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Air quality has serious consequences for human health and
well-being. It has recently been estimated that poor air
quality is responsible for 7 million excess deaths per year,' with
increasing links also being drawn between air quality and
mental well-being.” Across the world, and particularly the
global south, there is abundant evidence and recognition of
poor air quality as an important risk factor for human
health.”™” The photooxidation of volatile organic compounds
(VOCs) is the primary source of hazardous substances such as
secondary organic aerosol, tropospheric ozone, and particulate
matter in populated areas. Successful regulation has signifi-
cantly reduced VOC emissions from traditional sources such as
transport and fossil fuel processing, yet emissions from
solvents, agrochemicals, adhesives, and other VOC-emitting
products remain persistent and increasingly dominate total
non-methane VC emission.” These humanmade emissions are
collectively termed volatile chemical products (VCPs) by the
atmospheric chemistry community.””"' While attention is paid
to the atmospheric implications of new chemical products at
the level of industrial regulation, this generally takes the form
of reactive measures. New products are usually checked against
lists of restricted ozone-depleting or high-global warming
potential (GWP) substances such as those listed in the
Montreal protocol,'” the Kyoto protocol,"’ and their various
amendments. Beyond this, neither the U.S. Toxic Substances
Control Act (TSCA) nor the EU regulation on the
Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH) mandate testing of the atmospheric
photooxidation of new chemicals, despite requiring extensive
testing of biodegradation and toxicity in other environmental
domains."*™"” Instead, non-methane VOCs are typically
regulated at the point of emission based on their emitted
mass, with little attention paid to their diversity in structure
and reactivity.'®"? VCPs in particular contain a significant
fraction of heteroatom-containing and multifunctional com-
pounds, and thus, one cannot assume that their reactivity is the
same as that of classical, hydrocarbon-dominated VOC
sources. There is therefore a need for a more proactive
evaluation of the potential tropospheric air quality impact of
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new chemicals during early design protocols to help mitigate
potential harm postcommercialization.

Green chemistry is central to the transition away from the
unsustainable practices of the present, having led the way in
developing renewably sourced, energy efficient, safer, and more
biodegradable chemicals and processes. There is, however, a
concerning lack of consideration of the atmospheric fate of
newly developed chemicals during most early design processes.
Toxicity and mutagenicity are regularly considered alongside
the sustainability of new chemicals. While it has been common
for many groups to use biodegradability (measured, modeled,
or assumed) as a sole measure of environmental fate, we now
believe that this approach is inadequate. Jessop and
MacDonald have proposed a hotspot-driven framework””*!
in which research priorities are identified by considering the
interaction between the multiple stages that define a product
life cycle. Within this framework, it stands to reason that if a
chemical’s primary fate is release to the atmosphere as a VCP
(as is the case for many volatile and/or nonpolar compounds
such as solvents), then its atmospheric reactivity is likely to be
a direct hotspot. By contrast, focusing on the biodegradation of
such compounds in irrelevant environmental domains such as
water or soil has limited merit. This blind spot may stem in
large part from the lack of collaboration between two
seemingly aligned fields. A vast majority of those working in
atmospheric chemistry have backgrounds in physical, theoreti-
cal, and/or analytical chemistry, and while green chemistry is
diverse in those it attracts, in our experience it remains
dominated by those with training in materials, organic
chemistry, and catalysis. We have observed that the lack of
network overlap between these two groups can at times be a
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Figure 1. Our workflow to screen for problematic air quality impacts in new chemicals, illustrated with the biobased solvent TMO (2,2,5,5-
tetramethyloxolane). SARs suggest that TMO, while volatile and reactive, is still significantly less ozone-generating than the toluene it is intended to

replace.

significant barrier to initiating collaboration, which we believe
is crucial to addressing the complex and multidimensional
problems found in sustainability research.*”

