- 1 Review Article title: Egg abandonment leads to biased estimates of
- 2 hatching failure in birds
- 3 Author names: Jamie Edward Thompson^{1*} and Nicola Hemmings^{1*}
- ⁴ School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank,
- 5 Sheffield, UK. S10 1LQ
- 6 *Both authors made equal contributions to the manuscript
- 7 Corresponding author: Jamie Edward Thompson; Email: jamie.thompson@sheffield.ac.uk

8 **Abstract**

9 Hatching failure represents a significant and growing barrier to reproductive success in 10 threatened birds, but its causes are often hard to identify. Egg abandonment by parents is a 11 commonly observed phenomenon - often believed to be driven by disturbance, partial 12 predation, and/or extreme environmental events – and is assumed to result in the mortality of 13 viable eggs in the clutch. However, in practice it is often unclear whether abandonment is the 14 cause of egg failure, or conversely, if parents abandon their eggs after detecting they were 15 inviable. From a conservation management perspective, approaches to mitigating hatching 16 failure would differ substantially depending on which of these scenarios is true. Here we draw 17 evidence from both a systematic literature search and empirical data from a wild population of 18 threatened birds, to show that studies rarely have sufficiently clear definitions or timeframes for

determining whether abandonment occurred, or sufficient monitoring effort to distinguish between parental abandonment as the cause or consequence of embryo mortality. By combining evidence from nest records and unhatched egg examinations, we show that parental abandonment rates are likely to be over-estimated, while other drivers of reproductive failure may be under-estimated. We provide recommendations for improving the accuracy of egg fate records, which we hope will improve the accuracy of hatching failure data and enhance the specificity of related conservation interventions.

Keywords: Hatchability; Embryo mortality; Nest monitoring;

Reproductive failure; Desertion

Introduction

Egg incubation and hatching are the first major hurdles that many egg-laying taxa must overcome to achieve reproductive success (Deeming and Ferguson 1991; Du and Shine 2015). Failure of eggs to hatch is fairly common, particularly in threatened species, and has significant impacts on the stability and persistence of populations (Jamieson and Ryan 2000; Ferreira et al 2005; Brekke et al 2010; White et al 2015; Marshall et al 2023). It is therefore important that rates and causes of egg failure and loss are accurately monitored.

Egg failure and loss occurs for various reasons, including predation, damage, climatic factors, pollution, and genetic issues that impact embryo survival (Assersohn et al 2021). In addition to

these drivers, a noticeable proportion of eggs fail to hatch because they are abandoned by the parent(s), prior to or during incubation. Parents may abandon entire clutches, or a subset of the eggs (partial clutch abandonment), the latter being especially common after partial predation events (e.g., Ackerman et al 2003). We therefore use the term 'egg abandonment' to refer to the abandonment of either a subset of eggs or the entire clutch, occurring at any time between egg laying and the end of the incubation period. If the parent abandons eggs after the expected end of the incubation period, these eggs should be classed as 'failed' rather than abandoned, since they must have failed before the parent left. It should be noted that abandonment behaviour differs from egg ejection/expulsion (e.g., Lobato et al 2006), rejection, and nest sanitation (e.g., see Guigueno and Sealy 2012) behaviours, which all involve the physical removal of eggs rather than the cessation of parental care while the eggs remain in the nest.

Egg abandonment is commonly associated with disturbance, climatic and/or environmental events (see *Issues and inconsistencies in egg abandonment data collection* section below), so it is likely that abandonment is not usually related to egg quality or viability, and the majority of abandoned eggs therefore represent a random subset of those laid. Consistent with this, attempts at egg fostering abandoned eggs have previously proven successful (e.g., O'Connell et al 2015) and there is no substantiated evidence for preferential abandonment of unfertilised eggs or inviable eggs (Marshall et al 2023). The causes of abandonment are therefore mostly assumed to be independent of other drivers of either fertilisation failure or embryo mortality, and as such abandoned eggs are typically excluded from standard calculations of 'hatching failure' along with eggs that are predated or damaged (e.g., Briskie and Mackintosh 2004; Marshall et al 2023); or,

inversely, 'hatchability' (Koenig 1982) and 'hatching success' (e.g., Spottiswoode and Møller 2004).

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

There are three potential problems with the exclusion of abandoned eggs from hatching failure monitoring and analysis efforts. First, methods of defining and recording egg abandonment are often inconsistent and subjective, inevitably leading to inaccurate classifications of abandonment that upwardly or downwardly bias estimates of hatching failure rates (see Issues and inconsistencies in egg abandonment data collection section below). Second, the identification of egg abandonment may be impacted by nest monitoring effort, with the risk that egg abandonment is more commonly mistaken for other causes of hatching failure (or vice versa) when nest visits are sporadic. Third, in cases where abandoned eggs are assumed to be fertilised, abandonment is usually considered to be the cause of embryo mortality (but see Beissinger et al 2005), especially since abandoned eggs often have the potential to hatch if subsequently incubated (O'Connell et al 2015; Schacter et al 2022). It is feasible, however, that abandonment is sometimes the consequence of embryo death, rather than the cause. In birds, for example, it is well established that parent-embryo communication occurs, particularly during the late stages of egg incubation (Vince 1966, 1969; Brua 2002; Brulez et al 2015), and embryos actively respond to and modulate the incubation environment provided by their parents during development (Brua 2002; Reed and Clark 2011; Brulez et al 2015). Whilst there has been a historical underappreciation of avian sensory abilities (e.g., as noted by Birkhead 2012; Brulez et al 2015; Caro et al 2015), recent studies demonstrate a range of sensory cues available to birds (e.g., Balthazart and Taziaux 2009; Campagna et al 2012; Caro et al 2015; Grieves et al 2022; Ziolkowski et al 2022; Mariette 2024) that might be used by parents to dynamically assess current clutch/egg viability

(see Table 1 for a summary). However, since it is known that some birds continue to incubate non-viable eggs beyond normal incubation periods (e.g., Briskie and Sealy 1988), it is likely that the ability to use sensory cues in this way, and/or the propensity to abandon eggs, varies between species.

