

RESEARCH ARTICLE

REVISED The artificial intelligence cooperative: READ-COOP,

Transkribus, and the benefits of shared community

infrastructure for automated text recognition

[version 2; peer review: 1 approved, 1 not approved]

Melissa Terras 101, Bettina Anzinger2, Paul Gooding3, Günter Mühlberger4, Michaela Prien², Joe Nockels⁵, C. Annemieke Romein⁶, Andy Stauder², Florian Stauder²

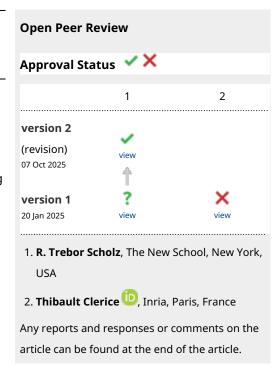
⁶Section Knowledge, Transformation & Society, KiTeS University of Twente, Faculty Behavioural, Management and Social Sciences (BMS), PO Box 217, 7500 AE Enschede, 1012 DK Amsterdam, The Netherlands

V2 First published: 20 Jan 2025, **5**:16

https://doi.org/10.12688/openreseurope.18747.1

Latest published: 07 Oct 2025, **5**:16

https://doi.org/10.12688/openreseurope.18747.2


Abstract

Background

Stakeholder input into Artificial Intelligence (AI) and Machine Learning (ML) is critical for creating AI systems that are both innovative and accountable. This paper examines READ-COOP (https://readcoop.eu), a platform cooperative that develops and hosts its own AI and ML Automated Text Recognition (ATR) tools (https://transkribus.org). This case study demonstrates an alternative cooperative governance model for technology innovation and creating responsible AI infrastructure.

Methods

We employ Reflection-In-Action and a qualitative Member questionnaire to document the development of READ-COOP from European Commission funded research project to independent cooperative. We assess the cooperative's structure, management, and community engagement from 2019 to 2024, including membership

¹Edinburgh College of Art, The University of Edinburgh, Edinburgh, Scotland, EH8 9BT, UK

²READ-COOP, Innsbruck, Tirol, 6020 Innsbruck, Austria

³Information Studies, University of Glasgow, Glasgow, Scotland, G12 8QH, UK

⁴Digitalisierung und elektronische Archivierung (DEA), Leopold Franzens Universität für Innsbruck, Innsbruck, Tirol, 6020 Innsbruck, Austria

⁵Digital Humanities Institute, University of Sheffield, Sheffield, South Yorkshire, S3 7QY, UK

dynamics, use, governance, and operational efficacy.

Results

As of October 2024, READ-COOP has 227 Members from 30 countries, and 235,000 registered User accounts. Transkribus has processed 90 million digital images of historical texts, demonstrating effective AI utilization in the cultural heritage sector, winning the European Union's Horizon Impact Award 2020. The cooperative approach facilitates democratic decision-making, leading to sustainable growth, and significant stakeholder involvement. Qualitative feedback indicates high levels of satisfaction with the cooperative's governance and the perceived integrity and utility of the AI infrastructure, while supporting exceptional engagement with technology innovation.

Conclusions

READ-COOP demonstrates that a cooperative business model has potential to sustain and support innovation in AI and ML infrastructures while promoting democratic participation and equitable ownership in particular contexts, in this case the cultural heritage sector. We suggest that cooperative frameworks are particularly suitable for AI infrastructures initially funded through public grants, providing a sustainable transition from public development to long-term, sustainable community-ownership, where focussed tool providers have adequate community support. We recommend wider application and exploration of cooperative models for innovation in AI and ML technologies for responsible creation, governance, and use, although we recognise READ-COOP's unique context, community, and success may be an outlier.

Keywords

Artificial Intelligence, Machine Learning, Handwritten Text Recognition, Automated Text Recognition, Digital Cultural Heritage, Innovation, Business Models, Cooperative Societies

This article is included in the Horizon 2020 gateway.

This article is included in the Artificial Intelligence and the Social Sciences and Humanities collection.

Corresponding author: Melissa Terras (m.terras@ed.ac.uk)

Author roles: Terras M: Conceptualization, Data Curation, Funding Acquisition, Investigation, Methodology, Project Administration, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Anzinger B: Conceptualization, Data Curation, Investigation, Project Administration, Validation, Writing – Review & Editing; Gooding P: Conceptualization, Methodology, Writing – Review & Editing; Mühlberger G: Conceptualization, Funding Acquisition, Investigation, Methodology, Writing – Review & Editing; Nockels J: Conceptualization, Methodology, Writing – Review & Editing; Romein CA: Conceptualization, Investigation, Methodology, Validation, Writing – Review & Editing; Stauder A: Conceptualization, Data Curation, Investigation, Project Administration, Software, Validation, Writing – Review & Editing; Stauder F: Conceptualization, Data Curation, Investigation, Project Administration, Software, Validation, Writing – Review & Editing

Competing interests: All authors are board members and individual members of READ-COOP, with the exception of Joe Nockels, who is a PhD student funded by Scottish Graduate School in the Arts and Humanities doctoral funding, Arts and Humanities Research Council (AH/R012717/1), with Transkribus as an industry partner, and Paul Gooding, who is a private member, also representing an institutional membership of READ-COOP. We believe the relationship to READ-COOP SCE is not problematic given that this paper details the history of READ-COOP SCE, which could only be written by those involved with the cooperative.

Grant information: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 674943 (Recognition and Enrichment of Archival Documents [READ]). This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No 600707 (TranScriptorium). Joe Nockels' PhD funding is provided by the Scottish Graduate School in the Arts and Humanities, Arts and Humanities Research Council, UK (AH/R012717/1).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2025 Terras M *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Terras M, Anzinger B, Gooding P *et al.* The artificial intelligence cooperative: READ-COOP, Transkribus, and the benefits of shared community infrastructure for automated text recognition [version 2; peer review: 1 approved, 1 not approved] Open Research Europe 2025, **5**:16 https://doi.org/10.12688/openreseurope.18747.2

First published: 20 Jan 2025, 5:16 https://doi.org/10.12688/openreseurope.18747.1

REVISED Amendments from Version 1

Based on helpful and detailed feedback from both reviewers, we have made extensive revisions to the paper. We've added nuance to our arguments, toned down any over-reaching language, and clearly defined the study's bounds and limitations, emphasizing READ-COOP SCE as a cooperative outlier. A new section details the cooperative's internal operations, highlighting how Members gain privileged access to the development team and contribute to transparent governance. We've differentiated Users and Members, ensuring clarity with consistent terminology. Additionally, a discussion now includes first mover advantages, network effects, and SaaS marketing strategies. We've consistently cited sources throughout, correcting any prior citation errors

Our revisions include added transparency regarding Member engagement, supported by meeting minutes and auditor records, which demonstrate above-average attendance and voting rates, countering critiques regarding low engagement. We've addressed survey response rates and motivations for joining, clarifying that engagement goes beyond accessing discounts. To further substantiate our claims, we acknowledge distinctions in cooperative governance and our unique business model, contrasting it with major AI providers.

These changes aim to provide a clearer understanding of our cooperative's framework, the active role of Members, and the business strategies that differentiate us. Our intent is to convey the significance of our approach in documenting AI cooperative models in a time of growing concern about responsible AI governance. We also discuss how unusual READ-COOP is, and that it may be an outlier in the coop space. However, we also demonstrate that operating as a cooperative has supported innovation activities of READ-COOP SCE, helping to contribute to Transkribus' success.

Any further responses from the reviewers can be found at the end of the article

Introduction

Computational systems designed to process and search images of historical documents using Machine Learning (ML) based Automated Text Recognition (ATR) including Handwritten Text Recognition (HTR) now produce results of high accuracy. Yet implementing a bespoke system is fraught with difficulties, particularly for users in the cultural and heritage sector, such as historians, librarians, and linguists, who want to generate accurate transcription of historical documents without necessarily programming up the solution themselves. Since 2015 the HTR platform, Transkribus (https://transkribus.org), has been offering a complete ingest, processing, and output service to generate high quality, accurate transcriptions from digital images of historical text, from any period or language. The first-to-market advantage has contributed to widespread uptake, with the resulting transcriptions underpinning thousands of research projects and hundreds of published papers, across a sweeping range of domains (Nockels et al., 2022). However, at the end of its European Commission funded development phase in 2019. the consortium of universities which developed Transkribus had to find a way to sustain the infrastructure and its community, while developing the platform and its Artificial

Intelligence tools further. The solution was to found READ-COOP as a European Cooperative Society (SCE, *societas cooperativa Europaea*): an independent legal entity with the objective of fulfilling the needs of its Members, where common goals are shared and all earnings are directly reinvested to improve the infrastructure and its service. While platform cooperatives are not known for undertaking technological innovation, the establishment of READ-COOP effectively socialises the focussed product it delivers, providing institutional alliances, and pooling technical expertise. READ-COOP was officially established on 1st July, 2019, and in doing so, became the first platform cooperative developing and hosting its own Artificial Intelligence and Machine Learning tools (the technologies which emulate human problem-solving capabilities).

We argue that the success of READ-COOP provides a blue-print for the establishment of other responsible and trustworthy AI cooperatives, where they could offer focussed technological platforms responding directly to specific sectoral needs, while undertaking innovation tailored to a particular context and community. Using a Reflection-In-Action methodology, this paper documents the development of Transkribus in the five years post research funding, continuing from the reporting in Muehlberger *et al.* (2019), providing a record of the establishment of READ-COOP, as well as detailing Transkribus' technical developments. In addition, a survey of the Members of READ-COOP enables discussion of how the cooperative supports the delivery of the platform, and the potential benefits that have been provided by maintaining and innovating an Artificial Intelligence infrastructure under shared ownership.

We argue that cooperatives are an underused legal and business framework that can provide opportunities for technological developments to ensure that they are more responsive to a defined community's requirements, and that they support accountability, as well as ensuring community engagement, which further supports sustainability, and the socialisation of technology platforms. We acknowledge that READ-COOP is highly unusual as a cooperative, having benefited from major EU grant funding and university facilities in its set-up phase. It also maintains a relatively niche technical infrastructure which is most used by researchers and institutions aligned to the specific library, archive, museum and wider cultural sector, benefiting from a first mover advantage and network effects in this space. Technical research and development activities that emanate from cooperatives have historically been rare, due to funding constraints and lack of access to knowledge and infrastructures. However, READ-COOP provides an exemplar which may be of use both to other technical providers, and researchers considering appropriate models to support the spinout of digital platforms, as it represents a move away from the exploitative, extractive financial models that underpin much of modern digital platform infrastructure. The success of READ-COOP indicates that a needed digital tool, originally supported by grant income and university support structures in the research and development phase, can find its independence and financial supporters, provided it is embedded within its own context.

We argue that engaging in ethical business practices (including recognising the not-insignificant investment of public funds in the start-up phase) encourages sustainability of digital platforms, while ensuring a defined, and engaged, user community. We suggest that funders and technology incubators should support researchers in exploring cooperative approaches to technology spin-out and commercialisation, while also providing recommendations regarding the type of community, application, and activities which are most suited to cooperative AI governance: those which host products successfully responding to particular sectoral needs, with a large enough potential community to support activities. We also suggest that, when carefully supported, cooperative practices support engagement in innovation, allowing communities to interact with platform providers to develop tools to best support their needs.

Throughout this paper we refer to READ-COOP as the cooperative legal entity and employed delivery team which provides Transkribus, the information extraction platform. Members of READ-COOP are institutions and individuals who have purchased shares in the cooperative. Users are all individuals who have created a user account for Transkribus, which includes cooperative Members and non-Members. We also refer to the wider cultural heritage community which encompasses Members, Users, and non-users.

1. Methods

In order to capture and document the development of READ-COOP, and consider the effectiveness of cooperative AI infrastructure, we use a case study approach choosing an example of what is to be studied as a bounded system (Flyvbjerg, 2011, 301): READ-COOP is the only platform cooperative we have identified that has developed and hosted their own AI and Machine Learning tools and is thus deserving of such attention. This, combined with Reflection-in-Action (Schon, 1983), allowed us to identify "features of the practice situation - complexity, uncertainty, instability, uniqueness and value conflict" (Schon, 1983, 18). Practically, an Action Research recursive methodology was used, where "continuing cycles of investigation designed to reveal effective solutions to issues and problems experienced in specific situations and localised settings, providing the means by which... organizations... may increase the effectiveness and efficiency of their work" (Stringer, 2013, 1) via a focussed process of inquiry that allows the development of explanations that lead to increasing understanding (Stringer, 2013, 5). This overlapped with collaborative self-ethnography approaches, where more than one researcher is involved in observing the interactions and behaviours of a group they are immersed in, using mixed methods "rather than just observation; participant observation... interviews, and other context-specific methods" (Clapp, 2017, 34). In practical terms, this led us to consider: minutes from READ-COOP Board meetings; formal and informal evaluation reports; records of weekly team meetings and monthly Members' meetings; posts to email lists and READ-COOP Slack Channel; and server reports regarding operation and usage of the system. Analysis was undertaken through regular team discussions on structured topics over a six-month period, with shared note-taking, interspersed with recursive co-creation, writing, and editing, setting aside periods of time to recover or locate dispersed information that had never been brought together, including using the Internet Archive (https://archive.org) (indicating the ephemeral nature of records covering routine business activity (Niu, 2025)). Complementing this, a survey of READ-COOP Members was undertaken, primarily to gauge their views of how READ-COOP was functioning, but also to consider wider aspects about the provision and sustainability of cooperative digital platforms. The survey was live between 21st September and 21st October 2023, hosted on Jisc Online Surveys (https://www.onlinesurveys.ac.uk), a GDPR (General Data Protection Regulation) compliant research questionnaire platform. The survey was only shared with READ-COOP Members, via email and Slack channels. We did not target a wider online audience, preferring to reflect on active membership of READ-COOP. The study did not store personal information or data related to protected characteristics, and presented results are fully anonymised, with consent given by participants for publication of their comments. These activities facilitated the development and identification of operational themes (Schon, 1983: 319; Stringer, 2013: 142). Research Ethics approval was given for this activity and method from the University of Edinburgh, as well as READ-COOP Board.

2. ATR, Transkribus and the READ project

Automated Text Recognition (ATR)¹ uses Machine Learning (ML) to generate accurate transcriptions from both print and handwritten mass digitised historical documents. This creates machine-processable text at scale, that can be then further searched, ingested, analysed or transformed, thus allowing libraries, archives, historians, and researchers greater, and more flexible, access to historic content. Since the mid 2010s, a range of software packages, tools, and infrastructures have existed in the ATR space², offering a variety of access to users and institutions, requiring differing levels of technical skills to implement or utilise them.

Transkribus (https://www.transkribus.org) was the first hand-written text recognition (HTR) platform to provide access to ATR without requiring users to set up or manage their own machine learning or AI infrastructure, offering a complete ATR digitization and analysis pipeline without the need for technical training or knowledge of HTR implementation. This, combined with its effective user retention mechanisms and a network effect which encourages further adoption (Belleflamme & Peitz, 2018), gained Transkribus significant "First-Mover Advantages" (FMA, see Kerin et al., 1992; Papachristos & Suarez, 2022), and the platform remains the market leader in

¹ Although many transcription platforms set out to deliver Handwritten Text Recognition (HTR), the term ATR (Automated Text Recognition) is now used to describe their activities given that print materials are also covered, see Hodel (2022) for a discussion on this shift in language.

These include: Aletheia (https://www.primaresearch.org/tools/Aletheia) (Clausner et al., 2014); eScriptorium (https://escriptorium.rich.ru.nl) (Kiessling et al., 2019); Kraken (https://github.com/mittagessen/kraken) (Kiessling, 2025); Leo (https://www.tryleo.ai), Loghi (https://github.com/knaw-huc/loghi) (van Koert et al., 2024); Monk (https://monk.hpc.rug.nl/monk/demo.html) (Schomaker, 2016); OCR4all (https://fortext.net/tools/tools/ocr4all) (Reul et al., 2019); Teklia (https://teklia.com) including its PyLaia ATR library (https://gitlab.teklia.com/atr/pylaia) and Arkindex platform (https://doc.teklia.com/arkindex/) (Tarride et al., 2024), and Callico tool (https://teklia.com/our-solutions/callico/) (Kermorvant et al., 2024); TranSKriptorium (http://transkriptorium.com which also emerged from partners in the READ project consortium) (Sánchez et al., 2024); and Verleden Tekst (https://www.verledentekst.nl).

this space. It currently operates as a successful digital cultural heritage platform infrastructure, although offering a suite of tools in a relatively new domain. While publicly available HTR models enable users to recognize text within handwritten documents with no need for custom training, Transkribus Users can train their own HTR models on transformerbased neural networks (to further increase accuracy of particular hands or style of handwriting) and undertake trainable layout recognition (making it easier to process documents with complex layouts such as newspapers, periodicals, postcards, logbooks, legal records or forms). User transcription data is used to further generate and improve models to benefit other Users; this is done with full consent, and we openly communicate that data may be used in this way, to build and offer new services. Large-scale computing is necessary to support this data transformation (although the level of this depends on a variety of factors, including size of collection uploaded, and whether or not bespoke models are trained). The data and documents are stored centrally to build up a large data pool (READ-COOP has approximately 400TB of unique data, and 1.2PB of gross storage capacity including backups) which can be utilized for all machine learning ATR processes, for instance the training of general language models and improvement of publicly available ATR (Colutto et al., 2019). A range of other tools are now being developed by Transkribus, allowing Users to present, search, and comment on ATR results, with a vision to use AI to "unlock the written past" (Transkribus, 2024c).

Transkribus outputs include transcripts, markup, and image segmentation, all exportable by Users. Users have full access to their data, which supports further research and development in an anonymized form. Collections, documents, semantics image segmentation, and ATR models can be shared, while core data infrastructure including our server components and ATR modules remains proprietary to support the business, as seen in Muehlberger et al. (2019). Users can become co-owners ("Members"), participating in meetings, communication, and decisions on technology development and commercialization. READ-COOP has faced criticism for not being fully "Open Source" or "Open Science" (Vicente-Saez & Martinez-Fuentes, 2018) due to its proprietary core infrastructure. However, openly publishing Transkribus' underlying model could lead to its misuse, threatening the READ-COOP business model and its community. Unlike major AI platforms, Transkribus prioritizes Member rights and transparent governance, aligning with FAIR data principles (Wilkinson et al., 2016) by being "as open as possible, as closed as necessary" (European Commission, n.d.). This approach addresses constraints such as the (often illegal) scraping of cultural heritage content by large AI providers (Brumfield, 2025; Bryant, 2025; Weinberg, 2025), and ensures balance between transparency and sustainability, protecting core systems for income generation, while Members enjoy significant rights.

READ-COOP (https://readcoop.org), and its Transkribus platform, emerged from two distinctive European Commission funded projects. TranScriptorium (2013–15, €2.4m)³, a

consortium led by the Universitat Politècnica de València, produced the processing pipeline to generate accurate transcriptions of historical texts from digital images of manuscripts using Machine Learning (Sánchez et al., 2014). This resulted in the launch of the Transkribus Graphical User Interface: a downloadable Java-based client programme for local installation but connected to the central server, created by the Digitisation and Electronic Archiving group at the University of Innsbruck, in 20154. The Recognition and Enrichment of Archival Documents (READ) project (2016–2019, €8.2m)⁵, led by University of Innsbruck, focussed on further implementation and development of the user-facing service. By the end of the €10.6m funded period in 2019, a freely available, functioning platform containing a workflow for submitting and processing images was available, that was capable of a CER (Character Error Rate⁶) of below 5% for handwritten text, and 1% for print material. This means that "AI is now enabling the near-perfect recognition of text from historical documents that were previously highly problematic" (Neudecker, 2022, 1). Details of the development of the underpinning technology at this point, including history, workflow and use cases, can be found in Muehlberger et al. (2019). By early 2019, Transkribus was a functioning virtual research infrastructure, with 20,000 registered Users, and signed memoranda of understandings with over 60 institutions and projects, including leading libraries and archives7. However, despite this success, the problem remained: how would it be possible to sustain the project and its platform after its grant funded period? The choice to establish the post-grant funded spin-out business as a cooperative, independent from the university context it emerged from, and the impact this has had on its development, Members, and Users, is the focus of this article.

3. Literature review: Business models for digital infrastructure

Maintaining and developing digital infrastructure is resource dependent, given platforms have continuous funding needs for maintenance, updating, and improvements, while managing technical challenges such as software obsolescence, data management, and cybersecurity, requiring a holistic view to be taken regarding digital sustainability (Stuermer *et al.*, 2017). Any would-be-provider will have to grapple with issues of income, revenue, and profit to be able to undertake even core activities. When reaching the end of their European Commission grant-funded phase, the READ project had to consider a variety of options to sustain a viable ATR infrastructure.

³ TranScriptorium, Project ID 600707, FP7-ICT-2011-9, European Commission (2015). See https://web.archive.org/web/20121201003048/http://transcriptorium.eu/, captured 1st December 2012.

 $^{^4}$ See https://web.archive.org/web/20150609184131/https://transkribus.eu/ Transkribus/, captured June $9^{\rm th}$ 2015.

⁵ Recognition and Enrichment of Archival Documents (READ), Project ID 674943, H2020-EINFRA-2015-1 European Commission (2016), https://read.transkribus.eu/

⁶ HTR and ATR systems use Character Error Rate to accurately measure output quality. Measuring and openly stating system performance in this way is more effective than sharing technical specification of models (such as parameters, or data storage size, which are often the only way that generative AI companies describe their systems, while withholding benchmarking metrics: there is a "significant lack of standardization in responsible AI reporting" (AI Index, 2024, 5)).

⁷ See https://web.archive.org/web/20190410062144/https://read.transkribus.eu/network/ captured March 6th 2019.

These decisions sit within a wider context of sustainability for cultural infrastructure, the business models that underpin digital platforms, cooperative approaches to business governance, and the aggressive capitalist approaches underpinning the rapid development of contemporary technology including AI.

3.1 The sustainability of digital cultural heritage infrastructure

In the Digital Humanities, a research methodology which foregrounds the use of digital technologies for the study of the Arts and Humanities, issues of sustainability, and lack of funding for supporting projects beyond their initial research grant-funded phase, are well known (Barats et al., 2020; Ross et al., 2024; Tucker, 2022). There are, however, a few options for generating continuation funding. For example, consider the staffing and infrastructure of Transcribe Bentham (https://blogs.ucl.ac.uk/transcribe-bentham/), the crowdsourcing project (Terras, 2015) which encourages volunteers to read and transcribe the writings of the philosopher and reformer Jeremy Bentham (1748–1832) (Causer & Terras, 2014). Transcribe Bentham provided the initial underlying training data for the Transkribus system. It continues to be supported by its host university department, UCL Faculty of Laws, following the completion of its varied grant funding (although this is a highly privileged and unusual arrangement given the current funding structures and financial constraints within Higher Education). A combination of institutional support and philanthropy can also support infrastructure, such as the Museum Data Service (https://museumdata.uk) (MDS, 2024). Crowdfunding is another potential funding mechanism which has had moderate success for resourcing non-commercial digital engagement projects in the Arts and Humanities (Verhoeven et al., 2013). An alternative is establishing a charity, with labour provided by volunteers and costs covered by donations and subscriptions: a route adopted by Programming Historian (https://programminghistorian.org), which supports humanists in learning a wide range of digital tools.

Commercialisation is another approach for generating income, with universities now undergoing significant pressure to explore market opportunities and undertake entrepreneurial activities (Compagnucci & Spigarelli, 2020). Unfortunately, while there are numerous commercial spin-outs that emerge from STEM (Science, Technology, Engineering, and Mathematics) disciplines, there are far fewer from SHAPE (Social Sciences, Humanities, and Arts for People and the Economy) fields (Black, 2022), and many of these are social ventures (companies with a social or environmental goal (Fellingham & Fraser-Walther, 2021)). In the Arts and Humanities, or the wider cultural and heritage sectors it is rare to make the journey from funded research project to self-sustaining, independent, commercial infrastructure.

