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Abstract

Hatching failure represents a significant and growing barrier to reproductive success in
threatened birds, but its causes are often hard to identify. Egg abandonment by parents is a
commonly observed phenomenon — often believed to be driven by disturbance, partial
predation, and/or extreme environmental events — and is assumed to result in the mortality of
viable eggs in the clutch. However, in practice it is often unclear whether abandonment is the
cause of egg failure, or conversely, if parents abandon their eggs after detecting they were
inviable. From a conservation management perspective, approaches to mitigating hatching
failure would differ substantially depending on which of these scenarios is true. Here we draw
evidence from both a systematic literature search and empirical data from a wild population of

threatened birds, to show that studies rarely have sufficiently clear definitions or timeframes for
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determining whether abandonment occurred, or sufficient monitoring effort to distinguish
between parental abandonment as the cause or consequence of embryo mortality. By combining
evidence from nest records and unhatched egg examinations, we show that parental
abandonment rates are likely to be over-estimated, while other drivers of reproductive failure
may be under-estimated. We provide recommendations for improving the accuracy of egg fate
records, which we hope will improve the accuracy of hatching failure data and enhance the

specificity of related conservation interventions.

Keywords: Hatchability; Embryo mortality; Nest monitoring;

Reproductive failure; Desertion

Introduction

Egg incubation and hatching are the first major hurdles that many egg-laying taxa must overcome
to achieve reproductive success (Deeming and Ferguson 1991; Du and Shine 2015). Failure of
eggs to hatch is fairly common, particularly in threatened species, and has significant impacts on
the stability and persistence of populations (Jamieson and Ryan 2000; Ferreira et al 2005; Brekke
et al 2010; White et al 2015; Marshall et al 2023). It is therefore important that rates and causes

of egg failure and loss are accurately monitored.

Egg failure and loss occurs for various reasons, including predation, damage, climatic factors,

pollution, and genetic issues that impact embryo survival (Assersohn et al 2021). In addition to
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these drivers, a noticeable proportion of eggs fail to hatch because they are abandoned by the
parent(s), prior to or during incubation. Parents may abandon entire clutches, or a subset of the
eggs (partial clutch abandonment), the latter being especially common after partial predation
events (e.g., Ackerman et al 2003). We therefore use the term ‘egg abandonment’ to refer to the
abandonment of either a subset of eggs or the entire clutch, occurring at any time between egg
laying and the end of the incubation period. If the parent abandons eggs after the expected end
of the incubation period, these eggs should be classed as ‘failed” rather than abandoned, since
they must have failed before the parent left. It should be noted that abandonment behaviour
differs from egg ejection/expulsion (e.g., Lobato et al 2006), rejection, and nest sanitation (e.g.,
see Guigueno and Sealy 2012) behaviours, which all involve the physical removal of eggs rather

than the cessation of parental care while the eggs remain in the nest.

Egg abandonment is commonly associated with disturbance, climatic and/or environmental
events (see Issues and inconsistencies in egg abandonment data collection section below), so it
is likely that abandonment is not usually related to egg quality or viability, and the majority of
abandoned eggs therefore represent a random subset of those laid. Consistent with this,
attempts at egg fostering abandoned eggs have previously proven successful (e.g., O’Connell et
al 2015) and there is no substantiated evidence for preferential abandonment of unfertilised eggs
orinviable eggs (Marshall et al 2023). The causes of abandonment are therefore mostly assumed
to be independent of other drivers of either fertilisation failure or embryo mortality, and as such
abandoned eggs are typically excluded from standard calculations of ‘hatching failure’ along with

eggs that are predated or damaged (e.g., Briskie and Mackintosh 2004; Marshall et al 2023); or,
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inversely, ‘hatchability’ (Koenig 1982) and ‘hatching success’ (e.g., Spottiswoode and Mgller

2004).

