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Abstract. There has been significant research effort developing neural-
network-based predictors of speech quality (SQ) in recent years. While a
primary objective has been to develop non-intrusive, i.e. reference-free,
metrics to assess the performance of speech enhancement (SE) systems,
recent work has also investigated the direct inference of neural SQ pre-
dictors within the loss function of downstream speech tasks. To aid in the
training of SQ predictors, several large datasets of audio with correspond-
ing human labels of quality have been created. Recent work in this area
has shown that speech representations derived from large unsupervised
or semi-supervised foundational speech models are useful input feature
representations for neural SQ prediction. In this work, a novel and robust
SQ predictor is proposed based on feature representations extracted from
an automatic speech recognition (ASR) model, found to be a powerful
input feature for the SQ prediction task. The proposed system achieves
higher correlation with human mean opinion score (MOS) ratings than
recent approaches on all NISQA test sets and shows significantly better
domain adaption compared to the commonly used DNSMOS metric.

1 Introduction

To assess the performance of speech enhancement (SE) methods, there is a con-
tinuing interest in the development of metrics to assess the speech quality (SQ)
of given input audio [1–6]. Such metrics allow for the automatic assessment and
comparison of SE systems without the need for expensive and time-consuming
human listening tests [7–10]. Many still commonly used metrics, such as the
Perceptual Evaluation of SQ (PESQ) [11] or Short-Time Objective Intelligi-
bilty (STOI) [12] are signal-processing-based intrusive metrics, i.e. are designed
to operate over an input of clean reference audio and a (typically artificially) cor-
rupted or enhanced version of that same audio, the latter being the signal under
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assessment. From a neural network perspective, intrusive metrics based on tra-
ditional signal processing have two major drawbacks. Firstly, many traditional
metrics have stages to their computation which cannot be easily formulated in a
differentiable way, which renders them difficult to optimise towards within a loss
function for neural-network-based SE systems [13]. This limitation can partially
be overcome by frameworks like MetricGAN [14–18], where an SE network and a
neural metric predictor network are adversarially trained in a generative adver-
sarial network (GAN) setting, but such networks might be prone to artifacts not
properly assessed by the metric prediction [19,20]. The second major drawback
of most traditional metrics is their intrusive nature; the reliance on the existence
of the reference signal usually requires that test data be simulated (i.e. as arti-
ficially corrupted versions of the reference audio) rather than real (i.e. gathered
in the ’real world’ from the target domain of the system under test).
To overcome these drawbacks, several datasets and network structures [5,21–24]
for the task of neural non-intrusive SQ prediction have been proposed. Datasets
for the SQ prediction task typically consist of noisy audio with associated human
MOS [7] quality labels that have been collected in listening tests conducted by
human listeners. Neural networks can be trained with the noisy audio as input
to predict the associated MOS label.

In parallel with the SQ prediction task is the related task of non-intrusive
intelligibility prediction [12,25–27]. As the datasets for this task are significantly
smaller, much of the focus in this topic has been on finding powerful input fea-
ture representations rather than on designing large complex network structures.
In particular, features derived from large, pre-trained foundation models have
shown to be particularly useful for the intelligibility prediction task [28–30].

In this work, feature representations generated by a foundational model are
analysed as input to a neural network for the SQ prediction task. Such features,
which have primarily been developed as backbone models for ASR have proved
to be useful feature representations for a number of speech related tasks [31,
32]. Experiments investigating different combinations of training data corpora
with different score distributions are carried out, and the effects on test time
performance are analysed. Although non-intrusive SQ prediction is the main
aim of this work, the identified best-performing models are analysed as intrusive
and multi-headed (i.e. predicting multiple labels at once) variants. State-of-the-
art performance is achieved on common testsets using the proposed model. The
implementation of the best performing model as a SQ metric is provided online1.

The remainder of this work is structured as follows: Section 2 introduces
the foundation model from which input feature representations for the model
structure are extracted. Section 3 formally introduces the SQ prediction task
and the proposed model structure. Section 4 describes and analyses the SQ
datasets which are used to train, validate and test the proposed model. Section 5
details experiments in which the optimal training data setup and task variants
are investigated before Section 6 concludes the paper.