3.2 Digital platform business models

There are a variety of potential income models that underpin digital infrastructures and allow continuation and development of service provision, and it is important to interrogate these, given limited resources (Ross et al., 2024). Models include: advertising, where advertisers pay based on engagement metrics; subscription-based models, where users pay recurrent fees; freemium models, where a basic level of provision is given for free while monetizing a subset of users who pay for enhanced service; surveillance and data analytics, selling user data to third parties for market research and targeted advertising; transaction-based models, which take a commission based on each successful trade; Platform as a Service (PaaS), offering tools to other providers to build on; crowdfunding; and partnering and sponsorship (Kim, 2019). Additionally, income may be raised via: grants that support R&D and innovation via government or charities (Jaskyte Bahr, 2019); venture funding or other forms of investment, where investors expect returns in the future (Woolley, 2017); and token sales, where a digital asset such as cryptocurrency represents ownership, membership and voting rights (for example initial DEX or COIN offerings offered by Decentralized Autonomous Organizations (DAO) (Rutskiy et al., 2023)). A combination of these would be suitable for providing an ongoing income stream for the Transkribus service in its post-grant phase, particularly the subscription, freemium, and token model, but others, such as advertising and data analytics, were not appropriate for the product, its market, or its user base. There are sensitivities given the public funding which supported the development of the underpinning algorithms and datasets that drive Transkribus, as well as ethical concerns regarding the nature of the personal, historical data flowing through the system, and information about its Users, none of which is likely, nor appropriate, to be monetizable under surveillance capitalism (Zuboff, 2019).

Most concerning is the nature of extractive commercial entities that deliver much large-scale technical infrastructure. Profit and growth motives drive late-stage capitalism: "there is one and only one social responsibility of business-to use its resources and engage in activities designed to increase its profits" (Friedman, 1970, 126). Now prevalent "shareholder-oriented capitalism" (Cheffins, 2021, 1607) means that large-scale technological providers are "... incentivized - and often obligated - to make whatever decisions will maximise shareholder profits without sharing those returns with workers or affected communities" (MSI Integrity, 2020, p.8). This "is driven by the dual imperatives of digital capitalism: extracting data from, and expanding control over, potentially everything and everybody", only advancing "the interests of corporate technocratic power... over other values like human autonomy, social goods, and democratic rights" leading to a "wide range of (un)intended and (un)known consequences" (Sadowski, 2020, p.5). The social, political, and economic dimensions of data are controlled by ever-fewer monopolies, intent on utilising data for capital accumulation, domination, and extraction (Huberman, 2022), with "our agency and autonomy becom[ing] further compromised" (Scholz, 2023, 138), resulting in a "race to the bottom in terms of wages and working conditions" (Schneider, 2021, 74). This has recently come to a head with the "near total 'capture' of AI research and deployment by corporations" whose "goal is to maximize corporate profit and to preserve (or even increase) the social

and political power that enables it" (Klein & D'Ignazio, 2024, 102) leading to "unequal, undemocratic, extractive, and exclusionary forces at work in AI research, development and deployment" (ibid, 100).

The business plans that underpin much of recent AI platform activity do not centre the sustainability or creativity of infrastructure, or the development of responsible AI (that which incorporates the benefits but mitigates the potential harms of AI, see Floridi et al., 2018). Instead, General and Generative AI is "Extractive AI" (Hogan & Lepage-Richer, 2024) which disrupts industries, markets, and employment practices (Furman & Seamans, 2019), causes environmental devastation (Hogan, 2024), and rides roughshod over intellectual property and human creativity (Lee et al., 2024), while concentrating wealth, resources, and power into a small technological monopoly which is increasing hard to dismantle (Hogan & Lepage-Richer, 2024). While most major AI companies do have Responsible AI statements, these exist firmly within the capitalist framework outlined above and are therefore performative (Kerr et al., 2020) rather than engaging in any meaningful way with critical ethical aspects such as beneficence, non-maleficence, autonomy, justice, and explicability (Floridi & Cowls, 2019). AI platforms tend to pursue monopolisation utilising shareholder value, lowering the efficiency of the market but concentrating their power, and acquiring innovative competitors. As a result, the end goal of most start-ups and spin outs in this space is the exit strategy - "the way funders and founders can cash out their investment..." but the focus upon this "leads to concentration in the tech industry, reinforcing the power of dominant firms. It short-circuits the development of truly disruptive new technologies that have historically displaced incumbents in innovative industries... the public loses access to many of the most promising new technologies... There has to be a better way." (Lemley & McReary, 2021, p.1). Instead, what would it mean to build a commercial digital infrastructure that prioritises sustainability, and keeping a service available for as long as possible? What would it mean to build an AI platform with and for and by a user community who were fiscally and intellectually invested in seeing it succeed?

3.3 Cooperative digital infrastructures

Cooperative infrastructures – jointly owned, democratically-controlled enterprises, by an autonomous community sharing economic, social, and cultural goals, with voting rights divided equally among members allowing them to engage with operational decisions (ICA COOP, 2024) – are a modern type of business with a relatively long history dating back to the early 1840s, with many diverse forms (Jones & Kalmi, 2013; Scholz, 2023). Cooperatives operate under seven key principles: Voluntary and Open Membership; Democratic Member Control; Member Economic Participation; Autonomy and Independence; Education, Training, and Information; Cooperation among Cooperatives; and Concern for Community (ICA COOP, 2024). They are historically found in the agriculture, finance, housing, and education sectors. Coops

have generally succeeded when they have mobilised community action to fill missing markets where there is a homogeneity of member interests (Hansmann, 1999; Hueth, 2014). This shared vision and ownership emphasises cooperation and inclusivity, for the benefit of all members, and there is evidence that the democratic governance can contribute significantly to socioeconomic well-being, and support training and development (Altman, 2009), thus advancing the UN's Sustainability Goals for reducing inequality while spurring economic growth (UN, 2023). Pérotin (2021, 18) discusses how worker cooperatives, by organizing production differently, tend to be more efficient than traditional firms, as evidenced by studies comparing their production functions. However, cooperatives have often been marginalised, and perceived as inefficient and ineffective, even though it has been shown that competitive marketplaces and cooperatives are not incompatible, and cooperatives have been resilient at times of economic crisis (Altman, 2009).

There has been growing interest in cooperative ownership models for modern digital infrastructure (Kelly, 2012; Scholz & Schneider, 2016; Scholz, 2023; Schneider, 2024), particularly in the delivery of microfinance and credit (Kandie & Islam, 2022), and platform cooperatives that "introduce economic fairness, training, and democratic participation in the running of online businesses" (Platform Cooperativism Cooperation, n.d.), provide shared community ownership for those selling goods and services in the digital economy. As of October 2024, The Platform Coop Directory lists 638 coops using digital infrastructure in 53 countries (https://directory. platform.coop/), for example the Drivers Cooperative in New York City, supporting fair driver pay and working conditions (https://drivers.coop). The distributed nature of platform coops may see "wider adoption and greater impact" than traditional brick and mortar cooperatives (Scholz, 2023, 11) and the potential "to diversify the digital economy and to respond to the extreme lack of workplace democracy and the varying degrees of exploitation on digital platforms" (Scholz, 2023, 6). This is not just altruism, but good business potential: research on start-ups shows that while, on average, only 44.1% of companies now survive their "difficult" first five years, "co-ops on the other hand have a survival rate of 80.4%" (Glover, 2019). However, "the market share of actually existing platform cooperatives remains close to negligible" (Schneider, 2021, 75. See also Schneider, 2018, 155-62). Most significantly, this is because of a lack of "start-up financing, which is already a major hurdle for traditional tech start-up entrepreneurs and becomes even more onerous for cooperative enterprises" (Scholz, 2023, 12). Other issues include regulatory barriers, and the need for policy "to ensure that community ownership is at least as available to the online economy as investor ownership has been" (Schneider, 2021, 76), as well as the need for barriers to be put in place "to constrain better-capitalized competitors that lack community accountability" (Schneider, 2021, 78).

Technological innovation in cooperatives can be hampered by lack of access to finance, the lack of access to external knowledge, and lack of skilled personnel (Basterretxea Markaida *et al.*, 2024). Despite these difficulties, recently some

⁸ See Macmillan and Cusworth (2019); McKillop et al., (2020); Ferreri and Vidal (2022); Noble and Ross (2021).

cooperatives have been established in the areas of development and hosting of software, data-led innovation, and data stewardship and governance. Cooperative ownership has been proposed as a new response "to the dilemmas of worldspanning digital platforms" giving opportunities for new efficiencies, improved internal regulation, and to prevent abuse of personal data (Schneider, 2021, 74). The Platform Coop Directory lists 67 software companies (https://directory. platform.coop/search/?s=Software). Many of these are building cooperative digital platforms for buying or selling services that bypass "Big Tech" providers, or groupware for collectives to support organisation, or provide access to worker collectives: see https://www.coops.tech for a further network of 37 cooperatives providing technology, digital, and creative services. Other data cooperatives deal with data stewardship, and open data services, enabling "the creation of open data and personal stores for mutual benefit" (Mannan et al., 2022, see also Mozilla Insights et al., 2020)9. The European Union's Data Governance Act (DGA) has, from September 2023, enabled greater access to data, and "explicitly includes services provided by data cooperatives" expecting them to "help user-members make informed choices" (Mannan et al., 2022, 13-14), although the Act has been criticised for mentioning this "in passing" being described as a "missed opportunity to establish data governance mechanisms that reflect a 'commons approach' to data governance" (Open Future, 2021), with Vogelezang and Keller (2021) noting "This concept should be better developed as it bears potential for users' empowerment in the online sphere".

In tandem to this, there are a growing number of blockchain-based Decentralized Autonomous Organizations (DAOs) that do not rely on a central authority for trust but facilitate "the creation of decentralized communities where participants have more direct control over decision-making processes" which "allow their members to control their own systems, made possible through the use of apps, dedicated digital assets, and rules they set themselves", which are aligned to the principles of cooperatives, although further research is needed to understand how this recent type of democratisation and governance works in practice (Peña Calvin, 2024). DAOs "circle of innovations and crises... presents an opportunity for reimagining networks along more democratic lines" (Schneider, 2024 p. 13). However DAOs also have a questionable environmental footprint given the "energy consumption in blockchain networks" which "remains a critical consideration in assessing the overall sustainability of decentralized systems" (Ekwere, 2024): a factor which is at odds with the cooperative principle showing concern for community. Nevertheless, these different discussions and proposals for cooperative approaches to digital infrastructures indicate that concept deserves further scrutiny.

3.4 Cooperatives and AI

As with the rest of the online environment, Artificial Intelligence and Machine Learning is becoming part of the cooperative digital landscape. Some digital service providers

are worker coops that provide access to machine learning expertise (for example https://www.animorph.coop, https://codeoperative.co.uk, and https://fiqus.coop/en/). Other data cooperatives may use AI or Machine Learning tools and libraries as part of their offering, particularly for data analysis, although it often remains unclear to what level they are engaging with, developing, scripting, or hosting AI themselves¹⁰. Although data cooperatives have emerged "as a cooperative format, there appears to be relatively less emphasis on AI within the cooperative movement" (Siebert, 2023). After a year-long search, we have found no other legally instantiated cooperative other than READ-COOP that openly develops, hosts, and promotes their own Artificial Intelligence or Machine Learning based platform to be used by others.

It is at this point that the reader may think of OpenAI (https://openai.com), the sector leading AI provider of ChatGPT, the Large Language Model based chatbot launched on November 30th, 2022. OpenAI was founded in 2015 with the goal of developing artificial general intelligence which "benefits all humanity" claiming to

"research generative models and how to align them with human values" being "governed by a nonprofit and our unique capped-profit model drives our commitment to safety. This means that as AI becomes more powerful, we can redistribute profits from our work to maximize the social and economic benefits of AI technology." (OpenAI, 2024).

These statements reframe familiar approaches from the cooperative playbook. However, although it was established as a nonprofit in 2015, in 2019 when needing to attract investment "OpenAI came up with a bizarre hack. It would remain a nonprofit... But it would also create a for-profit entity... Behold a company that, depending on your time-space point of view, is for-profit and nonprofit" (Levy, 2023, 73). Between 2015 and 2024, OpenAI raised \$17.9bn in investment (Tracxn, 2024). However, in September 2024 it announced plans to overhaul its corporate structure and become a for-profit business (Milmo, 2024). OpenAI is therefore one of the legion of AI firms disingenuously co-opting the language of the cooperative movement for profit, demonstrated by this alleged corporate messaging bait and switch. Companies allegedly do this to appear as if they are holding human cooperation at their core, while concentrating power by exploiting profit-hungry investors, and maintaining a monopoly while funnelling profits to shareholders. This is a type of alleged commercial activity that Muldoon calls

'community washing' – the corporate marketing strategy of framing the activities of the company in the language of community empowerment and fulfilling a social mission. The aim is to drown out questions of substantial user fees, tax avoidance, venture capital funding and the company's litigious history with stories... (Muldoon, 2022, 50).

⁹ Examples include MIDATA, a not-for-profit established in 2015 by Swiss researchers, supporting users control of their own health data (https://www.midata.coop/); and PescaData, a social enterprise improving data collection, communications and financial decision-making among small-scale fishing organisations in Latin America and the Caribbean (https://pescadata.org).

For example, Brightest's sustainability software platform uses AI-powered recommendation and productivity tools, see https://www.brightest.
io. The LBMX cooperative offers real time analytics for buying groups and purchasing cooperatives, see https://www.lbmx.com/. However, it is not clear who provides their AI tools.

Other venture-capitalist backed AI companies allegedly playing this "co-opt co-ops" game include the for-profit Humane (https://humane.com): "Technology that improves the human experience and is born from good intentions. Products that put us back in touch with ourselves, each other, and the world around us" (Humane, 2024). We notice how attractive the fundamental cooperative operating principles are in AI marketing, and we encourage criticality to distinguish these traditional companies driven by monopoly visions and profit-making shareholder imperatives from those which are legally established as cooperatives and fully operating under cooperative principles.

It is useful to consider why cooperative AI infrastructures are rare. Operating in the AI development space remains resource-intensive because of the cost of necessary computing and access to expertise: start-up costs must be covered before profits are made, whether through philanthropy, investment, or donation. Unlocking start-up funding for AI software development remains a significant barrier to establishing any type of commercial entity. This is currently coupled with a speculative rush to own potential future revenues in this space, and a hype cycle defensively using the cost of training ever larger general LLMs to shield flaws while blocking competition¹¹. These hurdles mean, despite a few exceptions¹², that AI is currently

concentrated in the hands of a very small number of companies with outsized access to compute resources and diminishing transparency. Without urgent action, the benefits that [it] can bring to the world may be equally concentrated (Nomic, 2023).

Core literature on platform cooperatives (Muldoon, 2022; Scholz, 2023) does not engage meaningfully with AI development, and researchers have not yet published on how AI fits alongside the cooperative model, although Scholz's

earlier work recognised that "design for tomorrow's labor market" will have to contend with AI (Scholz, 2016, 26), and Camargo Benavides and Ehrenhard (2021, 974) call for further study of cooperative enterprise in innovation, including AI. This lack of consideration of AI cooperatives may be because of the prohibitive start-up costs of AI infrastructures which sees few companies at all operating in this space, the lack of understanding of cooperative frameworks as even an option for businesses (Thorpe, 2019), or the relatively recent 2022 digital turn towards generative AI following the successful launch of the likes of ChatGPT which means AI cooperatives are still in gestation and will perhaps (or hopefully?) follow, meaning there are few available to discuss.

Yet the cooperative principles have much to offer particularly in the development of "responsible" AI: that which is developed and used in a legal way, without causing harm on perpetuating bias (Floridi et al., 2018). In their 2019 study, Floridi and Cowls distil six of the highest-profile sets of ethical frameworks for AI13 into five overarching principles underpinning a unified framework for the responsible use of AI in Society: Beneficence (Promoting well-being of humans and sustainability for the planet); Non-Maleficence (Ensuring AI systems do not harm and promote privacy and security); Autonomy (Balancing human decision-making power with the growing autonomy of AI); Justice (Ensuring fairness, eliminating discrimination, and promoting equal benefit); and Explicability (Making AI systems transparent and understandable to ensure accountability). These can be mapped directly only the 7 cooperative principles (ICA, 2024), as in Table 1, demonstrating the synergies between the two frameworks.

This mapping both indicates the suitability of cooperative principles for responsible and transparent AI governance and operationalisation, while also demonstrating two aspects missing from high level principles of responsible AI¹⁴: appropriate

¹¹ Throughout 2023, although there was a decline in AI private investment overall, "funding for generative AI surged, nearly octupling from 2022 to reach \$25.2 billion" (AI Index Report, 2024, 5).

¹² At time of writing (October 2024) there are a few non-profit AI companies in operation. AllenAI (https://allenai.org/) is "a non-profit research institute founded in 2014 with the mission of conducting high-impact AI research and engineering in service of the common good" (AI2, n.d.) EleutherAI (https://www.eleuther.ai/) "is a non-profit AI research lab that focuses on interpretability and alignment of large models" (EleutherAI, 2023). Both are dependent on external resources, whether that is philanthropy (in the case of AllenAI) or access to processing infrastructure, which is how the community research group EleutherAI began, before formalising as a nonprofit foundation in 2023 funded by donations and grants (Wiggers, 2023). There is also much activity happening in the open-source AI movement, such as LLM360 (https://www.llm360.ai) which provides "fully accessible, open-source LLMs... Together, we can make AI research more open, transparent, and trustworthy" (LLM360 Team, 2023), and Nomic (https://www.nomic.ai), who state that "it's critical to maintain a vibrant, collaborative, open-source ecosystem... freely accessible code, datasets, documentation, and model weights are all crucial for AI auditability and explainability". Nomic raised investment to support their activities (Nomic, 2023), and the commercial business model for open-source software development is well understood, sitting together with more ethical and responsible approaches to software and platform development (Shahrivar et al., 2018). Together (https://www. together.xyz) is another for profit operating in the open-source AI space, again using cooperative language: "We build everything with the purpose of benefiting society" (Together, 2023). However, for the most part, different, non-pure-profit approaches to AI infrastructures remain rare.

¹³ The six declarations including in Floridi and Cowls' analysis are the Asilomar AI Principles, developed under the auspices of the Future of Life Institute (2017); The Montreal Declaration for Responsible AI developed under the auspices of the University of Montreal (2017); The General Principles offered in the second version of Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems (IEEE, 2017); The Ethical Principles offered in the Statement on Artificial Intelligence, Robotics and 'Autonomous' Systems, published by the European Commission's European Group on Ethics in Science and New Technologies (EGE, 2018); The 'five overarching principles for an AI code' offered in UK House of Lords Artificial Intelligence Committee's report, AI in the UK: ready, willing and able? (House of Lords, 2018); and The Tenets of the Partnership on AI (Partnership on AI, 2018).

¹⁴ Some of the declarations have vague nods to cooperative principles. The Asilomar Principles include the need for both "shared benefit" and "shared prosperity" from AI (Future of Life Institute, 2017). IEEE acknowledges that "Measuring and honoring the potential of holistic economic prosperity should become more important than pursuing one-dimensional goals like productivity increase or GDP growth" (IEEE, 2017, p.2). EGE states that "A spirit of global cooperation and public dialogue" (EGE, 2018, 17) is required for regulation of AI development and application. Tenets explains that it will "remove ambiguity by building a culture of cooperation" (Partnership on AI, 2018). However none of these declarations suggest any vehicles for doing so, nor do they interrogate underlying business or community support models.

Table 1. The 7 Cooperative Principles (ICA, 2024) mapped onto Floridi and Cowls (2019) 5 principles of AI in society.

Cooperative Principle	Map to AI in Society Principles	Explanation
Voluntary and Open Membership	Justice	Justice, which emphasizes fairness and elimination of discrimination, aligns with open membership without discrimination and democratic approach.
Democratic Member Control	Non-Maleficence	Non-Maleficence in AI promotes system security and privacy, aligning with cooperative values of accountability to members and maintaining control.
Member Economic Participation	None specifically mentioned	The AI ethics principles do not directly address economic participation or financial management aspects typical of cooperative principles, such as reinvesting profits.
Autonomy and Independence	Autonomy	The principle of autonomy, which underscores balanced decision-making between humans and AI, maps directly to cooperatives' emphasis on self-rule and member independence.
Education, Training, and Information	Explicability	Explicability in AI involves making systems transparent and understandable, which enhances user and developer knowledge, paralleling cooperative education goals.
Cooperation among Cooperatives	None specifically mentioned	The AI ethics principles do not explicitly cover collaboration or solidarity among providers, technologies or their users.
Concern for Community	Beneficence	Beneficence, focused on well-being and sustainability for AI, maps directly to cooperatives' goal of community-oriented sustainable development.

management, governance and sharing of financial assets; and cooperation, collaboration, or solidarity between systems, technologies, or user bases. The cooperative principles are therefore a useful lens through which to consider the governance and organisation of responsibility and trustworthy AI, and we suggest responsible AI frameworks could be further expanded to encompass financial and community aspects¹⁵.

Despite the attractiveness of cooperative language as a marketing tool for profit-driven AI companies, and the attractiveness of the cooperative model for the development of responsible and transparent digital platforms, we only know of one platform cooperative at time of writing who has developed and hosts their own AI and Machine Learning tools: READ-COOP (https://readcoop.eu/), which is thus worthy of study and documentation.

5. Case study: READ-COOP

Transkribus (https://www.transkribus.org) is now managed by the independent READ-COOP (https://readcoop.eu) but emerged from an earlier set of EU funded projects and university-led collaborations. Reviewing the growth and development of the platform, its community, and its cooperative can also reveal how

important the cooperative structure has been to the infrastructure's success

5.1 Origins: TranScriptorium and the READ Project

Transkribus was conceived and launched in February 2015 with funding from the European Commission's Seventh Framework Programme (FP7-ICT¹6), as part of the TranScriptorium project (2013–2015), led by Universitate Politecnica de Valencia (EC, 2015), which focussed on the computational research necessary for accurate Handwritten Text Recognition (HTR). A successor European Commission Horizon 2020 funded project¹7, READ (2016–2019), led by the University of Innsbruck, aimed to maintain, develop, and promote a functioning online research infrastructure where new technologies could feed innovation in archival research (EC, 2016).

A recursive development and testing phase then ensued to develop its HTR, with a variety of heritage partners, researchers, Users, and tools development teams which were part of the

¹⁵ There is a need for further work to undertake a similar mapping of a range of business models and activities to responsible AI principles, such as B-Corps (for-profit corporations certified for their social impact), and 501(c) non-profit organisations, unpicking the very nature of businesses and how their economic mechanisms affect their approach to responsible and transparent AI.

¹⁶ FP7-ICT - Specific Programme "Cooperation": Information and communication technologies (https://cordis.europa.eu/programme/id/FP7-ICT/en). ICT-2011.8.2 - ICT for access to cultural resources (https://cordis.europa.eu/programme/id/FP7_ICT-2011.8.2/en).

H2020-EU.1.4. - EXCELLENT SCIENCE - Research Infrastructures (https://cordis.europa.eu/programme/id/H2020-EU.1.4./en). H2020-EU.1.4.1.3. - Development, deployment and operation of ICT-based e-infrastructures (https://cordis.europa.eu/programme/id/H2020-EU.1.4.1.3./en). EINFRA-9-2015 - e-Infrastructures for virtual research environments (VRE) (https://cordis.europa.eu/programme/id/H2020 EINFRA-9-2015/en).

READ programme (Perdiki, 2019; READ-COOP, 2023a). The Transkribus GUI (Graphical User Interface) stabilised with the early 2017 release of version 1.0 of the downloadable desktop "eXpert Client" (see Figure 1), written in Java and C++ alongside OpenCV and JV (Kahle *et al.*, 2017). This was the main way Users interacted with Transkribus to undertake transcription from 2017, until the launch of the web client in 2021, and the depreciation of the eXpert client in August 2023 (Transkribus, 2023c). Users upload image files of manuscript material, with text baselines automatically detected. An annotation tool, and user-friendly interface, allows correcting of automated transcription, which can lead to training of bespoke HTR models, if necessary (see Figure 2)¹⁸.