There are three potential problems with the exclusion of abandoned eggs from hatching failure
monitoring and analysis efforts. First, methods of defining and recording egg abandonment are
often inconsistent and subjective, inevitably leading to inaccurate classifications of abandonment
that upwardly or downwardly bias estimates of hatching failure rates (see Issues and
inconsistencies in egg abandonment data collection section below). Second, the identification of
egg abandonment may be impacted by nest monitoring effort, with the risk that egg
abandonment is more commonly mistaken for other causes of hatching failure (or vice versa)
when nest visits are sporadic. Third, in cases where abandoned eggs are assumed to be fertilised,
abandonment is usually considered to be the cause of embryo mortality (but see Beissinger et al
2005), especially since abandoned eggs often have the potential to hatch if subsequently
incubated (O’Connell et al 2015; Schacter et al 2022). It is feasible, however, that abandonment
is sometimes the consequence of embryo death, rather than the cause. In birds, for example, it
is well established that parent-embryo communication occurs, particularly during the late stages
of egg incubation (Vince 1966, 1969; Brua 2002; Brulez et al 2015), and embryos actively respond
to and modulate the incubation environment provided by their parents during development
(Brua 2002; Reed and Clark 2011; Brulez et al 2015). Whilst there has been a historical under-
appreciation of avian sensory abilities (e.g., as noted by Birkhead 2012; Brulez et al 2015; Caro et
al 2015), recent studies demonstrate a range of sensory cues available to birds (e.g., Balthazart
and Taziaux 2009; Campagna et al 2012; Caro et al 2015; Grieves et al 2022; Ziolkowski et al 2022;

Mariette 2024) that might be used by parents to dynamically assess current clutch/egg viability
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(see Table 1 for a summary). However, since it is known that some birds continue to incubate
non-viable eggs beyond normal incubation periods (e.g., Briskie and Sealy 1988), it is likely that
the ability to use sensory cues in this way, and/or the propensity to abandon eggs, varies between

species.

Here, we first highlight current issues and inconsistencies with monitoring of egg abandonment
in avian research projects and monitoring schemes more broadly, via a systematic review of the
literature. We then demonstrate how these issues can impact our understanding of the drivers
of hatching failure in a conservation context, using data from ongoing nest monitoring schemes
for the United Kingdom and Ireland Eurasian Curlew (Numenius arquata) populations. Finally, we
offer recommendations for standardising the long-term monitoring of avian egg abandonment
and hatching failure to produce more accurate and informative data, which will likely also apply

to the conservation management of other oviparous taxa with parental care (e.g. Pythonidae).

Issues and inconsistencies in egg abandonment data collection

To gain an overview of how egg abandonment is defined and measured across published bird
studies, we conducted a systematic review by searching the database Web of Science on
24/10/2024 for the terms “egg”, “abandon*”, and “bird”. We excluded the terms “parasite” and
“parasitism” from our search, because while egg abandonment is perhaps most intensively
studied in species that experience brood parasitism, the focus of our study is abandonment by

parents of their own eggs, which specifically requires better understanding from a conservation
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management perspective. After restricting the search to primary literature only (i.e., excluding
review papers) and removing any duplicates, this returned 141 articles. Of these, 30 were
removed because they were not published in English and translation was not possible, and a
further 36 were excluded because it was evident from screening the abstract or main text that
they were not relevant (e.g., they did not directly study or collect data on abandoned
eggs/clutches or focused on brood parasitism despite our exclusion of related terms in the initial
search). We read the remaining 75 papers in detail to identify: (a) what definition (if any) of egg
abandonment was used; (b) what causes (if any) of egg abandonment were cited; and (c) what
rates of egg abandonment were reported. Full details of all retained studies are provided in

Supplementary Material Data 1.

Of the 75 relevant studies, 43 (57%) did not provide a definition of egg abandonment for their
study or describe how it was determined. The remaining 32 papers provided definitions of
varying clarity, with 25 (33%) providing a definition that we considered to be sufficiently specific
to enable reproducibility (e.g., the presence of intact but cold eggs in nest), but only 13 of these
(17% of all identified studies) providing a conclusive timeframe for abandonment as part of their
definition (e.g., “if we did not observe the breeding pair near the nest (or signs of activity) during

two consecutive visits [3-4days])."

Most (64/75; 85%) of the studies identified provided some indication of the definite or presumed
cause(s) of egg abandonment. These fell into 10 broad categories (see Table S1in Supplementary
Material 1). Several studies posited multiple different causes of abandonment. Confidence in

these cited causes ranged from relatively low (e.g., causes were assumed based on anecdotal
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evidence or findings of other studies) to high (causes were tested directly by the study). Overall,
the main drivers of egg abandonment appear to be human disturbance (31% of studies;
predominantly due to farming practices and research/conservation interventions), climatic
factors (19% of studies), disturbance by predators (17% of studies), and food availability (17% of
studies). Notably, 4 studies confidently reported egg failure prior to abandonment, i.e., lack of

embryo development was likely to be the reason the parents left the eggs.

