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Abstract—Joint target tracking and sensor scheduling includes
resource optimisation and gathering the most informative data
for purposes such as search and rescue, fire detection and
surveillance tasks. For such real-time tasks, the limited access to
initial tracking data can challenge the effectiveness of traditional
machine learning methods, thereby motivating the development
of active sensing strategies. This paper addresses such problems
and formulates the joint target tracking and sensor scheduling
problems within a Bayesian optimisation framework. The key
question that this framework answers is: where to position the
sensors in order to accurately track an object. In the considered
case study, the sensors are mobile and represented by uncrewed
aerial vehicles (UAVs). The active sensing of the environment
is based on uncertainty-guided sampling thanks to a Gaussian
process representation.

The main novelty lies in the formulation of the sensor schedul-
ing and tracking within a Bayesian optimisation setting. Under
this framework, a detailed comparison of different acquisition
functions is carried out, to identify the most suitable solutions
for an active sensing problem. Results with respect to accuracy
and computational time are reported.

Index Terms—Bayesian optimisation, sensor scheduling, UAYV,
active learning, Gaussian process methods, target tracking, un-
certainty quantification, upper confidence bound

I. INTRODUCTION

Target tracking over sensor networks is an important prob-
lem and plays a critical role in applications such as surveil-
lance and environmental monitoring. A variety of model-based
approaches have been developed, including the Kalman filter,
[1] and the particle filter [2], both of which rely on a state-
space model to represent the system dynamics and observation
process. Consensus Kalman filters [3] have also been a popular
method.

Recently, model-free methods have gained significant at-
tention in target tracking. For example, the adaptive kernel
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learning Kalman filter [4] adapts online without relying on
an explicit system model, while some reinforcement learning
approaches [5] embedded neural networks to approximate the
underlying system dynamics or control policies. Model-based
methods are often preferred as they offer lower computational
complexity compared with model-free methods. However, in
situations where tracking data is limited, such as in the
presence of occlusions, model-based methods often struggle to
accurately represent the target’s expected behaviour, resulting
in decreased accuracy or even target loss. This has led to
the adoption of techniques such as Bayesian Optimisation
(BO) [6], which construct a surrogate model to approximate
an expensive-to-evaluate objective function. An acquisition
function, derived from this surrogate, is then used to guide
the selection of the next sampling point [6]. Gaussian process
(GP) regression is often chosen as a surrogate for BO due to
its ability to quantify the uncertainty of the predictions and its
flexibility as a non-parametric model.

BO has been applied to many areas such as environment
monitoring [7], robot navigation [8] and particle accelerator
tuning [9]. In [10], a BO-guided method with a GP surrogate
was used for target tracking with no prior information. The tar-
get is tracked using one or multiple Uncrewed Aerial Vehicles
(UAV) equipped with Received Signal Strength (RSS) sensors.
The RSS of a moving target is modelled as a black-box
function and the Expected Improvement (EI) [11] acquisition
function is used to determine the next sampling location.

Acquisition functions can be used to guide a UAV in
searching for a target by selecting informative sampling loca-
tions. The problem of determining when and where to collect
measurements is referred to as sensor scheduling. This can
be formulated as a stochastic optimal control problem such
as the partially observable Markov decision process [12] to
consider both short-term and long-term performance. Another
approach would be using a myopic or greedy approach, which
does not consider long-term performance but tends to achieve



good performance [13].

A. Main Contributions

This paper builds upon the framework developed in our
previous work [10] and investigates the impact of different
acquisition functions on target tracking in active sensing
settings. Additionally, it explores the effectiveness of using
a single-output GP model to guide multiple UAVs in an
active sensing setting with different levels of noise. Three
different acquisition functions are adopted—namely the up-
per confidence bound (UCB) [14], the knowledge gradient
function (KG) [15] and Thompson sampling (TS) [16]—and
are compared to the originally proposed acquisition function,
expected improvement (EI).

The rest of the paper is organised as follows. Section II
introduces the problem formulation and the background know-
ledge. The proposed methods are detailed in Section III. The
results of the simulations are discussed in section IV followed
by conclusions in Section V.

II. PROBLEM FORMULATION

Consider the sensor scheduling problem of determining the
“best”, in a certain sense, position of a suite of sensors. The
sensors - in our case, UAVs - are collecting information about
an object on the ground and the aim of the sensors is to collect
the most informative data and track the target on the ground.
Based on the acquisition function, we choose where to send
the UAVs, using predictions of areas with the highest RSS
values, which we assume correspond to the target location.
This was illustrated in Figure 1, where the target position is
indicated by the peak in the RSS measurement surface.

