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Abstract. Inverse kinematics (IK) remains central to robotic manipula-
tion, yet most solvers use fixed weighting and priorities that do not adapt
to task context, limiting precision, safety, and efficiency in real settings.
We propose LLM-AWQP, a framework that uses a large language model
(LLM) as a semantic-to-control adapter: compact task descriptions cov-
ering factors such as object fragility, environmental constraints, and ma-
nipulation phase are mapped to IK solver configurations in an adaptive
weighted quadratic programming (AWQP) formulation. The resulting
policy emphasises fast approach, precise and stable grasping (with addi-
tional care for fragile objects), and safe, orientation-stable lifting, while
preserving the stability and practicality of standard IK optimisation. The
approach is modular (supporting different LLM backends and IK solvers)
and lightweight enough for real-time use. In experiments across diverse
manipulation scenarios, LLM-AWQP reduces iterations to convergence
and improves task success and efficiency, demonstrating that semantic
guidance can effectively shape low-level control.

Keywords: Inverse Kinematics - Large Language Model - Task-Adaptive
Control - Semantic Reasoning - Robotic Manipulation.

1 Introduction

Inverse kinematics (IK) solvers are the computational foundation of modern
robotic manipulation, responsible for translating a desired end-effector pose into
a corresponding set of joint configurations [9]. Despite significant advances in
numerical optimisation for IK, a persistent limitation remains: most solvers rely
on fixed optimisation criteria that ignore the specific context of a task [8]. A robot
approaching a delicate wine glass is thus guided by the same priorities as one
grasping a steel beam, overlooking differences in precision requirements and the
consequences of failure. As a result, practitioners often resort to manual, expert-
driven parameter tuning for each task category—time-consuming in practice and
brittle in the face of subtle, real-world variations (3,11, 12].

This disconnect between high-level task semantics and low-level control pa-
rameters constitutes a major gap in contemporary robotic systems. Humans,
by contrast, adapt movement based on context: we handle fragile objects more
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Fig. 1: Overview of the proposed LLM-AWQP framework for inverse kinematics.
The LLM interprets task context and configures the IK solver’s weighting and
priorities accordingly.

carefully, alter motion to avoid obstacles, and adjust our grip according to object
properties. Such behavior arises from semantic understanding that traditional
IK pipelines lack. Learning-based methods have been explored to mitigate this,
but they often require extensive training data and may struggle to generalise to
novel tasks or unforeseen conditions [14].

Recent progress in Large Language Models (LLMs) shows strong capabilities
for understanding contextual instructions and reasoning about everyday physical
interactions |2, 6]. In robotics, LLMs have mostly supported high-level planning,
code generation, and human-robot interaction. Here, we leverage LLMs to inform
low-level control decisions by mapping compact task descriptions—such as object
fragility, environmental constraints, and the current phase of manipulation—into
solver configurations that shape IK behavior.

We introduce LLM-AWQP, a framework that couples semantic task under-
standing with an adaptive weighted quadratic programming (AWQP) formula-
tion of IK. Given a lightweight task context, the LLM selects solver weightings
and priorities that emphasise, for example, positional efficiency during approach,
precise and stable motion during grasp (with additional care for fragile objects),
and orientation stability and safety during lift. This phase-adaptive policy is
triggered by semantics rather than hand-tuned rules, enabling consistent, repro-
ducible adjustments across diverse tasks while preserving the stability of a stan-
dard IK optimisation. The design is modular and extensible—accommodating



different LLM backends and IK solvers—and introduces only a modest compu-
tational overhead suitable for real-time operation.
The main contributions of this paper are summarised as follows:

— Semantic-guided IK optimisation: We present a method that trans-
lates task context expressed in natural language into IK solver configurations
(weighting and priority settings), bridging high-level semantics and low-level
control.

— LLM-AWQP framework: We integrate an LLM-driven semantic module
with an adaptive weighted QP formulation of IK, yielding a task-adaptive
weighting scheme that preserves the stability and practicality of standard
solvers and can be deployed across different platforms.

