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AbstractÐJoint target tracking and sensor scheduling includes
resource optimisation and gathering the most informative data
for purposes such as search and rescue, fire detection and
surveillance tasks. For such real-time tasks, the limited access to
initial tracking data can challenge the effectiveness of traditional
machine learning methods, thereby motivating the development
of active sensing strategies. This paper addresses such problems
and formulates the joint target tracking and sensor scheduling
problems within a Bayesian optimisation framework. The key
question that this framework answers is: where to position the
sensors in order to accurately track an object. In the considered
case study, the sensors are mobile and represented by uncrewed
aerial vehicles (UAVs). The active sensing of the environment
is based on uncertainty-guided sampling thanks to a Gaussian
process representation.

The main novelty lies in the formulation of the sensor schedul-
ing and tracking within a Bayesian optimisation setting. Under
this framework, a detailed comparison of different acquisition
functions is carried out, to identify the most suitable solutions
for an active sensing problem. Results with respect to accuracy
and computational time are reported.

Index TermsÐBayesian optimisation, sensor scheduling, UAV,
active learning, Gaussian process methods, target tracking, un-
certainty quantification, upper confidence bound

I. INTRODUCTION

Target tracking over sensor networks is an important prob-

lem and plays a critical role in applications such as surveil-

lance and environmental monitoring. A variety of model-based

approaches have been developed, including the Kalman filter,

[1] and the particle filter [2], both of which rely on a state-

space model to represent the system dynamics and observation

process. Consensus Kalman filters [3] have also been a popular

method.

Recently, model-free methods have gained significant at-

tention in target tracking. For example, the adaptive kernel
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learning Kalman filter [4] adapts online without relying on

an explicit system model, while some reinforcement learning

approaches [5] embedded neural networks to approximate the

underlying system dynamics or control policies. Model-based

methods are often preferred as they offer lower computational

complexity compared with model-free methods. However, in

situations where tracking data is limited, such as in the

presence of occlusions, model-based methods often struggle to

accurately represent the target’s expected behaviour, resulting

in decreased accuracy or even target loss. This has led to

the adoption of techniques such as Bayesian Optimisation

(BO) [6], which construct a surrogate model to approximate

an expensive-to-evaluate objective function. An acquisition

function, derived from this surrogate, is then used to guide

the selection of the next sampling point [6]. Gaussian process

(GP) regression is often chosen as a surrogate for BO due to

its ability to quantify the uncertainty of the predictions and its

flexibility as a non-parametric model.

BO has been applied to many areas such as environment

monitoring [7], robot navigation [8] and particle accelerator

tuning [9]. In [10], a BO-guided method with a GP surrogate

was used for target tracking with no prior information. The tar-

get is tracked using one or multiple Uncrewed Aerial Vehicles

(UAV) equipped with Received Signal Strength (RSS) sensors.

The RSS of a moving target is modelled as a black-box

function and the Expected Improvement (EI) [11] acquisition

function is used to determine the next sampling location.

Acquisition functions can be used to guide a UAV in

searching for a target by selecting informative sampling loca-

tions. The problem of determining when and where to collect

measurements is referred to as sensor scheduling. This can

be formulated as a stochastic optimal control problem such

as the partially observable Markov decision process [12] to

consider both short-term and long-term performance. Another

approach would be using a myopic or greedy approach, which

does not consider long-term performance but tends to achieve



good performance [13].

A. Main Contributions

This paper builds upon the framework developed in our

previous work [10] and investigates the impact of different

acquisition functions on target tracking in active sensing

settings. Additionally, it explores the effectiveness of using

a single-output GP model to guide multiple UAVs in an

active sensing setting with different levels of noise. Three

different acquisition functions are adoptedÐnamely the up-

per confidence bound (UCB) [14], the knowledge gradient

function (KG) [15] and Thompson sampling (TS) [16]Ðand

are compared to the originally proposed acquisition function,

expected improvement (EI).

The rest of the paper is organised as follows. Section II

introduces the problem formulation and the background know-

ledge. The proposed methods are detailed in Section III. The

results of the simulations are discussed in section IV followed

by conclusions in Section V.