Here, we first highlight current issues and inconsistencies with monitoring of egg abandonment in avian research projects and monitoring schemes more broadly, via a systematic review of the literature. We then demonstrate how these issues can impact our understanding of the drivers of hatching failure in a conservation context, using data from ongoing nest monitoring schemes for the United Kingdom and Ireland Eurasian Curlew (*Numenius arquata*) populations. Finally, we offer recommendations for standardising the long-term monitoring of avian egg abandonment and hatching failure to produce more accurate and informative data, which will likely also apply to the conservation management of other oviparous taxa with parental care (e.g. Pythonidae).

Issues and inconsistencies in egg abandonment data collection

To gain an overview of how egg abandonment is defined and measured across published bird studies, we conducted a systematic review by searching the database Web of Science on 24/10/2024 for the terms "egg", "abandon*", and "bird". We excluded the terms "parasite" and "parasitism" from our search, because while egg abandonment is perhaps most intensively studied in species that experience brood parasitism, the focus of our study is abandonment by parents of their own eggs, which specifically requires better understanding from a conservation

management perspective. After restricting the search to primary literature only (i.e., excluding review papers) and removing any duplicates, this returned 141 articles. Of these, 30 were removed because they were not published in English and translation was not possible, and a further 36 were excluded because it was evident from screening the abstract or main text that they were not relevant (e.g., they did not directly study or collect data on abandoned eggs/clutches or focused on brood parasitism despite our exclusion of related terms in the initial search). We read the remaining 75 papers in detail to identify: (a) what definition (if any) of egg abandonment was used; (b) what causes (if any) of egg abandonment were cited; and (c) what rates of egg abandonment were reported. Full details of all retained studies are provided in Supplementary Material Data 1.

Of the 75 relevant studies, 43 (57%) did not provide a definition of egg abandonment for their study or describe how it was determined. The remaining 32 papers provided definitions of varying clarity, with 25 (33%) providing a definition that we considered to be sufficiently specific to enable reproducibility (e.g., the presence of intact but cold eggs in nest), but only 13 of these (17% of all identified studies) providing a conclusive timeframe for abandonment as part of their definition (e.g., "if we did not observe the breeding pair near the nest (or signs of activity) during two consecutive visits [3-4days])."

Most (64/75; 85%) of the studies identified provided some indication of the definite or presumed cause(s) of egg abandonment. These fell into 10 broad categories (see Table S1 in Supplementary Material 1). Several studies posited multiple different causes of abandonment. Confidence in these cited causes ranged from relatively low (e.g., causes were assumed based on anecdotal

evidence or findings of other studies) to high (causes were tested directly by the study). Overall, the main drivers of egg abandonment appear to be human disturbance (31% of studies; predominantly due to farming practices and research/conservation interventions), climatic factors (19% of studies), disturbance by predators (17% of studies), and food availability (17% of studies). Notably, 4 studies confidently reported egg failure prior to abandonment, i.e., lack of embryo development was likely to be the reason the parents left the eggs.

Potential impacts of inaccurate abandonment records on breeding monitoring

Of the 75 studies identified above, 43 provided data on the proportion of clutches that were abandoned during the study period. However, one paper reported data for 9 different species/populations, so there were 51 records in total. The mean rate of egg abandonment across all records was 20%, but rates varied from 1-100%, with a median of 12%. This represents a significant loss of reproductive potential, particularly given the increasing evidence that most wild bird eggs are fertilised and therefore contain individuals that died early (Evans and Postma 2025). If egg abandonment occurred after the embryo(s) died – which it did in several studies – these losses will also have a significant impact on our understanding of hatching failure rates and drivers.

To assess the potential impact of incorrect abandonment records on quantitative monitoring of reproductive outcomes, we analysed egg outcomes recorded by various nest monitoring teams working with wild populations of Eurasian Curlew (*Numenius arquata*) across the United Kingdom (UK) and Ireland, using data collected for another study. The Eurasian Curlew (henceforth

"Curlew") is a charismatic wader with around 19-27% of the global breeding population residing in the UK (Brown et al 2015). Globally, the Curlew is currently classified as near-threatened (BirdLife International 2017) and UK and Ireland breeding populations have seen significant declines ranging from 32-96% over the last several decades (O'Donoghue et al 2019; Heywood et al 2023). Consequently, Curlew are currently red-listed and have been proposed as the most urgent conservation priority in the UK (Brown et al 2015; Stanbury et al 2021). Low global Curlew productivity appears to be largely driven by nest predation (e.g., Grant et al 1999; Valkama et al 1999; Roodbergen et al 2012; Zielonka et al 2019), and other factors such as agricultural landuse, forestry and climate warming (Franks et al 2017), but little is known about the incidence and non-predation-related drivers of hatching failure across UK and Ireland populations.

Combining data from 1428 eggs, from 381 naturally incubated clutches laid in various locations around the UK and Ireland, across three breeding seasons (2022-2024), we calculated the percentage of all Curlew eggs recorded as abandoned to be 5.5% (although this was variable across years: 2.5% in 2022, 4.0% in 2023, and 8.0% in 2024; see Supplementary Material 1 and Supplementary Material Data 2 for calculation methods and data). Hatching failure rate, excluding eggs that were classified as abandoned, predated, damaged and 'unknown' (i.e., when egg outcome was unclear), was calculated as 12.9% (11.6% in 2022, 13.9% in 2023, and 13.1% in 2024; see Supplementary Material 1 and Supplementary Material Data 2 for calculation methods and data). However, if we were to assume that all abandoned eggs died before abandonment (i.e., abandonment was the consequence of embryo mortality, not the cause), recalculation of our hatching failure rates including abandoned eggs (i.e., the total number of 'failed' plus

'abandoned' eggs, divided by the total number of 'hatched', 'failed' and 'abandoned' eggs) results in a 1.4-fold increase in our estimate of mean curlew hatching failure rates, to 18.6% (14.1% in 2022, 17.9% in 2023, and 21.7% in 2024).

