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Abstract

We present a method for creating RDKit-parsable SMILES for transition metal complexes (TMCs) based on xyz-coor-
dinates and overall charge of the complex. This can be viewed as an extension to the program xyz2mol that does

the same for organic molecules. The only dependency is RDKit, which makes it widely applicable. One thing

that has been lacking when it comes to generating SMILES from structure for TMCs is an existing SMILES dataset

to compare with. Therefore, sanity-checking a method has required manual work. Therefore, we also generate SMILES
two other ways; one where ligand charges and TMC connectivity are based on natural bond orbital (NBO) analysis
from density functional theory (DFT) calculations utilizing recent work by Kneiding et al. (Digit Discov 2: 618-633,
2023). Another one fixes SMILES available through the Cambridge Structural Database (CSD), making them parsable
by RDKit. We compare these three different ways of obtaining SMILES for a subset of the CSD (tmQMg) and find >70%
agreement for all three pairs. We utilize these SMILES to make simple molecular fingerprint (FP) and graph-based
representations of the molecules to be used in the context of machine learning. Comparing with the graphs made
by Kneiding et al. where nodes and edges are featurized with DFT properties, we find that depending on the target
property (polarizability, HOMO-LUMO gap or dipole moment) the SMILES based representations can perform equally
well. This makes them very suitable as baseline-models. Finally we present a dataset of 227k RDKit parsable SMILES
for mononuclear TMCs in the CSD.

Scientific contribution We present a method that can create RDKit-parsable SMILES strings of transition metal
complexes (TMCs) from Cartesian coordinates and use it to create a dataset of 227k TMC SMILES strings. The RDKit-
parsability allows us to generate perform machine learning studies of TMC properties using "standard” molecular
representations such as fingerprints and 2D-graph convolution. We show that these relatively simple representations
can perform quite well depending on the target property.

Introduction
SMILES strings and the associated molecular graphs are
the foundation of cheminformatics and machine learning
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possible to extract SMILES strings for TMCs in the Cam-
bridge Structural Database (CSD [2]) only about half can
even be parsed by RDKit.

The ability to go from a structure and overall charge to
a SMILES/RDKit mol object is useful in various cases. As
mentioned above, one important application is the abil-
ity to make full use of the data deposited in the CSD by
enabling the tools included in RDKit. This includes tools
for chemical alterations of the complex and for setting up
quantum chemical calculations which is useful in screen-
ing applications. Also, using the SMILES in combina-
tion with RDKits similarity searching or fragmentation
schemes could be a step towards a synthetic accessibility
tool for TMCs. The task of obtaining SMILES/RDKit mol
objects from a structure is complicated by the chemistry
associated with TMCs, including the many possible oxi-
dation states and bonding patterns for transition metals.

Previous work has been focused on extracting relevant
molecular data for TMCs from the CSD. Vela et al. devel-
oped cell2mol [3] which extracts information from the
crystallographic data in the CSD needed to do quantum
chemical calculations. This includes the connectivity and
total charge of the molecules in the unit cell as well as
the oxidation state of the metal. For a dataset consisting
of mono-metallic species with eight different transition
metals they were able to interpret 77% of them (with 95%
of the interpretations being correct).

Balcells and coworkers. have done extensive work to
make TMC datasets from the CSD available [4—6]. This
includes graph representations of 60k mono-metallic
closed shell TMCs with an overall charge of —1, 0 or 1
(tmQMg) [5]. The connectivity in these graphs are based
on natural bond orbital (NBO) analysis from density
functional theory (DFT) calculations. Recently, Kneiding
et al. extended this dataset with charge information for
30k ligands present in the TMCs of tmQMg also based
on a NBO analysis (tmQMg-L) [6].

The combined work of Balcells and coworkers really
became a turning point when it comes to generating
TMC SMILES from structure. Based on the connectiv-
ity and ligand charges one can use a program such as
xyz2mol to generate RDKit mol objects for the TMCs
[7]. Here we make RDKit parsable SMILES based on the
NBO connectivity and ligand charges from DFT calcula-
tions [5, 6]. To get an idea of the quality of these SMILES,
we compare these SMILES to the SMILES available
through the CSD. However, as mentioned above these
SMILES tend to not be parsable by RDKit. Therefore
we put these SMILES through a series of fixing-steps in
order to get a sanity check of the obtained SMILES.

In principle the above method, based on NBO analy-
sis of a DFT calculation followed by a xyz2mol-based
workflow for assigning formal charges and bond orders,
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represents a method for obtaining SMILES/RDKit mol
objects based on structure and overall charge. How-
ever, relying on DFT calculations makes this method
very slow, limiting its use cases. Therefore we propose
a much faster approach based on atomic distances and
extended Hiickel calculations (available through RDKit)
for the ligands [8]. We will show that this is a robust way
of obtaining a SMILES representation of a TMC that can
be read into an RDKit mol object. Furthermore, we can
assess the quality of this representation by comparison
to the fixed CSD SMILES as well as the SMILES cre-
ated based on the DFT-NBO analysis for tmQMg and
tmQMg-L [5, 6].