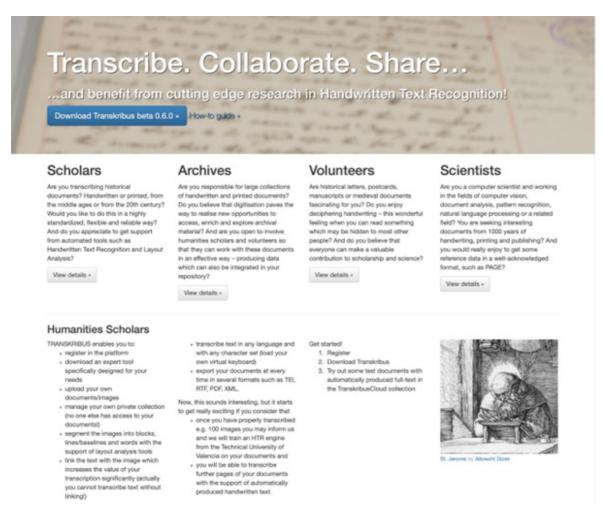
Between 2017 and 2019, continual development and integration of new advances in HTR occurred in the platform, such as the 2018 integration of Key Word Spotting and Apache Solr indexing solution enabling full-text search, which saw average Character Error Rates (CER) for handwritten material fall from 12% to 6%, and in some cases achieve a CER of 5% (READ-COOP, 2023a). The development and operation of Transkribus software by the Recognition and Enrichment of Archival Documents (READ) project is fully documented in Muehlberger *et al.* (2019), with a more technical overview given in Colutto *et al.* (2019), and a detailed development timeline is also available (READ-COOP, 2023a).

The Transkribus user community developed throughout the READ project coalesced around online fora, and in person user conferences held in Vienna in 2017 and 2018. By November 2018 the still free-to-access Transkribus HTR platform had 15,000 users, which grew to 20,000 by March 2019, with word of mouth of this spreading within the archival, library, and Digital Humanities community (See Perdiki (2019) for an overview of how the platform operated at this time, including various screenshots). By this point, the platform was processing 100,000 documents and registering a maximum of 300 new Users per week (Colutto et al., 2019, 464). Transkribus had also built up a large machine-learning model for HTR (the millions of human interactions in correcting HTR generate reliable training data to improve the system), which was becoming increasingly accurate, achieving an average CER of 5% in validation-set scores, and therefore could be usefully applied to a wide range of primary source materials, increasingly print as well as handwritten materials. Users were training more than 200 bespoke ATR models every month, further increasing the accuracy of the system (training models incurred a small cost, operating under a freemium model). These growing digital assets alone were unique: "We assume that one would need to invest at least €2-3m for generating these data from scratch. It is to our best knowledge already today the largest and broadest HTR data set for historical scripts worldwide" (Colutto et al., 2019, 464).

However, the grant funded period of READ (which had effectively given Transkribus start-up funding) ended on 30th June 2019, meaning that a new entity needed to be established to continue access to the platform, steward its digital assets, and also to provide income to ensure its sustainability and fund its continued development. On 1st July 2019 the READ project turned into a European Cooperative Society (SCE) with limited liability, independent from the University of Innsbruck. Six years later, READ-COOP SCE remains the legal entity which maintains and further develops the Transkribus platform.

5.2 Establishing READ-COOP

The establishment of READ-COOP came about after years of planning and ideation by the Principal Investigator of READ, Dr Günter Mühlberger, lead of the Digitalisierung und Elektronische Archivierung (DEA) at the University of Innsbruck, Austria. In 2012-2013, Mühlberger had been discussing the possibility of bringing universities together in a cooperative to access cheaper Optical Character Recognition (OCR) at wholesale prices due to volume. Mühlberger and Andy Stauder, who was also working in the DEA, consulted with the cooperative counselling service of the Raiffeisen-Landesbank¹⁹ Tirol, an Austrian grouping of cooperative banks based in Inns-(https://www.raiffeisen.at/tirol/rlb/de/privatkunden.html), that provides support for others wishing to establish similarly structured businesses. Although the proposed OCR cooperative was not established, the seeds for READ-COOP were planted, first appearing in the READ project proposal submitted to the European Commission in January 2015. The Impact section of the 2015 proposal required a Draft Business Plan for post-funding continuation of activities, in which an independent organisation was proposed, to be established during the funded lifecycle of the project, as part of a work package (WP3 Network and Business Development). In this proposal, Mühlberger noted:


If we consider an independent organisation we can see various attempts made in the last years to establish independent organisations arising from EU funded research projects, especially in the digital library domain... The legal models used are foundations, registered associations, or limited liability companies.

Horizon 2020 calls for "New forms of innovation in the public sector, open government, business model innovation"²⁰, therefore we like to mention a governance model, which does currently play no role in the discussion, but has proved to be a highly successful model: **the cooperative**. With the concept of "Shareconomy" cooperatives are now discussed as an innovative business model which fits very well to some of the requirements of the new economy. And indeed, cooperatives offer a

¹⁸ The document upload is NL-AhGldA_2000_4787, Landdags- en kwartiersrecessen met bijbehoorende stukken. 1696, from the Gelders Archief Arnhem (https://permalink.geldersarchief.nl/80A31735FD2848628582 F7558E8DCA67). No known copyright.

¹⁹ Friedrich Wilhelm Raiffeisen (1818–1888 was a German banker and pioneer in the cooperative movement, playing a key role in the establishment of rural credit unions. Various cooperative banking structures now bear his name (Deutscher Raiffeisenverband e.V., n.d.).

²⁰ https://www.h2020.md/en/content/europe-changing-world-inclusive-innovative-and-reflective-societies

Figure 1. The original Transkribus website (https://transkribus.eu/Transkribus/), at June 2015. Available from https://web.archive.org/web/20150606154718/https://transkribus.eu/Transkribus/.

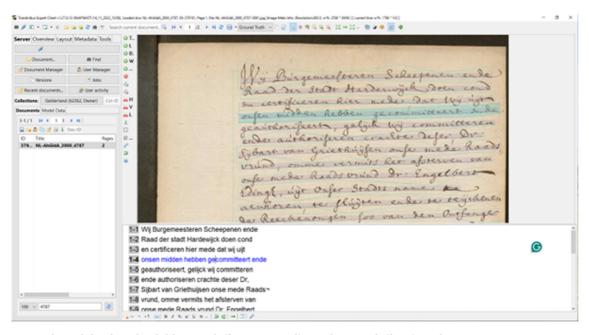


Figure 2. Screenshot of the downloadable Transkribus eXpert client (the Transkribus interface 2017–2023).

number of advantages compared to the legal entities mentioned above. Cooperatives are not geared toward maximizing profits, but focus on optimizing their service for the co-op members who are also shareholders of the co-op. However, the co-op acts in a commercial manner with its members, as its services are completely offset and subject to supply and demand. The members are by no means compelled to purchase a certain service from "their" co-op, provided this service can be bought cheaper on the market. In this way co-ops manage to find a balance between the effectiveness of a private company and the collaborative spirit among communities following the same mission.

Additional special features of co-ops include their direct democratic constitution as well as the legal coverage of a member in the event of bankruptcy. Austrian cooperative law, for instance, ensures that in the event of bankruptcy, no more than twice the amount of the purchased share certificate is owed. Also mentioned is that the share certificates in a cooperative, contrary to other legal forms, can never become an item of speculation as the sale can only ever occur based on the nominal value thereof, but not based on the actual value of a cooperative. It will be an important task in WP3 Network and Business Development to make deeper investigations into this matter and to prepare an informed decision. (Muehlberger, 2015, 42–43).

Interest from the Transkribus community was strong. However, support from incubators supporting companies "spinning out" from academic research was less forthcoming, given the more established route to establishing Limited Liability Companies that usually incorporates the university as a shareholder: READ would be the first spin out company in Austria to be set up as a cooperative. Ongoing discussions with Daniel Wibmer from the Raiffeisen co-operative founding consultancy service, and Günter Scheide from the Transfer Office Science - Business - Society at the University of Innsbruck, resulted in a presentation at the READ project meeting at Obergurgl in 2018 where the first version of the statutes of READ-COOP²¹ were considered by the community: a proposal for a European Cooperative Society.

A European Cooperative Society (SCE)²² is not a "not for profit". It is a company that is obliged to make a profit, operating freely on the market: however, it gives both individuals and public institutions the chance to become co-owner of a company which is doing a service that is interesting and useful for them. The SCE is a legal entity that can be established by 5 or more European citizens (or a combination of natural persons and legal entities) from more than one EU country to

allow its members to carry out common activities with limited liability, with a principal objective to satisfy its member's needs. The condition of the SCE for transnational links reflects those already underpinning Transkribus' development, given the READ Horizon 2020 funded project included researchers from 16 universities in 8 European countries, with 60 Memorandums of Understanding signed with other universities and research groups: READ-COOP could build on this network.

An SCE requires a minimum capital requirement of €30,000 (EC, 2011): the initial capital for READ-COOP came from the first Members' shares and income from large-scale processing projects which had been contracted during the READ project by Günter Mühlberger, including: processing mass digitised manuscripts from the National Archives of the Netherlands (https://zenodo.org/records/6414086); transcribing Finnish court records for the National Archives of Finland (https://tuomiokirjat.kansallisarkisto.fi); and the Greifswald project, providing full text searching of German legal documents from the Baltic sea region (https://rechtsprechung-im-ostseeraum. archiv.uni-greifswald.de).

After months of research, negotiations with stakeholders, and administrative preparations including the gathering of letters of intent to become cooperative Members primarily from the institutions who had previously signed Memoranda of Understanding (MoUs) with Transkribus, the founding ceremony of READ-COOP SCE took place on 1st July, 2019. There were 12 original signatories with a range of private, institutional, and commercial Members, including Leopold Franzens Universität Innsbruck, Austria (where the READ project had been based); Universität Greifswald, Germany (Dirk Alvermann, Head of Archives at Greifswald was an early and vocal supporter); Innsbruck University Innovations, Austria; Naver Labs Europe, France (a computer vision company partners in the READ project); Günter Mühlberger, Austria (TranScriptorium co-investigator and READ project lead); and Melissa Terras, United Kingdom (who had been a co-investigator of TranScriptorium and READ). READ-COOP SCE with limited liability was formally established and registered in the Austrian company register on November 15th 2019, with the identification number FN 520187g (https:// justizonline.gv.at/jop/service/fba/teilauszug/520187g). Ongoing support from Innsbruck University Innovations (https://innovation-innsbruck.at), such as access to working space, and university technical infrastructure, was crucial in the first few months until income streams began to flow. By this point more than 30 institutions and private persons had formally joined the cooperative (READ-COOP, 2019). The original membership base in Germany, Austria and the Netherlands began a combined network effect (Belleflamme & Peitz, 2018), reinforcing user retention and adoption in this concentrated and focussed market.

5.3 READ-COOP Structure

READ-COOP's organisational structure is set out in its statutes (READ-COOP SCE, 2022). READ-COOP has a Board of two to five directors, appointed for a maximum of three

See https://readcoop.eu/wp-content/uploads/2020/05/Statutes_READ_COOP_SCE_current.pdf for current versions of the statutes.

https://single-market-economy.ec.europa.eu/sectors/proximity-and-social-economy/social-economy-eu/cooperatives/european-cooperative-society-sce_en

years, who are responsible for managing the SCE, subject to the European Council regulation on European Cooperative Societies (Council Regulation (EC) No 1435/2003), Austrian cooperative and company law with respect to the preparation of its annual financial statements and management report, and subject to annual independent cooperative auditing. At least two individuals serving on the Board are employees. READ-COOP Board oversees business operations including arranging the General Meeting, the appointment of Executive Directors, and are involved in strategic decisions.

READ-COOP directly employs a range of individuals, including Co-Executive Directors, Research and Software Engineers, Marketing and Customer Success Consultants, Content Managers, and Administrative support (https://readcoop.org/team). The team structure combines technical expertise with user- and market-oriented roles, reflecting dual attention to development of technologies and integration of user perspectives. Employees report to the Co-Executive Directors, who report on operations to the Board. There are weekly All-hands meetings where employees and board members discuss activities and an active private Slack channel. Complementing the All-hands meetings, a system of domain-specific meetings supports coordinated decision-making, information sharing, and planning across the organisation. Employees are encouraged to become Members of READ-COOP, although this is not mandatory.

Members of READ-COOP (those who join by purchasing a share of the cooperative and paying an annual fee) can be Ordinary Members (natural or legal entities eligible to use the cooperative's services) or Investing Members (not eligible to use the services but interested in the cooperative's purpose, such as research institutions or public authorities). Members formally exercise their statutory management rights in votes on key decisions, including amendments to statutes and policies, and overseeing financial matters. General Meetings may be convened by the Board as an ordinary or extraordinary meeting as needed. A monthly Members' meeting is held online, with various talks, updates, and discussion points. Newsletters are circulated regularly. Members are communicated with often on Slack, to encourage community, dialogue, and information exchange, as well as feature development, bug-reports, and reporting of any incidents on productive systems. Employees of READ-COOP are encouraged to engage in these online Member discussions, for example the very active "ask-product" channel, which has multiple daily interactions with employees and Members. A "Weekly Read" Transkribus news keeps staff and Members informed.

All Users of Transkribus (i.e. individuals who create user accounts to access and use Transkribus tools) are encouraged to attend the Transkribus User Conference (TUC), held in hybrid format approximately every eighteen months. The TUC reserves presentation slots for Early Career Researchers and low-income Users, who can gain supported access to processing via the Transkribus Scholarship Programme. Users are also contacted by a variety of digital methods including newsletters, and social media. Users are encouraged to become Members,

but this is not mandatory. Users can interact with the READ-COOP team via help desk function but cannot access Members discussions and meetings.

5.4 READ-COOP growth 2019-24

Since the creation of READ-COOP SCE in 2019, Transkribus has continued to be developed, the cooperative membership has expanded, and registered Users of the software have increased. The number of pages processed continues to grow, and more new models are being developed, including those openly published to be reused by others. The revenue stream supporting Transkribus has diversified, to move from the freemium to software-as-a-service (SaaS) model²³ (still with a number of free credits to support trial and experimentation with the platform), and the platform also generates income from large scale ATR contracts. It is useful to look at the documentation surrounding this to understand the functioning and culture of the cooperative, including the growth of number of individuals employed to service the community, which also indicates READ-COOP's positive economic impact, mostly in Austria.

5.4.1 Membership. Growth in membership has been steady, showing the support for the Transkribus infrastructure, and willingness to be involved in the community (see Figure 3). Managing Director of READ-COOP, Andy Stauder, commented in 2021:

We knew that right from the start there would be some Members, because we had collected letters of intent, in order to have a somewhat safer ground on which to build the whole thing. But that it would become such a successful model and that we would make it across the pond, among other things - Stanford University recently made its commitment to membership - is something we never expected and that it would happen in such a short time. (Translated from the German, Transkribus, 2021a).

As of 11th October 2024, there were 227 Members of READ-COOP. There are two distinct ways to become a Member. Individuals can join as private persons, for a membership fee of €250 which gives one share (individuals can have a maximum of 1 vote), with an annual individual membership fee of €62.50 (including VAT). Institutions can join by purchasing 4 shares at €250 each (which translates to one vote). The maximum number of votes that can be cast by an institution is 5, which can be reached by purchasing 20 shares. The number of shares an institution can purchase is unlimited (allowing them a vehicle to further invest in the infrastructure) but has no further impact on the number of votes available. There is also an annual institutional membership fee of €250. Further shares can be purchased by private and institutional Members and sold back to the cooperative, if necessary, without increasing their voting access beyond the maximum: this is a mechanism by which Members can financially

²³ See Tsai et al. (2014) for an overview of SaaS benefits and challenges.

support the liquidity of the cooperative. All Members access a variety of benefits including discounts on credits for processing documents on the system, as well as input into business policies (https://readcoop.eu/join/).

As of October 2024, 45% of READ-COOP Members are private individuals (see Table 2) and growth of the private membership option is strongest over time, showing how invested individual Members have become in the operations of the cooperative, although overall voting share remains low. Over a third of memberships come from Universities, Libraries, and Archives, who own 56% of READ-COOP shares: we often see these joining to support a range of activity within their institutions, although growth in institutional Members is more gradual than the private category. "Other" is used to represent a range of other organisations including Museums, Academies of Science, Foundations, Societies, Institutes, Schools, Publishing Firms, and War Memorials, who own 24% of READ-COOP shares. There has recently been a growth in the number of companies becoming Members, who own the remaining 10% of READ-COOP shares, indicating the increasing embedding of pipeline and outputs into other commercial workflows. Since

taking out membership, only 4 Members have cancelled (2 private individuals, and 2 companies): Member retention levels indicate engagement, with most remaining in the cooperative once they have joined.

The majority of Members are from Europe (85%). We have especially strong membership numbers in Germany (19%), Austria (14%), and the Netherlands (14%), reflecting the network of Universities, Libraries, and Archives built up during the H2020 READ project. 10% of READ-COOP Members are from North America, 2% from South America, 2% from the Middle East, and 1% from Australasia. We are actively reaching out to potential membership organisations beyond Europe, and understanding how we can support scholars, institutions, and organisations from the Global South, responding to calls from the Digital Humanities community for inclusive practice (Risam, 2018). For instance, READ-COOP SCE were recently awarded a grant from the Bill and Melinda Gates Foundation (https://www.gatesfoundation.org) to transcribe Nigerian healthcare records "and programmatic data that is still found in paper forms for greater visibility and use in decision making" (Bill and Melinda Gates Foundation, 2024).

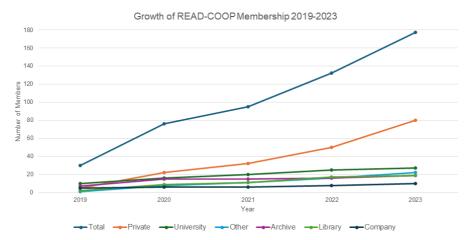


Figure 3. Growth of READ-COOP Membership from instantiating as an SCE in 2019.

Table 2. READ-Membership and share ownership by Institution Type, as of October 2024.

READ-COOP Membership By Type	Percentage of Total Members	Percentage of READ-COOP Share Ownership
Private	45%	10%
University	17%	19%
Other	12%	24%
Library	10%	21%
Archive	10%	16%
Company	6%	10%

From these membership figures, it is evident that income from membership fees is not enough to support the Transkribus infrastructure alone. The platform moved from a freemium (free-to use generic ATR models/pay to apply bespoke ATR models) service to a credit-based model (still giving access to some free credits to allow trial and supporting hobby Users, but with a priced credit structure based on volume of pages to be processed) on 19th October 2020 (READ-COOP, 2020), with an updated pricing system (giving 100 free credits per month instead of 500 free credits in total) launched in January 2024 to bring more flexibility and increased value (READ-COOP, 2023b). Initial free credits operate as a means for Users to trial the platform, and to be able to undertake the processing of small projects for free to allow as much access as possible, but are also a marketing tool (Li, 2022). When combined with network effects and the closed nature of the software and models, the free credits also function as an effective user retention mechanism. Discussions with Members are key when developing and updating pricing plans and access models, to best reflect the needs of the membership community, while covering the costs of the infrastructure.

5.4.2 Member Engagement in READ-COOP. Attendance at cooperative movement management meetings has been noted as being low in cooperatives across the world (Mohd-Saleh et al., 2025), with previous research showing "no matter what size of region 95% or more of cooperative members decline to be involved in their Society's governance" (Davis & Donaldson, 2000, 160). READ-COOP records show a different story - with an average Member attendance of 42%, and average voting rate of 55% (some Members hold more than one vote), see Table 3. Attendance at informal monthly meetings was between 50 and 75 Members attending (out of a growing list of between 209-255) throughout 2024. This demonstrates exceptional success in engaging READ-COOP Members with READ-COOP management, business delivery, and innovation engagement - and it could be argued that the cooperative aspect of Transkribus is as much of a support for technological innovation as it is governance, although it can also be seen that as the number of Members expands, a smaller proportion is attending the AGM over time.

5.4.3 User growth. User growth for Transkribus has been steadily increasing since 2019: at the launch of READ-COOP, there were 25909 registered Users, growing to 170643 by close of 2023 (see Figure 4). In early May 2024 the platform reached 200,000 user accounts (Transkribus, 2024a), growing to 235,000 accounts by October. From user growth numbers in both the Users and Member graphs it can be noted that the switch to the credit-based software-as-a-service model in 2019 has not impacted use of or support for Transkribus (Users of Transkribus were surveyed before this change, with half of respondents concerned with the sustainability of the tool after its grant-funded phase (Terras, 2022). A future User survey is planned).

5.4.4 Documents processed. A total of 50m images were uploaded by Users between the establishment of READ-COOP in 2019 and end of 2023 (see Figure 5), with over 15m additional images processed directly by READ-COOP on large-scale ATR contracts, delivering HTR transcription for a variety of external parties. By October 2024 READ-COOP infrastructure had processed over 90m individual images of pages of text, with user uploads now averaging 1m pages a month.

5.4.5 ATR models created. A number of baseline recognition engines have been used in Transkribus (see Figure 6), including CITlab HTR and CITlab HTR+ (also known as HTR+, developed by the University of Rostock, see Strauß et al., 2018. HTR+ was available in Transkribus until November 2022), and PyLaia (developed by the University of Valencia, see Sánchez et al., 2019), both developed as part of the EU funded READ project. Since 2024 READ-COOP has its own Transformer HTR (TrHTR) baseline engine, adapted from TrOCR (Li et al., 2023). The growth of interest from Users in creating their own models is clear, and many are then made public for others to use (https://readcoop.eu/transkribus/public-models/) or used to train further iterations of the system, as is the case with TrHTR (Transkribus READ-COOP, 2023j, see also 5.5 below).

5.4.6 READ-COOP Workforce. Normal business operations of READ-COOP began in November 2019. The first

AGM Year	Total Members	Members Present (or by Proxy)	% Members Present	% Registered Votes Present
2020	55	34	61.8	81.9
2021	87	49	56.3	69.1
2022	113	41	36.3	53.6
2023	147	58	39.5	51.1
2024	209	61	29.2	36.4
2025	255	75	29.4	40.6
Average	144	53	42	55

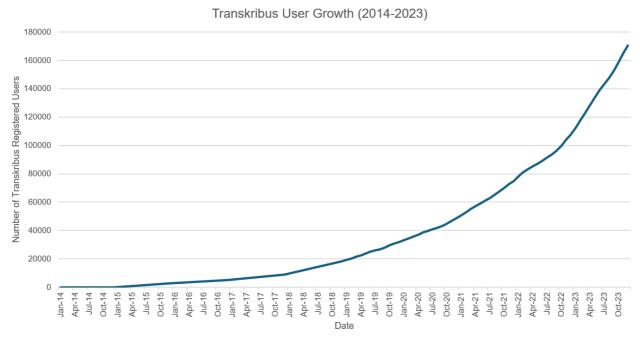


Figure 4. Cumulative sum of registered Users of Transkribus over time.

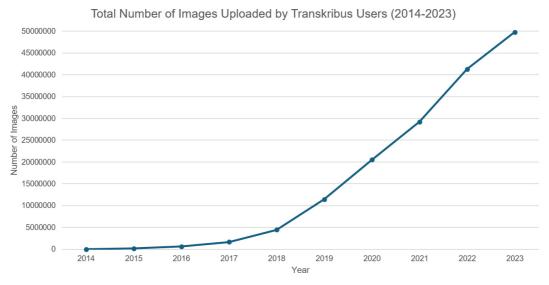


Figure 5. Total number of document images uploaded by Users onto READ-COOP servers over time.

employee of READ-COOP was Andy Stauder, Managing Director, who was also an early private Member of the cooperative. The growth in membership and document processing volumes over the past four years has necessitated a steadily growing workforce in READ-COOP (see Table 4), both to service existing use and infrastructure, and to promote and further develop Transkribus' offer, which has been enabled by the profits of the company being reinvested into its

infrastructure. The success of the business has made a notable contribution to the local economy. However, after a phase of rapid growth, the Transkribus workforce underwent a slight reduction in early 2024. This strategic adjustment lowered personnel costs from 85% to 70% of turnover, aligning with the cooperative's goal of ensuring long-term sustainability. As of October 2024 (time of writing) the headcount is 36 with 20.75 FTE.