While it is unlikely that all records of egg abandonment are incorrect, our experience of receiving egg samples and accompanying data has revealed that at least some degree of error is probable. For example, we frequently receive unhatched egg samples which are recorded as 'abandoned', but the recorded abandonment date is after the expected end of incubation (i.e., the parents left the clutch *after* it failed to hatch). Abandonment was therefore not the cause of failure, and these eggs should be included as sampling units in calculations of hatching failure rates. Confidence in egg abandonment dates is clearly dependent on nest monitoring effort, with higher frequencies of nest visits being more accurate. In many nest monitoring programmes, failed eggs left in the nest after the end of incubation may be incorrectly recorded as 'abandoned' due a lack of information on lay date and/or expected hatch date.

By examining the embryo developmental stages of all intact unhatched Curlew eggs using previously developed egg dissection and fluorescent microscope methods (Birkhead et al 2008; Assersohn et al 2021; Morland et al 2024), we observed that while embryo development stages were fairly consistent within the majority of reported abandoned clutches, 5/25 (20%) clutches reported as abandoned had pronounced variation in embryonic development stages across eggs. Estimated embryonic developmental differences between the least and most developed embryos within each clutch ranged from at least 3-11 days (likely conservative estimates of

duration since timing is based on Hamburger and Hamilton's (1951) embryo staging series for domestic chicken *Gallus gallus domesticus*, which has a shorter mean incubation period than the Curlew (~21 days vs ~28 days, respectively; see Table S2 in Supplementary Material 1, and also Supplementary Material 1 and Supplementary Material Data 3 for further information on methods and data). Curlew have semi-synchronised hatching, with intervals ranging from several hours to up to two days (De Jong et al 2021), but the wider developmental stage variation exhibited in several reported abandoned clutches suggests at least some eggs experienced embryo mortality before egg abandonment occurred. Our evidence suggests that 20% of reportedly 'abandoned' clutches contained eggs that experienced embryo mortality which was not caused by abandonment. If the parent(s) was able to detect embryo death/egg inviability (see Table 1 for potential mechanisms), it is possible that this subsequently stimulated egg abandonment. If it is possible to incorporate embryo staging into nest monitoring programmes, variation in the developmental stages of dead embryos within a clutch may therefore provide useful insights into the likelihood of abandonment versus other factors as the cause of failure.

Conclusions and future recommendations

There are many well-established nest monitoring programmes across the world, such as the BTO Nest Record Scheme, that collate records of breeding success across species. In general, these programmes record incidences of nest predation, damage, hatching failure, and abandonment, but what constitutes abandonment is not explicitly clear (e.g., the revised 2003 BTO Nest Record Scheme Handbook (Crick et al 2003) provides no description of how to verify abandonment). We

have shown, across a range of bird breeding studies, that there are significant inconsistencies in how egg abandonment is defined and monitored. Using empirical data, we show that eggs may be inaccurately recorded as abandoned due to ambiguous criteria and/or incomplete information on incubation dates/parental behaviour, skewing our understanding of how different factors contribute to overall rates of hatching failure.

In the ideal (but unlikely) scenario that time and resources are not limited, direct observations of parental behaviour, either via frequent nest visits or (even better) remote camera and/or nest temperature monitoring, provide the most irrefutable evidence of abandonment or 'true' hatching failure. However, monitoring effort is usually limited, and uncertainty exists in most cases. As a result, research studies and conservation monitoring programmes differ in their approach to recording the causes of egg loss/hatching failure, potentially complicating our overall understanding of the drivers of failure across species.

Examining the developmental stage of dead embryos to assess whether they died before their predicted abandonment date is one potential way to overcome the problem of limited information on incubation timing/parental care. Methods for doing this are relatively straightforward; however, because embryo staging series have not been produced for most species, this approach relies on comparison with primarily domestic chicken (Hamburger and Hamilton 1951) (precocial species) or zebra finch (Murray et al 2013) (altricial species). While zebra finches probably provide a reliable comparison for many passerine species (Hemmings and Birkhead 2016), caution should be taken when using this approach for precocial species, since

the incubation periods and late-stage developmental trajectories of many precocial birds diverge somewhat from that of the chicken (Cooney et al 2020). This may lead to some degree of error in the estimation of embryo death timings based on developmental stages.

Finally, in situations where monitoring effort is limited and assessment of embryo developmental stages is not possible, we recommend that the resulting uncertainty in egg fates is clearly documented, and that studies report hatching failure rates both including and excluding presumed abandoned eggs, highlighting the range within which the 'true' value must lie and enabling clearer assessment of the potential error in these estimations. As we found evidence that 20% of assumed 'abandoned' Curlew clutches had experienced embryo mortality prior to abandonment, it is likely that the true hatching failure rate in this species will fall much closer to the traditional calculation of hatching failure (i.e., excluding abandoned eggs). However, where the true hatching failure rates lie on this spectrum is likely to vary between species, depending on factors such as propensity to abandon (e.g., see Hanssen et al 2023) and/or their ability to use sensory cues (see Table 1) to examine current clutch viability throughout incubation. Future studies should therefore seek to obtain better understanding of how egg abandonment behaviour varies across species and the degree to which incubating birds can detect and respond to egg viability cues.