Kneiding et al. utilized their graph-based dataset
(tmQMg) to perform different machine learning tasks
using graph convolutional neural networks (GCNNs) [5].
Since SMILES strings represent a 2D molecular graph,
these can readily be used to create graphs for GCNNSs.
Furthermore, since the SMILES can be read into RDKit
mol objects, the nodes and edges can be featurized using
RDKit and RDKit offers several fingerprint featurization
schemes. Molecular fingerprint featurizations such as
ECFP4 [9] represent a standard withing machine learning
for organic chemistry and often performs well for smaller
datasets [10]. We demonstrate the performance of these
RDKit-based graphs as well as ECFP4 and compare to
the DFT-NBO based graphs from Kneiding et al. For
a 3D property such as the dipole moment, we find that
the models fed with QM and 3D informed graphs per-
form significantly better than the models based solely on
information available through SMILES which are 2D by
nature. However, for the HOMO-LUMO gap and polar-
izability the RDKit-based graphs perform close to on par
with the QM/3D informed graphs.

Computational methodology

Below we describe our three approaches for obtain-
ing SMILES for TMCs; fixing CSD SMILES, using xyz-
2mol with DFT-NBO input and xyz2mol with extended
Hiickel input. The latter requires only the xyz-coor-
dinates, overall charge and RDKit, whereas the other
two require either an initial SMILES from the CSD or a
DFT calculation yielding the necessary NBO data. Since
TMC SMILES are not currently incorporated in chemi-
cal research, there is no established consensus on how
to represent e.g. bonds to transition metals. Here we
choose a representation, where the electrons in the TM-
ligand bond are located on the ligand, i.e. all TM-ligand
bonds are represented by dative bonds (symbolized by
an arrow in the SMILES). This has the advantage of mak-
ing the ligand charges and metal oxidation states directly
available.
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Contrary to organic chemistry relating to e.g. drug dis-
covery, a chemical entity such as a carbene is a lot more
common as a ligand in a TMC. Often another represen-
tation obeying the octet rule could also be drawn (Fig. 1).
Here, we choose the carbene representation (non-zwit-
terionic). The carbene representation has the advantage
of avoiding the ambiguity of assigning the positive charge
on nitrogen for asymmetric ligands.

SMILES string from extended Hiickel and distance data

The SMILES generated from DFT-NBO data are based
on high quality (and expensive) calculations of both
ligand charge and bonding pattern. In contrast, using
an extended Hiickel calculation for the charge guess and
a simple distance cutoff for the bonding pattern can be
expected to make wrong predictions frequently. Thus,
when working with extended Hiickel calculations we
apply a custom procedure to catch and possibly cor-
rect these wrong predictions. The procedure going from
xyz coordinates and overall charge (Q) to an RDKit mol
object is outlined in Fig. 2 and is as follows.

+ An initial adjacency matrix (AC) is calculated based
on the xyz-coordinates. An AC is an Natom X Natom
matrix where Nytom is the number of atoms in the
molecule. An element, ACy;, is 1 if atom i and j are
bound and 0 otherwise. Following Open Babel
[11], a bond (one in the AC) is created if the dis-
tance between two atoms is shorter than the sum of
their covalent radii plus a tolerance of 0.45A. Since
this can create valence violations (e.g. five bonds to
carbon), a subsequent filter is applied cutting the
weakest bond to an atom until the valence require-
ments are met. Here, the weakest bond is defined as
the longest bond relative to the covalent radii of the
atoms. More exotic bonding environments such as
bridging hydrogen atoms can thus not be described
using the default settings since this would violate the
maximum valence of hydrogen which is one.

+ The ligands are identified based on the AC and an
extended Hiickel calculation is done for each isolated

B
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ligand using RDKit [1, 8]. An initial guess for the
ligand charge is calculated as