II. PROBLEM FORMULATION

Consider the sensor scheduling problem of determining the

ªbestº, in a certain sense, position of a suite of sensors. The

sensors - in our case, UAVs - are collecting information about

an object on the ground and the aim of the sensors is to collect

the most informative data and track the target on the ground.

Based on the acquisition function, we choose where to send

the UAVs, using predictions of areas with the highest RSS

values, which we assume correspond to the target location.

This was illustrated in Figure 1, where the target position is

indicated by the peak in the RSS measurement surface.

For the purposes of sensor scheduling and quantifying

the informativeness of the data, the task is formulated as a

Bayesian optimisation (BO) function.

For clarity, we denote vectors as bold lowercase letters, and

matrices as bold uppercase letters.

A. Measurement Equation

The UAV collects measurements denoted by z, which

depend on the target location xt at time t, with additive

measurement noise ϵ. The noise is assumed to be zero-mean

Gaussian random variable with variance σ2
noise, namely

z = f(xt, t) + ϵ, ϵ ∼ N (0, σ2
noise), (1)

where f(·) is an unknown underlying function and N (.)
denotes a normal distribution.

The measurement equation connecting the observed RSS

and the target location can be written as follows:

zti = z0,ti − η log10(dti) + ϵ, (2)

where zti is an RSS measurement at time ti, z0,ti is the

transmission power of the target, η is the path loss exponent

determining how sharp the signal attenuates and dti is the

Euclidean distance between the current sensor position and

the target’s position. We treat the area with high RSS values

Figure 1. Objective function at a given timestep.

as the target position. Denote the set of measurements received

until time t by zt = [zt1 , zt2 , · · · , ztnt
]⊺ and ⊺ represents the

transpose operation. The UAVs are collecting RSS data, and

by the time t, nt measurements are received with time stamps

t1, t2, · · · , tnt
.

Since xti is the the target location associated with the

measurement at time stamp ti, where ti ≤ t, at any time

t, we can have a set denoted as Dt = {xti , ti, zti}
nt

i=1. We

will further use the following matrix representation: Xt =
[x⊤

1 ,x
⊤
2 , . . . ,x

⊤
nt
].

B. Gaussian Process (GP) Method

Bayesian optimisation relies on two key components: a

surrogate model, typically a GP, which represents our prior

belief about the objective function, and an acquisition function,

which guides the search for optimal sensor placements. To

build a probabilistic model of the objective function f(·), a

GP is defined as a distribution over functions:

f(xt, t) ∼ GP
(

µ(xt, t), k
(

(xt, t), (x
′
t, t

′)
))

. (3)

Here, (xt, t) and (x′
t
, t′) denote the training and testing in-

put data respectively. GP(.) denotes a GP with mean function

µ(xt, t) and covariance function k((xt, t), (x
′
t, t

′)). The vector

xti represents the spatial location of the i(th) observation at

time ti. Given the data Dt, we define Kt ∈ R
nt×nt as a cov-

ariance matrix with the (i, j)th entry as k((xti , ti), (xtj , tj)).
In addition, we define k∗ as a vector with the jth entry as

k((xtj , tj), (xt∗ , t∗)).
The posterior distribution at a new input (x∗, t∗) can be

written as:

p (f(x∗, t∗) | Dt) ∼ N (µpost(x∗, t∗), kpost((x∗, t∗), (x
′
∗, t

′
∗))) ,
(4)

where

µpost(x∗, t∗) = µ(x∗, t∗) + k⊤
∗

[

Kt + σ2
noiseI

]−1

× (z− µ(Xt)) , (5)



kpost

(

(x∗, t∗), (x
′
∗, t

′
∗)
)

= k
(

(x∗, t∗), (x
′
∗, t

′
∗)
)

− k⊤
∗

[

Kt + σ2
noiseI

]−1
k∗. (6)

The posterior mean and variance specify the predictive

distribution, which captures both the predicted value and the

corresponding uncertainty.