Acknowledgements

We greatly appreciate the Curlew Recovery Partnership, in particular Russell Wynn and Ryan Burrell, for facilitating communications to curlew sample collectors across the UK and Ireland, and the following organisations and people for providing samples and data for analysis: Royal Society for the Protection of Birds (RSPB), Wildfowl and Wetlands Trust (WWT), Game and Wildlife Conservation Trust (GWCT), Banbury Ornithological Society, Nidderdale Moorland Group, Natural England, Upper Thames Wader Group, Grosvenor Family Office and Rural Estates, Shropshire Ornithological Society, Curlew Country, British Trust for Ornithology (BTO), Birdwatch Ireland, Pensthorpe Conservation Trust, Curlew Recovery South Lakes, National Parks and Wildlife Service Ireland, The Duke of Norfolk Estate, Curlew Recovery West Cumbria, Bannau Brycheiniog National Park, Nidderdale Area of Outstanding Natural Beauty (AONB) group, Hartwith Curlew Project, Denbighshire Government, Curlew Connections Wales Project, Dave Parish, Louise de Raad, Marlies Nicolai, Amy Burns, Luíse O'Donovan, Sarah West, Tracy Johnson, Anne Cotton, Rob Foster, Leo Smith, Hattie Jones, Stephen Dodd, Harry Ewing, Sam Franks, Elli Rivers, Kathryn Finney, Chrissie Kelley, Tony Sainsbury, Kane Brides, Eric Heath, Geoff Hilton, Scott Petrek, Barny Sykes, Susannah Bleakley, Tonia Armer, Heather Sykes, Joshua Burge, Paul Parmenter, Hubert Servignat, Philip Connolly, Tom Orde-Powlett, Charlie Mellor, William Costa, Max Wright, Louise de Raad, Marlies Nicolai, Rosa Lopez, Rebecca Lee, Lynda Donaldson, Chris Batey, Ken Moore, Nancy Reed, Ian Cole, Emily Hewitson, Lucy Foster, Sam McCready, Thijs Claes, Tanya Grigg, Alex Large, Dan Gordon-Lee, Paul Noyes, Sophie Common, Lucy Rivett, Elliott Simpson-Brown, Dan Gornall, Chris Heward, Pia Key, Mike Pollard, Jan Guilbride, David Hardwick, Thalia Sparke, George Purcell, Kelly Powell, Rachel Taylor, Verity Picken, Róisín Normanly,

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273 Andrew King, Gerry Hanson, Charlie Calvert, Will Price, Philip Miller, Samantha Kenyon, Katie 274 Appleby, Seth Howell, Caleb Stradling and all others involved in ongoing conservation efforts. 275 276 NH was funded by a Royal Society Dorothy Hodgkin Fellowship DHF160200 and JET was supported by a Royal Society Enhanced Research Expenses Grant awarded as part of NH's 277 278 Fellowship. 279 **Declaration of competing interest** 280 281 We the authors provide our assurances that this work is original and has not been published 282 elsewhere, nor is it currently under consideration for publication elsewhere. We also confirm 283 that there are no conflicts of interest to declare. 284 References 285 286 287 Ackerman J.T., Eadie J.M., Loughman D.L., Yarris G.S. and McLandress M.R. (2003) The 288 influence of partial clutch depredation on duckling production. The Journal of Wildlife 289 Management. 67(3), 576. https://doi.org/10.2307/3802715. 290 Ar A., Ifergan O., Feldman A., Zelik L. and Reizis A. (2000) Does nitric oxide (NO) play a role 291 in embryo-bird communication during incubation? Avian and Poultry Biology Reviews 11, 292 284. 293 Ar A., Ifergan O., Feldman A., Zelik L. and Reizis A. (2004) Possible role of nitric oxide 294 emission from bird embryos. Avian and Poultry Biology Reviews 15, 105-106.

295	Ar A. and Sidis Y. (2002) Nest microclimate during incubation. In Deeming D.C. (ed.), Avian
296	incubation: behaviour, environment, and evolution. Oxford: Oxford University Press, 143-
297	160.
298	Assersohn K., Marshall A.F., Morland F., Brekke P. and Hemmings N. (2021) Why do eggs
299	fail? Causes of hatching failure in threatened populations and consequences for
300	conservation. Animal Conservation 24(4), 540-551. https://doi.org/10.1111/acv.12674.
301	Avilova K.V., Fedorenko A.G. and Lebedeva N.V. (2018) The mechanoreceptor organs of the
302	Lamellirostral birds (Anseriformes, Aves). Biology Bulletin 45(1), 51-60.
303	https://doi.org/10.1134/s1062359017060036.
304	Balthazart J. and Taziaux M. (2009) The underestimated role of olfaction in avian
305	reproduction? Behavioural Brain Research 200(2), 248-259.
306	https://doi.org/10.1016/j.bbr.2008.08.036.
307	Beissinger S.R., Cook M.I. and Arendt W.J. (2005) The shelf life of bird eggs: testing egg
308	viability using a tropical climate gradient. Ecology 86(8), 2164-2175.
309	https://doi.org/10.1890/04-1624.
310	Berkhoudt H. (1980) The morphology and distribution of cutaneous mechanoreceptors (Herbst
311	and Grandry corpuscles) in bill and tongue of the Mallard (Anas platyrhynchos L.).
312	Netherlands Journal of Zoology 30 (1), 1-34. https://doi.org/10.1163/002829680x00014 .
313	BirdLife International (2017) Numenius arquata. The IUCN Red List of Threatened Species
314	2017: e.T22693190A117917038. (accessed 21 February 2025).
315	Birkhead T.R. (2012) Bird sense: what it's like to be a bird. London: Bloomsbury Publishing.
316	Birkhead T.R., Hall J., Schut E. and Hemmings N. (2008) Unhatched eggs: methods for
317	discriminating between infertility and early embryo mortality. Ibis 150(3), 508-517.
318	https://doi.org/10.1111/j.1474-919x.2008.00813.x.