Natom E(‘//k)<EC

quVi— Z 2 (1)
i k

where V; is the number of valence electrons for
atom i, {{/} is the set of molecular orbitals generated
with extended Hiickel theory, E(v) is the energy of
orbital k and Ec = 10 eV is the cutoft energy under
which the molecular orbitals are filled with double
occupancy. If this results in a positive ligand charge
combined with a low lying LUMO (E(YLumo < —9
eV), we iteratively add two electrons until this is no
longer the case. Similarly, if this results in a ligand
charge of —2 or lower combined with a high lying
HOMO (E(WHomo) > —10.2 eV), we iteratively
remove two electrons until either of the two criteria
are no longer true.
Using xyz2mol [7], an RDKit mol object is generated
for the ligand using the charge guess. This is done by
looping over all combinations of allowed valences
for the atoms until a solution matching the required
charge and ligand AC is found. If no sanitizable solu-
tion is found, the charge is adjusted; if ¢ > 0 we add
two electrons, otherwise we remove two electrons. If
still no sanitizable solution can be found no SMILES
is generated.
If a sanitizable mol object is generated, we proceed
to check different resonance forms of the ligand
and choose one based on the following criteria: (1)
A larger aromatic system is preferred over a smaller
one. (2) Fewer formal atomic charges are preferred,
but negative charges on the metal-coordinating
atoms of the ligand do not count against that reso-
nance form.
The above two steps are repeated with settings disal-
lowing carbenes and the found resonance forms are
evaluated based on the same criteria. Finally the best
found ligand representation from either this or the
previous step of each ligand is kept.
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Fig. 1 We choose the carbene representation (left hand side) over the charged representation (right hand side) when either solution is possible.

CSD ID: BOCPEP
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Adjacency matrix is found based on
atom pair distances and atomic

Input: xyz coordinates and total charge
valence constraints
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The complex is re-assembled and the
metal charge is adjusted to reflect
the overall charge of the complex
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Cut metal bonds
to isolate the ligands

Find charge guess based on
the orbital energies from an
extended Hickel calculation
of the isolated ligands.

Charge guess = 0

Apply xyz2mol to the isolated ligands with the

obtained charge guess. "Ligand quality" is

evaluated based on number/location of partial

charges and size of the aromatic systems.

Choose the
best solution
for each ligand

Charge guess = 0

Adjust charge if only solutions with
partial charges on non-coordinating

atoms are found.

Fig. 2 The major steps involved in the xyz2mol procedure for TMCs

« The oxidation state of the metal (M,,) is calculated
from the overall charge and found ligand charges (g;):
Moy = Q — Zi\[hg qi-

+ The complex is re-assembled based on the initially
found AC. All metal-ligand bonds are represented
with dative bonds.

+ Finally a couple of sanitization steps (described
below) are performed to catch known problematic
behavior before a SMILES is generated for the mol
object of the complex using RDKit.

Cleaning steps

Setting valence constraints for the atoms involved in
simple organic molecules is fairly straightforward; car-
bon and nitrogen should not have more than four bound

neighbors, hydrogen and fluorine can only have one
bound neighbor and so on. Defining valence constraints
for transition metals is a lot more complicated. Initially,
the AC of the complex is found based on atom pair dis-
tances as described above. The valence constraints are
invoked based on the non-TM atoms, cutting the long-
est bond relative to the atomic radii of the atoms involved
in the bond if a ligand atom has too many neighbors. In
some cases, this leads to a “fake” haptic bonding pattern
i.e. a situation where the neighbor-atom of a coordinat-
ing atom is initially also assigned a bond to the transition
metal even though the distance to the TM is significantly
larger (Fig. 3). We avoid this by cutting perceived haptic
bonds that are much longer than those for their haptic
neighbors.

While the above described loop through stereoisomers
of the ligand to find the best atomic charge distribution
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Metal connectivity after cutting haptic bonds with too great
metal distance relative to neighbouring connecting atoms

Fig. 3 Example of cleaning procedure for the metal coordination environment. CSD ID : PIYNER

works well in most cases, there are a few examples where
the negative charge is in fact not assigned to the coor-
dinating atom. The sulfonate anion in OPAKAT (Fig. 4)
is an example of the negative charge initially not being
assigned to the coordinating atom. For the isolated
ligand, the oxygen atoms are equivalent and only one res-
onance form with the charge assigned to a random oxy-
gen is created. This is one of two post SMILES creation

ID Before fix

OPAKAT

IXENEG

fixes that are done using SMARTS pattern matching.
The other post fix relates to —-NO; groups that we want
to consistently be described with the same representa-
tion. Two Lewis structures obeying the octet rule can be
drawn for an —NO; group (IXENEG, Fig. 4), both with
two formal charges. We make sure to always use the neu-
tral representation, adjusting the metal oxidation state
accordingly.

After fix

Fig. 4 Example of moving a negative charge due to ligand atoms being equivalent for the isolated ligand but not for the whole complex (OPAKAT).
IXENEG is an example of the NO,-group fix: we make sure all NO,-groups are described in the neutral form
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SMILES strings from DFT-NBO data

Kneiding et al. [6] provide the tmQMg-L dataset of 30 K
TMC ligand charges, metal coordination atoms and their
corresponding 3D coordinates. Using this data in combi-
nation with xyz2mol we create TMC SMILES representa-
tions of the TMCs in tmQMg. This is done by first using
xyz2mol to obtain SMILES strings for the isolated ligands
in tmQMg-L and then combining them with a TM to
form the full tmQMg TMCs. The approach is described
in the following text.