For the purposes of sensor scheduling and quantifying
the informativeness of the data, the task is formulated as a
Bayesian optimisation (BO) function.

For clarity, we denote vectors as bold lowercase letters, and
matrices as bold uppercase letters.

A. Measurement Equation

The UAV collects measurements denoted by z, which
depend on the target location x; at time ¢, with additive
measurement noise €. The noise is assumed to be zero-mean
Gaussian random variable with variance o2 .., namely

Z:f(xht)""ea GNN(Ovax?oise)a 1

where f(-) is an unknown underlying function and A/(.)
denotes a normal distribution.

The measurement equation connecting the observed RSS
and the target location can be written as follows:

2)

where z;, is an RSS measurement at time t;, 204, is the
transmission power of the target, n is the path loss exponent
determining how sharp the signal attenuates and d;, is the
Euclidean distance between the current sensor position and
the target’s position. We treat the area with high RSS values
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Figure 1. Objective function at a given timestep.

as the target position. Denote the set of measurements received
until time ¢ by z; = [2¢,, 2, , 2,,]T and T represents the
transpose operation. The UAVs are collecting RSS data, and
by the time ¢, n; measurements are received with time stamps
ti,to, - tn,.

Since x;, is the the target location associated with the
measurement at time stamp t;, where ¢; < ¢, at any time
t, we can have a set denoted as Dy = {xy,,t;, 2, }iry. We
will further use the following matrix representation: X; =

%5, x, )

B. Gaussian Process (GP) Method

Bayesian optimisation relies on two key components: a
surrogate model, typically a GP, which represents our prior
belief about the objective function, and an acquisition function,
which guides the search for optimal sensor placements. To
build a probabilistic model of the objective function f(-), a
GP is defined as a distribution over functions:

F(xe,t) ~ GP(u(xe, 1), k((x4,1), (x1,1))).  (3)

Here, (x¢,t) and (x},t’) denote the training and testing in-
put data respectively. GP(.) denotes a GP with mean function
w(xt,t) and covariance function k((z4,t), (x},t")). The vector
X¢; represents the spatial location of the i“") observation at
time t;. Given the data D;, we define K; € R™t*™ as a cov-
ariance matrix with the (¢, j)™ entry as k((xy,, ), (x¢,,t;)).
In addition, we define k. as a vector with the j‘h entry as
k((xtj ) tj)7 ('rt* ) t*))

The posterior distribution at a new input (x.,¢.) can be
written as:

P (f(Xaste) | Di) ~ N (fpost (s tx)y Fpost((Xes L), (X, 1))
“4)
where
,U’P()St(x*? t*) = :U’(X*7 t*) + k:kr [Kt + Ur?oise]:] -

x (z — u(Xt)), (5)



kposl((x*;t*)a (X;ﬂf;)) = k((x*,t*), (Xivt;))
~ k] K+ 020 k.. (6)

noise

The posterior mean and variance specify the predictive
distribution, which captures both the predicted value and the
corresponding uncertainty.

C. Kernels

The kernel specifies the prior assumptions about the func-
tion through hyperparameters, which represent its characterist-
ics such as smoothness and length-scale. The kernel design for
the active sensing setting was proposed in [10] where a spatial-
temporal kernel is defined as a sum of three spatial kernels—a
squared exponential kernel ksg, an exponential kernel kgxp,
and a constant kernel—representing the local stationarity of
the RSS map, multiplied by a temporal Matérn kernel kyrat.

This kernel was kept the same as in [10] for the EI
algorithm. The Matérn kernel is omitted when UCB, KG,
and Thompson sampling are used. In these three cases, the
remaining kernels are provided with both spatial and temporal
inputs (x¢ and t) as this configuration resulted in better
accuracy compared to the EI setting.

For the considered sensor scheduling and tracking task, we
define the following composite kernel:

k((x¢,t), (x¢,t")) = (kpras((xe,x¢), (£, )+
kSE((Xh X;:)7 (t, tl)) + kEXP((Xh X;:)> (t7 t/))) @)
‘kconst((x¢,%t), (t, 1)),

where

e ). (6) = o exp(- 22 g
kexp ((xe,x¢), (8,t)) = o7 GXP(—HX%:Q/H)’ )
kpias((x¢, x¢), (£,t')) =, (10)
kconst((x¢,%¢'), (£,1)) = c. (11)

Here, 0 denotes the amplitude scaling parameter, ¢ the length-
scale parameter, b denotes a bias in the measurements and c
denotes a scaling constant; ||.|| denotes the Euclidean norm.