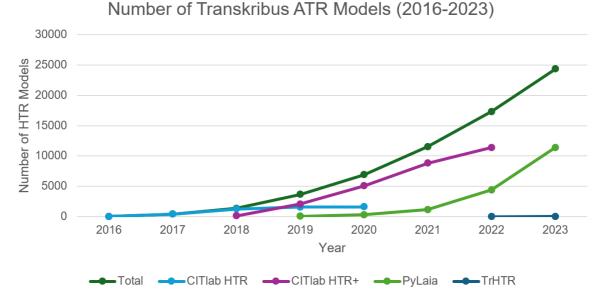


Figure 6. Number of ATR models generated by Transkribus, in total, and by integrated baselined recognition technology.

Table 4. READ-COOP Workforce, at end of year.

Year	Headcount (31.12)	FTE (31.12)	FTE (avg/ year)	Board Members
2020	3	3	2.55	3
2021	12	8.01	6.18	3
2022	29	16.84	13.88	3
2023	35	22.68	19.3	5

Seven employees (and two freelancers) are currently Members of READ-COOP (31% of current FTE). The growth in activities has also necessitated a recent growth in the number of board members for adequate oversight and governance. As of October 2024, two board members were employees (and Members), showing a mandatory direct link with the workforce in READ-COOP management structure, as set out in the cooperative statutes (Andy Stauder, Managing Director, and Florian Stauder, Employee Board Representative). Board members, and private Members, Günter Mühlberger (Chair), Melissa Terras (Scholarly Director) and Annemieke Romein (Community Director) do not draw salaries from READ-COOP²⁴.

5.5 Supporting READ-COOP culture

Building a successful cooperative requires building a strong culture, necessitating the "integration of shared rituals... and celebratory events as an integral part" of cooperative ethos (Scholz, 2023, 19), and the need to build "a strong sense of community and identity, as well as a strong business venture" (Scholz, 2023, 183). This is particularly the case given the number of staff working remotely, as well as the distributed membership base. READ-COOP has done this in a variety of ways, using digital, online, and hybrid approaches. As described above in 5.3 and 5.4.2, a dedicated Member-only Slack channel allows regular asynchronous communication with project staff and prioritised problem solving and technical support, monthly meetings are held, and Members are encouraged to attend our Annual General Meeting for formal auditing of cooperative business.

By doing so:

we heavily involve Members... we gather direct input on lots of things. So, there's direct democracy built into the way we conduct business. E.g., we launched an information campaign about changing the pricing system, or moving from a java desktop version to the web, and collected and took to heart the Members' feedback all the way (Stauder, 2023).

It is then up to the Members to determine how much they wish to engage:

Of course, it varies somewhat how much the individual Members are involved in the cooperative, i.e., how much they participate in the democratic process, but there is a very high level of participation in the general meeting,

²⁴ In May 2025, Günter Mühlberger concluded his term as Chair, and Andy Stauder concluded his term as Managing Director. Florian Stauder and Michaela Prien were appointed as Co-Executive Directors and C. Annemieke Romein became Chair of the Board: all are Members of READ-COOP.

for example. That means people are really interested in what happens in the cooperative. From that point of view, it really feels like a "co-op" from the inside as well (Stauder, Translated from the German, Transkribus, 2021a).

Beyond the immediate operations of the cooperative, Members and Users are encouraged to discuss their work and build their own network and "community of practice" (Wenger, 2000). The in-person Transkribus User Conference was held in Vienna (2017, 2018) and Innsbruck (2020, 2022, and 2024), with papers being video-recorded, and broadcast online. This is also an important event for READ-COOP staff to get to know and interact with Users. Members of READ-COOP are also encouraged to attend disciplinary conferences and meetings and advocate for Transkribus, such as the meet up at the annual international Digital Humanities Conference 2023 in Graz (Transkribus, 2023b). READ-COOP also supports training materials that are available to host workshops, events, and webinars, and support is available from READ-COOP staff.

Since October 2020 (coinciding with the move to a credit based system), a Transkribus Scholarship Programme has offered free credits to those hosting training events, and students can apply for free access to Transkribus systems (https://help.transkribus.org/4.-transkribus-scholarship). By October 2024, 336 students from 73 countries (including individuals from Africa, South America, Asia, Middle East, and Oceania as well Europe and North America) have so far been supported in their studies, with READ-COOP providing over 1m free credits, showing that Transkribus is "bearing in mind user needs and the promotion of diverse research" while balancing this with financial sustainability of its tools via revenue generation from more financially established Users and institutions (Nockels et al., 2024).

A robust social media presence supports all these activities, including a discussion forum on Facebook. Since 2015, and the launch of the READ project, Wolpertinger, a version of Albrecht Dürer's 1502 watercolour "Young Hare" edited by an unknown artist, has been the mascot of Transkribus (Transkribus, 2015). The Wolpertinger reflects the Bavarianfolklore heritage of its origins in Innsbruck, and (it has been argued) represents the heterogenous data inputs that Transkribus ensembles into a cohesive transcript (Carlbla, 2020), in a tool that can do many different things. The mascot was nicknamed "Wolpi" by Florian Stauder in 2021 (Stauder, 2021), and in January 2023 a new Transkribus logo icon incorporating a modern interpretation was unveiled (see Figure 7), after READ-COOP Member feedback and co-design (Transkribus, 2023a). Wolpi now adorns merchandise including laptop stickers, t-shirts, and hoodies, further promoting Transkribus, assisting with story-telling and brand-recognition, and building a sense of community.

Members (and data gathered from Users, with consent) are also involved in tool development, where data-driven prioritization is now routinely utilised: Member interviews are used to build surveys to collect data over broader groups, to enable understanding of user needs. Mock-ups and wireframes of new features are also tested with Members in advance of programming, allowing efficient product design and rollout.

5.6 Technical advances in Transkribus since 1st July 2019 Since its incorporation as a cooperative in 2019, the investment of profits into the infrastructure has allowed Transkribus to develop its technology, interfaces, and support structures, along the way making the transition from academic research software to fully fledged, commercial SaaS product. Sustaining the infrastructure (and its other products that link to it, such as the DocScan app (available for Android only, https://help. transkribus.org/docscan), and the ScanTent, with over 1000 units sold to institutions and individuals worldwide, (https://www. transkribus.org/scantent) requires resource within itself. Continued engagement with Members allows Transkribus to function in a responsive and agile way, to develop and improve. This includes an overall increase in the accuracy of Transkribus' ATR, which is indicated by a decreasing Character Error Rate in validation-set scores (see Figure 8), showing an overall trend improvement in functionality of the model. Retained records for CER begin with the CITlab HTR recognition engine created by the University of Rostock team as part of the READ project in 2016. The gradual improvement shown is not linear due to the introduction, testing, and refining of different ATR engines over time (CITlabPlus, Pylaia, TrHTR). The average CER for handwritten text is currently 5%.

There have been a variety of technical changes to the Transkribus platform since 2019, including: the shift to web-based tools, away from the eXpert client; the updating of the website, branding, and user support functions; the launch of a web-based publishing solution which enables Users to search collections historical manuscripts that have been transcribed with Transkribus; and the further development of ATR tools and models. During this time, transitioning out of the University of Innsbruck's infrastructure - including office space, storage, database, and high-performance compute — was essential for the cooperative's autonomy, but required substantial effort: the cooperative now operates entirely independently of the university setting it emerged from. It should also be stressed that since establishment, all electrical power for READ-COOP administrative activities and Transkribus computational processing comes entirely from 100% renewable resources, via TIWAG (https://www.tiwag.at): this both recognises and ameliorates the environmental and societal harms encompassed by AI (Lehuedé, 2024), while responding to the cooperative principle regarding caring for community.

Transkribus has recently undergone a shift to web-based tools, instead of continuing to host Transkribus via a downloadable eXpert client. This was necessary for a variety of reasons, including more efficient processing, and ensuring all Users have access to the most up to date tools with a consistent user experience across different operating systems and specifications, as well as allowing access to documents from computers and mobile devices. This has been a major work package for READ-COOP delivery team. Transkribus Lite launched in February 2021 (READ-COOP, 2021a; Transkribus, 2021b), and functionality has been gradually added since. In August 2023, the new Transkribus web app was launched (replacing Lite), which continues to be developed (Transkribus, 2023c),

Figure 7. The evolution of the Transkribus brand: Dürer-based Wolpi (used 2015–2023), and new 2023 logo.

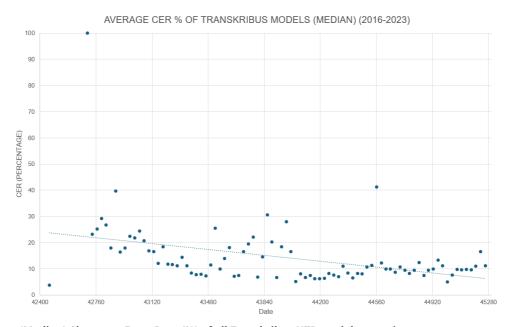


Figure 8. Average (Median) Character Error Rate (%) of all Transkribus HTR models over time.

see Figure 9²⁵. Users can upload image files of manuscript material to the web app, with text baselines automatically detected. An annotation tool, and user-friendly interface, allows correcting of automated transcription, which can lead to training of bespoke ATR models, if necessary. Since the launch, Users have been encouraged to port all activities from the

eXpert client to the Transkribus web app. All features from the eXpert client are expected to be fully integrated into the web app by early 2025, and the eXpert client then withdrawn (READ-COOP, 2023f). While this gradual shift of tools has brought some uncertainty to power Users – some features of the eXpert client are still being added to the web app – the upgrading as well as maintenance of infrastructure is crucial to the future success of the cooperative.

The website itself has also had a major refresh and rebrand, integrating many other support mechanisms and tools, with

²⁵ The document upload is NL-AhGldA_2000_4787, Landdags- en kwartiersrecessen met bijbehoorende stukken. 1696, from the Gelders Archief Arnhem (https://permalink.geldersarchief.nl/80A31735FD2848628582 F7558E8DCA67). No known copyright.

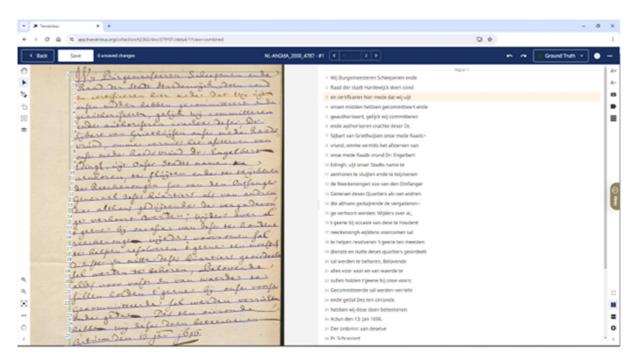
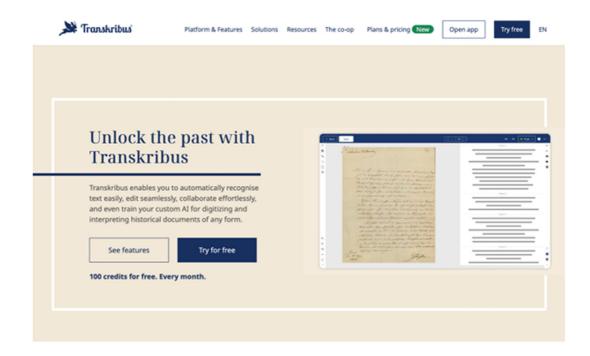


Figure 9. Transkribus web app, launched August 2023: the online version of Transkribus, accessible online (https://app.transkribus.org/home).

improved accessibility. In 2021, the introduction of a free, web-based drag-and-drop ATR service for the general public (https://transkribus.ai) has allowed access to and experimentation with the basic ATR process in a WYSIWYG (what-you-see-is-what-you-get) web environment: from July 2023 this has been embedded into the new https://www.transkribus.org homepage (see Figure 10) to allow prospective Users to try the service (READ-COOP, 2023k). In addition, at the same time, a new help centre (https://help.transkribus.com/) launched, making support routes clearer to the user community.

All material in Transkribus—including transcripts, in-document annotations, metadata, and document images — are fully exportable at any time in open formats (e.g. PAGE XML). Users are entirely free to build their own digital editions elsewhere, and many do. However, we noted many Transkribus Users, especially in academic and heritage contexts, struggle to host and present their material effectively — even after completing information extraction work. In 2021, Transkribus launched a web-based publishing and hosting solution, read&search²⁶. It allows collections of documents that had been processed within Transkribus to be shared with the general public or with logged-in Users via a feature-rich, yet easy-to use configurable web interface that enables engagement with historical manuscripts, making collections visible, searchable, and increasing openness and visibility of materials. Across the 34 individual


projects supported by read&search, Users can conduct compre-

hensive searches across large collections, using facets, fuzzy

search, and probabilistic search over recognition lattices (Smart Search). This method indexes multiple word hypotheses per recognised line, enabling retrieval based on confidence-weighted alternatives rather than exact top-1 matches. Text can be overlaid on or viewed alongside page images for enhanced understanding. Additionally, this functionality is integrated with the Transkribus web-transcription interface for crowd-sourcing efforts. In 2023, read&search was upgraded to a new version of the product, Transkribus Sites (https://www.transkribus.org/ sites), with further customisation so that, for a yearly fee, Users can build their own websites and publish digital documents online, without the need for coding skills or institutional IT support, solving the problem of how to share work publicly without needing institutional infrastructure or technical support (although all content can be exported and hosted by Users themselves, if preferred). A total of 40 Sites are currently supported, including the Weisses Register (https://app.transkribus.org/sites/ weisses-register-zuerich), an index of the records of the Zurich State Archives from the Middle Ages to 1840, and the first twelve editions of Küçük Mecmua (https://app.transkribus.org/sites/kucukmecmua.org/about), a seminal Ottoman Turkish weekly journal, essential for scholars of late Ottoman culture, literature and philosophy, published between 1922 and 1923. In this way, Transkribus Sites blends AI processes with the (traditionally more hands-on) building of digital scholarly editions, given it delivers:

an emerging type of digital edition: one that is produced directly from both the inputs and outputs of

²⁶ Originally at https://readcoop.eu/readsearch/, all content is now at https://www.transkribus.org/sites.

Features to unlock history

Figure 10. The streamlined 2023 Transkribus webpage with new, cleaner, design and branding.

Handwritten Text Recognition, without the need for further processing, data transformation, or design and hosting. Taken together, they will eventually allow critical components to be added to this basic functionality. The development of these platforms is deserving of careful consideration regarding access, and opportunities, enabling a wider community to create digital editions with relative ease, especially as the functionalities of automated editions develop. (Terras *et al.*, 2024).

Technical development of the Transkribus platform continues. In 2022, in response to user demand, Transkribus On-Prem was launched, to give organisations the ability to host the workflow on their own premises, in their own environment, where data never leaves their own servers and images are processed locally, for security purposes (https://readcoop.eu/transkribus/on-prem). Research and development on improving ATR itself has focussed on a 5-based text transformer recognition model (a neural network that learns context and has superior performance on NLP and image processing tasks), which

was dependent on READ-COOP Members sharing their ground-truth data - with consent and attribution - to improve recognition quality of the new models. The transformer technology takes more benefit from large datasets to enable both the training of large, general-purpose models, and higher recognition quality in specialised scenarios (Transkribus READ-COOP, 2023j). Transformer recognition HTR (TrHTR, adapted from TrOCR (Li *et al.*, 2023))²⁷ was launched in beta for testing in Transkribus in October 2022 (READ-COOP, 2023g) followed by further optimisation including enhanced image pre-processing and improving performance for several languages. TrHTR was fully integrated into the Transkribus metagrapho API (which

²⁷ One of the key improvements to TrOCR was the optimization of image ingest, allowing for more efficient and accurate processing. Additionally, the training data was expanded by incorporating roughly 180,000 pages of handwritten material into the ground truth set, significantly enhancing the model's ability to recognize diverse handwriting styles, resulting in improved results in text recognition within Transkribus.

allows programmers to quickly integrate AI-based text recognition into existing workflows or tool chains, see https://readcoop. eu/api/) in 2023, with the release of the Text Titan recognition model (READ-COOP, 2023h). A specialist Dutch-Language TrHTR model, Dutch Demeter I, trained on 18m words of data from READ-COOP Members including Stadsarchief Amsterdam and the Netherland's Nationaal Archief, was released in February 2024, capable of an average CER of 4.9% (READ-COOP, 2024d). Text Titan II, another TrHTR model, fine-tuned with over 400k Pages and 85M Words, and supporting 17 languages (German, English, French, Dutch, Italian, Latin, Spanish, Portuguese, Finnish, Swedish, Polish, Danish, Czech, Slovak, Estonian, Icelandic, and Hungarian) is currently in preparation (Transkribus, 2024b). Access to transformer models is a premium feature, encouraging power-Users to take out a tailored subscription, with a range of new levels (Individual, Scholar, and Organisation) with different offers launched in 2023 (READ-COOP, 2023i) and a Team subscription launched in 2024 (READ-COOP, 2024c), reflecting user feedback requesting another tier. Similarly, development of field and table models for trainable analysis of complex layouts has taken place and is now integrated into the API and web app (Transkribus, 2023d), with instance segmentation for table recognition planned for release. Alongside this, the creation of models by the community continues, including the launch in October 2024 of the first Arabic model for handwritten texts from the 17th to 20th centuries (Transkribus, 2024d).

A range of technical developments and improvements are ongoing. The rebuilding of the back end of Transkribus, onto a new microservices architecture, began in 2022 and is a major ongoing project for the development team. Trainable Named-Entity Recognition is under development, as is a commenting function for collaborating on documents, currently in Beta testing as of October 2024 (READ-COOP, 2024b). There are also plans to support and grow the community, fostering connections between Members with a new Transkribus Connect platform, and the launch of a more advanced investment vehicle with premium memberships for large institutions. Continual development and improvement such as these are essential for the software-as-a-service offer, to keep Transkribus in a market-leading position, given the growing demand for ATR in historical document digitisation but also in healthcare, banking and finance, the legal sector, and education. Development is essential to retain Transkribus community support: this also benefits READ-COOP in understanding community needs, gathering input on future plans and Transkribus' technical offer, rapidly communicating any platform issues, and providing a mechanism for democratic decision making.

5.7 Impact

5.7.1 Scholarly Impact. The first-mover advantage of the Transkribus platform (Kerin et al., 1992; Papachristos & Suarez, 2022), combined with effective retention mechanisms, have resulted in a combined network effect (Belleflamme & Peitz, 2018) that has seen widespread uptake of the tools provided by Transkribus, which are therefore having an increasing amount of impact on the historical, academic, and

Gallery, Library, Archive, and Museum (GLAM) sector. By the end of 2020, Transkribus and its tools were credited in 381 academic publications, including journal articles (163), conference papers (80), and policy documents (31) (Nockels et al., 2022). Celebrating this, in 2020, Transkribus won the Horizon Impact Award, the European Commission's initiative to recognise and celebrate outstanding projects that have used their results to provide value for society (EU Science and Innovation, 2020; European Commission, 2022). Since then, Transkribus has supported thousands of further projects undertaken by a range of individuals including students, scholars, and hobbyists worldwide, in hundreds of institutions and private collections, covering a huge range of scripts, languages, and dialects. For example, Transkribus has been used for: accurate transcription of bilingual Evenki-Russian manuscripts including folklore, personal narratives, and shamanistic rites (Arkhipov et al., 2021); to develop a ground truth dataset for Sanskrit and Newar Nepalese manuscripts in Pracalit script, supporting others working in Indology and Newar studies (O'Neill & Hill, 2022); transcribing Old Nubian and multi-script text from Medieval Nubia to enhance accuracy of mixed-text transcription in Africa (Miyagawa, 2023); and to support the analysis of baptism records in Portuguese, identifying slave owners and slave families in 18th century Brazil (Nascimento, 2024).

In many ways the overall user community is now too large to document, but the cooperative structure supports READ-COOP to meaningfully engage with as many core and engaged users are possible: at the 2024 Transkribus User Conference on the 15th and 16th February, University of Innsbruck, 80 speakers from 40 countries presented, with in person delegates from 25 countries, and online access from 36 countries (READ-COOP, 2024a) (see Figure 11). Although many software companies hold annual user conferences, the cooperative framework provided by READ-COOP allows these delegates to become integral contributors to the infrastructure, year-round, while using the TUC in person meet ups to strengthen relationships.

5.7.2 ATR Data Sharing. A further impact of the collaborative approach to ATR is the publishing of licensed "ground truth" ATR data for Transkribus community reuse. As of October 2024, READ-COOP hosts 230 currently available, licensed, internally available AI models for use only with READ-COOP infrastructure, so that others can "benefit from the network effect and save work and time" (READ-COOP, 2023c), thus making it easier for others to undertake transcription of their digitised content with Transkribus. Recent releases include PyLaia models The Dutchess I., "a comprehensive solution for deciphering historical documents from the Low Countries" (READ-COOP, 2023d), and The German Giant I., "A combination of models containing German language Kurrent and Latin script"

²⁸ Ground Truth refers to a form of data that adheres to specified standards and is considered, at least by a group of people, to be an accurate representation of the material, in this case, handwritten or printed material (Muehlberger *et al.*, 2019, 957)).



Figure 11. Home countries of attendees (in person and online) Transkribus User Conference 2024.

(READ-COOP, 2023e). The availability of such models to registered Transkribus Users highlights the significance of shared community infrastructure, but also demonstrates where criticism of the closed nature of the platform comes into play, given these models cannot be exported from READ-COOP infrastructure, and the weights, code and documentation of the model are not published publicly (which would be a prerequisite for an open model in AI discourse, see Widder *et al.*, 2024).

However, Transkribus collection owners can export their training text recognition and segmentation model data to the wider HTR community, primarily through HTR-United (https://htrunited.github.io) Chagué & Clérice, 2023), established in 2020 to share ATR datasets. As of October 2024, 22 out of 102 datasets on HTR-United were created with Transkribus. However, the lack of best practices or infrastructure to recognize data annotators' contributions remains a growing ethical concern within itself. The READ-COOP community plays a central role in Transkribus' success, yet the visibility of community contributions to AI models remains an open discussion (Romein et al., 2024). There is a tension between creating AI tools and being transparent about data annotator contributions. Since its inception, Transkribus has adopted a zero-knowledge model for training to maintain ethical consistency and fairness, avoid reinforcing academic hierarchies, ensure legal clarity under GDPR, and uphold product integrity, ensuring training inputs remain untraceable to specific documents. We openly inform our Users that private data may contribute to models benefiting others, and any Member has extensive rights to influence the technology's development and commercialization approach. However, contributors are listed for models with active collaboration and consent, such as Dutch Demeter.

Discussions on the sharing of Ground Truth data have resulted in guidelines for appropriately citing ATR data, models, and volunteer contributions, developed by Transkribus Users after a TUC 2022 workshop. These guidelines address "broader issues surrounding the use of Machine Learning in archival and library contexts, and how the community should begin to acknowledge and record both contributions and data provenance" (Romein *et al.*, 2024, 1). We advocate for systematic anonymization with optional opt-in attribution as a responsible long-term framework and are exploring ways to implement this more meaningfully.

5.7.3 AI and the GLAM Sector. The impact of Transkribus may go beyond the application of the platform itself: this has been noted by many writing on the roll out of AI in the GLAM sector. Automated Text Recognition (ATR) technology "is now a mature machine learning tool, becoming integrated in the digitisation processes of libraries and archives, speeding up the transcription of primary sources and facilitating full text searching and analysis of historic texts at scale" (Nockels et al., 2022). Transkribus is therefore an example of how AI can be integrated into cultural heritage organisations, in a way that is acceptable for both institutions and users: "In the case of Transkribus, end-users are empowered" (Lee, 2023). It therefore gives a concrete instance of how GLAM can make the most of AI and machine learning in a responsible and ethical way (while in a time and media context of "AI Panic", see Leaver & Srdarov, 2023). Transkribus demonstrates that cultural heritage institutions must "Develop workflows in partnership with disciplinary researchers that can identify, extract, and make machine-actionable data from general and special collections to fuel library experimentation and research activity on campus" (Padilla, 2019, 16). These type of established workflows "anchored

in core activity will begin to show the potential of algorithmic methods to assist with processing collections at scale; alleviate concerns about sustainability by proving impact on core operations; and help smooth the path to integrating probabilistic data in a discovery system" (Padilla, 2019, 15). The fact that Transkribus is a "gold standard" (Ryan, 2023) and a "prime example" of the type of AI that "is being increasingly embedded in academic libraries tools and services" (McAllister *et al.*, 2022, 247) paves the way for others, as does the methods it has adopted in engaging with its community:

In addition to its outreach to scholars, the Transkribus project describes itself as a resource for libraries seeking to mobilize a local community of users (librarians, scholars, students) to rapidly develop an HTR model for a local collection and thereby enrich its data, as well as for computer scientists who need an environment to test tools in development. As such we might look to this project as a model for motivated crowdsourced engagement... in order to build domain data."... There is a "need among scholars and libraries for more domain-specific training data, if we hope to see a wider investment in ML projects. Transkribus provides a compelling model for community-driven efforts to create, gather, and share training data, as well as the potential for crowdsourcing for rapid dataset development. While Transkribus focuses on handwritten text recognition-alongside some OCR-its platform and community-engagement models could be adapted across a wide range of domains and ML projects (Cordell, 2020, 25-6).

