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Abstract 

We present a method for creating RDKit-parsable SMILES for transition metal complexes (TMCs) based on xyz-coor-
dinates and overall charge of the complex. This can be viewed as an extension to the program xyz2mol that does 
the same for organic molecules. The only dependency is RDKit, which makes it widely applicable. One thing 
that has been lacking when it comes to generating SMILES from structure for TMCs is an existing SMILES dataset 
to compare with. Therefore, sanity-checking a method has required manual work. Therefore, we also generate SMILES 
two other ways; one where ligand charges and TMC connectivity are based on natural bond orbital (NBO) analysis 
from density functional theory (DFT) calculations utilizing recent work by Kneiding et al. (Digit Discov 2: 618–633, 
2023). Another one fixes SMILES available through the Cambridge Structural Database (CSD), making them parsable 
by RDKit. We compare these three different ways of obtaining SMILES for a subset of the CSD (tmQMg) and find >70% 
agreement for all three pairs. We utilize these SMILES to make simple molecular fingerprint (FP) and graph-based 
representations of the molecules to be used in the context of machine learning. Comparing with the graphs made 
by Kneiding et al. where nodes and edges are featurized with DFT properties, we find that depending on the target 
property (polarizability, HOMO-LUMO gap or dipole moment) the SMILES based representations can perform equally 
well. This makes them very suitable as baseline-models. Finally we present a dataset of 227k RDKit parsable SMILES 
for mononuclear TMCs in the CSD.

Scientific contribution We present a method that can create RDKit-parsable SMILES strings of transition metal 
complexes (TMCs) from Cartesian coordinates and use it to create a dataset of 227k TMC SMILES strings. The RDKit-
parsability allows us to generate perform machine learning studies of TMC properties using ”standard” molecular 
representations such as fingerprints and 2D-graph convolution. We show that these relatively simple representations 
can perform quite well depending on the target property.

Introduction
SMILES strings and the associated molecular graphs are 
the foundation of cheminformatics and machine learning 
involving organic molecules. In addition to being a con-
venient way to share molecular data, SMILES strings that 
can be parsed into an RDKit mol object open the doors 
to the vast amount of cheminformatics tools available 
through RDKit [1]. For this reason RDKit has become a 
de facto standard within cheminformatics.

For transition metal complexes (TMCs), SMILES 
strings have a much less prominent role. Although it is 
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possible to extract SMILES strings for TMCs in the Cam-
bridge Structural Database (CSD [2]) only about half can 
even be parsed by RDKit.

The ability to go from a structure and overall charge to 
a SMILES/RDKit mol object is useful in various cases. As 
mentioned above, one important application is the abil-
ity to make full use of the data deposited in the CSD by 
enabling the tools included in RDKit. This includes tools 
for chemical alterations of the complex and for setting up 
quantum chemical calculations which is useful in screen-
ing applications. Also, using the SMILES in combina-
tion with RDKits similarity searching or fragmentation 
schemes could be a step towards a synthetic accessibility 
tool for TMCs. The task of obtaining SMILES/RDKit mol 
objects from a structure is complicated by the chemistry 
associated with TMCs, including the many possible oxi-
dation states and bonding patterns for transition metals.

Previous work has been focused on extracting relevant 
molecular data for TMCs from the CSD. Vela et al. devel-
oped cell2mol [3] which extracts information from the 
crystallographic data in the CSD needed to do quantum 
chemical calculations. This includes the connectivity and 
total charge of the molecules in the unit cell as well as 
the oxidation state of the metal. For a dataset consisting 
of mono-metallic species with eight different transition 
metals they were able to interpret 77% of them (with 95% 
of the interpretations being correct).

Balcells and coworkers. have done extensive work to 
make TMC datasets from the CSD available [4–6]. This 
includes graph representations of 60k mono-metallic 
closed shell TMCs with an overall charge of −1, 0 or 1 
(tmQMg) [5]. The connectivity in these graphs are based 
on natural bond orbital (NBO) analysis from density 
functional theory (DFT) calculations. Recently, Kneiding 
et  al. extended this dataset with charge information for 
30k ligands present in the TMCs of tmQMg also based 
on a NBO analysis (tmQMg-L) [6].

The combined work of Balcells and coworkers really 
became a turning point when it comes to generating 
TMC SMILES from structure. Based on the connectiv-
ity and ligand charges one can use a program such as 
xyz2mol to generate RDKit mol objects for the TMCs 
[7]. Here we make RDKit parsable SMILES based on the 
NBO connectivity and ligand charges from DFT calcula-
tions [5, 6]. To get an idea of the quality of these SMILES, 
we compare these SMILES to the SMILES available 
through the CSD. However, as mentioned above these 
SMILES tend to not be parsable by RDKit. Therefore 
we put these SMILES through a series of fixing-steps in 
order to get a sanity check of the obtained SMILES.

