and legal concerns around accountability; high infra-
structure costs; and poor integration with existing clinical
workflows. Overcoming these barriers requires multidisci-
plinary collaboration, user-centered design, and rigorous
prospective validation. Behavioral interventions—such as
digital nudges—offer a promising pathway for promoting
Al-driven public health behaviors. Digital nudges have been
shown to significantly improve cancer screening adher-
ence, highlighting that human factors such as engagement,
usability, and clinician buy-in are as critical as technical
performance. Successful implementation examples, such as
Al-driven HCV screening in U.S. community clinics, under-
score the importance of iterative design and user training. In
one such case, initial resistance due to poorly designed alerts
and perceived workflow disruption was mitigated through
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redesign and staff education, leading to improved uptake
and testing rates. Ultimately, moving Al from bench to pub-
lic health impact requires robust pilot programs, real-world
validation, and a deep focus on the human and organiza-
tional factors that shape healthcare delivery. Without such
efforts, even the most sophisticated Al models will fail to
achieve their potential to improve population GI and liver
health [99-102].

Discussion

The evidence presented in this comprehensive review under-
scores the transformative potential of Al in advancing pop-
ulation-level gastroenterology and hepatology public health
goals. Al is fundamentally reshaping approaches to disease
surveillance, screening, risk stratification, and intervention
optimization, enabling a crucial shift from reactive to proac-
tive public health strategies.

Across diverse disease areas, Al has demonstrated con-
sistent and measurable quantitative improvements. In CRC,
Al models have significantly increased detection rates by
identifying non-traditional risk factors, potentially predicting
thousands of future cases and optimizing screening resource
allocation [103]. For MASLD, Al-developed non-invasive
tests show high diagnostic accuracy and sensitivity for fibro-
sis, with optimal predictive models achieving AUROCs
as high as 0.960 [104]. In viral hepatitis, Al models have
achieved exceptional precision (up to 97%) and accuracy (up
t0 99.56%) in identifying undiagnosed populations, offering
a powerful tool to accelerate progress toward global elimi-
nation targets GI infection surveillance is being revolution-
ized by Al’s integration with WBE, providing early warning
signals weeks before clinical cases emerge and capturing
a high percentage of outbreak variability [49, 50, 53]. For
upper GI cancers, Al-assisted endoscopy and non-invasive
methods have shown superior diagnostic rates and accuracy,
even outperforming human experts, thereby democratizing
early cancer detection, particularly in resource-limited set-
tings [60, 61]. In IBD, Al is enabling precision public health
by analyzing complex multi-omics data and predicting risk
with high AUROCS (up to 0.97), moving beyond broad epi-
demiological trends to granular, data-driven strategies. Fur-
thermore, Al-assisted dietary assessment tools are bridging
critical data gaps in nutritional epidemiology, providing real-
time, objective dietary data with high accuracy, enabling
more precise population-level nutritional interventions.

The synergistic potential of combining different Al
technologies—such as ML for risk stratification, NLP
for extracting insights from EHRs, and DL for advanced
image analysis—is immense. When integrated with novel
data sources like WBE, these combinations create powerful
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tools for comprehensive population health monitoring and
intervention.

However, realizing AI’s full transformative potential in
population GI health requires navigating significant over-
arching challenges. Systemic issues related to data qual-
ity, algorithmic bias, patient privacy, and the “black-box”
nature of many Al models remain substantial hurdles. The
“pacing gap” between the rapid advancement of Al tech-
nology and the slower development of adequate legal and
regulatory frameworks is a major constraint, hindering wide-
spread, ethical, and safe deployment [97]. Furthermore, the
observed disparities in Al research and implementation, pre-
dominantly concentrated in HICs with limited representation
from LMICs, pose a significant threat to global health equity.
If not addressed proactively, Al could inadvertently amplify
existing health inequalities by creating solutions that are not
generalizable or accessible to underserved populations [1].

Despite these challenges, significant opportunities exist.
Al can bridge existing resource gaps in healthcare, democ-
ratize access to specialized diagnostics, and enable person-
alized public health interventions at scale, particularly in
regions with limited medical infrastructure. The increasing
availability of large, diverse datasets (e.g., through EHRs,
multi-omics initiatives) and ongoing advancements in
explainable Al offer promising pathways to overcome cur-
rent limitations.

While AI demonstrates significant promise in improving
detection and risk stratification, its ultimate impact on pop-
ulation-level morbidity and mortality—such as a measurable
reduction in disease incidence, improved survival rates, or
decreased hospitalization rates—requires long-term, pro-
spective studies and successful implementation science. The
measurable benefits, such as increased detection rates and
improved diagnostic accuracy, are crucial steps, but their
translation into tangible health outcomes at the population
level is the ultimate measure of success. The observed dis-
parity in Al research and implementation, predominantly
in HICs, with a notable exception of China, highlights the
critical need for equitable development and deployment of
Al solutions tailored to the unique challenges and resource
constraints of LMICs. International collaborations and
knowledge sharing are paramount to ensure that Al benefits
all populations, not just those in well-resourced settings.

Conclusion

Al is unequivocally poised to become an indispensable
tool for advancing population-level gastroenterology and
hepatology public health goals. Its unparalleled capabilities
for enhanced surveillance, precise screening, targeted risk
stratification, and optimized intervention strategies offer a
transformative pathway to better health outcomes globally.
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To fully realize AI’s profound potential, concerted efforts
are imperative from researchers, policymakers, healthcare
systems, and industry stakeholders. These efforts must
address critical challenges related to data ethics, ensuring
privacy and mitigating algorithmic bias through diverse and
representative datasets. Regulatory harmonization across
international borders is crucial to provide a clear, consistent
framework for Al development and deployment, fostering
innovation while safeguarding public trust and accountabil-
ity. Furthermore, equitable access to Al technologies must
be prioritized, particularly for LMICs and underserved com-
munities, to prevent the exacerbation of existing health dis-
parities. Future endeavors must emphasize interdisciplinary
collaboration, robust real-world validation through imple-
mentation science, and a steadfast commitment to health
equity, ensuring that Al serves as a powerful force for a more
just and healthier world for all.
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