Upon the 5th anniversary of READ-COOP in July 2024, Dr Günter Mühlberger, the Chair and Founder, said:

After 5 years of READCOOP I am very proud that "our child" is growing and that Transkribus is now a kind of "standard" in the community. The amount of people and projects who are actually using the platform is enormous and exceeds by far expectations. Also that 200 Members have joined the coop is far beyond what I had envisaged.

There is of course more to be done. E.g. I am dreaming of a distributed structure for storing and processing documents and data in a decentralized way by using also infrastructure from our Members. On the downside I am bit sad that we were not able to continue working with some of the original partners in the READ project, some are now even competing with us²⁹. Anyway, I believe that we are really making a fair offer, and welcome engagement with a range of providers and platforms. The new business and pricing model is a big progress to what we had before, so that I am very optimistic that we are able to expand our services, that our Users and Members are loyal to Transkribus and that they appreciate especially

However, although Transkribus and its results are now becoming embedded into the scholarly environment, there has been no in-depth published commentary by other researchers so far about the fact that Transkribus is run by a cooperative. This case study has shown that mechanism is fundamental to its relationship with community, and to the provision of its infrastructure. To further show evidence of engagement with the user community, it is useful to consider the opinions of Members of READ-COOP themselves.

6. Surveying READ-COOP membership

Opinions of Members on the functioning of READ-COOP, and wider opportunities for cooperative AI infrastructures, were gathered via an online survey between 21st September and 21st October 2023, revealing various themes and emergent issues. No paper authors responded to the survey to ensure impartiality. Quoted text is given a number corresponding to the order in which READ-COOP Member (RCM) submitted their anonymous response (although due to some traceable, identifiable comments we have not released the survey data for GDPR reasons). It should be stressed that the survey gained responses from a smaller sample of self-selecting founding Members, with the results foregrounding their experience. A future study will survey READ-COOP Users, and future work could also interview private Members of READ-COOP to establish their relationship to the platform, and how that intersects with the type of institutional support they have access to.

6.1 Response to survey

The survey received 34 responses, comprising of 15 individual (private) Members of READ-COOP, 13 representatives of Members organisations, and 6 Members who are both private Members and organisational representatives (out of a possible total of 73 private Members and 90 institutional memberships at the time of data collection). In total, 29% (n=21) of private Members responded to the survey, and 21% (n=19) of organisational representatives responded. Research indicates that a 20–25% response rate in smaller community sizes can provide confident estimates (Fosnacht *et al.*, 2017), however, qualitative analysis of the comments is essential given the smaller sample size, and it should also be noted that any comments are contextually linked to the operations of the cultural and heritage sector.

Of those responding, 35% had been Members since 2019 (n=12), 21% (n=7) since 2020, 12% (n=4) since 2021, 12% (n=4) since 2020, and 21% (n=7) since 2023, suggesting that longstanding Members of READ-COOP were more likely to self-select to reply. Over half of the respondents became READ-COOP Members within the first 18 months of operation.

6.2 Involvement in READ-COOP activities

Within our sample of self-selecting Members who responded to the survey, 94% (n=32) were aware that READ-COOP is set up under a cooperative legal framework (the remaining

the personal support we are providing (Muehlberger, 2024).

²⁹ http://transkriptorium.com

2 Members were unsure). 53% (n=18) of Members felt very informed about the role of the cooperative, and how it relates to Transkribus. 41% (n=14) felt a little informed, and the remaining 2 Members were unsure. Only 2 members (6%) felt they did not get enough information about how READ-COOP operates, although a further 7 (21%) were unsure. 27% (n=9) reported that they were provided with lots of information, and 46% (n=15) said they had sufficient information. 84% (n=27) of survey respondents had attended at least one monthly online READ-COOP Members Meetings, and 69% (n=22) had attended the online annual General Meeting (see Table 3 and its discussion which demonstrates that on average, approximately 25% of Members attend monthly meetings and 42% attend AGMs: this indicates our sample is a set of very committed Members). 81 (n=26) discussed READ-COOP activities in the Members Slack channel. 56.3% (n=18) had attended the Transkribus User Conference in person, with 19% (n=6) attending online. 59% (n=19) had used Transkribus tutorials or other online training, and 28% (n=9) used the Transkribus discussion groups on Facebook. An informal WhatsApp group was also reported as a means of communication (6%, n=2).

6.3 Reasons for becoming a READ-COOP Member

A thematic Content Analysis of free-text descriptions of why Members chose to join READ-COOP reveals nine core reasons for membership (see Table 5).

While saving money is a key reason for membership, it was also notable that respondents were heavily invested in community participation and supporting further development of the infrastructure. Membership discount is amongst the top reasons for engaging in READ-COOP "Provide access to discounts and services otherwise unaffordable (or less affordable) to individual researchers at our institution" (RCM29);

"For the discount on Transkribus invoices as well as to support and influence the goals of the cooperation" (RCM 16). However, equally important weighting is given to showing support for READ-COOP: "supporting a great initiative" (RCM20); and to support the further development of its services "being part of an ongoing process to improve AI text recognition and unlock old documents" (RCM12); "I want to help advance the use of HTR in genealogical research" (RCM19). Community and participation was a strong draw "wanting to participate actively in making things better" (RCM5); "Best possible human component in the Coop" (RCM7), with a view that READ-COOP provided opportunities for networking and collaboration "In essence, joining READ-COOP allows institutions to tap into a network of knowledge" (RCM 30) which also leads to sustainability: "I use Transkribus a lot and did not want the technology to go to waste" (RCM15); "To support this initiative stays free of corporate or other influences" (RCM21). A few Members wanted to influence future developments "I'm using it for my research and I contribute a lot to the project, so I want to have a say" (RCM33), or to have access to support and cutting edge AI "early access to new features" (RCM29). There is a prominence of participatory and contributary activity throughout all of these comments, stressing the engaged nature of the community.

6.4 Benefits to READ-COOP Members

Private Members were asked if they had received any personal benefits from being part of READ-COOP. 61% (n=22) identified benefits, with the most popular being Networking (55%, n=13) "it is a community and I really appreciate being with people who are working towards the same goals" (RCM22), "I've met a lot of great people that are highly interested in text recognition/working with cultural heritage" (RCM27), "I found a family who shares a common vision

Table 5. Thematic analysis of reasons given for joining READ-COOP. Members could mention more than one.

Reason Given for Joining READ-COOP as a Member	Number of Responses	Percentage
To save money via Members' discount	7	21%
To support the further development of READ-COOP services	7	21%
To show support/belief in READ-COOP	7	21%
For good purpose and to participate in the community	6	18%
Improved sustainability of infrastructure via cooperation	3	9%
Better opportunities for collaboration	3	9%
Ability to directly influence future direction of READ-COOP	3	9%
To have research support	2	6%
Access to cutting edge AI	2	6%

with impeccable respect to each other" (RCM30); then Technical Support (33%, n=8), "direct troubleshooting and bug fixing" (RCM33). Others mentioned Learning (17%, n=4), "am learning far more than I would had I not joined" (RCM11). Each of these themes was mentioned by one Member: Discounts, Reputational Benefits, Access to events, Project Planning support, and Positive Feedback "It has been a great benefit to witness READ COOP stays independent" (RCM21). Four Members (12%) said they saw no personal benefits "No - did not look for it either" (RCM6): indicating that the cooperative model distances the user from a transactional relationship, being happy to contribute despite not perceiving personal benefit.

Members were asked what benefits there were for an institution becoming part of READ-COOP. 89% (n=30) mentioned discounted credits, but also popular were the sharing of best practice (76%, n=26), being part of a network (70%, n=24), and getting access to information and support (67%, n=23). Comments included "the institution mostly joined because of the discount but there was also the kudos in being an early founding organisation" (RCM18), "being part of a community, sharing experiences and getting help in projects by other institutes who struggle with similar problems. Working as a group of specialists on one project. Getting credit discounts" (RCM14), and "I think the big one is the ability to steer the development of the tool, for instance certain parameters or features, as part of regular member discussions. Having early access to new developments and being kept in the loop at the TUC especially" (RCM3). One Member commented "There is a lot of concern about ethical AI and so my organization is more comfortable with supporting a cooperative structure" (RCM32).

Members were asked if there were any downsides to being part of the cooperative. 24% (n=8) said no, with a further 12% (n=4) saying they could not think of any. However, 24% (n=8) mentioned that costs were an issue: "The usage for academic large-scale projects is usually too expensive if experimental parts for training/several rounds of recognition etc. are foreseen" (RCM17), "Transkribus is expensive to use, and you don't own the model data" (RCM25), "Having to explain the contribution fee frequently to my institute/ financial department" (RCM13). Concerns about costs to access the infrastructure have been a recurrent theme since Transkribus started to discuss moving from a free-to-use tool to one based on a credit system (Nockels, 2024; Seaward, 2019; Terras, 2022). One Member commented "I wonder how sustainable it is - it is dependent more on institutions becoming part of the coop. There is the issue of institutional inertia and the lack of uptake. Any keen staff member(s) has/have to persuade an organisation to join. This is too hard without support. Some organisations understand and can see the strategic benefits of Transkribus, but most don't. READ-COOP could do more to provide resources and support for getting buy-in- for individual staff members, and also for organisations... the Coop could do more" (RCM22).

6.5 Understanding READ-COOP operations

Members were asked if they knew of how READ-COOP planned to reinvest profits into its infrastructure. 26% (n=9) said they did not know "No but I am happy they exist and that this concept lives on" (RCM21). Of the 59% (n=20) who did know, many listed specific technical features development including "Improving layout/structure recognition, integrate new recognition engines, integrate large language models, Handwritten Music recognition" (RCM33), with one commenting "it is described and outlined during the monthly member meetings" (RCM34). Further information requested from Members included understanding more about how strategy is developed, learning where READ-COOP records are kept and how to access them, "more transparent communication when something is not working" (RCM28), and being kept informed about company priorities: "I would like to know how many people work in sales and advertising compared to operating the infrastructure and development of front-/backend" (RCM27) and "I would like READ-COOP to be more transparent in communicating what kind of user needs they prioritize the highest. E.g. does the cooperative see itself as mostly focused on the needs of larger institutions, such as national archives, or does it mostly seek to fulfil the needs of smaller groups, such as museums and private users?" (RCM25). Throughout the survey there were comments on the lack of open publishing of the code and datasets that underpin Transkribus (it is not an open-source tool, given its datasets contain the unique IP that the cooperative depends on to trade): "The shared access is only within the Transkribus universe and therefore not really shared access or machine-learning in a bigger picture. I understand why it's not fully open. Maybe you could communicate those reasons more?" (RCM5). It is here that there is a tension between the Cooperation and Concern for Community cooperative principles: indicating the limits there are for open access and open science within AI development (Bostrom, 2018). There is a very real threat from dominant extractive AI providers who could ingest any openly published code or data and offer similar tools to extend their monopoly and quash competition: AI cooperatives must guard their intellectual property whilst also attempting to be ethical and inclusive, and this tension is felt by READ-COOP Members.

6.6 Relationship to READ-COOP

Members were asked to describe READ-COOP in three words, with 28 Members providing responses. The resulting word list was used to generate a word cloud visualisation which stresses the committed community, and motivations for supporting the AI ATR infrastructure (see Figure 12).

These Member-provided words align closely with the seven cooperative principles, when all words are thematically clustered (see Table 6). The emphasis on inclusivity, teamwork, economic participation, autonomy, and social responsibility demonstrate the importance of the cooperative approach to READ-COOP Members. Words which do not align with the cooperative principles cover both the AI technologies, and the excitement that accompanies being part of the initiative.

Figure 12. Word cloud generated from Member's descriptions of READ-COOP, in the shape of Wolpi, Transkribus mascot.

Table 6. Clustering of Descriptive Words provided by READ-COOP Members, aligned to Cooperative Principles (ICA COOP, 2024).

Cooperative Principles	Aligned Words From Member 3 Word Comments
Voluntary and Open Membership	Community (x5), Community-driven, Everyone, Fair, Open, People
Democratic Member Control	Cooperative (x2), Cooperation, Framework, Teamwork, Vision
Member Economic Participation	Challenge, Committed, Group, Initiative, Joint, Share
Autonomy and Independence	Independent, Autonomy, Private, Self-help
Education, Training, and Information	Developing, Education, Innovative (x2), Training, Learning, Research, Technique, Technology
Cooperation among Cooperatives	Network, Organize, Organization, Partnership, Publicize, Work
Concern for Community	Family, Grassroots, Social, Support, Supportive, Together (x2)
Other	AI, AI-assisted (x2), AI-HTR, AI-text, ATR, Best-in-HTR, Big, Daring, Documents, Dream, Exciting, Excellence, Great, Growing, Historical, HTR (x4), Infrastructure, Like, Magic, Motivated, Nice, Platform, Provider, Recognition, Reliable, Taken, Text, Unlocking, Up

When asked how being a Member of READ-COOP made them feel, 94% (n=32) said "engaged", 68% (n=23) said "included" and "supported", 38% (n=13) said "valued" and 32% (n=11) said "trusted". From the list of more negative options, 9% (n=3) said they felt "annoyed" and "ignored" and 1 person (3%) each said READ-COOP left them feeling "confused", "isolated" and "overwhelmed". Overall, then,

READ-COOP membership would appear to be a positive experience for Members.

Members were asked if a cooperative structure made technology providers more transparent (62% said yes, n=21), trustworthy (59% said yes, n=20), approachable (53% said yes, n=18), responsible (50% said yes, n=17), sustainable

(50% said yes, n=17), ethical (47% said yes, n=16), efficient (26% said yes, n=9), effective (21% said yes, n=7). Only 9% of respondents (n=3) said "none of the above", suggesting that there are elements of cooperative organisation practices which benefit the relationship between users and technology providers, although some do not engage. It is interesting here that Members do not choose "efficient" and "effective": suggesting that they do not see the cooperative as benefitting the product, so much as the relationship between them and the platform. When asked if this relationship felt different to that of other technology providers (who are not governed by a cooperative), 79% (n=27) said there was significant differences: "Yes. I am part of it and I have a say on its program" (RCM33), "Yes, greater level of information than other freemium/for-profit providers" (RCM8), "I think the technology shines more and therefore develops faster and more robustly in this environment" (RCM18), "In the case of our text recognition, other for-profit providers provide us with good troubleshooting and support (through direct lines of contact), this is the same case with READ-COOP. The fact that Transkribus appears more malleable as a tool and is constantly being innovative makes it feel like users have an increased say" (RCM3). There was only one negative response: "We have the General Meeting, among others, which we would not have with for-profit providers, but sometimes the meetings seem also a bit like a marketing event. So there are also similar topics than with for-profit providers" (RCM28).

Members were asked if the cooperative framework behind READ-COOP gave them comfort regarding the long-term sustainability of Transkribus. 47% (n=16) said "Yes – a little", and 26% (n=9) responded "Yes – a lot". However, 9% (n=3) thought that this was no different to any other technology provider, and a further 9% thought that the cooperative framework would have no effect on Transkribus' sustainability.

6.7 READ-COOP Member views on cooperatives and AI infrastructures

When asked if cooperative business models would benefit other AI providers, READ-COOP Members responded 44% (n=15) "yes", 29% (n=10) "maybe", with 24% (n=8) "unsure": there were no respondents who answered "no". Their views on why there are not any other cooperative technology providers, and in particular no other Machine Learning/AI cooperative infrastructures, were many and varied. Profits were most commonly raised (15%, n=5) "Because most technologies are products and services created by large companies. Coops are a different model. I am not sure with machine learning/AI it is the most profitable given that large companies are seeking profits for shareholders" (RCM22), "People are extremely interested in exploiting the commercial potential of technology they help develop" (RCM11). Others pointed out the high initial costs for AI/ML R&D, "High Initial Costs and Complexity of Development" (RCM7) and lack of access to, and associated costs of, large-scale compute. Individual responses included the fact that many start-up initiatives are "bought by commercial empires or disappear at an earlier stage" (RCM33), suggesting that there is a hope that the cooperative model could provide longevity and stability. A range of responses suggested there is a different focus of cooperatives "companies and their investors focus on high earnings where as in a coop the focus is on the best value" (RCM24), and that cooperatives were not well-known "in a society where the personal success is most important a cooperative model is not so attractive and certainly it is not promoted in the public (and universities, funding agencies, etc.)" (RCM4). Respondees were keen to situate the work of AI cooperatives alongside major technology providers "Another reason could be that cooperative technology is sort of in between two worlds. I think there are currently two major positions that AI companies take in releasing technology: proprietary technology and open technology. With closed technology or AI models there are benefits in the form of controlled vision and financial security. With open technology or models the benefit is in letting a community freely use and quickly improve it. Cooperative technology could be somewhere in between: too open to benefit from centralized control and too closed to benefit from true open community development" (RCM16).

A third of respondents, (35%, n=12) believed that the development of other AI cooperatives would allow for greater user engagement, inclusion, and co-creation: "I believe so, great interoperability between tools would perhaps emerge also. The notion that we are paying for a service and expect a certain response is quite limiting, without having a direct say in the operation of a cooperative" (RCM3). However, just as many respondents did not know if this would be possible "many users don't have time to get really engaged in a product; they just want to use the product due time limits in delivering a result. Sadly that is the reality in the business world" (RCM14). There was hope in exploring this approach, though: "I hope that READ-COOP can provide a framework for successful cooperative AI structure, and that other tool providers take note" (RCM3) but also a note of caution: "how can we change this now, is it too late?" (RCM18).

6.8 Survey summary

Given the relatively low number of respondents to the survey, mostly from early adopters of the platform, these are qualitative responses, however the comments made by READ-COOP Members show a nuanced understanding of its cooperative structure. Members expressed a high level of engagement and a sense of inclusion within the cooperative's activities, which reflects positively on the organizational structure. Notably, respondents saw the cooperative nature as fostering transparency, trustworthiness, and approachability, while aligning with their needs and values. For READ-COOP Members, enhanced user involvement in decision-making processes strengthens the commitment to developing AI technologies that address real community needs while also ensuring broader participation in governance. Despite challenges regarding cost, and questions regarding openly publishing datasets, the majority of Members who responded to the survey recognize significant benefits, including discounted access to the infrastructure, networking, technical support, and influence over the platform's direction,

showcasing a responsible, strong community-driven infrastructure that could serve as a model for future AI initiatives, particularly given these activities map so strongly onto Floridi and Cowls', 2019 principles for responsible AI (see Table 7), while additionally stressing the benefits of Member Economic Participation and Concern for Community which are embedded elements of the Cooperative Principles (ICA, 2024).

It is worth comparing this level of engagement and responsiveness to the Member community with that on offer from big AI, where notions of user input are barely visible, and often amount to offering individuals the opportunity for retrospective feedback, if they can locate the mechanism to do so³⁰. We argue that the cooperative approach gives core users the option to engage with the running of the infrastructure they depend on, and this opportunity for meaningful engagement is a core contribution to more transparent and responsible AI business practices. However, while many Members of READ-COOP stress the benefits of being part of the cooperative structure beyond merely accessing discounts when using the platform, there are also a significant percentage that do not meaningfully engage with cooperative activities, and some who remain sceptical that these activities are any more meaningful than standard software marketing approaches. We are also aware that our responses are entirely contextspecific, working within the cultural and heritage sector, and so this may not translate elsewhere, and we also note that future work necessitates us asking these questions of our Users, as well as our Members.

7. Discussion

ATR and machine learning are very particular sub-strands of the wider Artificial Intelligence field. READ-COOP represents a relatively small community worldwide committed to a highly focussed, defined task: the ATR of historical documents, particularly for the library, archive, and museum sector, and researchers which depends on accessing their content. READ-COOP is dependent on the investment and support of many organisations: secure and sustained "memory institutions" whose role it is to steward the past for the long-term. There is something unique about building an agile, cooperative technological tool serving across this long-standing domain, rooted in a community with a history of civic and democratic activism (Kranich, 2020), and engagement with digital scholarship (Mackenzie & Martin, 2016). The cooperative structure may be as much of a support for community-embedded digital innovation, as well as ethical governance: particularly when there is a clear sense of purpose to deliver a high-quality tool responsive to user needs. However, the cooperative model does put all resources into one basket: the co-ownership structure means that it would be impossible to pivot to a conventional business model or be bought-out by another business in the case of financial issues, given every single co-owner would have to agree to this. However, READ-COOP is unusual as a cooperative: benefiting as it did from a level of initial grant-funding and support from university infrastructure that is beyond the reach of most platform cooperatives: not only is it unique, it is an outlier, and considering this may have ramifications for others wishing to adopt cooperative approaches to AI, or funders wishing to support innovation from focussed research projects.

The size of Transkribus' user base, and the income generated to keep the infrastructure operational, means READ-COOP is an AI minnow to Apple, Microsoft, Alphabet, Meta and OpenAI's pikes. Transkribus has a fraction of big AI's resource

Table 7. READ COOP activity mapped to Floridi and Cowls (2019) 5 principles of AI in society.

AI In Society Principle	READ-COOP Activity	READ-COOP Member Comments
Beneficence	Promotes cultural understanding, preserving heritage, and enhances historical research.	Members appreciate democratization and accessibility: "being part of an ongoing process to improve AI text recognition and unlock old documents" (RCM12).
Non-Maleficence	Establishes security and data integrity through democratic decision-making.	Members value the security and integrity provided by the cooperative control: "To support this initiative stays free of corporate or other influences" (RCM21).
Autonomy	Allows direct input into AI development and governance, influencing operational strategies.	Members are involved in shaping the tools and services that affect their work and community, reflecting empowerment and inclusiveness: "I am part of it and I have a say on its program" (RCM33).
Justice	Ensures equitable access to technology, fostering diverse cultural contributions which facilitate equal benefits from AI advancements.	Members appreciate inclusivity and fairness: "To make research and cultural insights through AI more accessible" (RCM25).
Explicability	Promotes transparency in operational processes and through Member meetings and open communications.	Members value transparency and stating a desire for clear and open AI practices "Greater level of information than other freemium/for-profit providers" (RCM8).

³⁰ Compare READ-COOP activities with the lack of true involvement with the likes of Google: their idea of operationalising AI accountability is merely to elicit feedback via an online form that has only one question, which is buried in their website footer https://ai.google/responsibility/principles/.

or market share, and a completely different vision. Unlike leading generative AI providers, Transkribus and READ-COOP aim to integrate the Member-base into decision making and re-invest profits into shared goals. However, the large-scale compute, datasets required and created, and user-facing platform developed by Transkribus has much in common with other current commercial AI systems (and a comparison with other smaller scale HTR providers would be informative). The success of Transkribus demonstrates that specific and targeted AI and ML tools can have closer links to a target community, and a more ethical technological approach, than larger, general tools. Transkribus is therefore part of much wider and stronger tides in the modern technical and socio-political world, questioning how to build, maintain and grow ethical digital infrastructures in responsible and sustainable ways. Grappling with the underlying business models of AI providers is essential, and we must start to question our growing dependency on easy-toreach-for platforms provided by technological monopolies, while also providing mechanisms to engage specific communities in successful tool delivery.