319	Brekke P., Bennett P.M., Wang J., Pettorelli N. and Ewen J.G. (2010) Sensitive males:					
320	inbreeding depression in an endangered bird. Proceedings of the Royal Society B:					
321	Biological Sciences 277(1700), 3677-3684. https://doi.org/10.1098/rspb.2010.1144.					
322	Briskie J.V. and Mackintosh M. (2004) Hatching failure increases with severity of population					
323	bottlenecks in birds. Proceedings of the National Academy of Sciences 101(2), 558-561.					
324	https://doi.org/10.1073/pnas.0305103101.					
325	Briskie J.V. and Sealy S.G. (1988) Nest re-use and egg burial in the Least Flycatcher,					
326	Empidonax minimus. The Canadian Field-Naturalist 102(4), 729-731.					
327	Brown D., Wilson J., Douglas D., Thompson P., Foster S., McCulloch N., Phillips J.,					
328	Stroud D., Whitehead S. and Crockford N. (2015) The Eurasian Curlew - the most					
329	pressing bird conservation priority in the UK. British Birds 108(11), 660-668.					
330	Brua R.B. (2002) Parent–embryo interactions. In Deeming D.C. (ed.), Avian incubation:					
331	behaviour, environment and evolution. Oxford: Oxford University Press, 88-99.					
332	Brua R.B., Nuechterlein G.L. and Buitron D. (1996) Vocal response of Eared Grebe embryos					
333	to egg cooling and egg turning. The Auk 113(3), 525-533.					
334	https://doi.org/10.2307/4088972.					
335	Brulez K., Pike T.W. and Reynolds S.J. (2015) Egg signaling: The use of visual, auditory, and					
336	chemical stimuli. In Deeming D.C. and Reynolds S.J. (eds.), Nests, eggs, and					
337	incubation: New ideas about avian reproduction. Oxford: Oxford University Press, 127-					
338	141.					
339	Campagna S., Mardon J., Celerier A. and Bonadonna F. (2012) Potential semiochemical					
340	molecules from birds: A practical and comprehensive compilation of the last 20 years					
341	studies. Chemical Senses 37(1), 3-25. https://doi.org/10.1093/chemse/bjr067.					
342	Caro S.P., Balthazart J. and Bonadonna F. (2015) The perfume of reproduction in birds:					
343	Chemosignaling in avian social life. Hormones and Behavior 68, 25-42.					
344	https://doi.org/10.1016/j.yhbeh.2014.06.001.					

345	Cooney C.R., Sheard C., Clark A.D., Healy S.D., Liker A., Street S.E., Troisi C.A., Thomas					
346	G.H., Székely T., Hemmings N. and Wright A.E. (2020) Ecology and allometry predict					
347	the evolution of avian developmental durations. Nature Communications 11(1),					
348	Article number: 2383. https://doi.org/10.1038/s41467-020-16257-x.					
349	Crick H.Q.P., Dudley C., Glue D.E., Beaven L.P. and Leech D.I. (2003) The Nest Record					
350	Scheme Handbook. Thetford: BTO.					
351	De Jong A., Bocher P., Brown D., Franks S., Gerritsen G., Meyer N. and Sviridova T.					
352	(2021) International guidelines for monitoring breeding populations and levels of					
353	reproduction in the Eurasian Curlew Numenius arquata. Rapport (Sveriges					
354	lantbruksuniversitet, Institutionen för vilt, fisk och miljö) (2021: 3).					
355	De Oliveira J.E., Uni Z. and Ferket P.R. (2008) Important metabolic pathways in poultry					
356	embryos prior to hatch. World's Poultry Science Journal 64(4), 488-499.					
357	https://doi.org/10.1017/S0043933908000160.					
358	Deeming D.C. and Ferguson M.W.J. (1991) Egg incubation: Its effect on embryonic					
359	development in birds and reptiles. Cambridge: Cambridge University Press.					
360	Du W.G. and Shine R. (2015) The behavioural and physiological strategies of bird and reptile					
361	embryos in response to unpredictable variation in nest temperature. Biological Reviews					
362	90(1), 19-30. https://doi.org/10.1111/brv.12089.					
363	DuRant S.E., Hopkins W.A. and Hepp G.R. (2011) Embryonic developmental patterns and					
364	energy expenditure are affected by incubation temperature in Wood Ducks (Aix sponsa).					
365	Physiological and Biochemical Zoology 84(5), 451-457. https://doi.org/10.1086/661749.					
366	Evans R.M. (1988) Embryonic vocalizations as care soliciting signals, with particular reference					
367	to the American White Pelican. In Henri O. (ed.), Acta XIX Congressus Internationalis					
368	Ornithologici: 19th (International Ornithological Congress: Proceedings). Ottawa:					
369	University of Ottawa Press, 1467-1475.					

370	Evans R.M. (1990) Effects of low incubation temperatures during the pipped egg stage on					
371	hatchability and hatching times in Domestic Chickens and Ring-billed Gulls. Canadian					
372	Journal of Zoology 68 (5), 836-840. https://doi.org/10.1139/z90-120.					
373	Evans R.M., Whitaker A. and Wiebe M.O. (1994) Development of vocal regulation of					
374	temperature by embryos in pipped eggs of Ring-billed Gulls. The Auk 111(3), 596-604.					
375	Evans S.R. and Postma E. (2025) Counting chicks before they hatch: extending the observed					
376	lifetime to better characterize evolutionary processes in the wild. Evolution 79(2), 155-					
377	163. https://doi.org/10.1093/evolut/qpae171.					
378	Ferreira S.M., Hansen K.M., Parrish G.R., Pierce R.J., Pulham G.A. and Taylor S. (2005)					
379	Conservation of the endangered New Zealand Fairy Tern. Biological conservation					
380	125 (3), 345-354.					
381	Franks S.E., Douglas D.J.T., Gillings S. and Pearce-Higgins J.W. (2017) Environmental					
382	correlates of breeding abundance and population change of Eurasian Curlew Numenius					
383	arquata in Britain. Bird Study 64(3), 393-					
384	409. https://doi.org/10.1080/00063657.2017.1359233.					
385	Grant M.C., Orsman C., Easton J., Lodge C., Smith M., Thompson G., Rodwell S. and					
386	Moore N. (1999) Breeding success and causes of breeding failure of Curlew Numenius					
387	arquata in Northern Ireland. Journal of Applied Ecology 36(1), 59-74.					
388	https://doi.org/10.1046/j.1365-2664.1999.00379.x.					
389	Grieves L.A., Gilles M., Cuthill I.C., Székely T., Macdougall-Shackleton E.A. and Caspers					
390	B.A. (2022) Olfactory camouflage and communication in birds. Biological Reviews 97(3),					
391	1193-1209. https://doi.org/10.1111/brv.12837.					
392	Guigueno M.F. and Sealy S.G. (2012) Nest sanitation in passerine birds: implications for egg					
393	rejection in hosts of brood parasites. Journal of Ornithology 153, 35-52.					
394	https://doi.org/10.1007/s10336-011-0731-0.					