C. Kernels

The kernel specifies the prior assumptions about the func-

tion through hyperparameters, which represent its characterist-

ics such as smoothness and length-scale. The kernel design for

the active sensing setting was proposed in [10] where a spatial-

temporal kernel is defined as a sum of three spatial kernelsÐa

squared exponential kernel kSE, an exponential kernel kEXP,

and a constant kernelÐrepresenting the local stationarity of

the RSS map, multiplied by a temporal MatÂern kernel kMAT.

This kernel was kept the same as in [10] for the EI

algorithm. The MatÂern kernel is omitted when UCB, KG,

and Thompson sampling are used. In these three cases, the

remaining kernels are provided with both spatial and temporal

inputs (xt and t) as this configuration resulted in better

accuracy compared to the EI setting.

For the considered sensor scheduling and tracking task, we

define the following composite kernel:

k((xt, t), (x
′
t
, t′)) =

(

kBIAS((xt,x
′
t
), (t, t′))+

kSE((xt,x
′
t
), (t, t′)) + kEXP((xt,x

′
t
), (t, t′))

)

·kCONST((xt,x
′
t
), (t, t′)),

(7)

where

kSE((xt,xt

′), (t, t′)) = σ2
t exp(−

∥xt − xt
′∥2

2ℓ2t
), (8)

kEXP((xt,xt

′), (t, t′)) = σ2
t exp(−

∥xt − xt
′∥

ℓt
), (9)

kBIAS((xt,xt

′), (t, t′)) = b, (10)

kCONST((xt,xt

′), (t, t′)) = c. (11)

Here, σ2 denotes the amplitude scaling parameter, ℓ the length-

scale parameter, b denotes a bias in the measurements and c
denotes a scaling constant; ||.|| denotes the Euclidean norm.

D. Hyperparameter Learning

The learning of the kernel hyperparameters of the GP is

achieved by maximising the log marginal likelihood (LML)

which enables efficient numerical calculations. Given the

data Xt, zt, the likelihood p(zt|f(Xt)), the prior distribution

p(f(Xt)|Xt,θ) and the hyperparameters vector θ, the mar-

ginal likelihood is defined as follows:

p(zt | Xt,θ) =

∫

p(zt | f(Xt)) p(f(Xt) | Xt,θ) df(Xt),

(12)

Here Xt,θ comprises the hyperparameters of all kernels

specified in (7). The LML can be computed using the closed-

form equation:

log p (zt | Xt,θ)

= −
1

2
z⊤t

[

Kt + σ2
nI
]−1

zt −
1

2
log

∣

∣Kt + σ2
nI
∣

∣−
nt

2
log(2π).

(13)

Here n denotes the number of observations. The minim-

isation of the negative LML is performed using gradient-

based methods provided by the SciPy optimiser [17] and the

GPyTorch library [18], both used in this work. Specifically, we

employ the default Broyden–Fletcher–Goldfarb–Shanno
algorithm, which typically finds near-optimal values for all

hyperparameters at each timestep.

III. PROPOSED METHODS

In this work, we evaluate the performance and suitability

of several well-established acquisition functions, namely the

EI, UCB, KG, and TSÐfor their effectiveness in guiding the

search using the GP surrogate in a target tracking setting.

In the proposed framework, the UAVs select their sampling

positions sequentially, with each UAV’s choice informed by

the positions chosen by the preceding UAVs. The GP is

first trained using 30 randomly sampled positions on the

two-dimensional spatial grid. After this initial training, a

three-dimensional grid incorporating the time dimension is

constructed, marking the start of the UAVs’ exploration of the

environment by visiting locations selected by the acquisition

function. The sensors move in discrete steps, with no explicit

motion model or physical constraints such as velocity or

inertia.

After each observation, the GP model is rebuiltÐmeaning

a new instance is created using the updated datasetÐrefining

the predictive distribution used to guide the next UAV’s

decision. This sequential update strategy enables improved

performance without requiring joint planning, offering both

simplicity and reduced computational cost. Furthermore, per-

formance is enhanced by an optimiser that tunes the GP kernel

hyperparameters.