+ Knowing the ligand composition of a complex, we
attempt to generate RDKit mol objects for each
ligand in the complex. The xyz2mol approach for the
ligands is the same as the extended Hiickel approach
explained above except that the ligand charge is fixed.

+ If mol objects can be obtained for all ligands in a
TMC, the coordinating atoms for each ligand are
connected through dative bonds to the TM for the
given TMC. The 3D coordinates of the ligands are
given by the ligand xyz files and the coordinates of
the core TM are parsed from the TMC xyz file.

+ We then set the metal formal oxidation state by sub-
tracting the sum of the ligand charges from the TMC
overall charge. In this way the overall charge of each
TMC SMILES will match the tmQMg dataset. How-
ever, TM formal oxidation states can still be inac-
curate compared to the true CSD structure if ligand
charges from the DFT-NBOs are wrong.

+ In the final step we sanitize the RDKit mol object
and remove the hydrogens. Complexes that fail this
procedure likely have wrong ligand charges or incor-
rect coordination atoms and therefore do not get a
SMILES.

SMILES strings from the CSD

SMILES strings of mononuclear TMCs were extracted
from the CSD as described by Frei and Orsi [12] except
that only d-block elements and all coordination numbers
were considered. The initial screening process eliminated
cases where the counter-ion also contained a metal,
which eliminated some compounds that were included
by Balcells and co-workers. We add these entries, mak-
ing tmQMg a subset of the CSD dataset, and remove
complexes containing group 1 or group 2 elements and
complexes containing > 100 heavy atoms. This results
in 230,550 SMILES. For 7297 TMCs we are unable to
retrieve a SMILES via the API and 7 entries have been
deleted from the CSD after tmQMg was curated. Of the
remaining 223,246 SMILES, RDKit can only success-
fully sanitize 123,147 SMILES strings and we therefore
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implemented a custom SMILES fixer process that all
CSD SMILES strings were subjected to.

The two main reasons that RDKit cannot sanitize the
SMILES are (1) failure to kekularize aromatic rings and
(2) improper valences such as a N atom with four bonds
lacking a positive charge. The kekularization error always
involves at least one ligand atom covalently bonded
to the metal (the CSD SMILES do not contain dative
ligand-metal bonds), while this is not necessarily the
case for atoms with improper valences. The cleanup pro-
cess involves the conversion of all ligand-metal bonds to
dative bonds. If the bond is judged to be a “true” cova-
lent bond, based on its valency, then the charge on the
metal and the ligand atom is increased and decreased,
respectively, according to the bond order. For example, if
the bond order is one, then the charge of the metal atom
and ligand atom is increased and decreased by one unit,
respectively. Occasionally, the CSD SMILES string does
not contain the explicit hydrogen atoms commensurate
with the bonding type, leading to a wrong assignment
of atomic charges. However, these errors are typically
caught (though not corrected) since such errors will lead
to the wrong number of implicit hydrogen atoms being
added in the sanitation step, which in turn, leads to the
wrong empirical formula of the compound. Atoms with
incorrect valencies (typically N and B atoms) that are
not directly bonded to the metal have formal charges
assigned in a similar way. A +1 charge is assigned to
hypervalent N atoms while the charge of the metal is
decreased by one unit, while the opposite is true for
hypervalent B atoms. In addition, SMARTS-based fixes
are done for special cases like carbenes, carbon monox-
ide, metal triple bonds to O and N atoms, and pyrrole.

All in all, these changes allow for 213,278 SMILES to be
sanitized. 53,344 of which are part of the tmQMg dataset.

Property prediction from SMILES

We use the obtained SMILES sets to perform the prop-
erty prediction tasks as done by Kneiding et al. [5] where
we predict polarizability, HOMO-LUMO gap and dipole
moment for the tmQMg complexes using our TMC
SMILES.

To encode the SMILES we apply both fingerprint and
graph representations. For the fingerprint representation
we use Morgan count fingerprints with radius 2 (ECFP4)
and bit size 1028 [9, 13]. For the graph representation
we use an RDKit graph featurization approach that con-
structs node and edge features from the information
available in the SMILES strings [14].

For consistent comparison with [5] we construct our
test set to match theirs. We create a test set that con-
tains the maximum overlap between complexes with
valid SMILES and the complexes used in their original
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test set of 5615 complexes. The Hiickel SMILES set has
the largest overlap with 5534 SMILES. As we observe
the same trends for all three SMILES sets, the discus-
sion is limited to the ML models trained on the Hiickel
SMILES. To ensure consistent comparison we also re-
evaluate the models from Kneiding et al. on this smaller
test set after re-training on the slightly larger training
set. The models from Kneiding et al. [5] are referred to
as Baseline, u-NatQ, d-NatQ. Here, the Baseline model
is trained on graphs informed with standard atom and
bond properties. The u-NatQ and d-NatQ models are
trained on graphs informed with NBO topology and
attribution. u-NatQ on undirected graphs and d-NatQ
on directed graphs.