— Empirical validation: Empirical validation demonstrates that semantic
guidance from LLM significantly improves IK convergence speed compared
to static baselines while maintaining practical accuracy, eliminating the need
for manual parameter tuning.

2 Related Work

Classical IK research has improved feasibility and robustness through analytic
parameterisations and numerical formulations, yet typically remains context-
agnostic at run time. Recent works exemplify this trend: sampling and convex
optimisation approaches expand feasible sets and diversity of solutions (e.g.,
distance-geometric IK via convex iteration and related formulations), while the
learning IK generates multiple candidates efficiently for redundant manipula-
tors [5,1]. In parallel, LLM and vision-language models (VLMs) have been
used to inject semantic knowledge into manipulation, largely at the planning or
grasp-selection level: GraspGPT leverages LLM priors for task-oriented grasp-
ing [10], Physically Grounded VLMs support manipulation reasoning [4], and
Text2Reaction and related systems enable reactive, language-conditioned task
planning [13]. Beyond planning, recent evidence shows LLMs can also propose
low-level motion targets by predicting end-effector trajectories [7]. However, to
our knowledge, some works does not directly connect task semantics to the inter-
nal objective shaping of a numerical IK solver (e.g., adaptive task-space weight-
ing and priority selection); our framework addresses this gap by using an LLM to
map concise task context into solver configurations that modulate IK behavior
online while preserving standard optimisation structure.

3 Method

3.1 QP Approach

An alternative method is to frame the problem as a QP optimisation, which
allows for systematic handling of multiple objectives and constraints. The opti-
misation problem is formulated as:



1
minimise idTW d (1)
subject to J-d=e (2)

where d € R™ is the joint velocity vector, W € R"*™ is a diagonal weight
matrix, J € R6*" is the manipulator Jacobian, and e € RS is the end-effector
error vector.

We solve this QP problem using the Sequential Least Squares Programming
(SLSQP) method. The objective function f(d) = 3d” W is defined to minimise
weighted joint velocities, while the constraint function g(d) ensures the desired
end-effector pose is achieved. We compute e as

e — |:pd - pc:|
w

where pg and p. are the desired and current end-effector positions, and w is the
axis-angle representation of the orientation error. In cases of ill-conditioning or
SLSQP failure, we employ a weighted damped least squares fallback:

d= (I3 + W) ' J7e (3)

where ) is a damping factor. This formulation allows for joint-specific weighting,
enabling task-specific optimisation of joint movements.

While a hard switch from the QP solver to DLS could in principle introduce
velocity discontinuities, three features make this negligible in practice. First,
both solvers use the same adaptive weighting, keeping joint prioritisation consis-
tent across the transition. Second, the controller exhibits small-step convergence
near termination, so any switch occurs when update magnitudes are already
minimal. Third, QP failures typically happen only near active constraints; the
DLS fallback still minimises the same task-space objective, keeping its update
close to the QP solution. Together, these factors render the transition effectively
smooth.

Adaptive Weight Calculation The adaptive weighting mechanism in AWQP
dynamically modulates joint priorities based on the instantaneous kinematic
configuration, drawing from established principles in potential field theory and
biological motor control. The comprehensive weighting formulation takes the
multiplicative form:

wz(q) = wbase,i X flimit,i(q) X fcenter,i(Q) (4)

where wpqse ; represents the nominal joint weight, f1imae.i(q) is the limit prox-
imity factor, and feenter,i(¢) is the center deviation factor.
The limit proximity factor employs a quadratic-like formulation:

Frimiti(q) =1+ 2| L dlowerd g5 (5)

Qupper,i — Qlower,i



This non-linear growth function is theoretically grounded in artificial poten-
tial field methods, where repulsive forces increase non-linearly as boundaries
are approached. The quadratic nature ensures smooth, continuous gradients
throughout the joint space while providing increasingly strong guidance away
from limits. This formulation avoids the numerical instabilities associated with
exponential functions near boundaries and the insufficient repulsion of linear
functions, representing an optimal balance between computational stability and
effective limit avoidance.