D. Hyperparameter Learning

The learning of the kernel hyperparameters of the GP is
achieved by maximising the log marginal likelihood (LML)
which enables efficient numerical calculations. Given the
data X, z;, the likelihood p(z,|f(X})), the prior distribution
p(f(X+)|Xt,0) and the hyperparameters vector 6, the mar-
ginal likelihood is defined as follows:

o |X1,6) = [ plar | FXD)PF(K0) | X,0) dF(X0)
(12)
Here X;,0 comprises the hyperparameters of all kernels
specified in (7). The LML can be computed using the closed-
form equation:
logp (z: | X¢,0)

= —%z;r K, + JZI}_l z; — %log K, + 21| — %log(Qw).
13)
Here n denotes the number of observations. The minim-
isation of the negative LML is performed using gradient-
based methods provided by the SciPy optimiser [17] and the
GPyTorch library [18], both used in this work. Specifically, we
employ the default Broyden—Fletcher—Goldfarb—Shanno
algorithm, which typically finds near-optimal values for all
hyperparameters at each timestep.

III. PROPOSED METHODS

In this work, we evaluate the performance and suitability
of several well-established acquisition functions, namely the
EI, UCB, KG, and TS—for their effectiveness in guiding the
search using the GP surrogate in a target tracking setting.

In the proposed framework, the UAVs select their sampling
positions sequentially, with each UAV’s choice informed by
the positions chosen by the preceding UAVs. The GP is
first trained using 30 randomly sampled positions on the
two-dimensional spatial grid. After this initial training, a
three-dimensional grid incorporating the time dimension is
constructed, marking the start of the UAVs’ exploration of the
environment by visiting locations selected by the acquisition
function. The sensors move in discrete steps, with no explicit
motion model or physical constraints such as velocity or
inertia.

After each observation, the GP model is rebuilt—meaning
a new instance is created using the updated dataset—refining
the predictive distribution used to guide the next UAV’s
decision. This sequential update strategy enables improved
performance without requiring joint planning, offering both
simplicity and reduced computational cost. Furthermore, per-
formance is enhanced by an optimiser that tunes the GP kernel
hyperparameters.

A. Acquisition Functions

Acquisition functions are chosen based on theoretical con-
siderations and physical aspects and they are used in Bayesian
optimisation (BO) to guide the search for the optimum based
on the uncertainty in the posterior [19]. These functions
typically have analytical forms that are inexpensive to evaluate.
Even when a closed-form expression is not available, they
can be approximated efficiently. In either case, acquisition
functions are significantly easier to optimise than the original
objective function.

Most existing acquisition functions focus either on maxim-
ising the improvement between the current and next query,
such as EI or probability of improvement [20], or on maxim-
ising knowledge gain by reducing uncertainty, as exemplified
by the KG policy [21] and entropy search [22]. TS, on the
other hand, draws a sample from the posterior distribution at
each candidate point and then selects the point corresponding
to the maximum sampled value.

These algorithms balance exploration and exploitation, a
trade-off that is fundamental to the effectiveness of BO. Ex-
ploration targets regions with high model uncertainty, whereas



exploitation focuses on areas with high predicted objective
values.
1) Expected Improvement [11] is a widely applied acquisition
function due to its simplicity and computational efficiency.
The algorithm is able to naturally balance exploration with
exploitation, however, in this setting, we follow the common
approach to introduce the ¢ parameter to control it explicitly.
Following [10], the EI acquisition function used in the active
sensing framework is defined as:

Z(x¢,t) P(Z(x¢,1))

Bl t) = 4 + o) 6(Z(xent)) "0 70 (1)
O7 U(Xt7t> = 07
I(xi,t) = plxi t) — 2* — &,
- I(Xt,t) (15)
Zxet) = Ty

where Z(x;,t) is the improvement at the candidate point
(x¢,t), z* is the best observed value and £ is a parameter
used to balance the exploration-exploitation. Here ®(.) is the
cumulative distribution function reflecting the improvement,
Z(xy,t)) is the standardised improvement, o(x;,t) is the
predictive standard deviation and ¢(.) is the probability density
function.

After calculating the EI for the initial set of sample points,
the point with the highest EI value is selected to guide the
search toward areas most likely to improve over the current
best observation. A prediction is made at this point using the
GP model. In each subsequent iteration, the sample set is
expanded with the newly selected points, and the acquisition
function is recalculated over the updated set. This process en-
sures that the next point with the highest EI is always selected
based on the most recent model and data, continuously refining
the search for the optimum.