We test the performance of the fingerprint and graph
representations with five different models. Namely,
Random Forest (RF), Feed-Forward Neural Network
(FE-NN), light gradient boosting machine (LightGBM
[15]), a simple Graph Convolutional Neural Network
(GCNN) and the Message Passing Neural Network
(MPNN) by Gilmer et al. [16]. The Gilmer MPNN is
identical to the one used by Kneiding et al. [5], the dif-
ference being that we featurize our graph representa-
tions based on RDKit properties that can be obtained
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directly from our SMILES. For additional details on ML
training see section S1 in the SI.

Results

Comparing SMILES sets

The tmQMg dataset consists of 60,799 TMCs with both
the deposited CSD structure and a DFT optimized struc-
ture available. For the DFT/NBO method we are able
obtain 46,190 valid RDKit parsable SMILES. For the
Hiickel/distance method we are able to obtain 59,878
valid RDKit parsable SMILES using the DFT optimized
structures and 59,893 RDKit parsable SMILES using
the CSD deposited structures. Lastly, using the sanitiza-
tion procedure for the CSD SMILES we obtain 53,320
RDKit parsable SMILES. For the Hiickel SMILES, the
majority of the cases where we do not obtain a SMILES
contain some kind of boron hydride structure (Fig. 5).
Proper description of these complexes requires 3-center
2-electron bonds, which is not currently possible and
these complexes will generally fail in all approaches due
to the high valence of boron. The DFT/NBO method
returned the lowest number of SMILES which is mostly
due to all necessary ligand information not being avail-
able for ~ 8k complexes. As stated by Kneiding et al. [6]
some ligands are discarded based on the results of the

Fig.5 Example of a molecule containing a boron hydride cluster. None of the above described methods can produce a SMILES/mol object
for these kind of structures due to the high valence of Boron. CSD ID: PEKGAP. Dark pink: Cobalt, light pink: Boron, red: Oxygen, blue: Nitrogen, grey:

Carbon, white: Hydrogen
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DFT calculations. For the remaining complexes, a solu-
tion could not be found that would satisfy the given AC,
ligand charges and possible atomic valence combina-
tions. Approximately 4k of the complexes in the tmQMg
dataset did not have a SMILES available from the CSD
API and thus cannot be run through our fixing proce-
dure. The remaining ~ 4k SMILES missing are from mol
objects that cannot be sanitized even after the above
described fixes have been implemented.

For 41,355 complexes, we obtain a SMILES from each
of the three methods. 29,053 of these (corresponding to
70 %) are completely identical across all three methods.
These SMILES can be assigned a high level of confidence.

ID Fixed CSD SMILES
\(\(
N. LN
QAPWIP ZTn2+
. c

HUvVCuw

TETCOK
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When the SMILES do not exactly match it can be due to
several things. The AC of the complex can differ, result-
ing in different SMILES. Most frequently the difference is
in the metal-ligand bonds. Another possibility is that the
ligand charges (and hence oxidation state of the metal)
differ. For some ligands, multiple total ligand charges can
result in chemically reasonable charge configurations (see
e.g. TETCOK in Fig. 6). Thus, lack of agreement between
SMILES does not necessarily mean that one (or all) of the
SMILES are bad, but can also mean that multiple reason-
able representations exist. Even if the ligand charges and
AC matrix of the complex are identical across methods,
the obtained SMILES can still be different due to different

Huckel SMILES

Fig. 6 Examples of fixed CSD SMILES compared to Hiickel SMILES where both representations are valid. For QAPWIP and HUVCUW, the SMILES
are resonance forms of each other. The two solutions for TETCOK differ in their ligand charge (and hence oxidation state of Iridium). However, one

solution is not clearly superior to the other
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resonance forms. QAPWIP and HUVCUW (Fig. 6) are
examples where the SMILES obtained from the fixed
CSD SMILES approach and the Hiickel approach are res-
onance forms of each other.

In Table 1 we compare the three methods in pairs.
Direct comparison of the SMILES results in >70% match
for each of the three pairs. The pair with the highest per-
cent-wise overlap is found for NBO(DFT)/Hiickel, where
81% of the SMILES match. Considering only the highest
amount of matching SMILES we find the CSD/Hiickel
pair to be the largest with 38,073 SMILES. Considering
that these two methods of obtaining SMILES are com-
pletely different, these 38,073 SMILES can be assigned
a high level confidence. When comparing the resonance
forms of the same TMCs the number of equal SMILES
increases only slightly across the three pairs. Finally,
we compare the resonance forms after disconnecting
the ligands from the TM (Disconnect-Resonance). This
increases the number of SMILES matching with between
5k and 7k. These TMCs differ only in the coordination
to the TM (and possibly ligand resonance structure) but
have identical ligand charges and TM oxidation state.