The center deviation factor maintains a linear relationship:

fcenter,i (Q) -1+ |Qz QCenteT,z| (6)
Qupper,i — Qlower,i

This linear formulation derives from principles of minimum effort observed
in biological motor control studies, where joint configurations tend to minimise
deviation from neutral positions proportionally when unconstrained. The linear
relationship provides consistent bias toward ergonomic configurations without
overwhelming primary task objectives, ensuring that the manipulator maintains
favorable postures when multiple solutions exist.

The multiplicative structure of Equation 4 creates a composite weight that re-
spects both safety constraints and efficiency principles. This formulation ensures
that either factor can dominate when necessary—near joint limits, fiimit,i(q)
provides strong guidance regardless of center deviation, while in the middle of
the workspace, feenter,i(¢) subtly optimises the configuration. The multiplicative
combination prevents the numerical conditioning issues that arise in additive for-
mulations when one factor becomes very large, maintaining optimisation stability
throughout the workspace.

This adaptive weighting scheme distinguishes AWQP from fixed-weight ap-
proaches by eliminating the need for manual parameter tuning across different
tasks and configurations. The theoretical foundation ensures predictable, sta-
ble behavior while the mathematical formulation guarantees computational effi-
ciency suitable for real-time implementation.

3.2 LLM-based Semantic Interpretation for Weight Generation

The integration of LLM into the inverse kinematics framework enables context-
aware adaptation of solver parameters without manual tuning. The LLM inter-
prets high-level task descriptions and translates them into quantitative weight
modifications that directly influence the optimisation behavior described in the
preceding QP formulation. This semantic layer operates atop the mathematical
framework, providing task-specific parameter generation while maintaining the
computational efficiency of the underlying solver.

Weight Generation Architecture The LLM generates task-specific modi-
fications to the base weight matrix W in Equation 1 through three distinct
parameter categories. The position scale factor v, € [1.5,3.0] modulates the
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translational components of the error vector, while the orientation scale factor
o € [0.4,3.0] adjusts the rotational components. Additionally, a joint-specific
weight vector w; € R” provides differential scaling across the kinematic chain.
These parameters modify the adaptive weight calculation in Equation 4 through
a multiplicative scaling factor:

wit M (q) = wi(g) x i7" (7)

K2

f‘“k represents the task-specific scaling derived from the LLM out-

put, and w;(q) is the base adaptive weight from Equation 4. This formulation
preserves the joint limit and center deviation behaviors while incorporating se-
mantic task understanding.

The error vector modification takes the form:

where s

Yp(Pd — Pe) (8)

€weighted =
YoW



This weighted error directly influences the QP constraint in Equation 2,
enabling the solver to prioritise position or orientation accuracy based on task
requirements without altering the underlying optimisation structure.

Phase-Adaptive Weight Strategy The weight generation strategy adapts to
manipulation phases through learned heuristics that emerge from the semantic
interpretation of task requirements. During the approach phase, the system im-
plements an aggressive convergence strategy with v, = 2.0 and ~, € [0.4,0.6],
prioritizing rapid movement toward target positions. The joint weight distribu-
tion follows a proximal-to-distal gradient:

wiPProrh (i) = 2.0 = 0.095i, i€ {l,...,7} (9)

This distribution facilitates large-scale motion through preferential use of
proximal joints while maintaining kinematic flexibility.

The grasp phase employs balanced weight distributions with ~, € [2.0, 3.0]
and 7, € [1.2,2.9], ensuring stable contact formation. The joint weights main-
tain uniform distribution (wfms’) (1) = 2.0) to maximise precision during critical
contact operations. For fragile objects, the system automatically scales both po-
sition and orientation weights by a fragility factor xy = 1.5, resulting in the
highest precision configuration for delicate manipulations.