2) The Upper Confidence Bound (UCB) [14] provides
theoretical guarantees [23]. It selects where to sample next by
maximising the function of predicted mean p and the predicted
standard deviation o

UCB(x¢,t; ) = pu(x¢, t) + Ao(x, t). (16)

Here )\ is a confidence parameter that controls the trade-
off between exploration and exploitation. The choice of this
parameter is a practical problem which has strong influence
on the performance of this algorithm.

3) Knowledge Gradient Policy [15] is similar to EI as it
evaluates the expected impact of a sample. However unlike
ElL, it does not assume that the solution needs to be a
previously evaluated sample. It also evaluates the expected
impact of a sample on the entire posterior distribution, not
just the posterior at a sampled point [6]. The expected gain
in knowledge is represented by the knowledge gradient as
follows:

KG(x¢,t) := Ep [p5 41 — i, | X1 = xppt + 1= 1],
A7)

where p) denotes the maximum expected value of the pos-
terior mean after n observations. When we take an additional
sample at point x, we obtain an updated posterior with
mean f[i,+1, and consequently a new maximum predicted
value py, ;. The knowledge gradient represents the expected
increase in the maximum predicted value, wy ,; — p;,, after
sampling at x, therefore, the next sampling point is chosen as
the one with the highest KG value.

The standard KG policy assumes stationarity of the un-
known function. This condition may be partially relaxed using
a batched version of the KG function, called q-KG, and it is
discretised for the decision-space [24]. In our implementation,
we also use a spatio-temporal kernel to model both space and
time. To further improve the performance of KG for tracking
a non-stationary target, we apply a sliding time window to
focus on more recent data and introduce a local cubic subset
around the best prediction, encouraging the KG to prioritise
exploitation.

The KG method is significantly more computationally

expensive than previously discussed methods. The conven-
tional approach requires optimisation, typically performed
via stochastic gradient ascent. This process was simplified
by the one-shot KG method [25], which generates fantasy
observations from the GP posterior, and approximates the
KG in a single forward pass without retraining the GP for
every candidate. Unlike the original approach, it evaluates all
samples in parallel, making it more scalable.
4) Thompson Sampling [16] is another well-established
method which can be applied to a wide variety of problems.
The algorithm first computes the posterior distribution for all
candidate points, and then draws independent samples from the
posterior, typically using Monte Carlo (MC) or quasi-Monte
Carlo sampling method such as the Sobol sampling [26]. The
sample is then maximised to find the next sampling point,
which can be defined as follows:

Fxe,t) ~p(f(xe,t) | Dy).

5 (18)
where f(x:,t) is a sample from the posterior distribution at

TS(x,t) = arg max f(xe,1),

(x¢,t), and X is an input space over both spatial and temporal
domains.

The Sobol sampler [26] uses Sobol sequences which are
more evenly distributed than random independent and identic-
ally distributed samples, offering improved performance with
respect to standard sampling. Since TS does not require
solving an optimisation problem, it offers good computational
efficiency. However, on large grids, drawing samples from the
posterior becomes computationally expensive, so approximate
sampling methods should be considered.

IV. PERFORMANCE EVALUATION

A. Implementation and Simulation Settings

A standard GP regression model provided by the GPFlow
library [27] is used to evaluate the EI and UCB algorithms,
while a BoTorch [28] CustomKernel model is employed to
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Figure 2. Flowchart of the Bayesian optimisation algorithm

assess the KG and TS algorithms. A spatio-temporal kernel,
defined in Equation (7), is used to capture the characteristics
of the considered sensor scheduling and tracking task. The
parameters of the acquisition functions are selected empiric-
ally. For EI, the ¢ parameter is set to 0.01. The \ parameter
in UCB is set to 1.5.

The simulation setup follows that presented in [10]. The al-
gorithm is evaluated over an area of 400m x 400m, discretised
into a grid with a step size of 3m. The target is initialised at
position [50 m, 50 m] and moves linearly with velocities of
1m/s in both x and y directions. The obtained results are
averaged over 100 Monte Carlo simulations with two levels
of measurement noise in the RSS sensor (1dB and 5dB).