For the SMILES that do not match, a plethora of rea-
sons can exist. Some cases resemble that of TETCOK
(Fig. 6) but others are more problematic with e.g. a dis-
connected graph due to valence constraints. We analyze
some of these cases in Sect. 3 and show various examples
in  https://github.com/jensengroup/xyz2mol_tm/blob/
main/comparing_smiles/highlight smiles_problems.
ipynb.

It is a known issue that for some 3D structures in the
CSD, the 3D structure does not necessarily reflect the
expected structure. For some structures here are hydro-
gens missing in the 3D structure. Additionally, the fixed
CSD SMILES strings can have incorrect number of
implicit hydrogens due to the nature of the fixing proce-
dure. Both these cases can be detected by comparing the
formula of our SMILES with the corresponding formula
from the CSD APIL How this is detected and for which

Table 1 Number of equal SMILES when comparing the three
SMILES pairs with different methods

Method SMILES pair

CSD/NBO(DFT) CSD/Hiickel NBO(DFT)/Huickel
Direct compari-  31675/41432  38073/53 167 37 500/46 103
son
Resonance TMC ~ 31929/41432  38442/53 167 37 565/46 103
Disconnect- 37215/41432  45734/53 167 42 468/46 103
Resonance

Direct comparison compares the canonical SMILES, Resonance TMC compares
the SMILES resonance sets and Disconnect-Resonance compares the resonances
of ligands when disconnected from the TM
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complexes this is the case is shown in the notebook men-
tioned above.

SMILES distributions

With a SMILES dataset of the TMCs present in the CSD,
one can easily access various information of the TMCs.
This includes key attributes of TMCs such as the oxida-
tion state of the TM metal and the ligand coordination
environments. We show the oxidation state of the TM
for TMCs where we have valid SMILES for both the
NBO and Hiickel methods in Fig 7a. Figure 7b shows the
TMC ligand coordination environments for the Hiickel
SMILES.

We observe that the TMCs in the tmQMg contain a
wide range of oxidation states. The majority of which lies
in the range 0—6 with oxidation state +2 being the most
common with around 25 K occurrences. A small portion
of the SMILES have TMs with oxidation states that are
unusually low (< 0) or unusually high (> 10). Negative
oxidation states are not unheard of [17] but the occur-
rence of oxidation states > 10 is clearly an artifact of the
method since the highest oxidation state found in a sta-
ble TMC is 10 [18]. For the Hiickel method a total of 26
TMCs are described with a formal oxidation state > 10.
Almost all of these complexes contain the perchlorate
ion, i.e. a chlorine atom bound to 4 oxygen atoms, which
is violating our set maximum valence for chlorine. Since
the AC is generated by cutting bonds until the maximum
valence is complied with, this results in a lot of lonely
oxygen atoms, which are assigned a charge of —2. This in
turn makes the oxidation state of the TM artificially high
(Fig. 3). Depending on the type of TM different oxidation
states will be impossible or at least unusual. It is likely
that most of the SMILES at the extrema are non accurate
representations of the TMCs as a result of the method
used as in the case of the perchlorate ion. Such extreme
cases are highlighted in Sect. 3.

Furthermore, the Hiickel and NBO SMILES have simi-
lar distributions of the oxidation states. A larger discrep-
ancy between the two methods is observed for oxidation
states 0 and +2. This is mainly attributed to the differ-
ence in orbitals between the NBO and Hiickel methods.
For the NBO method 1166 ligands are attributed a —2
charge while they are assigned a 0 charge with the Hiickel
method. Conversely, 262 ligands are attributed a -2
charge with Hiickel where the NBO method gives a 0. As
such, this results in a slightly higher peak of 42 oxidation
states for the NBO method. Examples of this are shown
in Sect. 3.

Figure 7b shows the importance of chloride, pyridine
and carbonyl coordination in TMC chemistry. Here
we leverage the graph information in the SMILES to
extract these coordination patterns that also includes
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Fig. 7 a TM oxidation state distribution of the Huickel and NBO SMILES. b Top occurring coordination environments in the 58 K Hickel SMILES. The
first atom is the coordination atom and the following atom labels enclosed by parenthesis are the direct neighbors to the coordinating atom. Lower

case signifies an aromatic atom

information on aromaticity of the coordinating atoms
neighbors. Such insights are crucial when making design
choices in accelerated TMC discovery as they can be used
to adjust the search scope or to design custom synthetic
accessibility (SA) scores for use in generative models.
An example would be in TMC catalyst discovery where
ligand coordination environments can be used to either
set up a starting geometry for TMCs to search for, or as a
look-up table for potential coordination environments in
new ligand candidates.