395	Hall M. (1987) External stimuli affecting incubation behavior and prolactin secretion in the duck					
396	(Anas platyrhynchos). Hormones and Behavior. 21(3), 269-287.					
397	https://doi.org/10.1016/0018-506X(87)90015-8.					
398	Hamburger V. and Hamilton H.L. (1951) A series of normal stages in the development of the					
399	chick embryo. Journal of Morphology 88(1), 49-92.					
400	Hanssen S.A., Erikstad K.E., Sandvik H., Tveraa T. and Bustnes J.O. (2023) Eyes on the					
401	future: buffering increased costs of incubation by abandoning offspring. Behavioral					
402	Ecology 34(2), 189-196. https://doi.org/10.1093/beheco/arac116.					
403	Hemmings N. and Birkhead T.R. (2016) Consistency of passerine embryo development and					
404	the use of embryonic staging in studies of hatching failure. <i>Ibis</i> 158 (1), 43-50.					
405	https://doi.org/10.1111/ibi.12336.					
406	Heywood J.J.N., Massimino D., Balmer D.E., Kelly L., Noble D.G., Pearce-Higgins J.W.,					
407	Woodcock P., Wotton S., Gillings S. and Harris S. (2023) The Breeding Bird Survey					
408	2023. BTO Research Report 765 .					
409	Impekoven M. (1976) Prenatal parent-young interactions in birds and their long term effects.					
410	Advances in the Study of Behavior 7, 201-253.					
411	Jamieson I.G. and Ryan C.J. (2000) Increased egg infertility associated with translocating					
412	inbred Takahe (Porphyrio hochstetteri) to island refuges in New Zealand. Biological					
413	Conservation. 94(1), 107-114. https://doi.org/10.1016/S0006-3207(99)00158-5.					
414	Jones R.E. (1971) The incubation patch of birds. <i>Biological Reviews</i> 46 (3), 315-339.					
415	https://doi.org/10.1111/j.1469-185x.1971.tb01048.x.					
416	Koenig W.D. (1982) Ecological and social factors affecting hatchability of eggs. The Auk 99(3),					
417	526-536.					
418	Lobato E., Moreno J., Merino S., Sanz J.J., Arriero E., Morales J., Tomás G. and Puente					
419	J.Md.I. (2006) Maternal clutch reduction in the Pied Flycatcher Ficedula hypoleuca: an					

420	undescribed clutch size adjustment mechanism. Journal of Avian Biology 37(6), 637-						
421	641. https://doi.org/10.1111/j.2006.0908-8857.03776.x.						
422	Mariette M.M. (2024) Developmental programming by prenatal sounds: insights into possible						
423	mechanisms. Journal of Experimental Biology 227(Suppl_1).						
424	https://doi.org/10.1242/jeb.246696.						
425	Mariette M.M. and Buchanan K.L. (2016) Prenatal acoustic communication programs offspring						
426	for high posthatching temperatures in a songbird. Science 353(6301), 812-814.						
427	https://doi.org/10.1126/science.aaf7049.						
428	Mariette M.M., Clayton D.F. and Buchanan K.L. (2021) Acoustic developmental programming:						
429	a mechanistic and evolutionary framework. Trends in Ecology and Evolution 36(8), 722-						
430	736. https://doi.org/10.1016/j.tree.2021.04.007.						
431	Mariette M.M., Pessato A., Buttemer W.A., Mckechnie A.E., Udino E., Collins R.N., Meillère						
432	A., Bennett A.T.D. and Buchanan K.L. (2018) Parent-embryo acoustic communication:						
433	a specialised heat vocalisation allowing embryonic eavesdropping. Scientific Reports						
434	8(1). https://doi.org/10.1038/s41598-018-35853-y.						
435	Marshall A.F., Balloux F., Hemmings N. and Brekke P. (2023) Systematic review of avian						
436	hatching failure and implications for conservation. Biological Reviews 98(3), 807-832.						
437	https://doi.org/10.1111/brv.12931.						
438	Massaro M., Setiawan A.N. and Davis L.S. (2007) Effects of artificial eggs on prolactin						
439	secretion, steroid levels, brood patch development, incubation onset and clutch size in						
440	the Yellow-eyed Penguin (Megadyptes antipodes). General and Comparative						
441	Endocrinology 151(2), 220-229. https://doi.org/10.1016/j.ygcen.2007.01.034.						
442	Meijer T. (1995) Importance of tactile and visual stimuli of eggs and nest for termination of egg						
443	laying of Red Junglefowl. The Auk 112(2), 483-488. https://doi.org/10.2307/4088736.						
444	Morland F., Patel S., Santure A.W., Brekke P. and Hemmings N. (2024) Including the						
445	invisible fraction in whole population studies: A guide to the genetic sampling of						