Potential impacts of inaccurate abandonment records on breeding monitoring

Of the 75 studies identified above, 43 provided data on the proportion of clutches that were
abandoned during the study period. However, one paper reported data for 9 different
species/populations, so there were 51 records in total. The mean rate of egg abandonment
across all records was 20%, but rates varied from 1-100%, with a median of 12%. This represents
a significant loss of reproductive potential, particularly given the increasing evidence that most
wild bird eggs are fertilised and therefore contain individuals that died early (Evans and Postma
2025). If egg abandonment occurred after the embryo(s) died — which it did in several studies —
these losses will also have a significant impact on our understanding of hatching failure rates and

drivers.

To assess the potential impact of incorrect abandonment records on quantitative monitoring of
reproductive outcomes, we analysed egg outcomes recorded by various nest monitoring teams
working with wild populations of Eurasian Curlew (Numenius arquata) across the United Kingdom

(UK) and Ireland, using data collected for another study. The Eurasian Curlew (henceforth
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“Curlew”) is a charismatic wader with around 19-27% of the global breeding population residing
in the UK (Brown et al 2015). Globally, the Curlew is currently classified as near-threatened
(BirdLife International 2017) and UK and Ireland breeding populations have seen significant
declines ranging from 32-96% over the last several decades (O’Donoghue et al 2019 ; Heywood
et al 2023). Consequently, Curlew are currently red-listed and have been proposed as the most
urgent conservation priority in the UK (Brown et al 2015; Stanbury et al 2021). Low global Curlew
productivity appears to be largely driven by nest predation (e.g., Grant et al 1999; Valkama et al
1999; Roodbergen et al 2012; Zielonka et al 2019), and other factors such as agricultural land-
use, forestry and climate warming (Franks et al 2017), but little is known about the incidence and

non-predation-related drivers of hatching failure across UK and Ireland populations.

Combining data from 1428 eggs, from 381 naturally incubated clutches laid in various locations
around the UK and lIreland, across three breeding seasons (2022-2024), we calculated the
percentage of all Curlew eggs recorded as abandoned to be 5.5% (although this was variable
across years: 2.5% in 2022, 4.0% in 2023, and 8.0% in 2024; see Supplementary Material 1 and
Supplementary Material Data 2 for calculation methods and data). Hatching failure rate,
excluding eggs that were classified as abandoned, predated, damaged and ‘unknown’ (i.e., when
egg outcome was unclear), was calculated as 12.9% (11.6% in 2022, 13.9% in 2023, and 13.1% in
2024; see Supplementary Material 1 and Supplementary Material Data 2 for calculation methods
and data). However, if we were to assume that all abandoned eggs died before abandonment
(i.e., abandonment was the consequence of embryo mortality, not the cause), recalculation of

our hatching failure rates including abandoned eggs (i.e., the total number of ‘failed’ plus
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‘abandoned’ eggs, divided by the total number of ‘hatched’, ‘failed’ and ‘abandoned’ eggs) results
in a 1.4-fold increase in our estimate of mean curlew hatching failure rates, to 18.6% (14.1% in

2022, 17.9% in 2023, and 21.7% in 2024).

While it is unlikely that all records of egg abandonment are incorrect, our experience of receiving
egg samples and accompanying data has revealed that at least some degree of error is probable.
For example, we frequently receive unhatched egg samples which are recorded as ‘abandoned’,
but the recorded abandonment date is after the expected end of incubation (i.e., the parents left
the clutch after it failed to hatch). Abandonment was therefore not the cause of failure, and these
eggs should be included as sampling units in calculations of hatching failure rates. Confidence in
egg abandonment dates is clearly dependent on nest monitoring effort, with higher frequencies
of nest visits being more accurate. In many nest monitoring programmes, failed eggs left in the
nest after the end of incubation may be incorrectly recorded as ‘abandoned’ due a lack of

information on lay date and/or expected hatch date.