A single GP algorithm with real-time learning of the
hyperparameters of its composite kernel is implemented, as
illustrated in Figure 2. The algorithm operates by collecting a
five-second data window, training the GP kernels to estimate
their hyperparameters, and then computing and maximising the
acquisition function to determine the next measurement point.
Subsequently, the mean and variance of f(x) are predicted
using the GP equations (5) and (6) at the locations selected
by the acquisition function. This information is then used to
identify the region where the target is most likely to be located.
The new measurement is added to the dataset, and the updated
dataset is shared among the remaining UAVs to determine their
respective sampling locations. Once all UAVs have collected
their measurements, the combined dataset is used to retrain
the GP, refining the estimate of the target’s location.

The optimisation of the KG and TS acquisition functions
is performed within the BoTorch framework [28]. For the
El and UCB acquisition functions, the GPFlow model is
optimised using a SciPy-based optimiser. In both cases, the
kernel hyperparameters are tuned by minimising the LML
defined in Equation (13).

We consider the EI acquisition function as proposed in [10]
as a baseline and compare the UCB, KG and Thompson
sampling algorithms to it. We have kept the kernel as originally
proposed in [10] (Equations (10)-(14)) for EIL

Table 1
AVERAGE RUNTIMES AND DISTANCE ERRORS FOR DIFFERENT
ACQUISITION FUNCTIONS WITH VARYING NUMBERS OF UAV'S UNDER
TWO NOISE LEVELS.

Average Average

o Runtime (s) Distance Error (m)

Acquisition | Number

Function | of UAVs

Noise 1dB  Noise 5dB | Noise 1dB Noise 5dB
1 UAV 51.11 53.99 54.65 95.38
EI 2 UAVs 85.65 86.36 35.48 46.16
3 UAVs 157.98 159.93 27.59 31.58
1 UAV 364.50 424.32 11.47 60.05
UCB 2 UAVs 1546.92 2669.54 10.06 29.83
3 UAVs 3094.48 3280.41 9.52 14.92
1 UAV 217.62 262.42 47.64 123.26
KG 2 UAVs 261.32 512.47 31.95 117.99
3 UAVs 261.26 261.32 30.04 111.85
1 UAV 292.74 242.12 19.23 29.88
Thompson
sampling 2 UAVs 963.97 937.65 14.28 18.70
3 UAVs 1610.69 1810.15 12.88 22.63
B. Results

The performance of the acquisition functions is assessed in
terms of accuracy and runtime under two levels of noise and a
varying number of UAVs. In Table I, the numerical results are
presented for the benchmark algorithm, EI, compared to UCB,
KG and TS. The runtime is measured on an Intel® Core™ i9-
14900 CPU with 64 GB RAM.

The distance error shown in Table I and Figure 3 is the
Euclidean distance between the UAV position and the target
position at each timestep, averaged over the entire simulation
and then further averaged across 100 simulations.

Table I shows a clear trend indicating that, for most meth-
ods, runtime increases significantly as accuracy improves.
Furthermore, at a higher noise level, the runtime increases
while the accuracy decreases.

Although EI offers the most favourable trade-off between
accuracy and computational cost, maintaining competitive
accuracy while achieving the lowest average runtime, UCB
achieves the lowest average distance error at the lower noise
level, and TS achieves the lowest average distance error at the
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higher noise level. Across both noise levels, UCB produces
results that are on average approximately 54% more accurate
than EI, while TS is approximately 60% more accurate.
In contrast, KG demonstrates the poorest balance between
accuracy and runtime.

The tracking performance of the methods is visualised in
Fig. 3, where the distance between the target position and the
predicted target position is plotted. For two and three UAVs,
the results are averaged into a single line on the graph. It
is evident that the first few iterations of all algorithms are
performed on the same initial sample set, resulting in identical
initial distance errors across all acquisition functions. This
persists until the UAVs begin selecting different points based
on the new data they collect.

As the noise level increases, the acquisition functions are
more likely to select suboptimal locations due to the reduced
reliability of the measurements, occasionally causing the UAV
to follow local maxima.

V. CONCLUSIONS

This work proposes a GP framework for sensor scheduling
and target tracking based on a composite kernel and different
acquisition functions: 1) EI, 2) UCB, 3) TS and 4) KG.
While the first three methods perform reliably and offer
different strengths, KG shows reduced effectiveness in an
active sensing setting with a non-stationary objective. While
the UCB algorithm achieves the lowest average distance error
for both levels of noise, the average runtime is significantly
higher than that of EI and KG. EI offers the best trade-
off between accuracy and runtime. TS offers competitive
performance while KG gives the least accurate results.

Future work will focus on multi-task GP methods that
consider cross-correlations in the kernel representations and
scalability aspects. Different approaches for learning of the
kernel hyperparameters will also be considered.
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