1 available at https://github.com/leto19/WhiSQA
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2 Whisper Features

Whisper is a weakly supervised Transformer-based ASR system. It has shown
state-of-the-art performance on a number of monolingual ASR benchmark
datasets, as well as multilingual transcription and translation tasks [33].

It consists of several sequential Transformer-based encoder blocks AE(·) fol-
lowed by the same number of sequential Transformer-based decoder blocks AD(·).
The input to the encoder AE(·) is a log-Mel spectrogram representation XMEL

of the input audio x[n] (padded to 30 seconds in length), which is processed by
a 1-dimensional convolutional neural network (CNN) layer and a Gaussian Er-
ror Linear Unit (GELU) activation function, followed by a sinusoidal positional
encoding before being processed by the first encoder Transformer block. The
output of each encoder layer ℓ is denoted as X(ℓ)

E , a two-dimensional representa-
tion of dimension 768 by 1500 [33]. The Whisper decoder AD(·) takes the form
of a language model; the first Transformer block of the decoder takes as input a
sequence of tokens which encode the language, task, timestamp in seconds, and
the previously transcribed words of the utterance. Each Transformer block in
the decoder has access to the output of the encoder via a cross-attention mech-
anism. The final output of the decoder (not used in this work) is a prediction of
the next token (i.e. the next word) in the input sequence. The T dimension of
the output of each Whisper decoder layer is significantly smaller than any other
feature used in this work.

In this work, the whisper-small2 model, trained on 680k hours of labelled
speech data is used. Recent work has found that features extracted from both
the encoder [29] and decoder [30] layers of Whisper are useful for capturing
intelligibility-related information. Hence, this work analyses their capability for
quality prediction. The encoder AE(·) and decoder AD(·) of this model each have
12 transformer blocks; the set of outputs of each of the constituent transformer
blocks are thus denoted as {X(0)

E , ...,X
(12)
E } and {X(0)

D , ...,X
(11)
D }, respectively.

The weighted sum of {X(0)
E ..X

(12)
E } is defined as

X̄E =

12∑
ℓ=0

α
(ℓ)
E ·X(ℓ)

E , (1)

where {α(0)
E , .., α

(12)
E } are parameter weights for each layer which are learned

during prediction model training.

3 Speech Quality (SQ) Prediction Models

For non-intrusive speech quality prediction, the neural network D(·) takes as
input a feature representation

XF = F(x[n]) (2)
2 https://huggingface.co/openai/whisper-small

https://huggingface.co/openai/whisper-small
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of the speech or audio signal under test x[n] and returns a predicted quality
label q̂. The operator F(·) denotes the feature extraction process; for this work
X̄E is taken as input features. Typically, D(·) is trained on data consisting of
tuples (x[n], q) where q is the true MOS quality label of the audio x[n] obtained
from signal assessment by human listeners. The loss function used to train D(·)
is often a simple Mean Squared Error (MSE) between the model output i.e the
predicted score q̂ = D(XF) and the true quality label q:

LD = (D(XF)− q)2. (3)

Note that while MOS labels are typically expressed in the range 1 to 5, higher
being better, for the ease of training of neural SQ predictors, q is typically
normalised to a range between 0.2 and 1, which enables a sigmoid activation
function on the final neural network layer to project to this label range [34]. SQ
prediction models can be broadly classified into two types; single-headed models
which predict only the MOS label and multi-headed models which predict MOS
alongside some other label(s) of the input audio, e.g. Noisiness, Coloration, Dis-
continuity, etc.
The structure of the proposed SQ prediction models D(·) is based on [35], and is
shown in Figure 1. The model D1(·) (denoted as ‘Single Head Prediction Model’
in Figure 1) consists of 4 transformer layers, followed by an attention pooling
mechanism with a sigmoid activation function, which returns the predicted MOS
score q̂ normalised between 0.2 and 1. The input dimension (and thus the pa-
rameter count) of the transformer stage depends on the feature dimension F
of the input feature, while the output dimension is fixed at 256. The attention
pooling mechanism consists of two sequential linear layers, with a softmax func-
tion applied at the output and is multiplied by the output of the Transformer
block. The result of this multiplication is further fed into a final linear layer with
a sigmoid activation to a single output neuron. This single output neuron repre-
sents the predicted MOS label q̂ of the input audio. A variant of this base model
(denoted as ‘Multi Head Prediction Model’ in Figure 1) which incorporates mul-
tiple prediction ’heads’ i.e. the three Linear layer structure is also proposed for
multi-dimension speech quality prediction.