A. Acquisition Functions

Acquisition functions are chosen based on theoretical con-

siderations and physical aspects and they are used in Bayesian

optimisation (BO) to guide the search for the optimum based

on the uncertainty in the posterior [19]. These functions

typically have analytical forms that are inexpensive to evaluate.

Even when a closed-form expression is not available, they

can be approximated efficiently. In either case, acquisition

functions are significantly easier to optimise than the original

objective function.

Most existing acquisition functions focus either on maxim-

ising the improvement between the current and next query,

such as EI or probability of improvement [20], or on maxim-

ising knowledge gain by reducing uncertainty, as exemplified

by the KG policy [21] and entropy search [22]. TS, on the

other hand, draws a sample from the posterior distribution at

each candidate point and then selects the point corresponding

to the maximum sampled value.

These algorithms balance exploration and exploitation, a

trade-off that is fundamental to the effectiveness of BO. Ex-

ploration targets regions with high model uncertainty, whereas



exploitation focuses on areas with high predicted objective

values.

1) Expected Improvement [11] is a widely applied acquisition

function due to its simplicity and computational efficiency.

The algorithm is able to naturally balance exploration with

exploitation, however, in this setting, we follow the common

approach to introduce the ξ parameter to control it explicitly.

Following [10], the EI acquisition function used in the active

sensing framework is defined as:

EI(xt, t) =











I(xt, t) Φ(Z(xt, t))

+ σ(xt, t)ϕ(Z(xt, t))
, σ(xt, t) > 0,

0, σ(xt, t) = 0,

(14)

I(xt, t) = µ(xt, t)− z∗ − ξ,

Z(xt, t) =
I(xt, t)

σ(xt, t)
,

(15)

where I(xt, t) is the improvement at the candidate point

(xt, t), z∗ is the best observed value and ξ is a parameter

used to balance the exploration-exploitation. Here Φ(.) is the

cumulative distribution function reflecting the improvement,

Z(xt, t)) is the standardised improvement, σ(xt, t) is the

predictive standard deviation and ϕ(.) is the probability density

function.

After calculating the EI for the initial set of sample points,

the point with the highest EI value is selected to guide the

search toward areas most likely to improve over the current

best observation. A prediction is made at this point using the

GP model. In each subsequent iteration, the sample set is

expanded with the newly selected points, and the acquisition

function is recalculated over the updated set. This process en-

sures that the next point with the highest EI is always selected

based on the most recent model and data, continuously refining

the search for the optimum.

2) The Upper Confidence Bound (UCB) [14] provides

theoretical guarantees [23]. It selects where to sample next by

maximising the function of predicted mean µ and the predicted

standard deviation σ:

UCB(xt, t;λ) = µ(xt, t) + λσ(xt, t). (16)

Here λ is a confidence parameter that controls the trade-

off between exploration and exploitation. The choice of this

parameter is a practical problem which has strong influence

on the performance of this algorithm.

3) Knowledge Gradient Policy [15] is similar to EI as it

evaluates the expected impact of a sample. However unlike

EI, it does not assume that the solution needs to be a

previously evaluated sample. It also evaluates the expected

impact of a sample on the entire posterior distribution, not

just the posterior at a sampled point [6]. The expected gain

in knowledge is represented by the knowledge gradient as

follows:

KGn(xt, t) := En

[

µ∗
n+1 − µ∗

n | xt+1 = xt, t+ 1 = t
]

,
(17)

where µ∗
n denotes the maximum expected value of the pos-

terior mean after n observations. When we take an additional

sample at point x, we obtain an updated posterior with

mean µn+1, and consequently a new maximum predicted

value µ∗
n+1. The knowledge gradient represents the expected

increase in the maximum predicted value, µ∗
n+1 − µ∗

n, after

sampling at x, therefore, the next sampling point is chosen as

the one with the highest KG value.