In principle the above method, based on NBO analy-
sis of a DFT calculation followed by a xyz2mol-based 
workflow for assigning formal charges and bond orders, 

represents a method for obtaining SMILES/RDKit mol 
objects based on structure and overall charge. How-
ever, relying on DFT calculations makes this method 
very slow, limiting its use cases. Therefore we propose 
a much faster approach based on atomic distances and 
extended Hückel calculations (available through RDKit) 
for the ligands [8]. We will show that this is a robust way 
of obtaining a SMILES representation of a TMC that can 
be read into an RDKit mol object. Furthermore, we can 
assess the quality of this representation by comparison 
to the fixed CSD SMILES as well as the SMILES cre-
ated based on the DFT-NBO analysis for tmQMg and 
tmQMg-L [5, 6].

Kneiding et  al. utilized their graph-based dataset 
(tmQMg) to perform different machine learning tasks 
using graph convolutional neural networks (GCNNs) [5]. 
Since SMILES strings represent a 2D molecular graph, 
these can readily be used to create graphs for GCNNs. 
Furthermore, since the SMILES can be read into RDKit 
mol objects, the nodes and edges can be featurized using 
RDKit and RDKit offers several fingerprint featurization 
schemes. Molecular fingerprint featurizations such as 
ECFP4 [9] represent a standard withing machine learning 
for organic chemistry and often performs well for smaller 
datasets [10]. We demonstrate the performance of these 
RDKit-based graphs as well as ECFP4 and compare to 
the DFT-NBO based graphs from Kneiding et  al. For 
a 3D property such as the dipole moment, we find that 
the models fed with QM and 3D informed graphs per-
form significantly better than the models based solely on 
information available through SMILES which are 2D by 
nature. However, for the HOMO-LUMO gap and polar-
izability the RDKit-based graphs perform close to on par 
with the QM/3D informed graphs.

Computational methodology
Below we describe our three approaches for obtain-
ing SMILES for TMCs; fixing CSD SMILES, using xyz-
2mol with DFT-NBO input and xyz2mol with extended 
Hückel input. The latter requires only the xyz-coor-
dinates, overall charge and RDKit, whereas the other 
two require either an initial SMILES from the CSD or a 
DFT calculation yielding the necessary NBO data. Since 
TMC SMILES are not currently incorporated in chemi-
cal research, there is no established consensus on how 
to represent e.g. bonds to transition metals. Here we 
choose a representation, where the electrons in the TM-
ligand bond are located on the ligand, i.e. all TM-ligand 
bonds are represented by dative bonds (symbolized by 
an arrow in the SMILES). This has the advantage of mak-
ing the ligand charges and metal oxidation states directly 
available.
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Contrary to organic chemistry relating to e.g. drug dis-
covery, a chemical entity such as a carbene is a lot more 
common as a ligand in a TMC. Often another represen-
tation obeying the octet rule could also be drawn (Fig. 1). 
Here, we choose the carbene representation (non-zwit-
terionic). The carbene representation has the advantage 
of avoiding the ambiguity of assigning the positive charge 
on nitrogen for asymmetric ligands.

SMILES string from extended Hückel and distance data
The SMILES generated from DFT-NBO data are based 
on high quality (and expensive) calculations of both 
ligand charge and bonding pattern. In contrast, using 
an extended Hückel calculation for the charge guess and 
a simple distance cutoff for the bonding pattern can be 
expected to make wrong predictions frequently. Thus, 
when working with extended Hückel calculations we 
apply a custom procedure to catch and possibly cor-
rect these wrong predictions. The procedure going from 
xyz coordinates and overall charge (Q) to an RDKit mol 
object is outlined in Fig. 2 and is as follows.

•	 An initial adjacency matrix (AC) is calculated based 
on the xyz-coordinates. An AC is an Natom × Natom 
matrix where Natom is the number of atoms in the 
molecule. An element, ACij , is 1 if atom i and j are 
bound and 0 otherwise. Following Open Babel 
[11], a bond (one in the AC) is created if the dis-
tance between two atoms is shorter than the sum of 
their covalent radii plus a tolerance of 0.45Å. Since 
this can create valence violations (e.g. five bonds to 
carbon), a subsequent filter is applied cutting the 
weakest bond to an atom until the valence require-
ments are met. Here, the weakest bond is defined as 
the longest bond relative to the covalent radii of the 
atoms. More exotic bonding environments such as 
bridging hydrogen atoms can thus not be described 
using the default settings since this would violate the 
maximum valence of hydrogen which is one.

•	 The ligands are identified based on the AC and an 
extended Hückel calculation is done for each isolated 

ligand using RDKit [1, 8]. An initial guess for the 
ligand charge is calculated as 

	  where Vi is the number of valence electrons for 
atom i, { ψk } is the set of molecular orbitals generated 
with extended Hückel theory, E(ψk) is the energy of 
orbital k and EC = 10 eV is the cutoff energy under 
which the molecular orbitals are filled with double 
occupancy. If this results in a positive ligand charge 
combined with a low lying LUMO ( E(ψLUMO < −9 
eV), we iteratively add two electrons until this is no 
longer the case. Similarly, if this results in a ligand 
charge of −2 or lower combined with a high lying 
HOMO ( E(ψHOMO) > −10.2 eV), we iteratively 
remove two electrons until either of the two criteria 
are no longer true.