4 Datasets for Speech Quality Prediction

Datasets containing mean opinion score (MOS) scores q obtained from listening
test with humans for signals under test x[n] have only been created during the
last few years in quantities which allow training recent data-driven methods.
Several SQ datasets are now available and briefly analysed in the following. It
is important to consider several datasets to ensure that the SQ predictor has
been exposed to a large variety of audio conditions during its training. For some
datasets and subsets within datasets, further information is available such as a
clean reference signal s[n], the standard deviation of the MOS score, the raw
scores assigned by each human evaluator or the number of human assessors.
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Fig. 1. Network structure of the proposed WhiSQA SQ predictor with Whisper En-
coder feature extraction. Note that the ’Weighted Sum’ block contains model param-
eters, i.e. layer weights {α(0), .., α(12)} from (1) which are updated during prediction
model training.

4.1 NISQA Dataset

The Non-Intrusive SQ Assessment (NISQA) [5] dataset is an SQ assessment
dataset, comprising of pre-defined train, validation and test sets. Each of these
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are further divided into subsets, characterised by if the nature of the distor-
tion in the speech signal is artificially simulated or occurring ’in the wild’ as a
real distortion. In addition to MOS scores of overall audio quality, the NISQA
dataset also provides labels for other speech ‘dimensions’ [36] namely Noisiness,
Coloration, Discontinuity and Loudness. It has three defined testsets, denoted
as FOR, LIVETALK and P501. With the exception of the LIVETALK testset,
clean reference signals x[n] are available. The baseline NISQA model has single
and multi-headed variants.

4.2 Tencent Dataset

The Tencent audio SQ dataset was released as part of the ConferencingSpeech
2022 challenge [23]. It consists of two artificially simulated training subsets, one
with artificial reverberation added and one without.

4.3 Indiana University Bloomington (IUB) Dataset

The Indiana University Bloomington (IUB) [24] SQ dataset consists of two sub-
sets. The first uses distorted audio sourced from the COnversational Speech
In Noisy Environments (COSINE) [37] dataset, real multi party conversations
captured using multi-channel wearable microphones recorded in noisy everyday
environments. The second subset uses audio from the Voices Obscured in Com-
plex Environmental Settings (VOiCES) [38] corpus where speech and noise were
played aloud and recorded in two rooms of different sizes.
Unlike the other datasets used in this work, the MOS scores for this dataset
were gathered using a Multiple Stimuli with Hidden Reference and Anchor
(MUSHRA) [8] protocol, which is then transformed to a MOS scale between
0 and 10, rather than the 1 to 5 scale commonly used. The 1 - 5 MOS label is
obtained via a fitting operation over the gathered MUSHRA ratings.

4.4 Public Switched Telephone Network (PSTN) Dataset

The Public Switched Telephone Network (PSTN) SQ dataset [39] consists of
simulated ’real’ phone calls, some with simulated background noise added to
the transmitted signal. It follows a similar design to that of NISQA, but is
significantly larger.

4.5 Overall MOS Distribution

To compare the available datasets and analyse prediction results later in this
paper, the distributions of MOS scores in the training and validation subsets
of the datasets (normalised between 0.2 and 1) are shown in Figure 2. The
mean MOS value across the datasets is similar, at approximately 0.65. However,
the datasets differ significantly in the shape of their distributions. Both NISQA
and Tencent show a roughly uniform distribution of scores from 0.2 to 1, with
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the ‘tail’ at the lower end of the Tencent distribution showing that that dataset
contains a larger numbers of low scores. Conversely, the tapering in at the highest
end in both NISQA and Tencent indicate that these datasets contain relatively
few instances of very highly rated audio.

In contrast, the distribution of the PSTN dataset scores is generally normal,
tailing off at the low and high end. Slightly more scores are above 0.5 than below,
indicating that the audio in this dataset is generally of high quality.