446	unhatched bird eggs. Methods in Ecology and Evolution 15(1), 80-90.					
447	https://doi.org/10.1111/2041-210x.14242.					
448	Murray J.R., Varian-Ramos C.W., Welch Z.S. and Saha M.S. (2013) Embryological staging of					
449	the Zebra Finch, Taeniopygia guttata. Journal of Morphology 274(10), 1090-1110.					
450	https://doi.org/10.1002/jmor.20165.					
451	Narushin V.G., Romanov M.N., Gressier L., Jacob E., Salamon A., Klein S. and Kent J.P.					
452	(2024) Shell temperature: How shall we tell if a still gosling is under the eggshell?					
453	Theriogenology 226, 57-67. https://doi.org/10.1016/j.theriogenology.2024.05.045.					
454	Noguera J.C. and Velando A. (2019) Bird embryos perceive vibratory cues of predation risk					
455	from clutch mates. Nature Ecology and Evolution 3(8), 1225-1232.					
456	https://doi.org/10.1038/s41559-019-0929-8.					
457	O'Connell D.P., Power A., Keogh N.T., McGuirk J., Macey C. and Newton S.F. (2015) Egg					
458	fostering by Little Terns Sternula albifrons in response to nest abandonment following					
459	depredation. Irish Birds 10(2), 159-162.					
460	O'Donoghue B.G. (2019) Curlew conservation programme annual report 2018. Killarney:					
461	National Parks and Wildlife Service.					
462	Oppenheim R.W. (1972) Prehatching and hatching behaviour in birds: A comparative study of					
463	altricial and precocial species. Animal Behaviour 20(4), 644-655.					
464	https://doi.org/10.1016/S0003-3472(72)80137-4.					
465	Portman A. (1961) Sensory organs: skin, taste and olfaction. In Marshall A.J. (ed.), Biology and					
466	Comparative Physiology of Birds. New York: Academic Press, 37-48.					
467	Reed W.L. and Clark M.E. (2011) Beyond maternal effects in birds: Responses of the embryo					
468	to the environment. Integrative and Comparative Biology 51(1), 73-80.					
469	https://doi.org/10.1093/icb/icr032.					
470	Roodbergen M., Van Der Werf B. and Hötker H. (2012) Revealing the contributions of					
471	reproduction and survival to the Europe-wide decline in meadow birds: review and meta-					

472	analysis. Journal of Ornithology 153(1), 53-74. https://doi.org/10.1007/s10336-011-0733-					
473	<u>У</u> .					
474	Ruiz-Raya F. and Velando A. (2024) Lasting benefits of embryonic eavesdropping on parent-					
475	parent communication. Science Advances 10(35).					
476	https://doi.org/10.1126/sciadv.adn8542.					
477	Schacter C.R., Fettig B.L., Peterson S.H., Hartman C.A., Herzog M.P., Casazza M.L. and					
478	Ackerman J.T. (2022) Dabbling Duck eggs hatch after nest abandonment in the wild.					
479	Waterbirds 45(1). https://doi.org/10.1675/063.045.0111.					
480	Sheldon E.L., Mccowan L.S.C., Mcdiarmid C.S. and Griffith S.C. (2018) Measuring the					
481	embryonic heart rate of wild birds: An opportunity to take the pulse on early					
482	development. The Auk 135(1), 71-82. https://doi.org/10.1642/auk-17-111.1.					
483	Simmons K.E.L. (1955) Studies on Great Crested Grebes. Avicultural Magazine.					
484	Spottiswoode C. and Møller A.P. (2004) Genetic similarity and hatching success in birds.					
485	Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1536),					
486	267-272. https://doi.org/10.1098/rspb.2003.2605.					
487	Stanbury A.J., Eaton M.A., Aebischer N.J., Balmer D., Brown A.F., Douse A., Lindley P.,					
488	McCulloch N., Noble D.G. and Win I. (2021) Birds of Conservation Concern 5: The					
489	status of our bird populations: the fifth Birds of Conservation Concern in the United					
490	Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of					
491	extinction risk for Great Britain. British Birds 114, 25pp.					
492	Titov V.Y., Varigina E.S. and Fisinin V.I. (2007) Relation between nitrogen oxide metabolites					
493	in amniotic fluid and productive qualities of poultry. Russian Agricultural Sciences 33(6),					
494	400-401. https://doi.org/10.3103/s106836740706016x.					
495	Tuculescu R.A. and Griswold J.G. (1983) Prehatching interactions in domestic chickens.					
496	Animal Behaviour 31(1), 1-10. https://doi.org/10.1016/S0003-3472(83)80168-7.					

497	Valkama J., Currie D. and Korpimäki E. (1999) Differences in the intensity of nest predation in					
498	the curlew Numenius arquata: A consequence of land use and predator densities?					
499	Écoscience 6(4), 497-504. https://doi.org/10.1080/11956860.1999.11682552.					
500	Vince M.A. (1966) Potential stimulation produced by avian embryos. Animal Behaviour 14(1),					
501	34-40. https://doi.org/10.1016/S0003-3472(66)80007-6.					
502	Vince M.A. (1969) Embryonic communication, respiration and the synchronization of hatching.					
503	In Hinde R.A. (ed.), Bird Vocalizations. Cambridge: Cambridge University Press, 233-					
504	260.					
505	Vince M.A. and Cheng R. (1970) The retardation of hatching in Japanese quail. Animal					
506	Behaviour 18, 210-214. https://doi.org/10.1016/S0003-3472(70)80030-6.					
507	Vleck C.M., Vleck D. and Hoyt D.F. (1980) Patterns of metabolism and growth in avian					
508	embryos. American Zoologist 20(2), 405-416.					
509	Webster B., Hayes W. and Pike T.W. (2015) Avian egg odour encodes information on embryo					
510	sex, fertility and development. PLOS ONE 10(1), e0116345.					
511	https://doi.org/10.1371/journal.pone.0116345.					
512	White K.L., Eason D.K., Jamieson I.G. and Robertson B.C. (2015) Evidence of inbreeding					
513	depression in the critically endangered parrot, the Kakapo. Animal Conservation 18(4),					
514	341-347. https://doi.org/10.1111/acv.12177.					
515	Winkelmann R.K. and Myers T.T. (1961) The histochemistry and morphology of the cutaneous					
516	sensory end-organs of the chicken. Journal of Comparative Neurology 117(1), 27-35.					
517	https://doi.org/10.1002/cne.901170103.					
518	Woolf N.K., Bixby J.L. and Capranica R.R. (1976) Prenatal experience and avian					
519	development: Brief auditory stimulation accelerates the hatching of Japanese Quail.					
520	Science 194(4268), 959-960. https://doi.org/10.1126/science.982054.					
521	Wu K.C., Streicher J., Lee M.L., Hall B.K. and Müller G.B. (2001) Role of motility in					
522	embryonic development I: Embryo movements and amnion contractions in the chick and					