•	 Using xyz2mol [7], an RDKit mol object is generated 
for the ligand using the charge guess. This is done by 
looping over all combinations of allowed valences 
for the atoms until a solution matching the required 
charge and ligand AC is found. If no sanitizable solu-
tion is found, the charge is adjusted; if q ≥ 0 we add 
two electrons, otherwise we remove two electrons. If 
still no sanitizable solution can be found no SMILES 
is generated.

•	 If a sanitizable mol object is generated, we proceed 
to check different resonance forms of the ligand 
and choose one based on the following criteria: (1) 
A larger aromatic system is preferred over a smaller 
one. (2) Fewer formal atomic charges are preferred, 
but negative charges on the metal-coordinating 
atoms of the ligand do not count against that reso-
nance form.

•	 The above two steps are repeated with settings disal-
lowing carbenes and the found resonance forms are 
evaluated based on the same criteria. Finally the best 
found ligand representation from either this or the 
previous step of each ligand is kept.

(1)q =

Natom∑

i

Vi −

E(ψk )<EC∑

k

2

Fig. 1  We choose the carbene representation (left hand side) over the charged representation (right hand side) when either solution is possible. 
CSD ID: BOCPEP
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•	 The oxidation state of the metal ( Mox ) is calculated 
from the overall charge and found ligand charges ( qi ): 
Mox = Q −

∑Nlig

i qi.
•	 The complex is re-assembled based on the initially 

found AC. All metal-ligand bonds are represented 
with dative bonds.

•	 Finally a couple of sanitization steps (described 
below) are performed to catch known problematic 
behavior before a SMILES is generated for the mol 
object of the complex using RDKit.

Cleaning steps
Setting valence constraints for the atoms involved in 
simple organic molecules is fairly straightforward; car-
bon and nitrogen should not have more than four bound 

neighbors, hydrogen and fluorine can only have one 
bound neighbor and so on. Defining valence constraints 
for transition metals is a lot more complicated. Initially, 
the AC of the complex is found based on atom pair dis-
tances as described above. The valence constraints are 
invoked based on the non-TM atoms, cutting the long-
est bond relative to the atomic radii of the atoms involved 
in the bond if a ligand atom has too many neighbors. In 
some cases, this leads to a “fake” haptic bonding pattern 
i.e. a situation where the neighbor-atom of a coordinat-
ing atom is initially also assigned a bond to the transition 
metal even though the distance to the TM is significantly 
larger (Fig. 3). We avoid this by cutting perceived haptic 
bonds that are much longer than those for their haptic 
neighbors.

While the above described loop through stereoisomers 
of the ligand to find the best atomic charge distribution 

Fig. 2  The major steps involved in the xyz2mol procedure for TMCs
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works well in most cases, there are a few examples where 
the negative charge is in fact not assigned to the coor-
dinating atom. The sulfonate anion in OPAKAT (Fig.  4) 
is an example of the negative charge initially not being 
assigned to the coordinating atom. For the isolated 
ligand, the oxygen atoms are equivalent and only one res-
onance form with the charge assigned to a random oxy-
gen is created. This is one of two post SMILES creation 

fixes that are done using SMARTS pattern matching. 
The other post fix relates to –NO2 groups that we want 
to consistently be described with the same representa-
tion. Two Lewis structures obeying the octet rule can be 
drawn for an –NO2 group (IXENEG, Fig.  4), both with 
two formal charges. We make sure to always use the neu-
tral representation, adjusting the metal oxidation state 
accordingly.

Fig. 3  Example of cleaning procedure for the metal coordination environment. CSD ID : PIYNER

Fig. 4  Example of moving a negative charge due to ligand atoms being equivalent for the isolated ligand but not for the whole complex (OPAKAT). 
IXENEG is an example of the NO2-group fix: we make sure all NO2-groups are described in the neutral form
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SMILES strings from DFT‑NBO data
Kneiding et al. [6] provide the tmQMg-L dataset of 30 K 
TMC ligand charges, metal coordination atoms and their 
corresponding 3D coordinates. Using this data in combi-
nation with xyz2mol we create TMC SMILES representa-
tions of the TMCs in tmQMg. This is done by first using 
xyz2mol to obtain SMILES strings for the isolated ligands 
in tmQMg-L and then combining them with a TM to 
form the full tmQMg TMCs. The approach is described 
in the following text.

•	 Knowing the ligand composition of a complex, we 
attempt to generate RDKit mol objects for each 
ligand in the complex. The xyz2mol approach for the 
ligands is the same as the extended Hückel approach 
explained above except that the ligand charge is fixed.