ML with TMC SMILES strings

We train a range of model for the tmQMg dataset based
on the Hiickel SMILES. This was the method yielding
the highest number of SMILES as well as the most gen-
eral method since it requires neither DFT calculation
and NBO analysis nor an initial SMILES representation.
The LightGBM, Random Forest and FF-NN models are
trained on the ECFP4 with a bit vector length of 1024.
The GCNN and Gilmer models are trained on graph
representations generated from information inherent in
the SMILES. Finally, the Baseline, u-NatQ, d-NatQ mod-
els are trained on the NBO graph data from [5]. Note
that the u-NatQ and d-NatQ graphs are fed with node
and edge information extracted from DFT calculations.
Thus, when generating these graphs the target property

(polarizability, HOMO-LUMO gap or dipole moment) is
immediately available. In addition, the baseline, u-NatQ
and d-NatQ graphs contain some 3D information as it
has bond lengths as an edge feature from the optimized
geometry. Contrary to this, the models based on SMILES
only have the 2D graph defined by the SMILES, as well as
the cheminformatics properties available through RDKit.
All models are evaluated on the same test set as outlined
in the computational methodology. We apply a naive
approach where all remaining SMILES in the Hiickel
SMILES set are used for training. A comparison of the
resulting R? correlation metrics are seen in Fig. 8.

Generally, there appears to be no difference among the
methods when it comes to predicting polarizability. The
polarizability is to a certain extent an additive property.
As such, this correlation can be easily learned with sim-
ple ML models based on circular fingerprints with little
to no gain in using more advanced models and/or molec-
ular featurizations.

For the HOMO-LUMO gap a larger discrepancy is
apparent between the performance on the training and
test sets. Surprisingly, the Gilmer model trained on the
SMILES graph data matches the performance of the
Gilmer models trained on the significantly more expen-
sive DFT-NBO data. The GCNN also performs much
better than the fingerprint models.
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Fig. 8 Comparison of R? values for the 5 SMILES based models versus the 3 DFT-NBO based models for the test set

Finally, the hardest task for the models is the dipole
moment. Again, the models struggle to extrapolate to the
structures in the test set. Here, the Gilmer and GCNN
models struggle to learn the dipole moment from the
SMILES graphs which is due to the fact that the dipole
moment is instrisically a geometry dependent property.
Since the Baseline, u-NatQ, and d-NatQ models include
bond distances it enables the model to learn the cor-
relation between geometric bond information and the
dipole moment. For comparison, the baseline model
without bond distances as edge features get an R? value
of 0.42 (this value was kindly offered by the authors). This
is something that one can not obtain from only the 2D
graphs defined by the SMILES strings. Note that prelimi-
nary results predicting dipole moments for organic mol-
ecules using ECFP4 showed equally bad results.

One possible remedy for this is to enrich the SMILES
with chiral tags reflecting the stereochemistry of the
metal center. This information is available through the
TMC 3D coordinates and it is possible to specify the
geometry of a TMC and the arrangement of the ligands
around the metal which could aid the model in learning
geometry dependent properties like the dipole moment.
However, in the current state of RDKit (2024.03.3) this
functionality is unreliable and it was therefore not pos-
sible to incorporate stereochemistry of the TM into the
SMILES. More details are outlined in S4.

A SMILES data set of 227k TMCs from the CSD

As mentioned above, a total of 230,550 mononuclear
TMCs were extracted from the CSD and as many of
their available SMILES as possible were made sanitize-
able for a total of 213,278. Using the Hiickel method,
we obtain SMILES for 217,776 of the 230,550 extracted
TMCs. Combining these two methods means that we
make 227,124 SMILES of CSD TMCs, that can read-
ily be read into RDKit, available. For those complexes

where we have a SMILES for both the fixed CSD and
Hiickel methods we compare the SMILES in Table 2.

We observe that 69% of the SMILES are identical
as is, with an increase to 76% when also considering
TMC resonance forms and finally 79% when discon-
necting the ligands. Following the analysis for Table 1
the SMILES that are equal for both methods can be
assigned a high level of confidence. Furthermore, the
fraction of identical SMILES does not deteriorate when
looking at the larger CSD set which highlights that
the Hiickel method is not only effective at the smaller
tmQMg subset.