The lift phase configuration attempts to address vertical motion challenges
through modified weight distributions with v, = 1.5 and v, € [2.0,3.0], em-
phasizing orientation stability. The joint weights implement a reverse gradient
favoring proximal joints:

wi (i) =2.0-0.13i, i€{l,..,7} (10)

This configuration aims to maintain stability under gravitational loading,
though experimental validation revealed limitations in this approach for certain
kinematic configurations.

Integration with QP Solver The LLM-generated weights integrate seamlessly
with the QP formulation through modification of the weight matrix W and error
vector e. When the QP solver fails and the system falls back to the damped least
squares solution in Equation 3, the same weight modifications apply, ensuring
consistency across solver transitions. This unified approach maintains numerical
stability while incorporating semantic task understanding, demonstrating that
high-level reasoning can effectively guide low-level optimisation without compro-
mising computational efficiency.

The weight generation process executes prior to each IK solution cycle, with
typical generation times under 10 milliseconds. This minimal overhead enables
real-time application while providing the flexibility to adapt to changing task
requirements during manipulation sequences. The deterministic nature of the
weight mapping ensures reproducible behavior across identical task contexts, a
critical requirement for industrial deployment.



Table 1: Adaptive Weight Configurations by Object and Phase.

Object Phase Position Scale Orientation Proximal Distal Joint
Scale Joint Weight Weight
Box Approach 2.00 0.50 2.00 1.33
Box Grasp 2.00 1.50 2.00 2.00
Box Lift 1.50 2.50 2.00 1.08
Ball Approach 2.00 0.40 2.00 1.33
Ball Grasp 2.00 1.20 2.00 2.00
Ball Lift 1.50 2.00 2.00 1.08
Coke  Approach 2.00 0.60 2.00 1.33
Coke  Grasp 3.00 2.88 2.00 1.20
Coke  Lift 1.50 3.00 2.00 1.08

4 Experiment

We evaluated our LLM-enhanced inverse kinematics (LLM-IK) system through
a comprehensive set of robotic manipulation tasks designed to assess perfor-
mance improvements across varying difficulty levels. The experimental frame-
work consisted of three test objects with distinct manipulation challenges: a
box (50x50x80mm, easy difficulty), a ball (60mm diameter, medium difficulty),
and a Coke can (30x30x120mm, hard difficulty with fragility constraints). Each
manipulation sequence was decomposed into three sequential phases—approach,
grasp, and lift—enabling granular performance analysis.

The baseline configuration employed standard IK with uniform weight distri-
butions, while the optimised configuration utilised context-aware weights gener-
ated by the LLM. Weight configurations varied adaptively: position scale factors
ranged from 1.5 to 3.0, orientation scale factors from 0.4 to 3.0, with joint-specific
weight patterns tailored to each manipulation phase. All experiments were con-
ducted with a convergence threshold of 1mm position error and 0.01 radians
orientation error, with a maximum iteration limit of 500 steps.

The experimental results demonstrated substantial performance improve-
ments in kinematically feasible scenarios, with iteration reductions ranging from
24.6% to 43.4% for successful convergence cases. The most significant improve-
ments were observed in the box approach phase (53—30 iterations, 43.4% re-
duction) and ball grasp phase (61—46 iterations, 24.6% reduction).

For the box manipulation tasks, the approach phase achieved the highest
improvement with iterations reducing from 53 to 30 (43.4% reduction) while
maintaining sub-millimeter accuracy (0.92mm error). The grasp phase showed a
29.4% improvement (17—12 iterations) with negligible error increase. The ball
manipulation demonstrated similar patterns, with the grasp phase improving
from 61 to 46 iterations (24.6% reduction) despite the increased complexity of
spherical object handling. All lift phase operations failed to converge within the
500-iteration limit across all test objects, indicating fundamental challenges with
vertical motion under gravitational loading. However, even in failure cases, the



Table 2: Performance by Object, Difficulty, and Phase (Standard vs Optimised).