The distribution of the MOS score in the IUB dataset is most different from
the others, with very few points falling a the highest and lowest values. Further,
it is significantly more erratic than the other datasets, with an extreme dearth in
scores valued around 0.65. This can possibly be explained by the non-standard
method that the MOS scores were gathered, as well as the differing range of the
scores before normalisation.

The combined distribution across all the datasets is shown in purple at the
top of Figure 2. It displays a similar normal-like distribution to that of the PSTN
dataset, likely due to that dataset contributing roughly half of all samples. There
are slightly more samples of low quality compared to high quality.

Fig. 2. Normalised MOS score distribution across SQ datasets with lines indicating
minimum, mean and maximum MOS in each dataset.Numbers on y axis denote number
of data points in each set.



8 G. Close et al.

5 Experiments

This experiment aims to find which training datasets have the greatest effect on
test performance of the proposed SQ prediction networks, as well as enabling a
fair comparison with other recently proposed SQ prediction systems.

5.1 Experiment Setup

All models are tested on each of the three NISQA test sets, i.e. FOR, LIVETALK
and P501. Following [5], a training strategy where training stops only if the
validation performance does not improve after 20 epochs is employed. The bias-
aware loss function, scaling the contribution of the training samples in the loss
computation based on the relative size of the training set/subset, as proposed
in [5] is also used here. The Adam [40] optimiser is used with an initial learning
rate of 0.00001, which is reduced by a factor of 0.1 if the validation loss does
not improve after 15 epochs. All models are at first trained over a warmup
epoch, where the learning rate increases up to the initial learning rate after each
model update. A batch size B of 128 is used. The best-performing epoch on the
validation set in terms of validation loss is loaded at test time. Datasets other
than NISQA do not have defined validation sets; for these, 10% of the training
sets are partitioned for validation, following [41]. All possible permutations of the
evaluated datasets are used. The proposed Multi Head model (right in Figure 1)
is trained on the NISQA testset to predict the MOS as well as the Noisiness,
Coloration, Discontinuity and Loudness labels.

Models are evaluated using Spearman correlation r and MSE e, computed
versus the true MOS value for each testset element.

5.2 Results

Table 1 shows the results for the training data ablation experiment for the
three NISQA test sets. The overall (on average) best-performing combination of
training datasets is "NISQA, Tencent and PSTN". By far the lowest-performing
model is that trained solely on IUB; further, also any given combination of train-
ing datasets including IUB performs worse on average than that combination
without IUB. As noted earlier in Section 4, this is likely due to the significantly
different distribution of the MOS labels in this dataset relative to the others. The
overall size of the training set has a smaller effect on performance - the inclusion
of data more similar to the test sets (i.e. the NISQA training data) results in bet-
ter performance. This can perhaps be attributed to the bias-aware loss function
used, which attempts to control for the imbalance in size between the component
datasets. It can be noted, that including the Chinese-language Tencent dataset
in training generally improves performance on the German-language LIVETALK
testset; this can be attributed to these models being better able to generalise to
languages other than English.

Table 2 shows a comparison the proposed system with three state-of-the-art
neural SQ predictor systems [5, 35, 41]. Results for the proposed system trained
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Table 1. Training Data Ablation Study for best performing proposed single-head
model. Best and second best shown in bold and underlined, respectively.

Training Data FOR LIVETALK P501 AVERAGE
NISQA Tencent IUB PSTN Train Points r ↑ e↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓

✓ 9250 0.82 0.50 0.83 0.56 0.83 0.56 0.83 0.54
✓ 11020 0.92 0.35 0.82 0.54 0.93 0.37 0.89 0.44
✓ ✓ 20270 0.93 0.32 0.87 0.46 0.93 0.37 0.91 0.38

✓ 28800 0.27 0.84 0.42 0.85 0.41 0.92 0.37 0.87
✓ ✓ 38050 0.85 0.46 0.76 0.62 0.79 0.62 0.80 0.57

✓ ✓ 39820 0.93 0.32 0.83 0.52 0.92 0.40 0.89 0.41
✓ 44809 0.92 0.34 0.77 0.60 0.88 0.48 0.86 0.47