When using this dataset, e.g. for machine learning,
the conservative choice is to only use the “fixed” CSD
SMILES since the connectivity is determined, at least
in parts, by experts. Bond perception presents the big-
gest challenge for xyz2mol and most of the SMILES-
differences is due to differences in connectivity. That
being said, differences in connectivity could possibly be
an indication of weaker coordination, so there may be
a benefit to using both SMILES in an ML project as a
form of data augmentation, for cases where coordina-
tion strength is important. Similar considerations also
apply in cases where the resonance forms or oxidation
states are ambiguous (i.e. differ).

Table 2 Comparing the CSD fixed SMILES set with the
corresponding Hickel SMILES for the large 230 K set dataset

Method SMILES pair

CSD/Huickel(CSD)
140 510/203 930
154 354/203 930
161 041/203 930

Direct comparison
Resonance TMC
Disconnect-Resonance

Direct comparison compares the canonical SMILES, Resonance TMC compares
the SMILES resonance sets and Disconnect-Resonance compares the resonances
of ligands when disconnected from the TM
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Discussion/conclusion

We present an xyz2mol method for TMCs. Using only
an xyz file and an overall charge we are able to obtain
TMC SMILES that contain atomic charges and TM oxi-
dation states. We use this method to provide two large
datasets of TMC SMILES for TMCs found in the CSD.
The first dataset consists of 3 different SMILES sets for
complexes in tmQMg (a subset of mononuclear TMCs in
the CSD with charge —1, 0 or 1 developed by Kneiding
et al. [5]) obtained with 3 different methods where our
Hiickel approach was able to obtain SMILES for 59 878
of the complexes in the tmQMg. At least 38,442 of these
SMILES are expected to be highly reliable and acurate as
they are identical with those from the CSD after the fix-
ing steps to make it sanitizable in RDKit. The matching
percentage between xyz2mol SMILES based on Hiickel
calculations and CSD SMILES is 72%. For comparison,
xyz2mol SMILES based on the high quality (and expen-
sive) DFT-NBO data get a similar matching percentage of
76%. Note that this percentage is not including the ~ 14k
complexes where a SMILES could not be obtained for the
DFT-NBO method.

The second dataset consists of 213,278 SMILES from
the CSD which are RDKit parsable as well as 217,776
SMILES from the Hiickel method. In total we present
RDKit parsable SMILES for 227,124 mononuclear TMCs
from the CSD using either the CSD fixing method or the
Hiickel method.

These SMILES sets can be used to train baseline ML
models serving as a reference for more elaborate meth-
ods. We show that using our SMILES to obtain finger-
prints or graphs and then training ML models on these
representations, we are able to predict polarizability
and HOMO-LUMO gap to the same level of accuracy
as Kneiding et al. [5]. As such, the SMILES graphs are
sufficient for this task, avoiding the need for expensive
DFT-NBO calculations. The lack of 3D information in
the SMILES hinders the accurate prediction of the dipole
moment and we are therefore not able to match the per-
formance of the DFT-NBO data. This performance and
the fact that the SMILES are not filtered for inaccurate
representations, combined with the ease of which the
SMILES can be obtained with the Hiickel method, illus-
trates how powerful these representations can be for
TMC development.

One thing we have been missing in our own research
on catalyst optimization for TMCs is a synthetic acces-
sibility (SA) score that works for TMCs [19-21]. So far
we have applied a synthetic accessibility score designed
for drug-like molecules for the isolated ligands which
steers the proposed ligands to look like drug-like mol-
ecules [22, 23]. A similar score for TMCs would clearly
be desirable for generative models proposing new
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TMCs. This SMILES-based dataset of the CSD serves
as a good starting point of generating such a SA score.
Kerstjens et al. recently proposed a method for cor-
recting molecules from generative models based on
a “familiarity” concept that takes into account which
atom/bond types as well as fragments are present in a
reference library [24]. While they applied it to a refer-
ence library consisting of drug-like molecules we are
currently applying it to our CSD SMILES dataset since
the method requires molecules to be parsable by RDKit
to get a score for whether a new TMC is “familiar” to
the CSD.

While we have tried to retain a large amount of flex-
ibility when it comes to what chemistry can be described,
i.e. which atom types and valences are allowed, there is
still examples of chemistry that we are currently inca-
pable of describing properly. This includes the examples
highlighted in the manuscript such as boron hydride
clusters and the perchlorate ion. Future work will include
expanding the chemistry that can be described while
retaining and improving the robustness and reliability of
the Hiickel method. One possible improvement is to take
into account the preferred oxidation states of the TMs.
Especially in cases where multiple ligand charges result
in chemically reasonable structures, one could let the TM
decide which to choose based on a prioritized list of oxi-
dation states. Other improvements would involve proper
logging of potential issues like unusual TM oxidation
states or uncommon ligand charges or coordination envi-
ronments. We expect that how the community will use
this tool will guide the direction of improvement, when
undoubtedly problematic cases that we have not thought
of arise.
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