By examining the embryo developmental stages of all intact unhatched Curlew eggs using
previously developed egg dissection and fluorescent microscope methods (Birkhead et al 2008;
Assersohn et al 2021; Morland et al 2024), we observed that while embryo development stages
were fairly consistent within the majority of reported abandoned clutches, 5/25 (20%) clutches
reported as abandoned had pronounced variation in embryonic development stages across eggs.
Estimated embryonic developmental differences between the least and most developed

embryos within each clutch ranged from at least 3-11 days (likely conservative estimates of
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duration since timing is based on Hamburger and Hamilton’s (1951) embryo staging series for
domestic chicken Gallus gallus domesticus, which has a shorter mean incubation period than the
Curlew (~21 days vs ~28 days, respectively; see Table S2 in Supplementary Material 1, and also
Supplementary Material 1 and Supplementary Material Data 3 for further information on
methods and data). Curlew have semi-synchronised hatching, with intervals ranging from several
hours to up to two days (De Jong et al 2021), but the wider developmental stage variation
exhibited in several reported abandoned clutches suggests at least some eggs experienced
embryo mortality before egg abandonment occurred. Our evidence suggests that 20% of
reportedly ‘abandoned’ clutches contained eggs that experienced embryo mortality which was
not caused by abandonment. If the parent(s) was able to detect embryo death/egg inviability
(see Table 1 for potential mechanisms), it is possible that this subsequently stimulated egg
abandonment. If it is possible to incorporate embryo staging into nest monitoring programmes,
variation in the developmental stages of dead embryos within a clutch may therefore provide

useful insights into the likelihood of abandonment versus other factors as the cause of failure.

Conclusions and future recommendations

There are many well-established nest monitoring programmes across the world, such as the BTO
Nest Record Scheme, that collate records of breeding success across species. In general, these
programmes record incidences of nest predation, damage, hatching failure, and abandonment,
but what constitutes abandonment is not explicitly clear (e.g., the revised 2003 BTO Nest Record

Scheme Handbook (Crick et al 2003) provides no description of how to verify abandonment). We
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have shown, across a range of bird breeding studies, that there are significant inconsistencies in
how egg abandonment is defined and monitored. Using empirical data, we show that eggs may
be inaccurately recorded as abandoned due to ambiguous criteria and/or incomplete information
on incubation dates/parental behaviour, skewing our understanding of how different factors

contribute to overall rates of hatching failure.

In the ideal (but unlikely) scenario that time and resources are not limited, direct observations of
parental behaviour, either via frequent nest visits or (even better) remote camera and/or nest
temperature monitoring, provide the most irrefutable evidence of abandonment or ‘true’
hatching failure. However, monitoring effort is usually limited, and uncertainty exists in most
cases. As a result, research studies and conservation monitoring programmes differ in their
approach to recording the causes of egg loss/hatching failure, potentially complicating our overall

understanding of the drivers of failure across species.

Examining the developmental stage of dead embryos to assess whether they died before their
predicted abandonment date is one potential way to overcome the problem of limited
information on incubation timing/parental care. Methods for doing this are relatively
straightforward; however, because embryo staging series have not been produced for most
species, this approach relies on comparison with primarily domestic chicken (Hamburger and
Hamilton 1951) (precocial species) or zebra finch (Murray et al 2013) (altricial species). While
zebra finches probably provide a reliable comparison for many passerine species (Hemmings and

Birkhead 2016), caution should be taken when using this approach for precocial species, since
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the incubation periods and late-stage developmental trajectories of many precocial birds diverge
somewhat from that of the chicken (Cooney et al 2020). This may lead to some degree of error

in the estimation of embryo death timings based on developmental stages.

Finally, in situations where monitoring effort is limited and assessment of embryo developmental
stages is not possible, we recommend that the resulting uncertainty in egg fates is clearly
documented, and that studies report hatching failure rates both including and excluding
presumed abandoned eggs, highlighting the range within which the ‘true’ value must lie and
enabling clearer assessment of the potential error in these estimations. As we found evidence
that 20% of assumed ‘abandoned’ Curlew clutches had experienced embryo mortality prior to
abandonment, it is likely that the true hatching failure rate in this species will fall much closer to
the traditional calculation of hatching failure (i.e., excluding abandoned eggs). However, where
the true hatching failure rates lie on this spectrum is likely to vary between species, depending
on factors such as propensity to abandon (e.g., see Hanssen et al 2023) and/or their ability to use
sensory cues (see Table 1) to examine current clutch viability throughout incubation. Future
studies should therefore seek to obtain better understanding of how egg abandonment
behaviour varies across species and the degree to which incubating birds can detect and respond

to egg viability cues.
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Table 1| Summary of sensory cues available to parental bird(s) that may be used to examine egg viability status during incubation2