The standard KG policy assumes stationarity of the un-

known function. This condition may be partially relaxed using

a batched version of the KG function, called q-KG, and it is

discretised for the decision-space [24]. In our implementation,

we also use a spatio-temporal kernel to model both space and

time. To further improve the performance of KG for tracking

a non-stationary target, we apply a sliding time window to

focus on more recent data and introduce a local cubic subset

around the best prediction, encouraging the KG to prioritise

exploitation.

The KG method is significantly more computationally

expensive than previously discussed methods. The conven-

tional approach requires optimisation, typically performed

via stochastic gradient ascent. This process was simplified

by the one-shot KG method [25], which generates fantasy

observations from the GP posterior, and approximates the

KG in a single forward pass without retraining the GP for

every candidate. Unlike the original approach, it evaluates all

samples in parallel, making it more scalable.

4) Thompson Sampling [16] is another well-established

method which can be applied to a wide variety of problems.

The algorithm first computes the posterior distribution for all

candidate points, and then draws independent samples from the

posterior, typically using Monte Carlo (MC) or quasi-Monte

Carlo sampling method such as the Sobol sampling [26]. The

sample is then maximised to find the next sampling point,

which can be defined as follows:

TS(xt, t) = arg max
(xt,t)∈X

f̃(xt, t), f̃(xt, t) ∼ p (f(xt, t) | Dt) .

(18)

where f̃(xt, t) is a sample from the posterior distribution at

(xt, t), and X is an input space over both spatial and temporal

domains.

The Sobol sampler [26] uses Sobol sequences which are

more evenly distributed than random independent and identic-

ally distributed samples, offering improved performance with

respect to standard sampling. Since TS does not require

solving an optimisation problem, it offers good computational

efficiency. However, on large grids, drawing samples from the

posterior becomes computationally expensive, so approximate

sampling methods should be considered.

IV. PERFORMANCE EVALUATION

A. Implementation and Simulation Settings

A standard GP regression model provided by the GPFlow

library [27] is used to evaluate the EI and UCB algorithms,

while a BoTorch [28] CustomKernel model is employed to



Initialisation

Collect new

measurements

Learn

hyperparameters

of GP kernels

Calculate

and optimise

acquisition function

Predict f at

the points

selected by the

acquisition function

Output predicted

mean and variance

for each UAV

Figure 2. Flowchart of the Bayesian optimisation algorithm

assess the KG and TS algorithms. A spatio-temporal kernel,

defined in Equation (7), is used to capture the characteristics

of the considered sensor scheduling and tracking task. The

parameters of the acquisition functions are selected empiric-

ally. For EI, the ξ parameter is set to 0.01. The λ parameter

in UCB is set to 1.5.

The simulation setup follows that presented in [10]. The al-

gorithm is evaluated over an area of 400m×400m, discretised

into a grid with a step size of 3m. The target is initialised at

position [50 m, 50 m] and moves linearly with velocities of

1m/s in both x and y directions. The obtained results are

averaged over 100 Monte Carlo simulations with two levels

of measurement noise in the RSS sensor (1dB and 5dB).

A single GP algorithm with real-time learning of the

hyperparameters of its composite kernel is implemented, as

illustrated in Figure 2. The algorithm operates by collecting a

five-second data window, training the GP kernels to estimate

their hyperparameters, and then computing and maximising the

acquisition function to determine the next measurement point.

Subsequently, the mean and variance of f(x) are predicted

using the GP equations (5) and (6) at the locations selected

by the acquisition function. This information is then used to

identify the region where the target is most likely to be located.

The new measurement is added to the dataset, and the updated

dataset is shared among the remaining UAVs to determine their

respective sampling locations. Once all UAVs have collected

their measurements, the combined dataset is used to retrain

the GP, refining the estimate of the target’s location.

The optimisation of the KG and TS acquisition functions

is performed within the BoTorch framework [28]. For the

EI and UCB acquisition functions, the GPFlow model is

optimised using a SciPy-based optimiser. In both cases, the

kernel hyperparameters are tuned by minimising the LML

defined in Equation (13).

We consider the EI acquisition function as proposed in [10]

as a baseline and compare the UCB, KG and Thompson

sampling algorithms to it. We have kept the kernel as originally

proposed in [10] (Equations (10)-(14)) for EI.