•	 If mol objects can be obtained for all ligands in a 
TMC, the coordinating atoms for each ligand are 
connected through dative bonds to the TM for the 
given TMC. The 3D coordinates of the ligands are 
given by the ligand xyz files and the coordinates of 
the core TM are parsed from the TMC xyz file.

•	 We then set the metal formal oxidation state by sub-
tracting the sum of the ligand charges from the TMC 
overall charge. In this way the overall charge of each 
TMC SMILES will match the tmQMg dataset. How-
ever, TM formal oxidation states can still be inac-
curate compared to the true CSD structure if ligand 
charges from the DFT-NBOs are wrong.

•	 In the final step we sanitize the RDKit mol object 
and remove the hydrogens. Complexes that fail this 
procedure likely have wrong ligand charges or incor-
rect coordination atoms and therefore do not get a 
SMILES.

SMILES strings from the CSD
SMILES strings of mononuclear TMCs were extracted 
from the CSD as described by Frei and Orsi [12] except 
that only d-block elements and all coordination numbers 
were considered. The initial screening process eliminated 
cases where the counter-ion also contained a metal, 
which eliminated some compounds that were included 
by Balcells and co-workers. We add these entries, mak-
ing tmQMg a subset of the CSD dataset, and remove 
complexes containing group 1 or group 2 elements and 
complexes containing > 100 heavy atoms. This results 
in 230,550 SMILES. For 7297 TMCs we are unable to 
retrieve a SMILES via the API and 7 entries have been 
deleted from the CSD after tmQMg was curated. Of the 
remaining 223,246 SMILES, RDKit can only success-
fully sanitize 123,147 SMILES strings and we therefore 

implemented a custom SMILES fixer process that all 
CSD SMILES strings were subjected to.

The two main reasons that RDKit cannot sanitize the 
SMILES are (1) failure to kekularize aromatic rings and 
(2) improper valences such as a N atom with four bonds 
lacking a positive charge. The kekularization error always 
involves at least one ligand atom covalently bonded 
to the metal (the CSD SMILES do not contain dative 
ligand-metal bonds), while this is not necessarily the 
case for atoms with improper valences. The cleanup pro-
cess involves the conversion of all ligand-metal bonds to 
dative bonds. If the bond is judged to be a “true” cova-
lent bond, based on its valency, then the charge on the 
metal and the ligand atom is increased and decreased, 
respectively, according to the bond order. For example, if 
the bond order is one, then the charge of the metal atom 
and ligand atom is increased and decreased by one unit, 
respectively. Occasionally, the CSD SMILES string does 
not contain the explicit hydrogen atoms commensurate 
with the bonding type, leading to a wrong assignment 
of atomic charges. However, these errors are typically 
caught (though not corrected) since such errors will lead 
to the wrong number of implicit hydrogen atoms being 
added in the sanitation step, which in turn, leads to the 
wrong empirical formula of the compound. Atoms with 
incorrect valencies (typically N and B atoms) that are 
not directly bonded to the metal have formal charges 
assigned in a similar way. A +1 charge is assigned to 
hypervalent N atoms while the charge of the metal is 
decreased by one unit, while the opposite is true for 
hypervalent B atoms. In addition, SMARTS-based fixes 
are done for special cases like carbenes, carbon monox-
ide, metal triple bonds to O and N atoms, and pyrrole.

All in all, these changes allow for 213,278 SMILES to be 
sanitized. 53,344 of which are part of the tmQMg dataset.

Property prediction from SMILES
We use the obtained SMILES sets to perform the prop-
erty prediction tasks as done by Kneiding et al. [5] where 
we predict polarizability, HOMO-LUMO gap and dipole 
moment for the tmQMg complexes using our TMC 
SMILES.

To encode the SMILES we apply both fingerprint and 
graph representations. For the fingerprint representation 
we use Morgan count fingerprints with radius 2 (ECFP4) 
and bit size 1028 [9, 13]. For the graph representation 
we use an RDKit graph featurization approach that con-
structs node and edge features from the information 
available in the SMILES strings [14].

For consistent comparison with [5] we construct our 
test set to match theirs. We create a test set that con-
tains the maximum overlap between complexes with 
valid SMILES and the complexes used in their original 
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test set of 5615 complexes. The Hückel SMILES set has 
the largest overlap with 5534 SMILES. As we observe 
the same trends for all three SMILES sets, the discus-
sion is limited to the ML models trained on the Hückel 
SMILES. To ensure consistent comparison we also re-
evaluate the models from Kneiding et al. on this smaller 
test set after re-training on the slightly larger training 
set. The models from Kneiding et al. [5] are referred to 
as Baseline, u-NatQ, d-NatQ. Here, the Baseline model 
is trained on graphs informed with standard atom and 
bond properties. The u-NatQ and d-NatQ models are 
trained on graphs informed with NBO topology and 
attribution. u-NatQ on undirected graphs and d-NatQ 
on directed graphs.