Types of Presentation Timing Evidence of capacity for perception Required test of
sensory parental
cues response
Auditory Embryo clicking, vocalisation and bill Late incubation, Embryo vocalisation elicits behavioural responses from parents during Manipulation of
tapping (but can be rare or absent in after embryonic incubation (e.g., Simmons 1955; Tuculescu and Griswold 1983; Evans 1988; embryo auditory
some species, particularly altricial) (Vince vocalisation is Evans 1990; Evans et al 1994; Brua et al 1996; see reviews in Brua 2002; cues (e.g.,
1966, 1969; Oppenheim 1972); parental established (see Brulez et al 2015). playback
vocalisation during incubation (e.g., Ruiz- Brua 2002) Prenatal parental vocalisation/other auditory stimulation exposure and experiments).
Raya and Velando 2024). eavesdropping alters pre- and post-natal development and behaviour (e.g.,
Woolf et al 1976; Mariette and Buchanan 2016; Mariette et al 2018, 2021;
Ruiz-Raya and Velando 2024).
Chemical/ Nitric oxide (NO) and other volatile From mid- Infertile and fertile eggs have distinguishable volatile chemicals odour Manipulation of
Olfactory chemicals emitted by developing embryos  incubation onwards, profiles in Japanese quail (Coturnix japonica) (Webster et al 2015). volatile chemical
(e.g., Ar et al 2000, 2004; Titov et al as odour profiles of NO emittance from developing embryos passively mediates brood-patch odours of eggs.
2007). inviable eggs development (although not via parental odour detection) (Ar and Sidis 2002;
become discernable Ar et al 2004).
(Webster et al 2015)
Tactile Embryo vibro-acoustic cues; embryo and Early incubation Brood patches for incubation are rich in mechanosensory receptors (see Manipulation of
amnion motility (e.g., Vince 1969; onwards, from Portman 1961; Winkelmann and Myers 1961; Jones 1971) and simulation of tactile stimulus
Impekoven 1976; Wu et al 2001; Sheldon around day 3 of these promotes incubation behaviour through prolactin secretion (e.g., Hall of eggs to
etal 2018). incubation in 1987; Meijer 1995; Massaro et al 2007). observe parental
domestic chickens Specialised beaks with mechanosensory organs evolved in some species for behavioural
(Wu et al 2001) and tactile foraging (e.g., Zweers 1973; Berkhoudt 1980; Avilova et al 2018; also responses.
after the first see review in Ziolkowski et al 2022).
quartile of the Embryos vocalise/move in response to egg turning (e.g., Brua et al 1996).
incubation period in Neighbouring embryo vibro-acoustic cues used for hatching
most wild birds synchronicity/predation risk reduction (e.g., Vince 1969; Vince and Cheng
(Sheldon et al 2018) 1970; Noguera and Velando 2019; also see review in Mariette et al 2021).
Thermal Increased metabolic activity in embryos Mid-incubation, as Models based on egg cooling rate behaviours identify egg viability status Manipulation of

from mid-incubation, reducing in the final
20% of development period (rates and
trajectories differ depending on
developmental mode) (e.g., Vleck et al
1980; De Oliveira et al 2008; DuRant et al
2011).

embryonic
metabolic activity
increases (e.g.,
Vleck et al 1980; De
Oliveira et al 2008;
DuRant et al 2011).

with 80% accuracy, suggesting parents could assess thermal differences
between viable and inviable eggs (Narushin et al 2024).

Pre-pipping embryos alter vocalisation responses when cooled (e.g., Brua et
al 1996).

thermal
properties of
eggs to observe
parental
behavioural
responses.

1Whilst here we mainly present summary examples specifically related to embryo-parent and embryo-embryo interactions during incubation, we do present some examples outside the context of

incubation that further demonstrate birds’ sensory capabilities in non-incubation contexts but could also be in turn potentially utilised in an incubation context (although not directly proven).

2 Corresponding full reference details can be found in the ‘References’ section.