The act of founding READ-COOP as a cooperative to deliver Transkribus in its post-funded phase has been both an innovative and hopeful act, demonstrating the possibilities for using cooperative methods of governance in platform AI: "To build a co-op is to challenge old ways of thinking about "property" and "development" and contribute to new narratives about community rights, sustainable development, and the satisfaction of basic human needs" (Scholz, 2023, 178). This challenges the domination of corporations "that are destroying their own lives, the lives of others, and even the material conditions of their existence in order to satisfy their craving for profits" (Davies, 2024, 267). When it comes to AI, "we need to focus on the questions of use, misuse, and analysis of data, and the social systems around that" and question "those who build the systems that our future societies will run on" (Milne, 2020, 231) to avoid "systematically building a tougher system for future generations to contend with" (ibid, 247). As will all corporate activities, AI needs "diversity rather than uniformity in corporate governance, and we need it in all its various manifestations - ownership, board structure, and incentives - to be focussed on promoting the full breadth of corporate purposes and not the single goal of shareholder value. It is the basis on which the purpose and values are instilled throughout the organization and without it management cannot deliver on purpose" (Mayer, 2018 115). Calling for greater democracy in every area of life will help "wrest spaces back from the market into genuine public ownership" (Segal, 2023, 179): "if we are to avoid a calamitous future, we have to move away from a world based on private accumulation, and replace it with a politics of care, solidarity and equality" (ibid, 186). Framed in these terms, READ-COOP indicates an alternative future for AI platform governance and sustainability, and one that provides the mechanism for defined, or even marginalised groups, to determine the direction of the technologies they depend on (Birhane et al., 2022), while supporting technological innovation that responds to a particular sector's needs.

However, while READ-COOP is now one of 44.1% of companies that survive their "difficult" first five years (Glover, 2019), this does not mean it will survive into perpetuity. Rapid developments in the AI space, particularly with the developments of LLMs having success in handwriting recognition (Ravey, 2024), are challenging Transkribus' status as the major user-facing provider of ATR (although current provision does not yet allow the same quality or quantity of HTR for handwritten historical documents as Transkribus, nor support for community). READ-COOP's cooperative status means that, should the company ever face extensive liquidity issues, there is not an easy option to sell to an investor, so there is no financial safety net beyond asking Members for further share purchases and membership options. (This means it also cannot do an "OpenAI" and pivot into returning profits to major investors). However, the community that surrounds, utilises, and financially supports Transkribus has a vested interest in seeing it succeed, and there is no doubt that the cooperative model adopted has helped the survival, development, and growth of the ATR infrastructure thus far.

Cooperatives that host AI and ML infrastructures remain rare: for highly motivated individuals the setting up of a cooperative may not be as attractive as the establishment of a private or limited liability company, due to the current possibility of market ownership and untold potential future riches, prioritising those with the shareholder profit motive. However, for public institutions (such as universities), a cooperative model will likely be more attractive if the benefits were more widely understood (Thorpe, 2019). There is no doubt that the current R&D and set up costs for technology platforms are prohibitively large, and that start-up costs for developing public-facing AI platforms (such as general model creation) are restrictive. Alongside this, there are pressures on universities to engage in "entrepreneurial discovery and exploration of market opportunities" (Compagnucci & Spigarelli, 2020), and much commercialised research is originally linked to grant-funded activity (Lockett et al., 2003). READ-COOP's starting point was inheriting a successful technology that had been built during 6 years of EU funded research (totalling €10.6m public investment) supported by university infrastructure, that could then be commercialised (which, as we noted above, makes it an outlier, although this could be reproducible in principle via grant funding or crowd-investing). However, we argue that research funders should prioritise cooperative business models when supporting entrepreneurs to establishing companies from publicly funded research projects in order to support specific tools that answer the needs of specific user communities. This could ensure more transparent, responsible, and sustainable business practices, but requires a redefinition of what it means to set up a successful business in a post-funded phase. Research funders may have to mandate that entrepreneurs in receipt of public funding must consider alternative models of ownership including shared and co-ownership. In the case of AI, this should also add to existing ethically aligned design strategies (Gardner et al., 2022), further encouraging the building of trustworthy and responsible systems (Université de Montréal, 2018) and moving beyond the capitalist AI-hype bubble (Naughton, 2024), to provide much-needed sustainable ML infrastructure for definable beneficiaries.

Establishing a sea-change in corporate AI governance towards cooperative principles will, in itself, require support and encouragement. Various cooperative programmes currently exist, such as the UK Cooperative Bank's UnFound programme, which provides business support to platform coop founders (https://www.uk.coop/start-new-co-op/support/start-platformco-op), and the US based Start.Coop, which provides support, training, and networking to strengthen the cooperative ecosytem (https://www.start.coop/about). However, we argue that universities, research funders, technology incubators, and policy-makers have not yet understood the benefits that cooperatives can provide, the appropriateness of the business model particularly for supporting collaborative and responsible approaches to AI and ML, and the need for support, education, and resourcing of this space. We call upon these bodies to start actively supporting and promoting this alternative method to fund and maintain technology, and to provide resources that prioritise shared prosperity, particularly when these tools respond to needs of particular, specific sectors and their communities. The establishment of platform, AI, and ML cooperatives that emanate from research communities should be seen as much of a success as venture-capital built start-ups, and shareholder owned corporations.

There are practical recommendations that can support the development of cooperative AI infrastructures. In higher education environments, including Business Studies, but also in Computing Science, Digital Humanities, Library and Information Science, and Digital Social Science, we need to ensure that we incorporate learning and teaching about cooperative technologies, and their potential for prioritising the sustainability of digital infrastructure. Individuals interested in understanding more about this area should seek out their local platform cooperatives, and actively support them, to learn more about the cooperative model and their governance mechanisms. We encourage those running or co-owning platform cooperatives to publish their history, trajectories, obstacles, and achievements to provide further evidence and roadmaps which may support others. This may be done in collaboration with academic communities, and we would welcome further published studies of the co-owners and users of platform cooperatives, and how this model benefits them. We also recommend that those wishing to establish their own digital, platform, or AI cooperative should thoroughly explore a variety of aspects in advance, to ensure that this business model is appropriate (see Figure 13).

We acknowledge that READ_COOP is a highly unusual platform cooperative: in the provision of its AI tools, in its response to a specific sector; in the fact that it emerged from an incredibly well-resourced pair of European Union research grants, supported initially by a variety of university infrastructures and communities; and benefiting from both first-mover advantage and combined network affect which may create significant barriers to entry for competing platforms, potentially leading to a quasi-monopolistic position. This may make its success highly unusual: however, we believe there are several

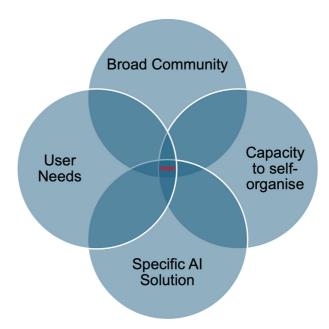


Figure 13. Intersectional aspects underpinning a potential AI cooperative.

factors that can be taken into account when considering whether a platform cooperative would be a successful legal framework in which to embed AI.

Firstly, the scope and size of the platform's specific potential community should be defined, as well as the community's ability, capacity and desire to contribute to a shared infrastructure: the context it operates in is of utmost importance, and that should be well defined and understood. Secondly, ascertaining if the specific AI tool meets an ongoing, shared community need, responsive to general and common requirements, which will make a tricky technological task easier to accomplish, is crucial to the success of any platform, digital, or AI cooperative endeavour: the platform needs to respond to unmet needs, but with a task generic enough to demand broad community support. Thirdly, the availability of resources required for development, deployment, ownership, and operationalisation of the specific AI tool to meet these community needs will also be a crucial consideration, and the resources needed to undertake this development should not be underestimated. Fourthly, understanding the capacity and will for this community to self-organise into a cooperative society, including the source of the labour required (some of which will need to be voluntary, particularly in the start-up phase), will lead to realistic conversations about the establishment of a future AI cooperative. Finally, in the case of READ-COOP, the cooperative structure has supported community engagement, and the readiness of communities to be involved with platform development should be ascertained. The success of READ-COOP indicates that although the area of overlap where an AI cooperative can thrive is small, it can be fruitful: although fulfilling these criteria is difficult, and the success of the READ-COOP may have to stand as an outlier in this cooperative space.

We also acknowledge limitations of this study: our case study may not represent the wider technological world, given it is a bounded community; we concentrated on surveying Members, and have yet to survey Users; the Members who did respond to our queries were a subset self-selecting early adopters; and that the community-building and engagement we describe is also an effective marketing and market-growth strategy. Undertaking a structured study that compares our approach and business model to the community engagement undertaken by other commercial and non-commercial HTR platforms will also offer useful insights.

8. Conclusion

This paper has reported on the establishment and activities of READ-COOP, the cooperative structure that maintains and further develops Transkribus, the award-winning AI based Automated Text Recognition platform for historical documents. Since its founding in 2019, the cooperative has built a network of 227 highly engaged Members from over 30 countries internationally, that have financially, intellectually, and practically contributed to a machine-learning structure that has processed 90m digital images of historical documents, supporting 235,000 active Users. Using both Reflection-In-Action and qualitative questionnaire approaches, we have documented the history of READ-COOP between 2019 and 2024 and undertaken a community survey. This methodological framework elucidates novel insights into the benefits that an AI cooperative can provides for both Members and innovation in the infrastructure itself, grounding this analysis with Member feedback. Despite some concerns about costs, and approaches to open research, most Members of READ-COOP acknowledge considerable advantages, such as Member discounts, networking opportunities, technical assistance, and the ability to shape Transkribus' development. The involvement of Members also benefits READ-COOP, including understanding the needs of the community, gathering input on technical development plans, designing and beta-testing new features, and democratic decision making regarding cooperative management. In describing this, we demonstrate that a cooperative can support the research and development in new technology, if it is established particularly with and for this context. READ-COOP Members are far more engaged in cooperative governance than is usual in other coops, indicating their suitability for technology innovation support (Davis & Donaldson, 2000, 160).

It is our hope that in describing the Transkribus and READ-COOP journey, from our establishment as university-based EU funded research projects, to our independent commercial ventures between 2019 and 2024, that we have been able to communicate both the benefit of a cooperative technology infrastructure to a company and its members, but also the suitability of cooperative principles to the sustainability and governance of AI-based technology, although we acknowledge the unique set of circumstances underpinning Transkribus' development. Using READ-COOP as a case study provides an opportunity to discuss wider issues regarding the business models which underpin AI, demonstrating that cooperative principles could provide an alternative mechanism for building trustworthy, responsible, and sustainable AI, in responding

to specific sectoral needs. This impact extends beyond traditional metrics of success, in structurally embedding community input and ownership into the development process, fostering a sense of investment and responsibility among its members, and an accountability of the governance structure, while also providing an alternative set of economic values, that are often absent in conventional and dominant modern business models. We suggest that a cooperative route provides a sustainable path forward for other AI and ML initiatives, especially those developed through public funding. We suggest that any consideration of responsible and trustworthy AI must examine the underlying economic models and business practices of any given platform, and its ability to function cooperatively rather than competitively, to understand how its primary motivation and foundational purpose aligns with (or cannot align with) ethical principles. We must dream differently to operationalise responsible and transparent AI, otherwise it is already "too late" (RCM18).

A change towards cooperative governance for AI and ML could represent a significant shift in how we conceive of, innovate, and implement AI systems globally, advocating for a more democratized and equitable technology landscape. Platform cooperatives have the potential to build truly inclusive innovation communities: building relationships, which enact inclusive decision-making, with shared investment in technology, and the sharing of success and prosperity. It is these cooperative aspects that lead to technological democratisation. However, such an opportunity requires recognition and support from funders, universities, technology business incubators, policymakers, and the research community itself, in a reframing of economic success towards community-based governance, shared prosperity, and sustainability. At the moment, Transkribus is the only AI platform that we know of which has been established under cooperative principles, and it may be unique in its endeavours because of the privileges it enjoyed in its research funded, university supported research and development phase, its first-to-market advantage, the specific, networked community it supports, and in its technological research and develop endeavours. However, we hope that documenting and considering READ-COOP activities will allow others to consider a cooperative approach for establishing, innovating, sustaining, and growing trustworthy and reliable AI based tools, products, and services.

Ethics statement

This research has had research ethics approval via the READ-COOP board (October 2023) and University of Edinburgh (School of Languages, Literatures and Cultures) Research Ethics Board processes (October 2020). Informed consent was given by survey participants for publication of anonymised results, this was obtained via the initial question (check box) of the online survey collection instrument.

Data availability statement

There is no data which underpins this research paper that can be made publicly available given GDPR constraints: all available datasets regarding READ-COOP are available via https://readcoop.eu.

The paper is an overview of the business activities undertaken by the READ-COOP SCE. Data about Members and Users is therefore commercially and ethically sensitive from a GDPR perspective. No data processing or algorithmic approaches are discussed in the paper and therefore data is not associated to the research methods.

Author contributions (based on CRedIT)

MT: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Visualisation, Writing - Original Draft Preparation.

BA: Conceptualization, Data Curation, Investigation, Project Administration, Validation, Writing - Review & Editing

PG: Conceptualization, Methodology, Writing - Review & Editing

GM: Conceptualization, Investigation, Methodology, Funding Acquisition, Writing - Review & Editing

JN: Conceptualization, Methodology, Writing - Review &

AR: Conceptualization, Investigation, Methodology, Validation, Writing - Review & Editing

AS: Conceptualization, Data Curation, Investigation, Project Administration, Software, Validation, Writing – Review & Editing

FS: Conceptualization, Data Curation, Investigation, Project Administration, Software, Validation, Writing - Review & Editing

MP: Writing - Review & Editing

Acknowledgements

We are thankful to the staff of READ-COOP (past and present), and the Members of READ-COOP for their survey responses. In particular we thank Philip Kahle for the provision of Transkribus server reports. The authors would like to extend thanks to all Users of Transkribus.

References

AI2: About. (n.d.).

Reference Source

AI Index: Artificial intelligence index report 2024. Stanford University, Human-Centred Artificial Intelligence, 2024

Reference Source

Altman M: History and theory of cooperatives. Anheier, H., Toepler, S. (eds). International Encyclopedia of Civil Society. Springer, 2009; 563–570. Publisher Full Text

Arkhipov A, Barinskaya A, Shtefura R: Using handwritten text recognition on bilingual Evenki-Russian manuscripts of Konstantin Rychkov. Scr eScr. 2021; 21: 233-244.

Reference Source

Barats C, Schafer V, Fickers A: Fading away... The challenge of sustainability in digital studies. *Digit Human Q*. 2020; **14**(3).

Basterretxea Markaida I. Fernández Sainz AI. Gutiérrez Goiria I. et al.: Ecoinnovation in worker cooperatives and investor-owned industrial firms: a comparative analysis. Revista de economía mundial. 2024; 67: 145-173. **Publisher Full Text**

Belleflamme P, Peitz M: Platforms and network effects. In: Corchón, L.C. and Marini, M.A. eds., Handbook of game theory and industrial organization, volume II: applications. Edward Elgar Publishing, 2018; 286-317.

Reference Source

Bill and Melinda Gates Foundation: READ-COOP SCE. Committed Grants, Grant Number 066652, February 2024

Reference Source

Birhane A, Isaac W, Prabhakaran V, et al.: Power to the people? Opportunities **and challenges for participatory AI**. In: Proceedings of the 2nd ACM Conference on equity and access in Algorithms, Mechanisms, and Optimization. 2022. **Publisher Full Text**

Black J: Becoming shape. British Academy Blog. June 1st, 2022. **Reference Source**

Bostrom N: **Strategic implications of openness in AI development**. In: Yampolskiy, R. V. (ed). *Artificial intelligence safety and security*. London: Chapman and Hall/CRC, 2018; 145-164.

Reference Source

Brumfield J: We got clobbered by bots: a behind-the-scenes look at how an invisible attack nearly brought down fromthepage—and what we did next. Ben & Sara at FromThePage. Email Newsletter, July 4th, 2025.

Reference Source

Bryant R: Open research as a strategic priority: insights from an OCLC RLP leadership roundtable. RLP Leadership Roundtable. Hanging Together, the OCLC Research Blog. April 14th, 2025.

Reference Source

Camargo Benavides AF, Ehrenhard M: Rediscovering the cooperative

enterprise: a systematic review of current topics and avenues for future research. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations. 2021; 32(5): 964-978.

Publisher Full Text

Carlbla: From the newspaper to the transcript with "Transkribus" Digital History Innsbruck, DH@Innsbruck. Hypothesis Blog. May 3rd, 2020.

Causer T, Terras M: Crowdsourcing Bentham: beyond the traditional boundaries of academic history. Int J Human Arts Comput. 2014; 8(1): 36-64. **Publisher Full Text**

Chaqué A, Clérice T: "I'm here to fight for ground truth": HTR-united, a solution towards a common for HTR training data. Digital Humanities 2023: Collaboration as Opportunity, Alliance of Digital Humanities Organizations; University of Graz, Graz, Austria, July, 2023. Reference Source

Cheffins BR: Stop blaming Milton Friedman! Wash U L Rev. HeinOnline, 2021; 98(6): 1607-1644

Reference Source

Clapp A: An e-Learning team's life on and offline: a collaborative selfethnography in postgraduate education development. *Electron J e-Learn*. 2017; **15**(1): 33–45.

Reference Source

Clausner C, Pletschacher S, Antonacopoulos A: Efficient OCR training data generation with aletheia. Short Paper Booklet of the 11th International Association for Pattern Recognition (IAPR) Workshop on Document Analysis Systems (DAS2014), Tours, France, April 2014; 19-20.

Reference Source

Colutto S, Kahle P, Guenter H, et al.: Transkribus. A platform for automated text recognition and searching of historical documents. In: 15th International Conference on eScience. (eScience). IEEE, 2019; 463–466. **Publisher Full Text**

Compagnucci L, Spigarelli F: The third mission of the university: a systematic literature review on potentials and constraints. Technol Forecast Soc Change. 2020; 161: 120284 **Publisher Full Text**

Cordell R: Machine learning and libraries: a report on the state of the field. Library of Congress. Commissioned by LC Labs, July, 2020. **Reference Source**

Davies D: The unaccountability machine: why big systems make terrible decisions - and how the world lost Its mind. London: Profile Books, 2024. **Reference Source**

Davis P, Donaldson J: A survey of sixteen British consumer cooperative societies. J Coop Stud. 2000; 32(2): 124-178

Reference Source

Deutscher Raiffeisenverband e.V: Raiffeisen: Friedrich Wilhelm Raiffeisen,

1818 - 1888. (n.d.).

Reference Source

EGE: European Group on Ethics in science and new technologies: Statement on artificial intelligence, robotics and 'autonomous' systems. 2018 Reference Source

Ekwere I: DAOs & sustainability: environmental impact and solutions. Meeds DAO. Medium, April 8th, 2024.

Reference Source

Eleuther AI: About, 2023.

Reference Source

European Commission: Open science. Open science in Horizon Europe. n.d. **Reference Source**

European Commission: European Cooperative Society (SCE). Internal Market, Industry, Entrepreneurship and SMEs. Social Economy in the EU. 2011. **Reference Source**

European Commission: TranScriptorium. Community Research and Development Information Service, 2015.

Reference Source

European Commission: Recognition and enrichment of archival documents. Community Research and Development Information Service, 2016. **Publisher Full Text**

European Commission: Horizon impact award. 2022.

Reference Source

EU Science & Innovation: TRANSKRIBUS, winner of the horizon impact award 2020. Youtube, September 23rd, 2020.

Reference Source

Fellingham C, Fraser-Walther M: Social sciences ventures vs social ventures: what's the difference? Oxford University Innovation Blog, May 12th, 2021. Reference Source

Ferreri M, Vidal L: Public-cooperative policy mechanisms for housing commons. Int J Housing Policy. 2022; 22(2): 149-173.

Publisher Full Text

Floridi L, Cowls J, Beltrametti M, et al.: AI4People—an ethical framework for a Good AI Society: opportunities, risks, principles, and recommendations. *Minds Machines.* 2018; **28**: 689–707.

Publisher Full Text

Floridi L, Cowls J: A unified framework of five principles for AI in society. Machine learning and the city: applications in architecture and urban design. Harvard Data Science Review, 2019.

Publisher Full Text

Flyvbjerg B: Case study. In: Denzin, N. K., and Lincoln, Y. S. The Sage Handbook of Qualitative Research. 4th, Edition. London: Sage, 2011; 301-316. **Reference Source**

Fosnacht K, Sarraf S, Howe E, et al.: How important are high response rates for college surveys? Rev High Ed. 2017; 40(2): 245-265.

Publisher Full Text Friedman M: The social responsibility of business is to increase its profits.

New York Times Magazine. 1970; 32: 122-6. **Publisher Full Text**

Furman J, Seamans R: AI and the economy. Innov Policy Econ. 2019; 19(1): 161-191 **Publisher Full Text**

Future of Life Institute: Asilomar AI principles. Beneficial AI 2017 conference.

Reference Source

Gardner A, Smith AL, Steventon A, et al.: Ethical funding for trustworthy AI: proposals to address the responsibilities of funders to ensure that projects adhere to trustworthy AI practice. *AI Ethics*. 2022; **2**(2): 277–291. PubMed Abstract | Publisher Full Text | Free Full Text

Glover B: What is a startup cooperative business? Startups, July 1st, 2019.

Reference Source $\label{thm:hammann} \textit{H:} \textbf{Cooperative firms in theory and practice.} \textit{Liiketaloudellinen}$ aikakauskirja (LTA). 1999; **48**(4): 387–403.

Reference Source

Hodel T: Supervised and unsupervised: approaches to machine learning for textual entities. In: Lise Jaillant (ed.). Archives, access and Artificial Intelligence. Bielefeld: Bielefeld University Press, 2022; 157-178.

Publisher Full Text

Hogan M: AI is a hot mess. In: Arns, I., Birkenstock, E., Bönisch, D., and Hunger, F. (eds) Training the archive. Cologne: Verlag der Buchhandlung Walther und Franz König, Forthcoming, 2024.

Reference Source

Hogan M, Lepage-Richer T: Extractive AI. In: Tollefson, H., and Bergmann, R. Charting the course. Climate justice and technology essay series. Centre for Media, Technology and Democracy, 2024.

Reference Source

House of Lords: House of Lords Artificial Intelligence Committee. AI in the UK: ready, willing and able. April 16, 2018. Reference Source

Huberman J: The spirit of digital capitalism. John Wiley & Sons, 2022. Reference Source

Hueth B: Missing markets and the cooperative firm. In: Workshop on producers' organizations in agricultural markets. Toulouse, France, September,

Reference Source

Humane: Our mission. 2024.

 ${\tt IEEE:}\ \textbf{IEEE}\ \textbf{initiative}\ \textbf{on}\ \textbf{ethics}\ \textbf{of}\ \textbf{autonomous}\ \textbf{and}\ \textbf{intelligent}\ \textbf{systems}.$

Ethically aligned design, v2. 2017.

Reference Source

International Cooperative Allicance: Cooperative identity, values & principles. 2024.

Reference Source

Jaskyte Bahr K: An exploratory study of types of innovation in US foundations. *Adm Sci.* 2019; **9**(4): 93.

Publisher Full Text

Jones DC, Kalmi P: Cooperative enterprise. In: Bruni, L., and Zamagni, S. (eds) Handbook on the economics of philanthropy, reciprocity and social enterprise. Cheltenham, UK: Edward Elgar Publishing, 2013; 85–93.

Publisher Full Text

Kahle P, Colutto S, Hackl G, et al.: "Deliverable 4.2, READ platform and service maintenance", deliverable submitted to the European Commission. 2017. **Reference Source**

Kandie D, Islam KJ: A new era of microfinance: the digital microcredit and its impact on poverty. J Int Dev. 2022; **34**(3): 469–492.

Publisher Full Text

Kelly M: Owning our future: the emerging ownership revolution. Oakland: Berrett-Koehler Publishers, 2012.

Reference Source

Kerin RA, Varadarajan PR, Peterson RA: First-mover advantage: a synthesis, conceptual framework, and research propositions. J Mark. 1992; 56(4):

Publisher Full Text

Kermorvant C, Bardou E, Blanco M, et al.: Callico: a versatile open-source document image annotation platform. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, Springer, Cham, 2024; **14806**. **Publisher Full Text**

Kerr A, Barry M, Kelleher JD: **Expectations of Artificial Intelligence and the** performativity of ethics: implications for communication governance. *Big* Data Soc. 2020; 7(1).

Publisher Full Text

Klein L, D'Ignazio C: Data feminism for AI. In: The 2024 ACM conference on Fairness, Accountability, and Transparency (FAccT '24), June 03–06, 2024, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 2024.