For several years, we have been working to bridge this gap,
focusing on investigating the atmospheric breakdown of
various biobased solvents during their design and develop-
ment, yielding a range of interesting and unexpected kinetic
data, mechanistic insights, and atmospheric implications.”*~*
In our work to date, we have often found that biobased
solvents are similarly or less harmful than the solvents they are
intended to replace, but this is not always the case. The
unorthodox molecular structure of some substances can give
rise to unexpected photooxidation pathways with dramatic
negative effects on air quality. The atmospheric photooxidation
of agrochemical VCPs has also received significant attention in
recent years,”*">’ unveiling complex reactivity and secondary
pollutant production stemming from the wide range of
functional groups and heteroatoms typically incorporated
into such compounds. Particularly problematic links can be
drawn between the preference for photochemical stability in
agrochemical design protocols’* ™ and the resulting tendency
for the persistence of pesticides in the atmosphere allowing for
their long-range transport and magnified negative impact on air
quality, human health, and the environment.””*> Such findings
strengthen the case for the inclusion of explicit atmospheric
fate analysis into the early design processes of new chemicals,
to avoid unforeseen environmental hotspots. Experimental
studies on gas phase photooxidation are, however, complex
and time-consuming and thus inaccessible to nonexperts, or
those wishing to screen large numbers of compounds early in a
design process. Fortunately, there are a plethora of accessible
and freely available tools available to estimate parameters
relevant to atmospheric chemistry.

So how can molecular design strategies avoid negative air
quality impacts?

In our view, there are three key metrics that should be
employed (outlined in Figure 1). Step-by-step guidance on the
estimation and interpretation of these is provided in the
Supporting Information. First, it is important to understand
where a chemical ends up (ie., air, water, soil, and/or
sediment) when released to the environment. For this purpose,
we find the fugacity model of Parnis and co-workers™®**
suitable for a first pass, being both powerful and easy to use.
Ideally, the inputs for this model would be measured
experimentally; however, in the likely case that some of these
data are not available, they can be readily estimated. For this,
the combination of structure—activity relationships (SARs)
available in the U.S. EPA EPI Web package is free to access
and provides good quality data from only a SMILES code or
drawn structure.

The second key parameter is the gas phase rate coefficient
for the reaction of a VCP with the hydroxyl radical (koy).
Reaction with hydroxyl radicals is the dominant sink for most
organics in the atmosphere as they are generated in high
concentrations by sunlight-initiated reactions between oxidants
such as O; and NO, and water. OH radicals are far more
reactive with VOCs than their precursor oxidants. Accurately
estimating koy allows the calculation of a range of atmospheric
parameters, including the lifetime of a VOC in the tropo-
sphere. For estimating koy, we recommend the SAR developed
by Jenkin et al,*”*' which can be accessed via the web-based
implementation of the GECKO-A model** made available by
Paris-Est Créteil University.*’ This tool also converts the rate
constant into an atmospheric lifetime automatically for easy
recognition of very long-lived species that have the potential to
act as greenhouse gases.

The final metric we routinely use is the estimated
photochemical ozone creation potential (POCPy). This is a
combined estimate of the amount and rate of ozone generated
by a given VOC in the troposphere, which is an effective proxy
for most other negative air quality impacts (e.g., aerosol, smog,
etc.). This value can be straightforwardly obtained via a SAR
from Jenkin et al,** using the previously estimated rate
constant and some basic structural information. This powerful
descriptor can be used in isolation (as a rule of thumb we view
a POCPy, of 1-30 as good, a POCP;, of 30—60 as poor, and a
POCP;, of >60 as highly problematic) or to directly compare a
potential substitute to the compound it is intended to replace,
with a lower value being preferred.

Further atmospheric metrics such as global warming
potential (GWP) and ozone depletion potential (ODP) may
be crucial in a minority of cases; however, the majority of
(nonhalogenated) VOCs are nowhere near long-lived enough
to act as potent greenhouse gases or deplete stratospheric
ozone. Ensuring new chemicals have a lower POCPg, than the
compounds they are intended to replace is therefore of primary
importance.

We strongly encourage the community to factor these three
metrics (proportion lost to the atmosphere, atmospheric
lifetime, and POCPg) into their design processes and use
them as quantitative metrics to assess the relative greenness of
new compounds.
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