523	the influence of illumination. Journal of Experimental Zoology 291(2), 186-194.
524	https://doi.org/10.1002/jez.1068.
525	Zielonka N.B., Hawkes R.W., Jones H., Burnside R.J. and Dolman P.M. (2019) Placement,
526	survival and predator identity of Eurasian Curlew Numenius arquata nests on lowland
527	grass-heath. Bird Study 66(4), 471-483.
528	https://doi.org/10.1080/00063657.2020.1725421.
529	Ziolkowski L.H., Gracheva E.O. and Bagriantsev S.N. (2022) Tactile sensation in birds:
530	Physiological insights from avian mechanoreceptors. Current Opinion in Neurobiology
531	74, 102548. https://doi.org/10.1016/j.conb.2022.102548.
532	Zweers G.A. (1973) Structure, movement, and myography of the feeding apparatus of the
533	mallard (Anas platyrhynchos L.) a study in functional anatomy. Netherlands Journal of
534	Zoology 24 (4), 323-467.

Table 1| Summary of sensory cues available to parental bird(s) that may be used to examine egg viability status during incubation^{1,2}

Types of sensory cues	Presentation	Timing	Evidence of capacity for perception	Required test of parental response	
Auditory	Embryo clicking, vocalisation and bill tapping (but can be rare or absent in some species, particularly altricial) (Vince 1966, 1969; Oppenheim 1972); parental vocalisation during incubation (e.g., Ruiz-Raya and Velando 2024).	Late incubation, after embryonic vocalisation is established (see Brua 2002)	 Embryo vocalisation elicits behavioural responses from parents during incubation (e.g., Simmons 1955; Tuculescu and Griswold 1983; Evans 1988; Evans 1990; Evans et al 1994; Brua et al 1996; see reviews in Brua 2002; Brulez et al 2015). Prenatal parental vocalisation/other auditory stimulation exposure and eavesdropping alters pre- and post-natal development and behaviour (e.g., Woolf et al 1976; Mariette and Buchanan 2016; Mariette et al 2018, 2021; Ruiz-Raya and Velando 2024). 	Manipulation of embryo auditory cues (e.g., playback experiments).	
Chemical/ Olfactory	Nitric oxide (NO) and other volatile chemicals emitted by developing embryos (e.g., Ar et al 2000, 2004; Titov et al 2007).	From mid- incubation onwards, as odour profiles of inviable eggs become discernable (Webster et al 2015)	 Infertile and fertile eggs have distinguishable volatile chemicals odour profiles in Japanese quail (<i>Coturnix japonica</i>) (Webster et al 2015). NO emittance from developing embryos passively mediates brood-patch development (although not via parental odour detection) (Ar and Sidis 2002; Ar et al 2004). 	Manipulation of volatile chemical odours of eggs.	
Tactile	Embryo vibro-acoustic cues; embryo and amnion motility (e.g., Vince 1969; Impekoven 1976; Wu et al 2001; Sheldon et al 2018).	Early incubation onwards, from around day 3 of incubation in domestic chickens (Wu et al 2001) and after the first quartile of the incubation period in most wild birds (Sheldon et al 2018)	 Brood patches for incubation are rich in mechanosensory receptors (see Portman 1961; Winkelmann and Myers 1961; Jones 1971) and simulation of these promotes incubation behaviour through prolactin secretion (e.g., Hall 1987; Meijer 1995; Massaro et al 2007). Specialised beaks with mechanosensory organs evolved in some species for tactile foraging (e.g., Zweers 1973; Berkhoudt 1980; Avilova et al 2018; also see review in Ziolkowski et al 2022). Embryos vocalise/move in response to egg turning (e.g., Brua et al 1996). Neighbouring embryo vibro-acoustic cues used for hatching synchronicity/predation risk reduction (e.g., Vince 1969; Vince and Cheng 1970; Noguera and Velando 2019; also see review in Mariette et al 2021). 	Manipulation of tactile stimulus of eggs to observe parental behavioural responses.	
Thermal	Increased metabolic activity in embryos from mid-incubation, reducing in the final 20% of development period (rates and trajectories differ depending on developmental mode) (e.g., Vleck et al 1980; De Oliveira et al 2008; DuRant et al 2011).	Mid-incubation, as embryonic metabolic activity increases (e.g., Vleck et al 1980; De Oliveira et al 2008; DuRant et al 2011).	 Models based on egg cooling rate behaviours identify egg viability status with 80% accuracy, suggesting parents could assess thermal differences between viable and inviable eggs (Narushin et al 2024). Pre-pipping embryos alter vocalisation responses when cooled (e.g., Brua et al 1996). 	Manipulation of thermal properties of eggs to observe parental behavioural responses.	

¹Whilst here we mainly present summary examples specifically related to embryo-parent and embryo-embryo interactions during incubation, we do present some examples outside the context of incubation that further demonstrate birds' sensory capabilities in non-incubation contexts but could also be in turn potentially utilised in an incubation context (although not directly proven).

² Corresponding full reference details can be found in the 'References' section.