Publisher Full Text

Kiessling B: Version 5 of the Kraken ATR Engine for the humanities. In: ICDAR2025-19th International Conference on Document Analysis and Recognition. Wuhan, China, September, 2025.

Reference Source

Kiessling B, Tissot R, Stokes P, et al.: eScriptorium: an open source platform for historical document analysis. In: 2019 international conference document analysis and recognition workshops (icdarw). IEEE, 2019; 2: 19. **Publisher Full Text**

Kim W: A practical guide for understanding online business models. *Int J Web Inf Syst.* 2019; **15**(1): 71–82.

Publisher Full Text

Kranich N: Libraries and democracy revisited. Libr Quart. 2020; 90(2): 121-153

Publisher Full Text

Leaver T, Srdarov S: ChatGPT Isn't magic: the hype and hypocrisy of generative Artificial Intelligence (AI) rhetoric. *M/C Journal*. 2023; 26(5).

Lee BCG: The "collections as ML data" checklist for machine learning and cultural heritage. J Assoc Inf Sci Tech. 2023.

Publisher Full Text

Lee K, Cooper AF, Grimmelmann J: Talkin' 'Bout AI generation: copyright and the generative-AI supply chain (The short version). CSLAW '24: proceedings of the symposium on computer science and law. 2024; 48-63. **Publisher Full Text**

Lehuedé S: An elemental ethics for Artificial Intelligence: water as resistance within AI's value chain. AI Soc J Knowl Cult Commun. 2024. **Reference Source**

Lemley MA, McCreary A: Exit strategy. Boston U Law Rev. 2021; 101(1): 1-102. **Reference Source**

Levy S: The transformers. What OpenAI really wants. Wired. print edition, September 5th, 2023; 64–79.

Reference Source

LLM360 Team: Introducing LLM360: fully transparent open-source LLMs. LLM360 Blog, December 11th, 2023.

Reference Source

Li H: Converting free users to paid subscribers in the SaaS context: the

impact of marketing touchpoints, message content, and usage. Prod Oper Manaa. 2022: 31(5): 2185-2203.

Publisher Full Text

Li M, Lv T, Chen J, et al.: **Trocr: Transformer-based optical character recognition with pre-trained models.** In: *Proceedings of the AAAI conference on* Artificial Intelligence. 2023; **37**(11): 13094–13102. **Publisher Full Text**

Lockett A, Wright M, Franklin S: **Technology transfer and universities' spinout strategies**. *Small Bus Econ.* 2003; **20**(2): 185–200.

Publisher Full Text

MacMillan T, Cusworth G: Farmer co-operation in the UK. Opportunities for the industry. Co-operatives UK Report. 2019.

Reference Source

Mackenzie A, Martin L, (Eds.): Developing digital scholarship: emerging practices in academic libraries. London: Facet Publishing, 2016. **Reference Source**

Mannan M, Wong J, Bietti E: Data cooperatives in Europe: a preliminary investigation. Netw Indus Q. 2022; 24(3).

Reference Source

Mayer C: Prosperity: better business makes the greater good. Oxford, Oxford University Press, 2018.

Reference Source

McAllister AD, Flierl M, Caswell TR, et al.: Top trends in academic libraries. University of North Florida, UNF Digital Commons, 2022.

Reference Source

McKillop D, French D, Quinn B, et al.: Cooperative financial institutions: a review of the literature. Int Rev Financ Anal. 2020; 71: 101520. **Publisher Full Text**

Milmo D: Why is OpenAI planning to become a for-profit business and does it matter? Explainer. The Observer. September 26th, 2024

Reference Source Milne G: Smoke and mirrors: how hype obscures the future and how to see

past it. London: Robinson, 2020. Reference Source Miyagawa S: Digitizing old nubian dictionary: optical character recognition for multi-lingual and multi-script text from medieval Africa. In: 2023 7th

IEEE Congress on Information Science and Technology (CiSt). IEEE, 2023; 587–592. **Publisher Full Text**

Mohd-Saleh N, Ismail MD, Hassan MS, et al.: Member activism, governance, and performance in cooperatives. Int J Discl Gov. 2025; 22(2): 305–319. **Publisher Full Text**

Mozilla Insights, van Geuns J, Brandusescu A: Shifting power through data **governance**. Mozilla Data Futures Lab. May 16th, 2020

Reference Source

MSI Integrity: Not Fit-for-purpose: the grand experiment of multi-stakeholder initiatives in corporate accountability, human rights and global governance. Institute for Multi-Stakeholder Initiative Integrity, July 2020

Reference Source

Muehlberger G: Recognition and Enrichment of Archival Documents (READ). Proposal to European Commission, H2020-EINFRA-2015-1. Call: H2020-EINFRA-2015-1. Topic: EINFRA-9-2015. Type of action: RIA. Proposal number: 674943, 2015.

Reference Source

Muehlberger G: Considering READ-COOP. Email to Melissa Terras, April 8th,

Muehlberger G, Seaward L, Terras M, et al.: Transforming scholarship in the archives through handwritten text recognition: transkribus as a case study. J Doc. Emerald Publishing Limited, 2019; 75(5): 954-976.

Publisher Full Text

Muldoon J: Platform socialism: how to reclaim our digital future from big tech. London: Pluto Press, 2022. Publisher Full Text

Museum Data Service: About. 2024.

Reference Source

Nascimento MJD: Em todos os locais da América portuguesa: a estrutura de posse de escravos por meio dos registros de batismos de Santa Luzia, Goiás (1749-1788). Instituto De Ciências Humanas, Programa De Pós-Graduação Em História, Universidade De Brasília, 2024.

Reference Source

Naughton J: From boom to burst, the AI bubble is only heading in one direction. Guardian. April 13^{th} , 2024.

Neudecker C: Cultural heritage as data: digital curation and artificial intelligence in libraries. Qurator 2022: 3rd Conference on Digital Curation Technologies. September 19-23, 2022, Berlin, Germany, 2022.

Reference Source

Niu J: Corporate archives in the wild. Global Knowledge, Memory and Communication. 2025; 74(3-4): 917-937.

Publisher Full Text

Noble M, Ross C: From principles to participation: 'The Statement on the

 ${\bf cooperative\ identity'\ and\ higher\ education\ co-operatives.}\ {\it Journal\ of}$ Co-operative Organization and Management. 2021; 9(2): 100146. **Publisher Full Text**

Nockels JH: **Chapter 4. Understanding content-holding institutions' HTR use**. In: Nockels, J. H. *Making the Past Readable: A Study of the Impact of Handwritten Text Recognition (HTR) on Libraries and Their Users*. PhD Thesis, School of Languages, Literatures, and Cultures, University of Edinburgh, 2024.

Nockels J, Gooding P, Ames S, et al.: Understanding the application of Handwritten Text Recognition technology in heritage contexts: a systematic review of Transkribus in published research. Arch Sci (Dordr). 2022; **22**(3): 367-392.

PubMed Abstract | Publisher Full Text | Free Full Text

Nockels J, Gooding P, Terras M: Are Digital Humanities platforms facilitating sufficient diversity in research? A study of the Transkribus scholarship programme. *Digit Scholar Human*. 2024; **40**(Supplement_1): i46-i65. **Publisher Full Text**

Nomic: We've raised \$17m to build explainable and accessible AI. Nomic Blog, July 13th, 2023. **Reference Source**

O'Neill AJ, Hill N: Text recognition for Nepalese manuscripts in pracalit script. *J Open Humanit Data*. 2022; **8**(13): 1–26.

Publisher Full Text

OpenAI: About. 2024.

Reference Source

Open Future: The Data Governance Act - between undermining the GDPR and building a Data Commons. EDRI Blog, July 14th, 2021.

Reference Source

Papachristos G, Suarez F: First mover, fast second or later mover in platform industries?: an integrated model of entry timing advantages. In: DRUIDSummer Conference 2022. June 15, 2022.

Reference Source

Padilla T: Responsible operations: data science, machine learning, and AI in Libraries. OCLC Research Position Paper, OCLC Online Computer Library Center, Inc, 2019.

Partnership on AI: Tenets. 2018.

Reference Source

Peña Calvin A: Cooperative DAOs shift management from hierarchies to networks. Platform Cooperativism Consortium Blog, March 26th, 2024. **Reference Source**

Perdiki E: Transkribus: reviewing HTR training on (Greek) manuscripts RIDE - a review journal for digital editions and resources. Issue 15: Tools and Environments. 2019.

Reference Source

Pérotin V: What do we really know about worker co-operatives? Co-operatives UK Limited, 2021.

Reference Source

Platform Cooperativism Cooperation: Vision and advantages. n.d. Reference Source

Ravey J: Finding the best AI-Powered handwriting OCR. Brainsteam Blog, April 2nd, 2024. Reference Source

READ-COOP: READ-COOP SCE formally established! READ-COOP Blog, November 15th, 2019.

Reference Source

READ-COOP: When will the payment model for Transkribus start? captured October 20th, 2020.

Reference Source

READ-COOP: New Transkribus lite: use Transkribus in your browser. Johanna from READ COOP, Transkribus News. via email to Melissa Terras. 2021a; February 10th, 2021.

READ-COOP: Our story. 2023a.

Reference Source

READ-COOP: Coming soon: exciting changes to Transkribus subscription plans! 2023b; June 20th, 2023.

Reference Source

READ-COOP: Public AI models in Transkribus. 2023c.

Reference Source

READ-COOP: The Dutchess I. Free public AI model for handwritten text recognition with Transkribus. 2023d.

Reference Source

READ-COOP: The German Giant I. Free Public AI model for handwritten text recognition with Transkribus. 2023e.

Reference Source

READ-COOP: Introducing the new Transkribus web app. 2023f; August 30th, 2023.

READ-COOP: **Weekly read**. READ-COOP Members News. Message on read-coop-members Slack channel from Carmen Maria Rueda Lara. 2023g; February 20th, 2023, 10.20am.

READ-COOP: **Weekly read.** READ-COOP Members News. Message on read-coop-members Slack channel from Carmen Maria Rueda Lara. 2023h; June 13th, 2023, 7.08am.

READ-COOP: Coming soon: exciting changes to transkribus subscription plans! News, 2023i; June 20th, 2023. Reference Source

READ-COOP: Introducing Transkribus super models – get access to 'The Text Titan I'. News, 2023j; July 10^{th} , 2023.

Reference Source

READ-COOP: **Weekly read**. READ-COOP Members News. Message on read-coop-members Slack channel from Carmen Maria Rueda Lara. 2023k; July 31^x, 2023, 9.25am.

READ-COOP: Highlights from TUC 2024. 2024a.

Reference Source

READ-COOP: Weekly Read. READ-COOP Members News, Message on readcoop-members Slack channel from Carmen Maria Rueda Lara, 2024b; March

 ${\sf READ\text{-}COOP:} \ \textbf{The new team subscription plan-collaboration at its best.}$ News, 2024c; April 25th, 2024.

Reference Source

READ-COOP: New super model: Dutch demeter I. 2024d; February 22^{nd} , 2024. **Reference Source**

READ-COOP SCE: Statues of the READ-COOP SCE with limited liability. April 13th, 2022.

Reference Source

Reul C, Christ D, Hartelt A, et al.: OCR4all—An open-source tool providing a (semi-) automatic OCR workflow for historical printings. Appl Sci. 2019;

Publisher Full Text

Risam R: New digital worlds: postcolonial digital humanities in theory, praxis, and pedagogy. Northwestern University Press, 2018. Reference Source

Romein CA, Hodel T, Gordijn F, *et al.*: **Exploring data provenance in handwritten text recognition infrastructure:** sharing and reusing ground truth data, referencing models, and acknowledging contributions. Starting the conversation on how we could get it done. J Data Min Digit Human. Special issue on Historical Documents and automatic text recognition. 2024.

Publisher Full Text

Ross J, Sheail P, Terras M, et al.: Infrastructure futures for digital cultural heritage. Edinburgh: University of Edinbugh, 2024.

Publisher Full Text

Rutskiy V, Muda I, Joudar F, et al.: DAO tokens: the role for the web 3.0 industry and pricing factors. In: Computer Science On-line Conference. Cham: Springer International Publishing, 2023; 595-604.

Reference Source

Ryan Y: Thing 15: AI and its research applications. 23 Things International blog, 2023; May 4th, 2023.

Reference Source

Sadowski J: Too smart: how digital capitalism is extracting data, controlling our lives, and taking over the world. MIT Press, 2020.

Reference Source

Sánchez JA, Bosch V, Romero V, et al.: Handwritten text recognition for historical documents in the transcriptorium project. In: Proceedings of the first international conference on digital access to textual cultural heritage. (DATeCH ' 14), 2014; 111–117.

Publisher Full Text

Sánchez JA, Romero V, Toselli AH, et al.: A set of benchmarks for handwritten text recognition on historical documents. Pattern Recognit. 2019; 94:

Publisher Full Text

Sánchez JA, Vidal E, Bosch V, et al.: Ground-truth generation through crowdsourcing with probabilistic indexes. Neural Comput Appl. 2024; 36(30): 18879-18895

Publisher Full Text

Scholz T: How platform cooperativism can unleash the network. In: Scholz, T., and Schneider, N. Ours to hack and to own: The rise of platform cooperativism, a new vision for the future of work and a fairer internet. New York: OR Books, 2016; 20-26.

Publisher Full Text

Scholz RT: Own this!: How platform cooperatives help workers build a democratic internet. London: Verso Books, 2023.

Reference Source

Scholz T, Schneider N: Ours to hack and to own: the rise of platform cooperativism, a new vision for the future of work and a fairer internet. New York: OR Books, 2016; 20-26.

Reference Source

Schon DA: The reflective practitioner: how professionals think in action. New York, NY: Basic Books, 1983.

Reference Source

Schomaker L: Design considerations for a large-scale image-based text search engine in historical manuscript collections. IT - Inf Technol. 2016; **58**(2): 80-88.

Publisher Full Text

Schneider N: Everything for everyone: the radical tradition that is shaping the next economy. New York: Nation Books, 2018.

Reference Source

Schneider N: Enabling community-owned platforms: a proposal for a tech new deal. In: Moore, M., and Tambini, D. *Regulating big tech: policy responses to* digital dominance. Oxford University Press, 2021.

Publisher Full Text

Schneider N: Governable spaces. Democratic design for online life. Oakland, California: University of California Press, 2024.

Reference Source

Seaward L: D4.9: User Satisfaction. READ H2020 Project 674943. 2019.

Segal L: Lean on me: a politics of radical care. London: Verso, 2023. **Reference Source**

Shahrivar S, Elahi S, Hassanzadeh A, et al.: A business model for commercial open source software: a systematic literature review. Inf Softw Technol. 2018; 103: 202-214.

Publisher Full Text

Siebert M: Cooperatives should embrace the opportunities of AI. Platform Cooperativism Consortium. Blog. May 12th, 2023.

Reference Source

Stauder F: Message to #General Channel, READ-COOP Slack, March 4th, 2021. Stauder A: READ-COOP SCE Questions. Email to Melissa Terras, September 1st, 2023.

Reference Source

Strauß T, Leifert G, Labahn R, et al.: ICFHR2018 competition on automated text recognition on a READ dataset. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR). Niagara Falls, NY, USA, 2018, IEEE, 2018; 477-482.

Publisher Full Text

Stringer ET: Action research. 4th ed. London: Sage Publications, 2013. **Reference Source**

Stuermer M, Abu-Tayeh G, Myrach T: Digital sustainability: basic conditions for sustainable digital artifacts and their ecosystems. Sustain Sci. 2017;

PubMed Abstract | Publisher Full Text | Free Full Text

Tarride S, Schneider Y, Generali-Lince M, et al.: Improving automatic text recognition with language models in the PyLaia open-source library. In: International Conference on Document Analysis and Recognition. Lecture Notes in Computer Science, Springer, Cham, 2024; 14808: 387–404. **Publisher Full Text**

Terras M: Crowdsourcing in the digital humanities. In: Schreibman S., Siemens R., Unsworth J. (eds). A new companion to digital humanities. Oxford: Blackwell, 2015; 420-438.

Publisher Full Text

Terras M: Inviting AI into the archives: the reception of handwritten recognition technology into historical manuscript transcription. In: L Jaillant (ed.), Archives, access and AI: working with born-digital and digitised archival collections. Digital Humanities Research, Transcript Verlag, Berlin; 2022;

Publisher Full Text

Terras M, Gooding P, Nockels J, et al.: On automating editions: the affordances of handwritten text recognition platforms for scholarly editing. Scholarly Editing. 2024; 41. Publisher Full Text

Thorpe D: People love co-ops but don't really know what they are. Forbes, August 20th, 2019. Reference Source

Together: Our values. 2023.

Reference Source

Tracxn: OpenAI funding & investors. Developer of saas-based generative AI models. 2024; Last updated October 11.

Reference Source

Transkribus: https://transkribus.eu/Transkribus/, 2015.

Reference Source

Transkribus: About the corporate form of the cooperative: interview with Raiffeisen-Landesbank Tirol AG. Youtube. 2021a; February 11th, 2021. **Reference Source**

Transkribus: Transkribus lite. 2021b; captured February 10th, 2021.

Reference Source

Transkribus: The Wolpertinger has been part of the Transkribus universe for quite some time. So we have decided incorporate our beloved Wolpi into our logo icon — what do you think? #transkribus #wolpi. Tweet, 2023a; January 18th, 2023. **Reference Source**

Transkribus: Connect with fellow Transkribus users at the #DH2023 conference in Graz this week. Join us for the #Transkribus meet-up on Friday 14 July from 13: 00 – 14: 00 in room MCG-M at the Messecongress Graz Convention Center. Hope to see you there! Tweet, 2023b; July 11th, 2023. **Reference Source**

Transkribus: Introducing the new Transkribus web app. 2023c; August 30th 2023

Reference Source

Transkribus: Introducing table models - trainable layout AI in Transkribus. News, 2023d: October 27th 2023.

Reference Source

Transkribus: Tweet. We've reached 200K users! < Massive thanks to our amazing Transkribus community for helping us reach this milestone. Let's keep unlocking our written past together! 2024a; May 7th, 2024. **Reference Source**

Transkribus: Get early access to the text Titan II. 2024b.

Reference Source

Transkribus: Home page. 2024c.

Reference Source

Transkribus: Arabic Khat (=Arabic) period 17-20centure handwritten. Model Details, 2024d.

Reference Source

Tsai W, Bai X, Huang Y: **Software-as-a-Service (SaaS): perspectives and challenges.** *Sci China Inf Sci.* 2014; **57**: 1–15.

Publisher Full Text

Tucker J: Facing the challenge of digital sustainability as humanities researchers. *J Br Acad.* 2022; **10**: 93–120.

Publisher Full Text

United Nations: Sustainable development goals. 2023.

Reference Source

Université de Montreal: Montreal declaration for a responsible development of artificial intelligence. Announced at the conclusion of the Forum on the Socially Responsible Development of AI. 2018; November 3, 2017.

Reference Source

van Koert R, Klut S, Koornstra T, et al.: Loghi: an end-to-end framework for making historical documents machine-readable. In: Mouchère, H., Zhu, A. (eds) Document Analysis and Recognition – ICDAR 2024 Workshops. ICDAR 2024. Lecture Notes in Computer Science, Springer, Cham, 2024; 14935.

Publisher Full Text

Verhoeven D, Palmer S, Seitzinger J, et al.: Research my world: crowdfunding research pilot project evaluation. Deakin University, Burwood, Melbourne,

Vicente-Saez R, Martinez-Fuentes C: Open Science now: a systematic literature review for an integrated definition. J Bus Res. 2018; 88: 428–436. **Publisher Full Text**

Vogelezang F, Keller P: The data governance act: five opportunities for the data commons. Open Future, June 23rd, 2021.

Reference Source

Weinberg M: Are AI bots knocking cultural heritage offline? glam-e lab. Engelberg center on innovation law & policy. v.1.0. June, 2025. **Reference Source**

Widder DG, Whittaker M, West SM: **Why 'open'AI systems are actually closed, and why this matters.** *Nature.* 2024; **635**(8040): 827–833.

PubMed Abstract | Publisher Full Text

Wilkinson MD, Dumontier M, Aalbersberg IJ, et al.: The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016; 3(1):

PubMed Abstract | Publisher Full Text | Free Full Text

Wenger E: Communities of practice and social learning systems. *Organization*. 2000; **7**(2): 225–246. **Publisher Full Text**

Wiggers K: Stability AI, hugging face and canva back new AI research nonprofit. Techcrunch. March 2nd, 2023. Reference Source

Woolley J: Infrastructure for entrepreneurship. In: Oxford research encyclopedia of business and management. 2017. **Publisher Full Text**

Zuboff S: The age of surveillance capitalism. Profile Books, 2019. Reference Source

Open Peer Review

Current Peer Review Status:

Version 2

Reviewer Report 25 October 2025

https://doi.org/10.21956/openreseurope.22874.r61768

© 2025 Scholz R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

R. Trebor Scholz

The New School, New York, New York, USA

I am satisfied with these changes and think that the paper can move ahead.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 19 February 2025

https://doi.org/10.21956/openreseurope.20281.r50056

© 2025 Clerice T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Thibault Clerice 🗓

Inria, Paris, France

Introduction

The paper presents, explains and analyzes the choice and its aftermath behind the structural change from a publicly funded project (Transkribus) to a cooperative-based ownership of the infrastructure and developments. It uses the authors' own experience and their own company as a use case to defend the hypothesis that cooperative structuration in niche AI applications—but

even more for research projects after public funding phases is a way to ensure its survival and sustainability. The authors present the cooperative status of READ-COOP as the element responsible for the success of the platform (Page 2, "This success [number of documents and users] is due to the cooperative approach...").

After carefully reviewing the paper, I find that it effectively presents the argument that the cooperative structure has, for the time being (as the authors rightly acknowledge on page 29), ensured the short- to mid-term sustainability of the tool originally funded by public funds. However, the paper lacks sufficient argumentation and supporting sources to substantiate the claim that the company structure is responsible for the platform's success (measured in terms of the number of users, documents, or citations, as referenced in section 5.6 by the authors themselves). Furthermore, the paper appears to omit critical perspectives on this structural change and fails to appropriately cite the work of competitors. At times, the paper reads more as an advert for the cooperative (for example, the fact that Transkribus won an award is mentioned three times and cited twice in the bibliography) rather than a comprehensive analysis of this structural shift. In the following report, I will suggest additional avenues that I believe the authors should consider integrating into their paper in order to better represent the impact of the cooperative structure, its benefits, and its consequences on the community.

Finally, the very small participation rate in the survey, along with its imbalance toward "founding" members (35% from 2019 and 56% from 2019 and 2020), warrants a more cautious interpretation of the results. For instance, when analyzing responses indicating that the primary motivation behind shareholding was the discount, it is important to consider how many of these respondents are recent members. Conducting an additional survey focused specifically on users would provide valuable insights and further strengthen the overall claims and conclusions of the paper. If institutions and individuals become members for discount rather than for cooperation, the same way they pay for subscriptions, how does the argument of the paper hold?

I would like to conclude the introduction to my review by expressing my appreciation for the transparency demonstrated in this paper and its intent to provide a detailed perspective on the transition process that Transkribus underwent. It is undoubtedly challenging to write about the success of one's own project, especially when it has been nurtured for over a decade. However, this close connection to the project can—as is the case here—limit the necessary critical perspective on practices that are genuinely aimed at supporting the community but also function as significant marketing and user retention strategies.

This paper should be revised and resubmitted to address the issues I think are too big for a "Approve with reservations".

I Academic good practices

Competing platforms are not appropriately cited, and works that should be referenced through formal citation are too often merely linked via URLs. All competitors are mentioned only by hyperlink—including one that is clearly incorrect (www.scriptorium.com, which leads to a company specializing in content solutions and has no connection to ATR). Given the nature of some of the projects, specifically eScriptorium which is designed as a decentralized tool, citing their publication would be more meaningful than choosing a random instance. Similarly, HTR-United is referenced only by URL rather than through proper citation. Given that the authors also measure their own

success through citation counts, it would be fair and academically rigorous to cite the relevant papers describing these competing platforms. Additionally, while Teklia is mentioned, the authors should also cite Callico, the tool that they produced.