We test the performance of the fingerprint and graph 
representations with five different models. Namely, 
Random Forest (RF), Feed-Forward Neural Network 
(FF-NN), light gradient boosting machine (LightGBM 
[15]), a simple Graph Convolutional Neural Network 
(GCNN) and the Message Passing Neural Network 
(MPNN) by Gilmer et  al. [16]. The Gilmer MPNN is 
identical to the one used by Kneiding et al. [5], the dif-
ference being that we featurize our graph representa-
tions based on RDKit properties that can be obtained 

directly from our SMILES. For additional details on ML 
training see section S1 in the SI.

Results
Comparing SMILES sets
The tmQMg dataset consists of 60,799 TMCs with both 
the deposited CSD structure and a DFT optimized struc-
ture available. For the DFT/NBO method we are able 
obtain 46,190 valid RDKit parsable SMILES. For the 
Hückel/distance method we are able to obtain 59,878 
valid RDKit parsable SMILES using the DFT optimized 
structures and 59,893 RDKit parsable SMILES using 
the CSD deposited structures. Lastly, using the sanitiza-
tion procedure for the CSD SMILES we obtain 53,320 
RDKit parsable SMILES. For the Hückel SMILES, the 
majority of the cases where we do not obtain a SMILES 
contain some kind of boron hydride structure (Fig.  5). 
Proper description of these complexes requires 3-center 
2-electron bonds, which is not currently possible and 
these complexes will generally fail in all approaches due 
to the high valence of boron. The DFT/NBO method 
returned the lowest number of SMILES which is mostly 
due to all necessary ligand information not being avail-
able for ≈ 8k complexes. As stated by Kneiding et al. [6] 
some ligands are discarded based on the results of the 

Fig. 5  Example of a molecule containing a boron hydride cluster. None of the above described methods can produce a SMILES/mol object 
for these kind of structures due to the high valence of Boron. CSD ID: PEKGAP. Dark pink: Cobalt, light pink: Boron, red: Oxygen, blue: Nitrogen, grey: 
Carbon, white: Hydrogen
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DFT calculations. For the remaining complexes, a solu-
tion could not be found that would satisfy the given AC, 
ligand charges and possible atomic valence combina-
tions. Approximately 4k of the complexes in the tmQMg 
dataset did not have a SMILES available from the CSD 
API and thus cannot be run through our fixing proce-
dure. The remaining ≈ 4k SMILES missing are from mol 
objects that cannot be sanitized even after the above 
described fixes have been implemented.

For 41,355 complexes, we obtain a SMILES from each 
of the three methods. 29,053 of these (corresponding to 
70 %) are completely identical across all three methods. 
These SMILES can be assigned a high level of confidence. 

When the SMILES do not exactly match it can be due to 
several things. The AC of the complex can differ, result-
ing in different SMILES. Most frequently the difference is 
in the metal-ligand bonds. Another possibility is that the 
ligand charges (and hence oxidation state of the metal) 
differ. For some ligands, multiple total ligand charges can 
result in chemically reasonable charge configurations (see 
e.g. TETCOK in Fig. 6). Thus, lack of agreement between 
SMILES does not necessarily mean that one (or all) of the 
SMILES are bad, but can also mean that multiple reason-
able representations exist. Even if the ligand charges and 
AC matrix of the complex are identical across methods, 
the obtained SMILES can still be different due to different 

Fig. 6  Examples of fixed CSD SMILES compared to Hückel SMILES where both representations are valid. For QAPWIP and HUVCUW, the SMILES 
are resonance forms of each other. The two solutions for TETCOK differ in their ligand charge (and hence oxidation state of Iridium). However, one 
solution is not clearly superior to the other
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resonance forms. QAPWIP and HUVCUW (Fig.  6) are 
examples where the SMILES obtained from the fixed 
CSD SMILES approach and the Hückel approach are res-
onance forms of each other.

In Table  1 we compare the three methods in pairs. 
Direct comparison of the SMILES results in >70% match 
for each of the three pairs. The pair with the highest per-
cent-wise overlap is found for NBO(DFT)/Hückel, where 
81% of the SMILES match. Considering only the highest 
amount of matching SMILES we find the CSD/Hückel 
pair to be the largest with 38,073 SMILES. Considering 
that these two methods of obtaining SMILES are com-
pletely different, these 38,073 SMILES can be assigned 
a high level confidence. When comparing the resonance 
forms of the same TMCs the number of equal SMILES 
increases only slightly across the three pairs. Finally, 
we compare the resonance forms after disconnecting 
the ligands from the TM (Disconnect-Resonance). This 
increases the number of SMILES matching with between 
5k and 7k. These TMCs differ only in the coordination 
to the TM (and possibly ligand resonance structure) but 
have identical ligand charges and TM oxidation state.