Object Difficulty Ftasdter. Opt Iter. Improve. (%) Std Pos Err (mm) Opt Pos Err (mm) Std Time (s) Opt Time (s)

Box Easy Approach3 30 43.4% 0.002 0.925 0.137 0.017
Box Easy Grasp 17 12 29.4% 0.001 0.956 0.044 0.006
Box Easy Lift 500 500 0.0% 15.202 15.792 1.227 0.277
Ball Medium  ApproaBh0 500 0.0% 42.900 19.826 1.212 0.293
Ball Medium  Grasp 61 46 24.6% 0.003 1.000 0.151 0.026
Ball Medium  Lift 500 500 0.0% 63.271 64.672 1.257 0.282
Coke Can Hard Approabh0 500 0.0% 127.232 84.859 1.217 0.279
Coke Can Hard Grasp 500 500 0.0% 77.792 77.545 1.205 0.293

Coke Can Hard Lift 500 500 0.0% 163.125 169.189 1.242 0.284




Figure 1: Convergence Performance Comparison - Standard vs Optimized IK
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Fig. 3: Convergence Performance Comparison - Standard vs Optimised IK.

optimised approach demonstrated superior intermediate performance, achieving
final position errors of 15.8mm versus 15.2mm for the box lift, while maintaining
better orientation alignment.

4.1 Discussion

Experimental data reveal three critical insights about the LLM-IK system’s per-
formance characteristics. First, context-aware weight adaptation successfully op-
timised convergence for feasible tasks while maintaining accuracy within practi-
cal tolerances. The slight position error increases (0.00mm-0.92mm for box ap-
proach, 0.01lmm-1.00mm for ball grasp) remain well below typical manipulation
requirements. Second, the weight strategy demonstrated clear phase-dependent
effectiveness. The approach phase benefited from aggressive position weighting
(2.0) with reduced orientation emphasis (0.4-0.6), achieving the highest improve-
ments. The grasp phase required balanced configurations (position: 2.0-3.0, ori-
entation: 1.2-2.9) to maintain stability during contact. The fragile Coke can
automatically received the highest precision weights (position: 3.0, orientation:
2.88), validating the LLM’s contextual understanding. Third, the computational
efficiency gains were substantial, with time reductions ranging from 64.7% to
87.6%. The box approach phase reduced from 137ms to 17ms (87.6% improve-
ment), while maintaining solution quality. These timing improvements make the
system viable for real-time control applications where rapid response is critical.

Failure analysis for challenging configurations revealed consistent patterns.
The Coke can, positioned at the workspace boundary (0.5, 0.3), failed in all
phases for both methods, confirming fundamental reachability limitations. How-
ever, the optimised approach consistently achieved lower intermediate errors
(84.9mm vs 127.2mm for approach, 77.5mm vs 77.8mm for grasp), suggesting
more efficient solution space exploration even when convergence is unattainable.

5 Conclusion

This work shows that large language models can bridge the gap between high-
level task language and low-level robotic control by letting natural-language

10



Figure 2: Phase-Specific Performance Analysis
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Fig. 4: Phase-Specific Performance Analysis with Error Distributions.

understanding directly shape inverse-kinematics optimisation. Our framework
maps semantic cues, task context, object properties, manipulation requirements
into numerical parameters, enabling behaviors such as automatically tightening
precision for fragile objects, and thus making robot programming more intuitive.
Experiments confirm performance gains in kinematically feasible settings, while
failure analyses—particularly for vertical lifts and operations near workspace
limits—highlight where parameter tuning alone is insufficient. These findings
motivate hierarchical weight generation, adaptation strategies that react to con-
vergence behavior, and hybrid designs that pair LLM-guided IK with trajectory
planning and force control. Beyond optimisation, the approach points to broader
human-robot interaction benefits, allowing non-experts to specify complex tasks

Figure 3: Computational Efficiency Analysis
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in natural language while the system manages the underlying mathematics.
Overall, integrating semantic understanding with mathematical optimisation is
a promising path toward more intelligent, deployable manipulation systems.
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