Table I
AVERAGE RUNTIMES AND DISTANCE ERRORS FOR DIFFERENT

ACQUISITION FUNCTIONS WITH VARYING NUMBERS OF UAVS UNDER

TWO NOISE LEVELS.

Acquisition

Function

Number
of UAVs

Average

Runtime (s)

Average

Distance Error (m)

Noise 1dB Noise 5dB Noise 1dB Noise 5dB

EI

1 UAV 51.11 53.99 54.65 95.38

2 UAVs 85.65 86.36 35.48 46.16

3 UAVs 157.98 159.93 27.59 31.58

UCB

1 UAV 364.50 424.32 11.47 60.05

2 UAVs 1546.92 2669.54 10.06 29.83

3 UAVs 3094.48 3280.41 9.52 14.92

KG

1 UAV 217.62 262.42 47.64 123.26

2 UAVs 261.32 512.47 31.95 117.99

3 UAVs 261.26 261.32 30.04 111.85

Thompson

sampling

1 UAV 292.74 242.12 19.23 29.88

2 UAVs 963.97 937.65 14.28 18.70

3 UAVs 1610.69 1810.15 12.88 22.63

B. Results

The performance of the acquisition functions is assessed in

terms of accuracy and runtime under two levels of noise and a

varying number of UAVs. In Table I, the numerical results are

presented for the benchmark algorithm, EI, compared to UCB,

KG and TS. The runtime is measured on an Intel® Core™ i9-

14900 CPU with 64 GB RAM.

The distance error shown in Table I and Figure 3 is the

Euclidean distance between the UAV position and the target

position at each timestep, averaged over the entire simulation

and then further averaged across 100 simulations.

Table I shows a clear trend indicating that, for most meth-

ods, runtime increases significantly as accuracy improves.

Furthermore, at a higher noise level, the runtime increases

while the accuracy decreases.

Although EI offers the most favourable trade-off between

accuracy and computational cost, maintaining competitive

accuracy while achieving the lowest average runtime, UCB

achieves the lowest average distance error at the lower noise

level, and TS achieves the lowest average distance error at the



(a) Expected improvement, σ = 1dB (b) Expected improvement, σ = 5dB

(c) Upper confidence bound, σ = 1dB (d) Upper confidence bound, σ = 5dB

(e) Knowledge gradient, σ = 1dB (f) Knowledge gradient, σ = 5dB

(g) Thompson sampling, σ = 1dB (h) Thompson sampling, σ = 5dB

Figure 3. Distance error between predicted and real target location over time



higher noise level. Across both noise levels, UCB produces

results that are on average approximately 54% more accurate

than EI, while TS is approximately 60% more accurate.

In contrast, KG demonstrates the poorest balance between

accuracy and runtime.

The tracking performance of the methods is visualised in

Fig. 3, where the distance between the target position and the

predicted target position is plotted. For two and three UAVs,

the results are averaged into a single line on the graph. It

is evident that the first few iterations of all algorithms are

performed on the same initial sample set, resulting in identical

initial distance errors across all acquisition functions. This

persists until the UAVs begin selecting different points based

on the new data they collect.

As the noise level increases, the acquisition functions are

more likely to select suboptimal locations due to the reduced

reliability of the measurements, occasionally causing the UAV

to follow local maxima.

V. CONCLUSIONS

This work proposes a GP framework for sensor scheduling

and target tracking based on a composite kernel and different

acquisition functions: 1) EI, 2) UCB, 3) TS and 4) KG.

While the first three methods perform reliably and offer

different strengths, KG shows reduced effectiveness in an

active sensing setting with a non-stationary objective. While

the UCB algorithm achieves the lowest average distance error

for both levels of noise, the average runtime is significantly

higher than that of EI and KG. EI offers the best trade-

off between accuracy and runtime. TS offers competitive

performance while KG gives the least accurate results.

Future work will focus on multi-task GP methods that

consider cross-correlations in the kernel representations and

scalability aspects. Different approaches for learning of the

kernel hyperparameters will also be considered.
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