For the SMILES that do not match, a plethora of rea-
sons can exist. Some cases resemble that of TETCOK 
(Fig. 6) but others are more problematic with e.g. a dis-
connected graph due to valence constraints. We analyze 
some of these cases in Sect. 3 and show various examples 
in https://​github.​com/​jense​ngroup/​xyz2m​ol_​tm/​blob/​
main/​compa​ring_​smiles/​highl​ight_​smiles_​probl​ems.​
ipynb.

It is a known issue that for some 3D structures in the 
CSD, the 3D structure does not necessarily reflect the 
expected structure. For some structures here are hydro-
gens missing in the 3D structure. Additionally, the fixed 
CSD SMILES strings can have incorrect number of 
implicit hydrogens due to the nature of the fixing proce-
dure. Both these cases can be detected by comparing the 
formula of our SMILES with the corresponding formula 
from the CSD API. How this is detected and for which 

complexes this is the case is shown in the notebook men-
tioned above.

SMILES distributions
With a SMILES dataset of the TMCs present in the CSD, 
one can easily access various information of the TMCs. 
This includes key attributes of TMCs such as the oxida-
tion state of the TM metal and the ligand coordination 
environments. We show the oxidation state of the TM 
for TMCs where we have valid SMILES for both the 
NBO and Hückel methods in Fig 7a. Figure 7b shows the 
TMC ligand coordination environments for the Hückel 
SMILES.

We observe that the TMCs in the tmQMg contain a 
wide range of oxidation states. The majority of which lies 
in the range 0–6 with oxidation state +2 being the most 
common with around 25 K occurrences. A small portion 
of the SMILES have TMs with oxidation states that are 
unusually low ( < 0 ) or unusually high ( > 10 ). Negative 
oxidation states are not unheard of [17] but the occur-
rence of oxidation states > 10 is clearly an artifact of the 
method since the highest oxidation state found in a sta-
ble TMC is 10 [18]. For the Hückel method a total of 26 
TMCs are described with a formal oxidation state > 10. 
Almost all of these complexes contain the perchlorate 
ion, i.e. a chlorine atom bound to 4 oxygen atoms, which 
is violating our set maximum valence for chlorine. Since 
the AC is generated by cutting bonds until the maximum 
valence is complied with, this results in a lot of lonely 
oxygen atoms, which are assigned a charge of −2. This in 
turn makes the oxidation state of the TM artificially high 
(Fig. 3). Depending on the type of TM different oxidation 
states will be impossible or at least unusual. It is likely 
that most of the SMILES at the extrema are non accurate 
representations of the TMCs as a result of the method 
used as in the case of the perchlorate ion. Such extreme 
cases are highlighted in Sect. 3.

Furthermore, the Hückel and NBO SMILES have simi-
lar distributions of the oxidation states. A larger discrep-
ancy between the two methods is observed for oxidation 
states 0 and +2. This is mainly attributed to the differ-
ence in orbitals between the NBO and Hückel methods. 
For the NBO method 1166 ligands are attributed a −2 
charge while they are assigned a 0 charge with the Hückel 
method. Conversely, 262 ligands are attributed a −2 
charge with Hückel where the NBO method gives a 0. As 
such, this results in a slightly higher peak of +2 oxidation 
states for the NBO method. Examples of this are shown 
in Sect. 3.

Figure  7b shows the importance of chloride, pyridine 
and carbonyl coordination in TMC chemistry. Here 
we leverage the graph information in the SMILES to 
extract these coordination patterns that also includes 

Table 1  Number of equal SMILES when comparing the three 
SMILES pairs with different methods

Direct comparison compares the canonical SMILES, Resonance TMC compares 
the SMILES resonance sets and Disconnect-Resonance compares the resonances 
of ligands when disconnected from the TM

Method SMILES pair

CSD/NBO(DFT) CSD/Hückel NBO(DFT)/Hückel

Direct compari-
son

31 675/41 432 38 073/53 167 37 500/46 103

Resonance TMC 31 929/41 432 38 442/53 167 37 565/46 103

Disconnect-
Resonance

37 215/41 432 45 734/53 167 42 468/46 103

https://github.com/jensengroup/xyz2mol_tm/blob/main/comparing_smiles/highlight_smiles_problems.ipynb
https://github.com/jensengroup/xyz2mol_tm/blob/main/comparing_smiles/highlight_smiles_problems.ipynb
https://github.com/jensengroup/xyz2mol_tm/blob/main/comparing_smiles/highlight_smiles_problems.ipynb
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information on aromaticity of the coordinating atoms 
neighbors. Such insights are crucial when making design 
choices in accelerated TMC discovery as they can be used 
to adjust the search scope or to design custom synthetic 
accessibility (SA) scores for use in generative models. 
An example would be in TMC catalyst discovery where 
ligand coordination environments can be used to either 
set up a starting geometry for TMCs to search for, or as a 
look-up table for potential coordination environments in 
new ligand candidates.