✓ ✓ ✓ 49070 0.93 0.32 0.86 0.48 0.91 0.42 0.90 0.41
✓ ✓ 54059 0.91 0.36 0.85 0.39 0.90 0.45 0.89 0.40

✓ ✓ 55829 0.94 0.29 0.83 0.51 0.94 0.35 0.90 0.38
✓ ✓ ✓ 65079 0.94 0.30 0.88 0.45 0.93 0.38 0.92 0.38

✓ ✓ 73609 0.89 0.40 0.72 0.65 0.76 0.39 0.79 0.48
✓ ✓ ✓ 82859 0.92 0.34 0.81 0.55 0.83 0.56 0.85 0.48

✓ ✓ ✓ 84629 0.94 0.30 0.87 0.46 0.93 0.39 0.91 0.38
✓ ✓ ✓ ✓ 93879 0.93 0.31 0.88 0.45 0.91 0.42 0.91 0.39

on the same combination of data are shown for a fair comparison. For all train-
ing data combinations, the proposed WhiSQA system outperforms the SOTA
system.

Table 2. Comparison of WhisSQA with SOTA systems. Best and second best shown
in bold and underlined, respectively.

FOR LIVETALK P501 AVERAGE
Model Training Data r ↑ e ↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
NISQA Single Head [5] NISQA 0.88 0.40 0.70 0.67 0.89 0.46 0.82 0.51
Proposed WhiSQA NISQA 0.92 0.35 0.82 0.54 0.93 0.37 0.89 0.44
MSQAT [41] NISQA + Tencent + PSTN 0.90 0.39 0.85 0.51 0.92 0.42 0.89 0.44
Proposed WhiSQA NISQA+ Tencent + PSTN 0.94 0.30 0.88 0.45 0.93 0.38 0.92 0.38
XLS-R SQA [35] Tencent + PSTN 0.90 0.38 0.83 0.52 0.89 0.46 0.82 0.51
Proposed WhiSQA Tencent + PSTN 0.91 0.36 0.85 0.39 0.90 0.45 0.89 0.40

Table 3 compares the performance of the baseline NISQA model and the pro-
posed model for multi-head / multi-label prediction. In both cases, the proposed
system outperforms the NISQA baselines. For both systems, tasking the model
with additionally predicting the other speech dimensions from the input audio
slightly degrades the performance of the main task, i.e. quality MOS prediction.

Figure 3 shows a Spearman correlation matrix for the CHiME7-unsupervised
domain adaptation speech enhancement (UDASE) listening test [42]. This lis-
tening test was designed to assess the enhancement performance of the entries
to the UDASE challenge. Figure 3 compares human MOS (SIG, BAK and OVRL)
with those predicted by the DNSMOS [22] metric (DNSMOS_SIG, DNSMOS_BAK,
DNSMOS_OVRL) and by the proposed single head WhiSQA model. The WhiSQA
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Table 3. MOS prediction results for Multi Headed (MH) D1 Models versus Single
Head (SH) Prediction. Best shown in Bold.

FOR LIVETALK P501 AVERAGE
Model r ↑ e ↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
NISQA SH 0.88 0.40 0.70 0.67 0.89 0.46 0.82 0.51
NISQA MH 0.87 0.43 0.65 0.72 0.89 0.46 0.80 0.54
WhiSQA SH 0.92 0.35 0.82 0.54 0.93 0.37 0.89 0.42
WhiSQA MH 0.91 0.36 0.69 0.58 0.92 0.41 0.84 0.45

Fig. 3. Spearman Correlation Matrix for CHiME7-UDASE listening test data for DNS-
MOS and WhiSQA.

score correlates significantly more strongly with the true SIG and OVRL scores
compared to the corresponding DNSMOS metric value, while showing similar
correlation to the true BAK score that the DNSMOS_BAK metric does.

6 Conclusion and Future Work

This work introduces WhiSQA, a new SOTA system for speech quality predic-
tion, as single- and multi-headed variants. Alayses for different datasets show
improved performance over several baselines. Future work will explore further
refinement of the system in the form of adaption to online ‘in the wild’ data as
well as the applications of the Whisper encoder feature to other audio classifi-
cation and evaluation tasks.
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