From the perspective of the paper, a more thorough analysis of (potentially non commercial) competitors within the same niche would strengthen the argument regarding the cooperative model, providing a clearer context for the discussion.

II Terminology issues and ambiguities

I would have liked the authors to have defined and used the terms "users", "members", and "community" more precisely, as they appear to have distinct meanings: a member holds a share in the cooperative, users have accounts on the platform, and the community seems to encompass all users, whether institutional or individual. For example, on page 28 of the PDF, the term "READ-Coop users" is used, but in this context, it likely refers to members. The term "shareholder" may be more appropriate in such cases, as the use of "member"—which can refer either to a member of the cooperative or to a member of the broader community—introduces ambiguity.

A similar issue in terminology occurs on page 22 of the PDF. The paragraph begins by mentioning openly licensed ground truth (i.e., data) but then abruptly shifts to discussing openly licensed models. This sudden transition is confusing, particularly since open data is not addressed until the middle of an already lengthy paragraph. Moreover, the term "open model" is debatable in this context, as these models are only accessible within the platform's infrastructure and, in some cases, restricted to specific subscription tiers (e.g., Faucon Français and potentially other similarly sized models are limited to Scholar users). In AI discourse, open models typically refer to models with publicly available weights. A more precise term would be shared models or internally available models. Here, I would argue that these models are equally or less "open" than OpenAI ones.

In the same paragraph of 5.6 Impact, the phrase "102 models available via HTR-United in October 2024" should instead refer to datasets, as HTR-United only provides training data rather than pretrained models.

Similarly, an issue with terminology appears on page 18, where a 5% CER (Character Error Rate) is mentioned. It should be clarified that, to our knowledge, Transkribus reports only development-set scores, not test-set scores. While this provides a useful metric, it may also indicate overfitting to a specific development set. Explicitly stating this distinction would improve the paper's precision and the fairness of comparison with other tools.

On page 20, the paper mentions AI-based search functionalities. However, these are not clearly defined (e.g., are they referring to vector search or document embeddings?). The term "AI-based search functionalities" is somewhat vague and could be perceived as marketing language, so it would be beneficial to specify the underlying techniques for greater clarity and academic rigor.

III Success of Transkribus and relationship to the cooperative structure

I recommend the paper to acknowledge or address three mechanisms it benefited from or put in place to ensure its position as the main platform.

<u>III.a Addressing the First-Mover Advantages (FMA) and/or First-Mover Benefits regarding the success of the platform</u>

The paper does not draw all the consequences of the fact that Transkribus was "the first handwritten text recognition (HTR) platform to provide access to the power of ATR without requiring users to set up or manage their own machine learning or AI infrastructure." In the context of an economic analysis of the platform's structuration and the broader claim that this structuration is responsible for its success and its number of users or members, the paper should at least acknowledge and discuss the role of First-Mover Advantages (FMA) or First-Mover Benefits (FMB) (Kerin et al. 1992 [Ref-2]; Cirik & Makadok 2023 [Ref-1]). (Cha 2013 [Ref-4]; Papachristos et al. 2022 [Ref-3]) have demonstrated that such advantages—when combined with effective user retention mechanisms—tend to foster monopolistic tendencies. Platforms such as MySpace, Facebook, Twitter, Instagram, and TikTok have all benefited from these dynamics.

Potential bibliography:

- Kubilay Cirik and Richard Makadok, 2023 [Ref-1]: First-Mover Advantages versus First-Mover Benefits: What's the Difference and Why Does It Matter?. AMR, 48, 409–431, https://doi.org/10.5465/amr.2017.0499
- Kerin, R. A., Varadarajan, P. R., & Peterson, R. A. (1992) [Ref-2]. First-Mover Advantage: A Synthesis, Conceptual Framework, and Research Propositions. Journal of Marketing, 56(4), 33-52. https://doi.org/10.1177/002224299205600404
- Papachristos, G., & Suarez, F. (2022) [Ref-3]. First Mover, Fast Second or Later Mover in Platform Industries? An Integrated Model of Entry Timing Advantages. *An Integrated Model of Entry Timing Advantages* (June 15, 2022).
- Cha, J. (2013) [Ref-4]. Examining First Mover Advantages among Social Networking Sites. *Media Management and Economics Research in a Transmedia Environment*, 1(1), 2-9.

III.b Addressing Network Effects

Network effects—where the value or utility of a service increases with the number of users—clearly contributed to Transkribus' success and should not be overlooked in the analysis of its growth. This phenomenon is particularly significant in a niche market such as Automated Text Recognition (ATR) for historical documents, where the user base, primarily composed of GLAM institutions and scholars, is tightly connected and partially interdependent.

The adoption of Transkribus can easily propagate through academic networks. For instance, a research grant involving a team that uses Transkribus may indirectly encourage or directly force its adoption by partner institutions, especially given that trained models are not exportable outside the platform. The inherently collaborative nature of grant-funded research in contemporary academia amplifies these network effects, reinforcing user retention. Moreover, in combination with FMA and FMB, these dynamics may create significant barriers to entry for competing platforms, potentially leading to a quasi-monopolistic position from which users find it difficult to switch.

The network effect is clearly observable in the membership base in Germany, Austria, and the Netherlands, as noted by the authors in reference to the original network that helped build Transkribus.

III.c Addressing free use as a marketing tools

In multiple instances, the authors present free credits as a means to "allow trial and support hobby users," to "assist training events and students in their studies," and to "promote diverse research." We do not dispute the accuracy of these statements. However, in the context of a paper that leans toward management studies, it seems inadequate not to also analyze these free credits as marketing tools (Li 2022 [Ref-5]). When combined with network effects and the closed nature of both the software and models, this strategy functions as a potentially effective user retention mechanism.

This is one example where the authors' proximity to the subject—their own company and project—may lead to an incomplete analysis of the business mechanisms necessary for a company's sustainability. A more critical discussion of these strategic choices would contribute to a more comprehensive and balanced assessment.

Potential bibliography:

- Li, H. (A.) (2022 [Ref-5]). Converting free users to paid subscribers in the SaaS context: The impact of marketing touchpoints, message content, and usage. Production and Operations Management, 31, 2185–2203. https://doi.org/10.1111/poms.13672

IV. READ-Coop, Transparency and cooperative as an alternative that pushes in the direction of more transparent and more responsible AI.

READ-Coop positions itself as an alternative to the practices of large AI companies. The argument that READ-Coop reinvests its profits into infrastructure rather than prioritizing shareholder returns is well-founded and clearly articulated. However, several points raised by the authors appear to be overly favorable to their own company:

- 1. While Transkribus does not sell private user data directly to third parties, it does sell enhanced models trained on aggregated user data, including to commercial entities. Although the profits from these sales are reinvested in the company, this practice bears similarities to what OpenAI does—leveraging user interactions to improve its models, which are then commercialized. In both cases, neither the models nor the underlying data are made freely available. Given this parallel, how does READ-Coop's approach fundamentally differ from that of OpenAI?
- 2. Unlike companies such as META, and even more so like OpenAI, READ-Coop does not release the weights of its models or the software necessary for their use. Given that the paper advocates for greater transparency in AI, it does not sufficiently address this resemblance between READ-Coop and the very actors from which it seeks to differentiate itself.
- 3. The paper mentions Teklia as an alternative to Transkribus; however, this framing is somewhat imprecise. Teklia, as a company, should rather be compared to READ-Coop, whereas Arkindex, its platform, serves as an alternative to Transkribus. While both are corporate entities, Teklia has embraced an open-source, open-weight, and open-tool approach—akin to companies such as Mistral and Pleias. A comparison with smaller AI companies, rather than solely with major technology firms (GAFAM), would likely strengthen the paper's argument.
- 4. In relation to the previous two points regarding the openness of data and tools, another

relevant issue is READ-Coop's evolving terms of service. Until 2024, the platform's terms and conditions explicitly allowed users to download their trained models (see https://webcf.waybackmachine.org/web/20241004060057/https://readcoop.org/terms, section 12.3.2: "You have the option to make your trained models available for general use by providing explicit consent. If you wish to make your Training Material publicly available along with the model via Transkribus, you must grant explicit consent for this specific purpose. You are free to export the model files of the models that you have trained."). This clause has since been removed. To my knowledge, this option was never actually implemented, but given its significance, such a change in terms and conditions should have been explicitly communicated to users—yet no such notification appears to have been issued. In the context of the paper's repeated emphasis on transparent AI, how do the authors analyze such modifications to its policies?

Finally, given these similarities, the paper does not sufficiently address concerns regarding the long-term security of Transkribus' non-profit status. As the authors themselves note, OpenAI initially operated with a non-profit mission but later transitioned to a for-profit model. Given that Transkribus' AI-related code is closed-source and its models are not downloadable, what mechanisms remain for users (as distinct from members) to trust that the underlying model and platform policies will not change in the future? Addressing this question would strengthen the discussion on transparency, governance, and long-term commitments to the community.

Regarding transparent AI and best practices, as discussed in section 5.6 Impact, as well as the respectful acknowledgment of users' contributions, the current Transkribus platform does not provide any details about the datasets used to train its transformer models, such as Faucon Francais. This raises concerns both from an AI transparency perspective and from an academic standpoint, as it fails to properly recognize the contributions of data annotators (and the publication of one of the authors having focused on the need to rehabilitate the work of annotators, such as Father Busa's punch card operatives, should warrant for at least addressing the topic here). The gap between the stated commitment to transparency and its actual implementation warrants further discussion, particularly given the tension between READ-Coop's dual role as an academic and transparent cooperative and its need to attract users and maintain a sustainable revenue stream. It also, to some extent, ignores the contribution of its own community from 2022 mentioned in 5.6 regarding the best practices to acknowledge the role of data in model training, which could show a more tenuous relationship between the company and its community.

V. Survey's limitations and additional data required

In the rest of the papers, some analyses are ignoring potential other reasons for the success of Transkribus, and the lack of data is leading to a lower capacity to admit the argument.

"As of October 2024, 45% of READ-COOP members are private individuals (see Table 2), and the growth of the private membership option has been strongest over time, indicating how invested individual users have become in the operations of the cooperative, although overall voting share remains low." Given the response to the survey, this analysis could be challenged by at least one competing hypothesis: could it be that these new member-users are significant users of the platform with limited institutional support, leading them to seek the private discount? Both hypotheses could be tested or refined through a better response rate to the original member survey, or by analyzing the percentage of users whose institutions are not members, thus potentially lacking access to institutional discounts. It

- would also be useful to identify users who self-identify as independent scholars, placing them in a position somewhat between institutional members and traditional members.
- The survey data have not been released. There is no explanation for why the survey data are not provided alongside the paper, especially since they are analyzed in depth. If the survey data cannot be shared due to privacy concerns, this should be explicitly mentioned to clarify why they are unavailable.
- The survey response rate is notably small. In the context of a paper advocating for the use of cooperative structures to foster "community ownership," how do the authors account for the low number of survey responses, particularly if the community genuinely cares about the structure of READ-COOP?
- From an ethical standpoint, it is not clear whether the authors of the paper responded to the survey or if their institutions participated. As mentioned in the paper, at least one author is a founding shareholder of the cooperative. However, it is not specified whether the founding members or authors were permitted to answer the survey. While I would expect that this was not the case, this should be explicitly stated to ensure transparency.
- While it is known that Transkribus models are not downloadable, the paper does not address the sustainability of the new Transkribus Sites. It would enhance the paper to discuss whether users can easily export and host these sites themselves, or if this functionality is primarily designed as a user retention mechanism.

References

1. Cirik K, Makadok R: First-Mover Advantages versus First-Mover Benefits: What's the Difference and Why Does It Matter?. *Academy of Management Review*. 2023; **48** (3): 409-431 Publisher Full Text 2. Kerin R, Varadarajan P, Peterson R: First-Mover Advantage: A Synthesis, Conceptual Framework, and Research Propositions. *Journal of Marketing*. 1992; **56** (4): 33-52 Publisher Full Text 3. Papachristos G, Suarez F: First mover, Fast Second or Later Mover in Platform Industries? An Integrated Model of Entry Timing Advantages. *SSRN Electronic Journal*. 2022. Publisher Full Text 4. Cha J: Examining First Mover Advantages among Social Networking. *Media Management and Economics Research in a Transmedia Environment*. 2013. Reference Source 5. Li H: Converting free users to paid subscribers in the SaaS context: The impact of marketing touchpoints, message content, and usage. *Production and Operations Management*. 2022; **31** (5): 2185-2203 Publisher Full Text

Is the work original in terms of material and argument?

Partly

Does it sufficiently engage with relevant methodologies and secondary literature on the topic?

No

Is the work clearly and cogently presented?

Yes

Is the argument persuasive and supported by evidence?

Partly

If any, are all the source data and materials underlying the results available?

No

Does the research article contribute to the cultural, historical, social understanding of the field?

Yes

Competing Interests: As a collaborator in the development of eScriptorium, I believe that this could be seen as an academic non-financial competing interest. However, the paper is not about Transkribus as a tool, but Read Coop as an infrastructure and company, which limits the impact of such competing interest. I reported this competing interest to the editorial board upon request for review.

Reviewer Expertise: Automatic Text Recognition, Open Data, Fair Data, Open Source, Digital Humanities, Computational Humanities

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Author Response 27 Aug 2025

Melissa Terras

Thank you for your close critical reading of the paper. You rightly note how hard it is to maintain a critical distance from something that you yourself have built, and your comments have helped us note where to take a step back and reframe our argument, and to provide further detail and evidence to strengthen it, which we have done in a revised version. We have added a section on how the cooperative operates internally, and hope that this demonstrates the mechanisms by which Members have privileged access to the development team, while contributing to transparent governance. We have clearly defined and differentiated Users and Members throughout, and we hope that means we have added clarity to the text so that the different roles are differentiated. We prefer to stick with the term Members – which we have now capitalised throughout– rather than shareholders as this is the terminology we use in READ-COOP business and statutes. To prove that we have exceptional engagement from our Members we have gone back to meeting minutes and official auditor records and have detailed in a new section a) the voting record of our Members in our official meetings and b) their attendance at monthly meetings. This is presented in a new section. We have stressed that while attendance at cooperative movement management meetings has been noted as being low in cooperatives across the world (Mohd-Saleh et al. 2025), with previous research showing "no matter what size of region 95% or more of cooperative members decline to be involved in their Society's governance" (Davis and Donaldson 2000, 160), READ-COOP has exceptional levels of engagement with membership, with an average member attendance of 42%, and average voting rate of 55% (some members hold more than one vote). We have clarified throughout the text how the mechanisms that we have put in place for Members have contributed to technological development as well as community building. We hope that this clarifies and shores up our claims that our Members are indeed a core part of the READ-COOP,

contributing to feature development and community, as well as promotion, and to access discounted use of the platform. I hope this allays criticism that Members only join READ-COOP for the discount: indeed our analysis of reasons for joining READ-COOP (Table 4) demonstrates that only 21% of our surveyed Members viewed this as a priority for joining READ-COOP, so the argument must go beyond accessing discounts. We also counter the fact that a small number of Members responded to the survey: survey response rates are generally 10% in the current survey fatigue climate and we have pointed out that our response rates provide confident estimates statistically, although we have also stressed that it is highly engaged Members who have responded. We have made it clearer that our survey only canvassed Members, and that those who chose to respond were self-selecting early adopters and early Members. Unfortunately, it is not possible to also include a User survey in this paper given the wordcount limitations but we have made it clear that this will be returned to in a future study, which we always planned to do. We have also noted that a further analysis and comparison of our competitor platform's liaisons with their members would also be worthy of an in-depth future study of its own: doing this properly would result in another paper and so we cannot include that analysis here. We believed that we were following the Journal guidelines on citation of sources, but we have taken on board that we could cite other's publications as well as websites and so we have done that throughout. We apologies for the erroneous URL which must have crept in in the editing phase. We have added a discussion on first mover advantage, network effects, and SaaS marketing approaches to free initial access. We have set out our position on where we have, and have not, acknowledged data annotators to date, and the work we are doing to build better approaches to that, acknowledging this tension (which not only we are faced with). We also have to point out that we did mention the long term aims of the cooperative, and the fact we could not pivot to a more common business model (in the discussion section): we are not a not-for-profit, and have never been a not-for-profit, but a cooperative, and the co-ownership model means we cannot simply sell the business, nor raise funds from venture capitalists or other shareholder investors who wish to take a return on their investment – so we cannot do an "OpenAI" because of the way that we were legally established. It has been the point of the article to describe all of this, but we have added some more phrasing to that end given it did not land with the reader. There is criticism in the comments about Transkribus Sites, which again misreads and misrepresents our intentions. We have made it clear that all material in Transkribus—including transcripts, metadata, and document images—is fully exportable at any time in open formats (e.g. PAGE XML). Users are entirely free to build their own digital editions elsewhere, and many do. Transkribus Sites was created because many users, especially in academic and heritage contexts, struggle to host and present their material effectively—even after completing transcription work. For those users, Sites solves a problem that has gone unsolved for years: how to share work publicly without needing institutional infrastructure, technical support, or additional funding beyond yearly subscription costs: this is a convenience feature, not a retention strategy. Users who choose Sites do so because it makes their work visible, searchable, and citable with almost no overhead. The suggestion that this is primarily about user retention misreads both our intentions and the feedback we receive from the community. If anything, Sites has increased openness and visibility of materials that otherwise would remain stored in local folders, inaccessible to others. Sites is not a trap: it is an optional, appreciated tool for dissemination, and we have made this clearer in the text. We find the comment that our approaches are akin to what OpenAI is doing rather

misleading: while we sell services based on aggregated models (Text Titan, etc), we don't sell the model as such. We also openly communicate this to our owners, and anyone can join and become a co-owner, join internal meetings, and vote on how we build, use and commercialise the technology. We centralise as much as necessary to generate the necessary income to keep the cooperative infrastructure operational, and there is no way to earn a profit for any shareholder. We do have to maintain a level of closed-source models to sustain our business. In summary, we offer infrastructure with interoperable export functionality and hosted models, but we keep any data private that users do not share, however, we openly communicate that private data may be used to generate models that benefit other users, and any stakeholder can join as a member with extensive rights. Data sharing is used to generate income, but we fundamentally believe we are operating in a very different way than OpenAI and it is rather disappointing that this hasn't been understood, given the focus of our paper is to communicate the business model underlying Transkribus. We have tweaked this throughout in the hope that the reader will now understand what we are trying to communicate here, and that the Members have access to transparent governance, should they wish to engage. Re Horizon Impact Award – we mention this in the abstract, and only once in the body of the text, and simply say we are "award-winning" in the conclusion. This is a normal level of mentions of any pertinent detail in any paper on any subject. We cite two different sources in the body of the text (a webpage and a video with different information in each, both produced by the EU) so we do not think that we are over promoting the fact that we won this major European prize. It is strange why a reviewer would criticise one properly cited mention in the body of the text of such an international award, or the fact that we mention we were "award-winning" in the conclusion, and so we must push back on the framing that mentioning the Horizon Impact Award, in a paper that is published in an EC funded journal, that details the exceptional impact an EC funded project has had, proves that the article is only an advert for us. On the contrary, we have included here much detail about the business operations of an AI cooperative which were not previously in the public domain, and we believe, at a time of growing concern about responsible AI governance, that documenting our founding, operations, and activities will give pause for thought about the business models that underpin all AI.

Competing Interests: As disclosed in the paper, the authors are all engaged with READ-COOP SCE, either as board members or users.

Reviewer Report 18 February 2025

https://doi.org/10.21956/openreseurope.20281.r50050

© **2025 Scholz R.** This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

R. Trebor Scholz

The New School, New York, New York, USA

- Starting the paper with such a definitive conclusion may be overreaching. READ-COOP is an outlier in the cooperative landscape. Unlike most cooperatives, it applies AI/ML technologies as a tech cooperative for a niche product, which is then socialized through an institutional alliance or cooperative. While this is an effective way to engage stakeholders, it has also benefited from a substantial EURO 10.6 million grant while being associated with a university. These circumstances are not representative of the majority of cooperatives, even in the Global North. Relatedly, the claim that READ-COOP demonstrates that cooperatives can effectively maintain and govern AI platforms lacks sufficient context. A more specific, sector-focused claim would be more convincing. The paper suggests that AI platforms initially funded by grants can transition to financially self-sustaining cooperative structures, but greater contextual specificity would strengthen this argument. And this matters: The paper suggests that cooperative principles provide a sustainable governance model for AI platforms, as they are built on community involvement, ethical considerations, and public investment. READ COOP is a wonderful, successful example of a platform coop but it is also an aberration. It can't serve as a blueprint for the coop movement. The claim feels like an unhelpful overreach. It is successful but may not be the North Star for the coop movement as their needed products and co-op structures are vastly different. The connection between cooperative or community-owned models and Schneider's "Exit to Community" proposal is not entirely logical in terms of flow. Schneider's concept does not align
- The reference to Pérotin (2021) linking cooperative governance to higher productivity is specific to worker cooperatives, not multi stakeholder cooperatives. Pérotin's scholarship does not support this generalization, making the claim inaccurate.

with what READ-COOP has done, making the comparison somewhat misplaced.

- Under Digital Infrastructure, the assertion that the SEWA Cooperative Federation (India) supports women's social enterprises with digital infrastructure is incorrect. SEWA has engaged in small-scale experiments with blockchain in a health services cooperative and has conducted several platform cooperative experiments in agriculture and delivery services. However, the delivery platform initiatives failed, and the agriculture-based experiment does not provide digital infrastructure in a meaningful way. Therefore, the claim that SEWA offers a robust digital infrastructure for women's social enterprises is factually inaccurate.
- While cooperative approaches to digital infrastructure deserve further scrutiny, the most productive area of intervention may lie elsewhere. Historically, cooperatives have not been strong in R&D, not only due to funding constraints but also because of an aging membership base. Greater potential may exist with very large cooperatives, particularly cooperative banks, some of which generate billions in annual revenue. However, these entities often operate as cooperatives in name only rather than as genuinely justiceoriented organizations. Similar trends can be seen in the U.S. with examples like Cabot Cheese and large agricultural cooperatives, which function more like traditional corporations than democratic, member-driven enterprises.
- Further clarification of READ-COOP's structure would be useful. There are so many technical details but this is not clear. It is a cooperative of institutional members who use a product designed by a team within a university, which is part of the cooperative. It is unclear whether the developer team operates as an independent tech cooperative or if it functions under a different structure. Explicitly outlining the groups that make up the cooperative would provide greater clarity.
- The democratic governance numbers seem too good to be true: 84% participated in monthly member meetings. On its own, this seems almost unbelievable. In larger co-ops, participation is often around 10%, even when considered successful. It would also be important to know how long

members stayed in these meetings, as brief check-ins may not indicate deep engagement. If they stay for the meetings, this would be a huge success, almost unprecedented.

Is the work original in terms of material and argument?

Yes

Does it sufficiently engage with relevant methodologies and secondary literature on the topic?

Partly

Is the work clearly and cogently presented?

Yes

Is the argument persuasive and supported by evidence?

Partly

If any, are all the source data and materials underlying the results available?

Yes

Does the research article contribute to the cultural, historical, social understanding of the field?

Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 27 Aug 2025

Melissa Terras

We thank you for this extensive and considered report, and have taken on board your critical suggestions fully in revisions, adding more nuance to our argument, toning down language that could be seen as over-reaching, and highlighting this study's bounds and limitations, particularly with regards to the fact that READ-COOP SCE may be thought of as an cooperative outlier given its particular focus, context and circumstance. We have added a section on how the cooperative is structured. We have also used your comments to add clarity in places (for example stressing that Transkribus is no longer associated with a particular university, but it is an independent entity). We also thank you for the observation that most engagement with cooperative governance is low – having now added a section on Member engagement with the coop, after consulting our records, we can confirm that over the past 6 years we have an average member attendance of 42% to formal meetings, with an average voting rate of 55% (some members hold more than one vote). Attendance at informal monthly meetings was between 50 and 75 members attending (out of a growing list of between 209-255 members) throughout 2024. We have taken on the point that this

may also demonstrate that the cooperative mechanism we established is supporting effective digital innovation and engagement with a core group of committed users. We have used this expert reading to improve the paper from its first submission and the next version now has far more nuance: thank you.

Competing Interests: As disclosed in the article, the authors are all engaged with READ-COOP SCE, either as management or users.