ML with TMC SMILES strings
We train a range of model for the tmQMg dataset based 
on the Hückel SMILES. This was the method yielding 
the highest number of SMILES as well as the most gen-
eral method since it requires neither DFT calculation 
and NBO analysis nor an initial SMILES representation. 
The LightGBM, Random Forest and FF-NN models are 
trained on the ECFP4 with a bit vector length of 1024. 
The GCNN and Gilmer models are trained on graph 
representations generated from information inherent in 
the SMILES. Finally, the Baseline, u-NatQ, d-NatQ mod-
els are trained on the NBO graph data from [5]. Note 
that the u-NatQ and d-NatQ graphs are fed with node 
and edge information extracted from DFT calculations. 
Thus, when generating these graphs the target property 

(polarizability, HOMO-LUMO gap or dipole moment) is 
immediately available. In addition, the baseline, u-NatQ 
and d-NatQ graphs contain some 3D information as it 
has bond lengths as an edge feature from the optimized 
geometry. Contrary to this, the models based on SMILES 
only have the 2D graph defined by the SMILES, as well as 
the cheminformatics properties available through RDKit. 
All models are evaluated on the same test set as outlined 
in the computational methodology. We apply a naive 
approach where all remaining SMILES in the Hückel 
SMILES set are used for training. A comparison of the 
resulting R2 correlation metrics are seen in Fig. 8.

Generally, there appears to be no difference among the 
methods when it comes to predicting polarizability. The 
polarizability is to a certain extent an additive property. 
As such, this correlation can be easily learned with sim-
ple ML models based on circular fingerprints with little 
to no gain in using more advanced models and/or molec-
ular featurizations.

For the HOMO-LUMO gap a larger discrepancy is 
apparent between the performance on the training and 
test sets. Surprisingly, the Gilmer model trained on the 
SMILES graph data matches the performance of the 
Gilmer models trained on the significantly more expen-
sive DFT-NBO data. The GCNN also performs much 
better than the fingerprint models.

Fig. 7  a TM oxidation state distribution of the Hückel and NBO SMILES. b Top occurring coordination environments in the 58 K Hückel SMILES. The 
first atom is the coordination atom and the following atom labels enclosed by parenthesis are the direct neighbors to the coordinating atom. Lower 
case signifies an aromatic atom
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Finally, the hardest task for the models is the dipole 
moment. Again, the models struggle to extrapolate to the 
structures in the test set. Here, the Gilmer and GCNN 
models struggle to learn the dipole moment from the 
SMILES graphs which is due to the fact that the dipole 
moment is instrisically a geometry dependent property. 
Since the Baseline, u-NatQ, and d-NatQ models include 
bond distances it enables the model to learn the cor-
relation between geometric bond information and the 
dipole moment. For comparison, the baseline model 
without bond distances as edge features get an R2 value 
of 0.42 (this value was kindly offered by the authors). This 
is something that one can not obtain from only the 2D 
graphs defined by the SMILES strings. Note that prelimi-
nary results predicting dipole moments for organic mol-
ecules using ECFP4 showed equally bad results.

One possible remedy for this is to enrich the SMILES 
with chiral tags reflecting the stereochemistry of the 
metal center. This information is available through the 
TMC 3D coordinates and it is possible to specify the 
geometry of a TMC and the arrangement of the ligands 
around the metal which could aid the model in learning 
geometry dependent properties like the dipole moment. 
However, in the current state of RDKit (2024.03.3) this 
functionality is unreliable and it was therefore not pos-
sible to incorporate stereochemistry of the TM into the 
SMILES. More details are outlined in S4.

A SMILES data set of 227k TMCs from the CSD
As mentioned above, a total of 230,550 mononuclear 
TMCs were extracted from the CSD and as many of 
their available SMILES as possible were made sanitize-
able for a total of 213,278. Using the Hückel method, 
we obtain SMILES for 217,776 of the 230,550 extracted 
TMCs. Combining these two methods means that we 
make 227,124 SMILES of CSD TMCs, that can read-
ily be read into RDKit, available. For those complexes 

where we have a SMILES for both the fixed CSD and 
Hückel methods we compare the SMILES in Table 2.

We observe that 69% of the SMILES are identical 
as is, with an increase to 76% when also considering 
TMC resonance forms and finally 79% when discon-
necting the ligands. Following the analysis for Table  1 
the SMILES that are equal for both methods can be 
assigned a high level of confidence. Furthermore, the 
fraction of identical SMILES does not deteriorate when 
looking at the larger CSD set which highlights that 
the Hückel method is not only effective at the smaller 
tmQMg subset.

When using this dataset, e.g. for machine learning, 
the conservative choice is to only use the “fixed” CSD 
SMILES since the connectivity is determined, at least 
in parts, by experts. Bond perception presents the big-
gest challenge for xyz2mol and most of the SMILES-
differences is due to differences in connectivity. That 
being said, differences in connectivity could possibly be 
an indication of weaker coordination, so there may be 
a benefit to using both SMILES in an ML project as a 
form of data augmentation, for cases where coordina-
tion strength is important. Similar considerations also 
apply in cases where the resonance forms or oxidation 
states are ambiguous (i.e. differ).

Fig. 8  Comparison of R2 values for the 5 SMILES based models versus the 3 DFT-NBO based models for the test set

Table 2  Comparing the CSD fixed SMILES set with the 
corresponding Hückel SMILES for the large 230 K set dataset

Direct comparison compares the canonical SMILES, Resonance TMC compares 
the SMILES resonance sets and Disconnect-Resonance compares the resonances 
of ligands when disconnected from the TM

Method SMILES pair

CSD/Hückel(CSD)

Direct comparison 140 510/203 930

Resonance TMC 154 354/203 930

Disconnect-Resonance 161 041/203 930
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Discussion/conclusion
We present an xyz2mol method for TMCs. Using only 
an xyz file and an overall charge we are able to obtain 
TMC SMILES that contain atomic charges and TM oxi-
dation states. We use this method to provide two large 
datasets of TMC SMILES for TMCs found in the CSD. 
The first dataset consists of 3 different SMILES sets for 
complexes in tmQMg (a subset of mononuclear TMCs in 
the CSD with charge −1, 0 or 1 developed by Kneiding 
et  al. [5]) obtained with 3 different methods where our 
Hückel approach was able to obtain SMILES for 59 878 
of the complexes in the tmQMg. At least 38,442 of these 
SMILES are expected to be highly reliable and acurate as 
they are identical with those from the CSD after the fix-
ing steps to make it sanitizable in RDKit. The matching 
percentage between xyz2mol SMILES based on Hückel 
calculations and CSD SMILES is 72%. For comparison, 
xyz2mol SMILES based on the high quality (and expen-
sive) DFT-NBO data get a similar matching percentage of 
76%. Note that this percentage is not including the ≈ 14k 
complexes where a SMILES could not be obtained for the 
DFT-NBO method.

The second dataset consists of 213,278 SMILES from 
the CSD which are RDKit parsable as well as 217,776 
SMILES from the Hückel method. In total we present 
RDKit parsable SMILES for 227,124 mononuclear TMCs 
from the CSD using either the CSD fixing method or the 
Hückel method.

These SMILES sets can be used to train baseline ML 
models serving as a reference for more elaborate meth-
ods. We show that using our SMILES to obtain finger-
prints or graphs and then training ML models on these 
representations, we are able to predict polarizability 
and HOMO-LUMO gap to the same level of accuracy 
as Kneiding et  al. [5]. As such, the SMILES graphs are 
sufficient for this task, avoiding the need for expensive 
DFT-NBO calculations. The lack of 3D information in 
the SMILES hinders the accurate prediction of the dipole 
moment and we are therefore not able to match the per-
formance of the DFT-NBO data. This performance and 
the fact that the SMILES are not filtered for inaccurate 
representations, combined with the ease of which the 
SMILES can be obtained with the Hückel method, illus-
trates how powerful these representations can be for 
TMC development.

One thing we have been missing in our own research 
on catalyst optimization for TMCs is a synthetic acces-
sibility (SA) score that works for TMCs [19–21]. So far 
we have applied a synthetic accessibility score designed 
for drug-like molecules for the isolated ligands which 
steers the proposed ligands to look like drug-like mol-
ecules [22, 23]. A similar score for TMCs would clearly 
be desirable for generative models proposing new 

TMCs. This SMILES-based dataset of the CSD serves 
as a good starting point of generating such a SA score. 
Kerstjens et  al. recently proposed a method for cor-
recting molecules from generative models based on 
a “familiarity” concept that takes into account which 
atom/bond types as well as fragments are present in a 
reference library [24]. While they applied it to a refer-
ence library consisting of drug-like molecules we are 
currently applying it to our CSD SMILES dataset since 
the method requires molecules to be parsable by RDKit 
to get a score for whether a new TMC is “familiar” to 
the CSD.

While we have tried to retain a large amount of flex-
ibility when it comes to what chemistry can be described, 
i.e. which atom types and valences are allowed, there is 
still examples of chemistry that we are currently inca-
pable of describing properly. This includes the examples 
highlighted in the manuscript such as boron hydride 
clusters and the perchlorate ion. Future work will include 
expanding the chemistry that can be described while 
retaining and improving the robustness and reliability of 
the Hückel method. One possible improvement is to take 
into account the preferred oxidation states of the TMs. 
Especially in cases where multiple ligand charges result 
in chemically reasonable structures, one could let the TM 
decide which to choose based on a prioritized list of oxi-
dation states. Other improvements would involve proper 
logging of potential issues like unusual TM oxidation 
states or uncommon ligand charges or coordination envi-
ronments. We expect that how the community will use 
this tool will guide the direction of improvement, when 
undoubtedly problematic cases that we have not thought 
of arise.
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